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1 INTRODUCTION 

Intensive metal mining during the last centuries has left a legacy of not only heavily 

contaminated sites around the world but also of sites prone to erosion, limited biodi-

versity and environmental damage that ultimately can affect human health.  

 

The southwest of England is well-known for its mining heritage and geology. Mineral 

deposits in the area led to exhaustive mining of lead (Pb), tin (Sn), copper (Cu) and 

particularly arsenic (As) during the 18
th 

and 19
th

 centuries (Fig. 1) (Mining Heritage 

Project, 2010). The area became the biggest supplier of As in the world leaving behind 

large amounts of waste high in As and metal concentrations, which have been eroded, 

atmospherically dispersed to neighbouring areas, and hydrogeologically carried into 

water systems (Fig. 2) (Mighanetara, 2008; Green, 2012). In the Tamar Valley at the 

Devon Great Consols (DGC) mine site, waste heaps have been left untouched for al-

most 100 years and little obvious biological recolonisation has occurred. However, 

some indigenous species of e.g., bryophytes, grasses and heathers have adapted to 

these harsh environments providing an outstanding opportunity to study their feasibil-

ity in the stabilisation or remediation of As contaminated waste heaps by understand-

ing the soil conditions in which these plants are able to grow.  

 

 

 Devon Great Consols (DGC) waste heaps. Source: Author, 2014 Figure 1.
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The purpose of this research is to investigate the degree of arsenic contamination, its 

bioavailability and bioaccumulation (if any) in the indigenous vegetation of the tail-

ings at the DGC site. Although the site is known to be highly contaminated with met-

als and metalloids, a variety of plant species and other biota appear to be developing 

successfully on the area, particularly in one of the heaps.  

 

For this reason, the main aim of this research is a) to understand what is the growth 

limiting factor (if any) that determines the slow rate of vegetation recolonisation at the 

site, b) to investigate the use of local vegetation in phytoremediation strategies and 

their feasibility at the site, and finally, c) use gathered information in order to propose 

a strategy to improve the containment of contaminants and the stability of the tailings 

at the DGC. Thus, decrease future risks of contaminated runoff, percolation and ero-

sion and as a result minimise pollutant migration to the Tamar River and reduce con-

tamination pathways to visitors.  

 

In order to meet the objectives of this research, it is vital to measure the nutrient avail-

ability in addition to arsenic bioavailability, as it has been assumed that the high con-

centration levels of arsenic is the growth limiting factor for plants at the site, yet this 

might not be the case. 

 

 

 Erosion and leachate at the DGC.  Source: Author, 2014 Figure 2.
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2 LITERATURE REVIEW 

2.1 Geological setting  

The Tamar valley area is located in South West of England. In this region approxi-

mately 300 million years ago granitic batholithic intrusions metamorphosed rocks 

from Upper Devonian and Lower Carboniferous periods, filling fractures in the coun-

try rock producing thus lodes and metalliferous mineral veins rich in lead, tin, copper 

and arsenic ores. Devon Great Consols (DGC) is located north of a significant mineral 

vein in Gunnislake, where valuable products such as copper (Cu) and arsenic (As) 

were located. (Klinck et al., 2005 & Rieuwerts et al., 2014)  

 

2.2 Site description 

2.2.1 History 

The DGC is the result of the merging of five neighbouring mines (Fig. 3) on the east 

bank of the River Tamar in Devon. Copper ore (CuFeS2) was the main product at the 

beginning stages of the mine; however arsenic production took over with an output of 

over 1150 tons per year between 1848 and 1909. (Dines, 1956)  

 

Arsenic (As) was extracted as arsenopyrite (FeAsS) as it was the only economically 

viable form of As (Dines, 1956). The process of As extraction was performed in the 

Calciner complex, whither the ore was brought, mechanically crushed, washed and 

sieved. This was followed by a two-stage roasting process (calcining) in pre-heated 

furnaces at 538-593 C, where arsenic and sulphur sublimated. These arsenic-rich 

fumes from the furnace were diverted and precipitated on a labyrinth condenser (Fig. 

4) as arsenic oxides (As2O5 & As2O3) and were scraped from the walls of the labyrinth 

by workmen with limited protection. (Haswell, 1983 & Klinck et al., 2005)  

 

The residues of the mined materials (a.k.a tailings, waste heaps, waste tips) after ex-

traction processes were dumped on a slope on site facing the Tamar River.  

 

 



4 

 

 Map of Devon Great Consols showing the five mines in purple.   Source: Figure 3.

created by author based on Digimap database, 2015. 

 

 

 The remains of the labyrinth condenser at DGC. Source: Author, 2014 Figure 4.

 

2.2.2 Current state 

Presently, the land covers ca. 67.6 ha (Kavanagh et al., 1997) and it is mainly covered 

with mixed plantation forest, aside from the main works and tailings which are at 

some areas lightly vegetated with mainly bryophytes, grass (Agrostis capillaris) and 
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heather (Calluna vulgaris). The Tamar Valley Mining District receives approximately 

1000 – 1400 mm of rainfall annually (Met Office, 2010); the runoff and drainage of 

the area are discharged into the Tamar River, which surrounds the Devon Great Con-

sols flowing east and south of the complex (Fig. 3) towards the English Channel.  

 

The site is currently owned by the Duke of Bedford and has been a World Heritage 

Site since 2006 (UNESCO, 2014). Consequently, it has undergone some redevelop-

ment for tourism and recreation activities (Mining Heritage Project, 2010), which has 

resulted in the alteration of surface drainage pattern throughout the site, leading to 

dispersal and transportation of contaminants such as Al, As, Cd, Cu, Ni, Pb and Zn 

into the River Tamar (Green, 2012).  

 

This study focuses on the two waste heaps (Fig. 5) with the approximate coordinates 

50°32'16"N, 4°13'14"W and 50°32'13"N, 4°13'09"W, near the Calciner Complex.  

The Upper waste heap (Northern, referred as Top Heap) is composed of coarse 

grained material and is larger than the bottom waste heap (South heap, referred as 

Bottom Heap). The Bottom Heap is finer grained material as it was reworked in 1902-

1925 to re-extract arsenic using more sophisticated processes (Mighanetara, 2008).  

 

 

 Aerial view of the Devon Great Consols waste heaps (circled in yellow). Figure 5.

Source: Created by author from Google maps & digimap database, 2015 .  

Top 

Heap 

Bottom 

Heap 
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The stability of the waste heaps has been comprehensively studied in 2008 by 

Mighanetara and the relevant findings are shown summarised in Table 1. In this study 

it was found that the Top Heap, unlike the Bottom Heap, was fairly permeable, per-

mitting the infiltration of water and enhancing oxidation.  

 Properties of the waste heaps. Data from: Mighanetara, 2008 Table 1.

  Top Heap Bottom Heap 

Volume (m
3
) 160 000 – 192 000 86 500 – 110 000 

surface pH 4.7 5.4 

Sand %  39 No Data 

Gravel % 34 17 

Silt % 25 72 

Clay %  < 2 11 

Texture Coarse sandy material Homogeneous coarse silt, fine sand 

Density g/cm
3 

1.5 1.3 

Erosion rate (cm/annum)  4.0 ± 0.5 Non observed 

Export of material (m
3
/annum) 280 - 300  Non observed 

 

Additionally, it was suggested that both heaps are geotechnically stable. (Mighanetara, 

2008) However, recently some areas in the Bottom Heap have shown signs of instabil-

ity i.e., a deep gully on the side facing the River Tamar has formed (Fig. 6). 

 

 

 Deep gully in the Bottom heap. Source: Author, 2014 Figure 6.

 

The spatial distribution of arsenic in the DGC environment has been studied by the 

British Geological Survey (Klinck et al., 2005). The study reports values for As and 

Fe concentrations at the DGC area shown in Table 2. Additionally, mean pH values of 
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3.88 for the soils within the mine area were reported, whereas Mighanetara (2008) 

reported values of 4.7 - 5.4 (Table 1).  

 Summary of As concentrations.  Data source: Klinck et al., 2005 Table 2.
  
  

Tailings DGC soils 
Outside DGC soils 

(mineralisation) 
Background soils 

(No mineralisation) 

As 
[mg/kg] 

Min 1279 249 252 17 

Mean 30842 8081 2019 82 

Median 19170 2105 1695 71 

Max 204478 68924 4482 172 

Std. Dev.  44685 12753 1481 57 

 

The background soil values are from areas unaffected by neither mineralisation nor 

mining near the village of Bere Alston. The outside DGC soil values come from an 

area located 2.5 km southwest of the DGC, where mineralisation occurred but without 

mining. (Klink et al., 2005) 

2.3 Arsenic biogeochemistry  

Arsenic is a naturally occurring metalloid which belongs to the nitrogen family 

(Group Va) and was traditionally used in paints, dyes and due to its toxicity as pesti-

cide. However, recently it has been rather used in photoelectric devices and as an alloy 

to improve corrosion and tensile strength (Kabata-Pendias, 2011). According to Envi-

ronment Agency (2007) the As concentration in English rural soils ranges from 1.37 

to 143 mg/kg with a mean value of 13.9 mg/kg. Its biogeochemistry is fairly complex 

as it undergoes adsorption and desorption processes, as well as reduction-oxidation 

and acid-alkaline reactions and biomethylation.  

 

Arsenic bonds easily with oxygen and metals such as Fe, Pb and Cu and its most sta-

ble inorganic forms are as arsenites As
III

 (AsO3
3-

) and arsenates As
V
 (AsO4

3-
). Moreo-

ver, the most abundant As mineral is arsenopyrite (FeAsS) and once exposed to the 

environment, As minerals are easily soluble. Furthermore, the toxicity of As is associ-

ated with its solubility; Arsenite (As
3+

) is more soluble than arsenate (As
5+

) and thus 

more toxic and mobile. (Kabata-Pendias, 2011) However, studies agree that arsenate 

solubility also increases as pH increases. (Fitz and Wenzel, 2002) 

Arsenic migration in soil is hence essentially limited by sorption on clays, organic 

matter and hydroxides. (Violante et al., 2008 & Ghosh and Bhattacharya, 2004) Addi-

tionally, the redox potential and the pH of soil appear to be the most significant pa-

rameters controlling As sorption, as they facilitate the bonding of As ions with iron 
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(Fe) and aluminium (Al) producing Fe and Al-oxyhydroxides (Bissen and Frimmel, 

2003). Moreover, aerobic conditions promote the oxidation of As to less toxic com-

pounds (Bissen and Frimmel, 2003), which might be favourable for biotic recolonisa-

tion. 

 

Zandsalimi et al., (2011) ponder how improbable it is that plants play a major role in 

geochemical cycling of arsenic as only a limited fraction of As is available to them 

due to its strong bonds with Fe and Al oxides. On the other hand, evidence shows that 

anaerobic methanobacterium could methylate arsenate to dimethylarsine, suggesting 

that microorganisms present in soil may play a role in the toxicity and availability of 

arsenic. (Porter and Peterson, 1977) 

2.4 Bioavailability and plant uptake of As 

Bioavailability describes the portion of the total concentration of a contaminant that is 

available for adsorption by biological systems (Paustenbach, 2000). Likewise, the 

term bioaccessibility is used to describe the fraction that is soluble solely by the diges-

tive system. (Klink et al., 2005) 

 

Notwithstanding that arsenic (As) concentrations in soils at the DGC are very high, it 

is their chemical and mineral state what determines their bioavailability or biological 

exposure potential. Uptake of arsenic is therefore influenced by factors such as arsenic 

concentration and its oxidation state (solubility), species-specific uptake mechanisms, 

the characteristics of the environment (e.g. organic matter) and the abundance of com-

peting ions e.g., phosphates and sulphates. (Wang and Mulligan, 2006 & Hartley et 

al., 2009) Additionally, iron (Fe) oxyhydroxides crystallinity is believed to represent a 

significant influence of As bioaccessibility and bioavailability (Kavanagh et al., 1997; 

Palumbo-Roe and Klinck 2007 & Hartley et al., 2009). The median fraction of As 

available to organisms at the DGC is 408 mg/kg (Klinck et al., 2005). Moreover, re-

cent studies (Rieuwerts et al., 2006; Palumbo-Roe and Klinck, 2007 & Rieuwerts et 

al., 2014) discuss in-depth the soil and mineralogical factors that influence As bioac-

cessibility at the site. Klinck et al., (2005) estimate the bioaccessible fraction to be 

~19%, which is close to the 15% found by Palumbo-Roe and Klinck (2007).  Fur-

thermore, Kavanagh et al., (1997) found that the proportion of As soluble in water of 

topsoils was 0.02 – 1.2% and that  93% of total As was found as Fe-organic and re-

sidual fractions. On the other hand, Palumbo-Roe et al., (2007) report that only 
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0.0004% of the total As at the DGC from the tailings is water soluble and that higher 

arsenic mobility (Aswater soluble 3.7% of total arsenic) was found in the alkaline waste 

material near the calciner. These findings suggest that As migration is most likely due 

to surface erosion and atmospheric dispersion.  

 

Experiments conducted on the As tolerance of grass suggest that the major form of As 

available to plants is arsenate, where 60 – 94% of water soluble As is in the form of 

arsenate. (Porter and Peterson, 1977) 

2.4.1 Uptake mechanisms and effects  

The uptake, translocation and accumulation, if any, of As into plants depend on the 

species and habitat. Arsenic is however considered readily bioavailable (Prasad, 2003) 

and although plant roots can additionally secrete H
+
 ions which can solubilise cationic 

metals in soil into solution, anionic As mobility is unaffected. (Ali et al., 2013) 

 

Studies suggest that As is taken up by plants through the apoplast (Chen et al., 2005). 

As a result of arsenate showing similar chemical properties with phosphates, arsenate 

might be carried by the phosphate transport system and compete with phosphate dur-

ing the production of adenosine triphosphate (ATP) causing adenosine diphosphate 

arsenate (ADP-arsenate) complexes, which in turn alter the balance of biochemical 

equilibria (Park et al., 2012). In the cytoplasm peptides, such as glutathione, reduce 

arsenate to arsenite, allowing it to bind with enzymes and proteins hindering cellular 

functions which lead to oxidative stress and thus DNA and cell damage (Slejkovec et 

al., 2010) and ultimately apoptosis (cell death). As a result of this, physical manifesta-

tions of cell damage can be observed as e.g., growth reduction, leaf wilting (loss of 

rigidity due to loss of tugor pressure), cell plasmolysis, violet coloration and root dis-

coloration. (Kabata-Pendias 2011)  

 

There appears to be some disagreement in whether phosphorus concentration in soils 

affects the plant uptake of arsenic (Otte et al., 1990; Wang et al., 2002; Cao and Ma, 

2004; Poynton et al., 2004; Huang et al., 2007; Hartley et al., 2009; Vetterlein et al., 

2009 & Karczewska et al., 2013).  

 

A study (Karczewska et al., 2013) carried a pot experiment to evaluate the modifica-

tion of soil with phosphate and sewage sludge. They suggested that application of 
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phosphates and sewage sludge increased solubility of As in soil but without any sig-

nificant uptake change of As. However, sewage sludge appeared to have a favourable 

impact on the growth of grass (Holcus lanatus L.). Other studies (Vetterlein et al., 

2009) suggest that there is no difference or that differences are only significant if P 

concentrations vary largely. On the other hand, there are studies that suggest a clear 

inverse correlation (P increase leads to As uptake decrease), suggesting that the 

amount of phosphorus bioavailable in the soil will determine the effects of arsenic on 

plants. (Otte et al. 1990; Poynton et al., 2004; Wang et al., 2002) Hartley et al., (2009) 

suggested that arsenic mobility was significantly related to phosphate.  

 

A recent study in 2013 by Bolan et al. reviews this disagreement and suggests that P 

addition competes for As absorption by plant roots decreasing its arsenic uptake. 

However, in soils P addition facilitates desorption and bioavailability of As (Fig. 7). 

 

 

 Arsenate ions competing with phosphate ions for adsorption by soil particles Figure 7.

and absorption by roots. Created by Author. Adapted from: Bolan et al, 2013 

 

Several plant species have been shown to accumulate As to toxic degrees or show 

resistance to various metals and metalloids. Species known to accumulate As are, 

amongst many others:  

 Agrostis castellana and A. delicatula (De Koe, 1994) 

 Agrostis capillaris and Deschampsia cespitosa (Meharg et al., 1991) 

 Calluna vulgaris (Sharples et al., 2000) 

 Conifers (more specifically Pseudotsuga menziesii) have been shown to up-

take As in high quantities (Porter and Peterson, 1975).  

 Holcus lanatus (MacNair et al., 1987) 
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 Leymus cinereus (Knudson et al., 2003)  

 Pteris vittata (hyperaccumulator) (Vetterlein et al., 2009) 

2.4.2 Exclusion and tolerance mechanisms 

Due to the high concentrations of arsenic found at Devon Great Consols, many plants 

have devised strategies to cope with these toxic levels of arsenic. The primary two 

strategies used are exclusion and accumulation. 

 

Exclusion occurs by actively reducing the uptake of arsenic and by moving toxic 

compounds out of the cell (efflux). Uptake is minimised by suppressing the function 

of proteins (aquaporins) in the root membranes, thereby reducing the intake of phos-

phate and arsenate and at the same time, efflux is actively excreting arsenite from the 

cell back into the soil through ion channels (Zhao et al, 2009). These strategies allow 

keeping arsenic concentrations relatively low.  

 

Other studies (Sharples et al., 2000; Fomina et al., 2005 & Zhang et al., 2015) suggest 

that the symbiotic relationships of plants (e.g., heathers and > 80% of land plants) 

with arbuscular mycorrhizas fungi (AMF) e.g., Hymenoscyphus ericae increase the 

tolerance of plants to As. Furthermore, it was suggested that P concentrations in plants 

increased whereas As concentrations decreased thanks to AMF. Moreover, AMF is 

very likely involved in methylating inorganic As into less toxic organic dimethylarse-

nic acid, suggesting the potential use of this mechanism in bioremediation (Zhang et 

al., 2015). Fomina et al., (2005) have shown the possibility to solubilise metals and 

create a tolerance to them with AMF. Additionally, it has been demonstrated that the 

microfungus (Microascus brevicaulis) is able to produce trimethylarsine, which was 

proven to be exceptionally far less toxic than inorganic arsenic (Porter and Peterson, 

1977 & Bentley and Chasteen, 2002). Thus, mycorrhizal fungi growth enhancement 

might pose an advantage in terms of stabilisation and perhaps the production of less 

toxic arsenic compounds by e.g., methylation. A study investigating the phytoreme-

diation consequences of applying a consortium of rhizobacteria (2% v/v) in addition to 

nitrogen-phosphate-potassium (NPK) fertilizer (0.02% w/w), suggested that it could 

ease the toxic effects of As and thus increase the effectiveness of phytoremediation 

(Titah et al., 2013). 
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Accumulators, on the other hand, appear to translocate arsenic into their shoots and 

leaves and store it in cell vacuoles away from proteins leading to limited damage. 

Some accumulators depend on the bonding of peptides (phytochelatins) to arsenite 

ions to prevent them from bonding to more metabolically important proteins (Zhao et 

al, 2009). Porter and Peterson (1977) argue that grass species have evolved tolerance 

to arsenate ions rather than to arsenite ions, since the former does not affect important 

proteins. This tolerance to arsenate is believed to derive from the fact that its behav-

iour resembles that of phosphates (PO4
3-

) and therefore it is able to take part in phos-

phate biochemical mechanisms of the plant (Porter and Peterson, 1977).  

2.5 Remediation 

Contaminated land is an environmental risk issue (Petts et al., 1997); hence remedia-

tion is carried out generally for the following reasons (Nathanail and Bardos, 2004): 

 Regulatory requirements 

 Protection of the environment and ultimately human health 

 Land availability for reuse  

 In order to avoid potential liabilities 

 Good environmental practice 

 

Especially since the redevelopment of the DGC, leachates (e.g., acid drainage) and the 

dispersal of toxic contaminants represent a significant source of contaminants that can 

impose harmful effects not only for the local area but also for the Tamar River and 

ultimately to human health (Green, 2012).  

 

Commonly, remediation methods concentrate in either source control or migration 

control. Source control is the prevention of contaminant migration by either contain-

ment or neutralisation, whereas migration control concentrates in minimising the im-

pact of the pollution to the environment (Johnson and Hallberg, 2005). Source control 

techniques such as removal, solidification and chemical oxidation amongst others 

have been extensively used due their efficacy and wide operational range. However, 

they have the disadvantage of being costly, usually can be hazardous and may produce 

secondary waste; especially when treatment is performed ex-situ. (Favas et al., 2014) 

Remediation techniques such as liming have been used in the past in an effort to in-

crease the soil pH and minimise acidic drainage; however high metal concentrations 

can coat limestone surfaces and increase neutralization time (Sun et al., 2000). Addi-
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tionally, higher pH levels appear to increase the water solubility of As (Palumbo-Roe 

and Klinck, 2007).  

2.6 Phytoremediation strategies 

Phytoremediation is the usage of plants and their related microorganisms for the 

treatment or containment of environmental contaminants. (Favas et al., 2014) There-

fore, it has the ability of minimising environmental and human exposure to contami-

nants by decreasing soil erosion, runoff, dust generation and migration as well as min-

imising skin contact (Nathanail and Bardos, 2004). 

 

In order to design an effective phytoremediation approach, the nature of the contami-

nants (toxicity, salinity, metals), the characteristics of suitable and available plants as 

well as the nature of the soil, such as its physical and chemical properties, should be 

considered. Physical properties include soil water content, temperature and texture, 

whereas chemical characteristics include pH and the availability of macronutrients and 

micronutrients.  

 Common advantages and limitations of phytoremediation. Source: Raskin and Table 3.

Ensley, 2000,  pp. 16 

Advantages Disadvantages 

 Low operational and capital costs 

 Permanent treatment solution 

 In-situ remediation: lower risks of further 
contamination, less invasive 

 Improve hydraulic and soil stability 

 Public acceptance; aesthetically pleasing 
 

 Slower than other alternatives  

 Seasonally dependent 

 Soil phytoremediation applicable only to sur-
face soils 

 Complex 

 Lack of recognized economic performance 
data 

 

The low costs associated with phytoremediation have been an important driving factor 

of this technology, as it can provide an economically viable solution to the remedia-

tion of some sites. However, phytoremediation carries some limitations (Table 3) such 

as being slower than other treatment techniques and usually applicable only to top-

soils. (Raskin and Ensley, 2000, pp. 16) Nevertheless, several different strategies of 

phytoremediation have been developed and are described briefly in sections 2.6.1-

2.6.5.  In situ phytoremediation strategies in the past have been focused in both the 

unaided and aided stabilisation of tailings. (Antonovics and Bradshaw, 1970; Hart and 

Luckai, 2010 & Perez-Sanz et al., 2013) Additionally, revegetation trials can be con-

ducted either in or ex situ with different kind of amendments to the soil to reduce met-

al and metalloids mobility and bioavailability. Hart and Luckai (2010) conducted 

amendments for alkaline, coarse textured former copper-mine tailings with fertilizer, 
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wood chips, wood mulch, wood ash, charcoal and natural forest soil. Additionally 

their vegetation mix contained grasses and nitrogen fixing species. It was found that 

fertilizer and natural forest soil amendments improved plant growth significantly 

while other treatments did not have any beneficial effects. Moreover, forest soil had 

the additional benefit of providing dormant seeds and propagules.  

2.6.1 Phytoextraction 

Also known as phytoaccumulation is the uptake and fixation of contaminants from the 

roots to the aerial parts of the plants. Although this technique is frequently used for 

metals, other elements (e.g., As, Se) and compounds (e.g., organic compounds) can 

also be accumulated (Favas et al., 2014). If the arsenic concentration in a plant sur-

passes 1000 mg/kg (dry-weight) it is considered a hyperaccumulator (Branquinho et 

al., 2007). 

 

Some mushrooms (e.g., amongst others Laccaria spp., Thelephora terrestris, Boletus 

cavipes) seem to be high As accumulators (Slekovec and Irgolic, 1996). Some As hy-

peraccumulating plants such as ferns (Pteris vittata, Pityrogramma calomelanos) have 

been found to accumulate high concentrations of arsenic and therefore have been rec-

ommended for phytoextraction and even phytomining (Slejkovec et al, 2010).  

2.6.2 Phytostabilisation and vegetation cover 

Phytostabilisation is an analogue of the more traditional technique of contaminant 

containment (Raskin and Ensley, 2000, pp. 71). Phytostabilisation is therefore the 

incorporation of contaminants into the structure of the plants or humus. Additionally, 

phytostabilisation provides structural stability to slopes and loose wastes by plant 

roots and vegetation cover resulting in the containment of contaminants and therefore 

limiting their mobility and diffusion in the soil (Favas et al., 2014). Vegetation cover 

is therefore one of the most effective techniques to stabilise disturbed land and prevent 

soil erosion. It additionally, reduces contaminated dust-blown particulates and there-

fore exposure pathways (Hartley et al., 2009). However, Bradshaw and Chadwick 

(1980) established that vegetation cover on mine heaps encounters several difficulties 

such as low nutrient content and low water holding capacity.  
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2.6.3 Degradation 

Phytodegradation is the transformation of organic contaminants through metabolism 

or mineralisation in the plant by enzymes into other, usually less toxic or mobile, 

compounds. (Favas et al., 2014) 

 

Rhizodegradation is the enhancement of root growth to stimulate microorganism 

growth which can utilise plant metabolites as a source of energy and breakdown pollu-

tants in soil. (Kuiper et al., 2004) 

2.6.4 Phytofiltration 

Phytofiltration is the absorption or concentration of contaminants by roots in hydro-

ponic systems with a continuous effluent flow. Plants with high root surface area and 

tolerance to contaminants are optimal for this method. (Favas et al., 2014) 

2.6.5 Phytovolatilization 

Phytovolatilization is the usage of a plant’s ability to absorb an element through its 

roots, convert it into a less toxic and volatile form and release it to the atmosphere. 

This technique can be applied for some metals and metalloids as well as for organic 

compounds. (Favas et al., 2014) 

 

2.7 Genus specific implementation in phytoremediation 

For this investigation some species of the following genera were investigated and the 

sections 2.7.1 to 2.7.5 provide a basic context on their tolerance and accumulation (if 

any) to arsenic and their previous implementation in phytoremediation (if any).  

2.7.1 Calluna vulgaris 

The common heather (Calluna vulagaris) appears to be a pseudo-pioneer plant found 

in a wide range of soil types and on lead, copper and china clay mine spoil heaps 

(Young, 1973; Bradshaw et al., 1975) According to studies made in arsenic-

contaminated soils by Slejkovec (2010) arsenic concentrations found in common 

heathers range from 11.9 – 38.6 mg/kg. Porter and Peterson (1975) report highest con-

centrations of As found in C. vulgaris of 4130 mg/kg with mean values of 1260 mg/kg 

(n=25-50) in highly contaminated sites.  Additionally, soil-to-plant transfer factors of 
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0.01 – 1.3% were reported in common heather indicating that arsenic is efficiently 

excluded from uptake (Slejkovec et al., 2010).  

2.7.2 Grasses 

Several studies have been performed in order to assess the feasibility of grass usage as 

a phytoremediation strategy (Porter and Peterson, 1977; Meharg et al., 1991; De Koe, 

1994 & Hartley et al., 2009). Studies (Porter and Peterson, 1977) on grassland include 

the evolution of As tolerance (to arsenate ions) of some grass species, and their As 

accumulation, where it was found that some species accumulate As in high quantities 

(460 - 3470 mg/kg) in highly As contaminated sites and that total As is correlated with 

total Fe (Porter and Peterson, 1977). The grass species Agrostis capillaris is known to 

grow in heavily contaminated sites and to accumulate As in high quantities. (Porter 

and Peterson, 1977 & De Koe, 1994) 

2.7.3 Lichens 

Nieboer et al., (1984a) studied the uptake of arsenate by some lichen species to inves-

tigate anion uptake. In their paper it was suggested that the uptake might be linked to 

the non-photosynthetic fungal symbiont and that active uptake of arsenate is a likely 

mechanism at pH 4 - 6. In a following paper (Nieboer et al., 1984b) they investigated 

the competition between arsenate and phosphates in lichens and arsenate toxicity. It 

was reported that equimolar amounts of phosphate and arsenate had no effect on arse-

nate uptake; a 100-fold excess of phosphate however ceased the uptake of arsenate, 

therefore reducing its toxicity. Additionally, it was suggested that As accumulation by 

lichens might reach 1000 mg/kg near smelters.  

2.7.4 Mosses 

Wells and Richardson (1985) investigated the uptake and competition of anions in 

moss species. It was found that arsenate uptake was optimal at pH 3-5. It was also 

found that the presence of phosphate decreased the uptake of arsenate. However, 

mosses are used as bioindicators for monitoring atmospheric metal deposition (Nie-

mela et al., 2003), suggesting that there might be little uptake of metals from the sub-

strate and elements are obtained through precipitation or deposition. (Harmens et al., 

2007).  
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2.7.5 Picea spp. 

Only a few studies have assessed the performance of As accumulation in conifers. 

Nevertheless, pine and spruce species analysed in Poland and Norway for arsenic con-

tent show concentrations in the needles ranging from 0.3 - 1.01 mg/kg (Pine) and 0.3 - 

0.68 mg/kg (Spruce) (Pohl et al., 2003). They also reported literature values of As in 

conifer needles of 0.3 - 4.1 mg/kg and 0.003 - 0.68 mg/kg in pine and spruce species 

respectively. Soil concentrations were not reported. (Pohl et al., 2003) Another study 

suggests that pine species e.g., Pseudotsuga menziesii are able to accumulate high 

quantities of As. (King et al., 1985, pp. 18) 

 

2.8 Growth limiting factors 

2.8.1 Arsenic as a growth limiting factor 

Plant growth might be limited by the total concentration of As in soil. (Kabata-

Pendias, 2011) However, according to Woolson et al. (1973) the soil properties have 

an important influence too, where “heavy soils” rich in organic matter and high water 

retention show growth limitation at much higher concentrations of As (90% growth 

reduction at 1000 mg/kg), whereas “light sandy soils”  low in organic matter show 

similar growth reduction at 100 mg/kg.  

 

Studies (Sharples et al., 2000; Fomina et al., 2005; Slejkovec et al., 2010 & Zhang et 

al., 2015) suggest that due to the mycorrhizal fungus acting as a filter and due to the 

ability of some plants to metabolise a portion of the inorganic arsenic taken from soil, 

it seems unlikely that arsenic is a growth-limiting factor in itself.  

2.8.2 Nutrients 

Nutrients are essential minerals for plants found in the soils as inorganic ions or mole-

cules. These nutrients (Table 4) are directly involved in plant metabolism and are di-

vided into macronutrients and micronutrients. (Ridge, 2002, pp. 168)  

 

 

 

 



18 

 Summary of essential nutrients, their function and symptoms when limited Table 4.

availability. Source: Ridge, 2002, pp.168-170.  
Element Form absorbed Function Deficit 

Nitrogen (N) 
NO3

-
 (Nitrate)  

NH4
+
 Ammonium 

Component of proteins and 
nucleotides 

Plant light green to yellow 

Potassium (K) K
+
 

Osmoregulation 
Electrochemical equilibria 
Regulation of enzyme activi-
ty (protein synthesis) 

 Mottled or chlorotic (yellow-
ing) leaves with smalls spots 
of dead tissue at tips.  

Calcium (Ca) Ca
2+

 
Stabilizes cell walls and 
membranes 

Young leaves of terminal bud 
hooked then dying 

Magnesium (Mg) Mg
2+

 
Constituent of enzymes 
(chlorophyll) 

Mottled or chlorotic leaves, 
may redden 

Phosphorus (P) 
PO4

3-
 (Phosphate) 

Also as HPO4
2-

 , H2PO4
-
 

Constituent of nucleic acids, 
phospholipids, ATP and 
ADP 

Plant dark green, developing 
red and purple colours 

Sodium (Na) Na+ Essential in a few plants Excess = salty soils 

 

The availability of nitrogen and phosphorus is frequently the growth limiting factor in 

terrestrial ecosystems. Liebig’s law (1840) of the minimum suggest that the relative 

nutrient requirement of a plant is limited by the nutrient in least supply. However, a 

more recent hypothesis (Bloom et al., 1985) suggests that a plant’s growth is adjusted 

by the plant simultaneously by several resources (co-limitation). Thus, co-limitation 

occurs at strict N:P ratios and not necessarily at concentration values ranges; increas-

ing the availability of one nutrient might induce an increased access to the other nutri-

ent as the plant does not need to allocate many resources into attaining the former nu-

trient. (Agren et al., 2012)   

 

Nitrogen is available to plants as ammonium (NH4
+
) or nitrate (NO3

-
-N) and their con-

centration ranges in soil significantly; Reisenaur (1964) summarised the concentration 

of almost 900 soil samples and found that the majority of the values fall within the 50 

and 150 mg/l range. Inorganic nitrogen is nevertheless usually present as NO3
-
 in the 

soils. The minimum concentration (𝐶𝑚𝑖𝑛) at which nitrogen influx stops, differs with 

species (Barber, 1995, pp. 189-190).  However, Warncke and Barber (1974) investi-

gated grass species (Sorghum, grain sorghum and bromegrass) and found Cmin values 

of 1.7, 2.7 and 1.4 mol/l respectively ( 0.10, 0.17 and 0.08 mg/l as NO3
-
  62 

g/mol).  

 

Phosphorus concentrations in soils vary from 0.02 to 0.5 % with a mean value of 

0.05% (Kovar and Barber, 1988). However, only a small fraction of P is readily avail-

able for plants, usually as inorganic orthophosphate PO4 (Barber, 1995, pp. 202-203). 

Reisenauer (1964) analysed around 150 soil samples from the US and found that the 

majority of the values fell within the 0.0 and 0.15 mg/l range. A study by Janssens et 

al., (1998) investigates the relationship between nutrients and grassland diversity. 



19 

They suggest an optimum value range for P for plant nutrition of 50-80 mg/kg. They 

additionally found that if P concentration goes above this range, floral biodiversity 

decreases. According to Janssens et al., (1998) potassium is a primary nutrient for 

plants together with nitrogen and phosphorus and it was found that the optimum K 

concentration is 200 mg/kg and in contrast with P, higher values are found to be com-

patible with biodiversity.   

2.8.3 Nutrient availability  

An available nutrient is the amount of ions present in the soil that are able to move to 

the plant root through diffusion and be absorbed (Barber, 1995, pp. 4). The availabil-

ity of nutrients to plants is correlated with the soil pH and therefore soil pH is an im-

portant indicator of nutrient deficiency (Kumar and Kumar, 2013, pp. 18). In Table 5, 

pH values at which nutrients are most and least available are summarised, indicating 

that nutrients are generally very limited in acidic soils (pH < 5 – 6).  On the other 

hand, amendments such as infection with arbuscular mycorrhizal fungi (AMF) have 

shown to improve the access of plants to nutrients (Smith and Gianazzi-Pearson, 

1988).  In contrast, Ietswaar et al., (1992) found only a small impact of AMF infection 

on nutrient concentration of Agrostis capillaris. 

 Soil pH and nutrient availability. Adapted from: Kumar& Kumar., 2013,  pp. 18 Table 5.

Nutrient Sufficiently available Moderately low availability  Severely low availability  

Nitrogen 6.0-8.0 5.5-6.0 <5.5 

Phosphorus 6.0-7.5 5.0-6.0 <5.0 

Potassium >6.0 5.5-6.0 <5.5 

Calcium 6.5-8.5 6.0-6.5 <6.0 

Magnesium 6.5-8.5 6.0-6.5 <6.0 

 

2.8.4 Organic Matter (OM) 

Organic Matter content and composition can vary significantly from 0.1% in desert 

soils to 50% (w/w) in histosols, and is usually composed of 50% C, 39% O, 5% H, 5% 

N, 0.5% P and 0.5% S (Barber, 1995, pp. 20). OM present in soil together with the 

clay fraction has an important influence on soil properties and therefore nutrient reten-

tion and availability due to its cation exchange capacity. Furthermore, organic matter 

may release nitrogen, phosphorus and trace elements by microbial mineralisation. 

(McBride, 1994, pp. 56) 
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3 METHODS 

A combination of both fieldwork and literature research was essential to assure a ho-

listic coverage and understanding of the research subject. The methods employed were 

carefully chosen prior to the collection of samples and good practice techniques were 

utilised and are detailed where relevant.  

 

A summary of the analytical tests and their methods utilised for plants and soils is 

shown in Table 6. Additionally, a table for the analytical instruments used (Table 7). 

A more detailed table on the operational conditions of the instruments can be found in 

Appendix 1(1-3).  

 Summary of analytical tests and methods  Table 6.

PLANTS Test Methods 

General Species Observation 

Physical  Condition Observation  

Chemical Arsenic (As) concentration  
Digestion with HNO3, ICP-OES 
Analysis.  

SOILS Test Methods 

General 
Type Observation 

Organic Matter (OM) Loss on Ignition 

Physical 

Structure Observation / Literature research 

Texture Observation / Literature research 

Conductivity Electrical conductivity meter 

Chemical 

Arsenic total (As) 
Aqua-Regia Digestion, ICP-OES 
Analysis 

Available phosphorus (PO4) 
Mehlich 1 extraction, ICP-OES 
Analysis 

Available nitrogen (NO3) 
KCl extraction 
Analysis with SKALAR (Segmented 
flow analysis) 

Potassium (K) 
Mehlich 1 extraction, ICP-OES 
Analysis 

Calcium (Ca) 
Mehlich 1 extraction, ICP-OES 
Analysis 

Magnesium (Mg) 
Mehlich 1 extraction, ICP-OES 
Analysis 

Sodium (Na) 
Mehlich 1 extraction, ICP-OES 
Analysis 

pH pH Meter 
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 Analytical instruments employed  Table 7.

Device Name Used in  
Readability / Detection 

limits 

pH meter Oakton pH 6 meter pH determination 0.01 pH 

Balance Precisa 2200c Loss on Ignition 0.01 g 

Precision balance Oxford A2204 Soil and plants samples 0.0001 g  

Inductively coupled plasma 
optical emission spectrometer 

Thermo Scientific iCAP™ 
7400 series, ICP-OES Ana-
lyser 

As, P, K, Ca, Mg, Na 
determination 

0.1 mg/l 

Automatic segmented flow 
analyser 

SKALAR N 0.02 – 5 mg/kg 

 

3.1 Literature research 

The methodology for the literature review was based principally on the critical selec-

tion of secondary data both qualitative as well as quantitative. This was made with the 

intention to compliment and create a strong foundation upon which it would be possi-

ble to base this study as well as to develop analytical and critical skills.  

3.2 Field work 

Previous research (Klinck et al., 2005) indicated the presence of high concentrations 

of arsenic throughout the site and very high concentrations of arsenic in the tailings. 

Additionally, there has been limited vegetation recolonisation on these tailings. There-

fore, the sampling strategy was targeted on the two waste heaps on site and on their 

autochthonous flora.  

3.2.1 Sampling strategy 

A sampling strategy was developed from which it could be possible to investigate the 

differences in the soil quality of bare soil against recolonized soil, calculate the uptake 

of arsenic by endemic plants and thus assess the feasibility and application of each 

species on the stabilisation of the site.  
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 Sampling strategy, where 1 is vegetation sample, 2 is soil underneath and 3 Figure 8.

is bare soil. Created by: Author, 2015 

 

The sampling strategy was devised as presented in Fig. 8, where a plant sample was 

taken (1), followed by the soil where the plant was growing (2) and from bare soil 1 to 

3 meters from the vegetated area (3). In order to extract the soils a plastic shovel was 

used to collect and transfer the soil into waxed paper “Kraft” samples bags. The shov-

el was cleaned between samples with a wet towel to minimise cross-contamination.  

 

The samples constituted of approximately the upper 10 cm of the soil strata, where 

roughly 200 grams of dried soil were collected per sample and around 20 grams of 

dried plant samples.  

 

The vegetation varieties sampled at the DGC consisted of grasses (Agrostis capillaris, 

Fig. 9-1), lichen (Cladonia spp. Fig. 9-2), spruce (Picea spp. Fig. 9-3) heather (Cal-

luna vulgaris, Fig. 9-4), and other unidentified grass and moss (possibly (Barbula 

spp.) species.  
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 Vegetation sampled at the DGC Source: Author, 2014 Figure 9.

 

The samples were numbered as they were taken (Table 8).  

Table 8. Sample location, number and sample type.  (Bottom Heap) 

Sample Location Sample type Sample Location Sample type 

1 Bottom Heap Heather 1 11 Bottom Heap Grass 2 

2 Bottom Heap Soil vegetated 12 Bottom Heap Soil vegetated 

3 Bottom Heap Soil bare 13 Bottom Heap Soil vegetated 

4 Bottom Heap Grass 1 14 Bottom Heap Lichen 

5 Bottom Heap Soil vegetated 15 Bottom Heap Heather 3 

6 Bottom Heap Soil bare 16 Bottom Heap Soil bare 

7 Bottom Heap Heather 2  17 Bottom Heap Soil vegetated 

8 Bottom Heap Moss  18 Bottom Heap Grass 3 

9 Bottom Heap Soil vegetated 19 Bottom Heap Grass 4 

10 Bottom Heap Soil bare 

   

 (Continuation) Sample location, number and sample type. (Top Heap) Table 8.

Sample Location Sample type Sample Location Sample type 

20 Top Heap Heather 4 27 Top Heap Soil vegetated 

21 Top Heap Soil vegetated 28 Top Heap Soil bare 

22 Top Heap Soil bare 29 Top Heap Grass 5 

23 Top Heap Heather 5 30 Top Heap Soil vegetated 

24 Top Heap Soil vegetated 31 Top Heap Soil bare 

25 Top Heap Soil bare 32 Top Heap Conifer 

26 Top Heap Heather 6 33 Top Heap Soil vegetated 
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In Fig. 10 it is possible to visualise the approximate geographical location of the sam-

ples taken as well as to understand the relation between them. 

 

 

 Aerial representation of samples. Green squares represent plant samples, Figure 10.

khaki represent soil under corresponding plant and sandy represent bare soil samples as 

described in Fig. 8. Created by Author, 2015. Source of background image: Google, 2015 

3.2.2 Sample handling  

In total 33 samples were taken, 19 of which were soil samples and 14 plant samples 

(Table 8). The samples were acquired on 09.12.2014 and brought the same day to air-

dry for approximately 4 days at ~50 - 60C. After the samples had dried the plant 

samples were thoroughly rinsed under running water to minimise soil contamination 

and air-dried again followed by grinding using a coffee grinder and stored in re-

sealable plastic bags. The soil samples were grounded with a mortar and a pestle and 

sieved into two fractions: < 2 mm and < 180 µm fractions and subsequently stored in 

re-sealable plastic bags. The grinding and sieving instruments were cleaned between 

samples with moist towels.  

3.3 Laboratory work 

For this study plants were only analysed for their arsenic content in order to calculate 

their arsenic uptake, whereas the soil was analysed, in addition to physical observa-

tions, for a wider range of chemical properties and nutrient availability.    
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3.3.1 pH 

The soil pH has a significant effect on many chemical properties of the soil. It addi-

tionally limits the range of plants, if any, which are able to grow at those particular pH 

values. Therefore, a simple pH test was devised, where approximately 10.0±0.2 ml of 

milli-Q water was added to ca. 4.00±0.05 grams of soil of the < 2 mm sample fraction 

and rigorously mixed. While letting the suspensions settle for ~1 hour, the instrument 

was calibrated and subsequently the pH was measured and corrected automatically for 

temperature.  

3.3.2 Electrical conductivity (EC) 

Electrical conductivity is a quick and important indicator of soil health, as it is a 

measure of the soil properties such as soluble salts e.g. Na
+
, K

+
, Ca

2+
, Mg

2+
 and Cl

−
 

(micronutrients), clay content and organic matter (Corwin and Lesch, 2005). There-

fore, an EC test was performed on the same samples used in pH analysis after having 

added further 10.0±0.2 ml of milli-Q water (4.00±0.05 grams in 20.00±0.4 ml in total, 

1:5 soil:water ratio).  The results given by the instrument were corrected automatically 

for temperature.   

3.3.3 Organic matter (OM) 

A critical factor in soil function and soil quality is soil organic matter as its presence 

or absence influences chemical reactions in the soil. For this study a loss on ignition 

method was used due to the less hazardous nature of the method and its simplicity.  

 

For the loss on ignition test approximately 15.00±0.01 g, < 2 mm were weighed with a 

Precisa 2200c balance into dry porcelain crucibles and placed into a furnace for 6 

hours at 450 C. The samples were left to cool down overnight inside the furnace and 

weighed in the morning with the same balance. The results were calculated with the 

following formula (1): 

𝑂𝑀[%] = (
∆𝑊𝑒𝑖𝑔ℎ𝑡 [𝑔]

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑔]
) ∙ 100 (1) 

where, Weight is the weight difference and Measured weight is the original weight.  

3.3.4 Arsenic analyses 

For the determination of arsenic content in soil, each soil sample (0.1000 g, < 180 µm) 

was digested for ca. 2 hours in approximately 4 ml of aqua regia (HNO3 + 3 HCl) in 

watch glass covered glass beakers (25 ml) to prevent evaporation, and heated 
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(120C) on a hot plate until most of the material was broken down (3 hours). Aqua 

regia was added when necessary to prevent drying and the loss of sample material. 

After cooling, the digest was transferred into Fisher volumetric flasks (25±0.04 ml) 

and adjusted with milli-Q water and left to settle overnight. Subsequently the samples 

were analysed by inductively coupled plasma - optical emission spectrometer (ICP-

OES) (Fig. 11), where the samples are sprayed with a nebuliser into argon (Ar) gas 

plasma, where the sample elements are excited and as their energy decreases, they 

emit photons at particular wavelengths, whose intensity and spectra can be accurately 

measured by the ICP’s sensor. The results of these intensities were plotted on a cali-

bration curve (R
2
=1.000) from standard solution to acquire a concentration value, cor-

rected for the dilution factor and verified against certified reference material and an 

additional reference material for quality assurance.  

 

 ICP-OES used for As, P, K, Ca, Mg and Na determination. Source: Author Figure 11.

 

For the determination of arsenic content in plants approximately 2.0000 g of each 

grounded plant sample were digested for ca. 2 hours in 20 ml of HNO3 in watch 

glass covered glass beakers (50 ml) to prevent evaporation and subsequently heated 

(120C) on a hot plate (Fig. 12) until the material was broken down (3 hours). The 

digests were left for cooling and filtered with Whatman No. 54 into Fisher volumetric 

flasks (50±0.08 ml) and adjusted with milli-Q water. The samples were analysed next 

morning by ICP-OES. The results were plotted on a calibration curve from standard 

solution (R
2
=1.000) and corrected for the dilution factor.  
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 Beakers on hot plate with watch glass to prevent evaporation Source: Author Figure 12.

 

3.3.5 Phosphorus, potassium, calcium, magnesium and sodium  

In order to analyse the above mentioned nutrients present in the soil, all glassware was 

acid washed in 10% v/v HCl prior to sample preparation for at least 24 hours in order 

to minimize contamination. One litre of Mehlich 1 (0.05 N HCl and 0.025 N H2SO4) 

solution was prepared in a volumetric flask by adding 4 ml of HCl and 0.7 ml of 

H2SO4 and adjusted to 1 litre with milli-Q water. Approximately 5.0000 grams of the 

< 2 mm soil fraction was measured and 25.00±0.05 ml of Mehlich solution added, 

followed by 5 minutes on the reciprocating mechanical shaker. Afterwards, the sus-

pension was filtered using Whatman No. 42 filter papers. The extractions were left in 

the fridge overnight and analysed the following day by ICP-OES. Results were plotted 

on a calibration curve (R
2
=1.000) and corrected for the dilution factor.  

 

Additionally the formula (2) was used to determine the exchangeable sodium percent-

age (ESP). (van de Graaff and Patterson, 2001) 

 

𝐸𝑆𝑃[%] = (
𝐶𝑁𝑎 [𝑚𝑔/𝑘𝑔]

(𝐶𝐶𝑎+ 𝐶𝑀𝑔)[𝑚𝑔/𝑘𝑔]
) ∙ 100 (2) 

 

Where CNa is the concentration of Na, CCa the concentration of Ca and CMg of Mg. 
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3.3.6 Nitrogen  

Nitrate concentrations were determined by automated segmented flow analysis 

(SKALAR instrument (Fig. 13)). To minimize contamination, all glassware was acid 

washed prior to sample preparation in 10% v/v HCl for at least 24 hours. A 2M KCl 

solution was prepared by adding 298.2±0.1 grams of KCl salt into a 2 litre volumetric 

flask and adjusted with milli-Q water. 25 ml of the extraction solution were added to 

5.0000 grams of the < 2 mm soil fraction. Subsequently it was shaken for 5 minutes 

on a reciprocating mechanical shaker and filtered with Whatman No. 42 filter papers. 

Due to the low operational range (0.02 – 5 mg/L) of the analytical instrument 

(SKALAR), a preliminary analysis was required to identify the approximate nitrogen 

concentration of the samples. For this analysis a multiparameter handheld colorimeter 

HACH DR900 was used. For the HACH analysis only 6 samples were analysed (3 

from each waste heap) and 1 blank to obtain rough results. This method however, pro-

duced elevated and likely unreliable results (See results and discussion 4.2.4).  

 

Afterwards, the extractions were stored frozen for approximately 1 week before analy-

sis. The analysis was carried out by SKALAR automated segmented flow analyser 

(Fig. 13), which essentially reduces NO3 into NO2 using a copperised-Cadmium (Cd) 

column, followed by the addition of a colour reagent, and measures its intensity spec-

trophotometrically. The intensity values are then plotted on a calibration curve (R
2
 = 

0.9996) to obtain the concentration of NO2 + NO3 (as NO2 might be originally present 

in the solution).   

 

 SKALAR instrument used for nitrogen analysis.  Source: Author Figure 13.
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3.4 Uncertainties and quality assurance 

Measurements and their interpretations are meaningless without the knowledge of 

their uncertainty. Therefore it is important to acknowledge the uncertainties associated 

with the techniques used during the preparation of samples and during the analytical 

measurements, due to the own limitations of the instruments. Efforts were made in 

order to maximize precision and accuracy in every way possible.    

3.4.1 Procedural quality assurance 

Plants on site are very likely to be contaminated, especially when soil As concentra-

tions are as high as in the current site. Therefore, an effort was made to carefully pick 

only the aerial parts of the plant and obtain samples with no obvious soil contamina-

tion. Additionally, after drying in the laboratory, the plant samples were subjected to 

rigorous rinsing to minimise contamination from soil. If a sample seemed nevertheless 

contaminated, the less contaminated parts were stored and used for analysis and the 

rest stored separately as backups.During the preparation of samples, the same preci-

sion instruments were used if available; same type of volumetric flasks with similar 

accuracy tolerances and same precision balance. Additionally, a systematic way of 

work for each analysis was prepared before sample preparation.    

3.4.2 Blanks and detection limits 

For all performed chemical analyses, at least 2 or 3 procedural blanks were prepared 

in exactly the same way as the rest of the samples. It is possible to see from the ap-

pendix 2(4) (Table 27) that most blanks are under the detection limits of the instru-

ments and their values are most probably only analytical noise. When the blank sig-

nals were relevant, a simple correction was made by subtracting the blank value from 

the raw value given by the instrument in order to adjust the rest of the samples. The 

limits of detection (LOD) are calculated according to the values given by the instru-

ment (Appendix 1(1-3)) and, if needed, accommodated for the dilution factor.  

3.4.3 Replicates 

One or two replicates were prepared for each sample in parallel, i.e., sample 1a, 1b 

and 1c. Additionally, each sample was analytically analysed 3 times. The sample val-

ues shown in the results section (4.2.2 – 4.2.5) are the average of the procedural and 

analytical replicates.  
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3.4.4 Arsenic recovery (accuracy) and precision 

Certified reference material (CRM) and reference material (RM) (Appendix 3) were 

prepared and analysed in parallel together with the other samples. The results of this 

analysis allow the calculation of As recovery of the method employed and hence its 

accuracy. The calculation was performed with formula (3) and presented in Table 9: 

 

 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐴𝑠 [%] = (
𝐴𝑠𝑟𝑒𝑠𝑢𝑙𝑡[

𝑚𝑔

𝑘𝑔
]

𝐴𝑠𝐶𝑅𝑀[
𝑚𝑔

𝑘𝑔
]

) ∙ 100 (3) 

where Asresult is the value obtained from the analysis and AsCRM is the actual certified 

value of the material.  

 Recovery of As from certified reference material (CRM) and an additional Table 9.

reference material (RM).  

  Concentration   Concentration 

Analysis of CRM 24.9±3.8 Analysis of RM 11800±550 

CRM certified value 20.7±1.1 RM value 12250 

Recovery mean (%) 120.3 Recovery mean (%) 96.4 

Max recovery (%) 138.6 Max recovery (%) 100.8 

Min recovery (%) 101.9 Min recovery (%) 91.9 

Max. difference (Max 

recovery-recovery) 
18.4 

Max. difference (Max 

recovery-recovery) 
4.4 

Recovery value (120±19)% Recovery value (96±5)% 

Combined value 
(CRM+RM) 

(108±12)% 

 

It is important to note that the recovery value of CRM  (120±19) % might indicate 

that the As concentrations of the samples is lower than those reported in the results 

section. However, the recovery value of the additional RM  (96±5) % provides addi-

tional confidence in the reported results; particularly since the concentration of the 

RM is likely to be more representative of the ranges of As concentration of the soils 

on site.    

 

Additionally, from the replicates (section 3.4.3) it is possible to calculate the overall 

precision of the methodology employed with the following formula (4): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 [%] = (
𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑡𝑑.𝐷𝑒𝑣[

𝑚𝑔

𝑘𝑔
]

𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑒𝑎𝑛[
𝑚𝑔

𝑘𝑔
]

) ∙ 100 (4) 

Where SampleStd.Dev indicates the standard deviation of a set of replicates and it is di-

vided by the mean of those samples (Samplemean).  
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 Relative standard deviation (RSD) or precision % for ICP-OES and Skalar Table 10.

analyses  

ICP-OES Skalar 

Average %RSD 6.1 Average %RSD 39.7 

SD 2.0 SE 6.6 

SE 0.8 Final %RSD 39.7±7.0 

Final %RSD 6.1±0.8 

    

The precision for all ICP-OES analyses fell under 8.3% with an average value of Pre-

cision ≈ (6.1±0.8) %, whereas for Skalar analysis was Precision ≈ (39±7.0) % due to 

the very low results obtained and their high variance.  

3.5 Mathematical and statistical analysis 

For this study Microsoft office Excel 2010 and Minitab 16 were utilised for data man-

agement as well as for graphical and statistical analyses. Each data set was checked 

for normality (Table 11), where the highest p-value indicated the most probable distri-

bution. A low p-value, e.g., < 0.05, indicates that data do not follow that particular 

distribution. In table 11 the distribution with the best fit is noted together with its cor-

responding p-value. Additionally, the p-value of the data as normal distribution is 

shown.   

 Best fit and P-values Table 11.

Data Best Fit Best fit p-value Normal distribution   p-value 

OM Normal 0.571 0.571 

pH Box-Cox Transformation 0.220 0.133 

EC Box-Cox Transformation 0.835 <0.005 

As 3-parameter weibull 0.487 0.254 

P 3-parameter weibull >0.500 0.399 

Ca Johnson transformation 0.420 <0.005 

Mg Log Normal / Box cox 0.945 0.193 

K Normal 0.506 0.506 

N Johnson transformation 0.402 <0.005 

 

One of the main questions of this study was to understand why some soil has been 

recolonized and some has not. Therefore, paired t-tests were used for vegetated soil 

samples and their corresponding bare soil. Additionally, 2-sample t-tests (unpaired) 

were utilised to compare differences between Bottom Heap and Top Heap as one is far 

more vegetated than the other.  Also, Pearson correlation tests were performed in or-

der to understand plausible relationships between analytes and parameters. Finally, the 
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arsenic uptake of each plant was calculated to assess the feasibility of bioaccumulation 

by indigenous plants with the following formula:   

 

𝑈𝑝𝑡𝑎𝑘𝑒 [%] = (
𝐴𝑠𝑝𝑙𝑎𝑛𝑡[

𝑚𝑔

𝑘𝑔
]

𝐴𝑠𝑠𝑜𝑖𝑙[
𝑚𝑔

𝑘𝑔
]

) ∙ 100 (5) 

 

where Asplant is the concentration of arsenic in the plant and Assoil is the arsenic con-

centration in the soil under that plant.  
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4 RESULTS AND DISCUSSION  

4.1 Physical observations 

The texture, composition and layout of both heaps differ considerably. However, both 

heaps are on a slope and have a south-easterly aspect. Additionally, the vegetation in 

both heaps showed signs of stress such as limited growth and foliosity, chlorotic nee-

dles and leaves as well as the browning of some grass leaves (Fig. 14). 

 

 

 Browning and chlorotic vegetation Figure 14.

4.1.1 Top Heap  

The Top Heap is a hilly area characterised by sandy coarse grained material ( 73% of 

material = sand/gravel (Mighanetara, 2008)) with areas of seemingly finer material in 
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some of the lower level surfaces (Fig. 15), likely due to the transport of sediments by 

water into these hollows. Patches of grass, moss, heather and thin microbial mats grow 

on some of these lower level surfaces as well as on the west edges of the heap (West 

edge on right side of Fig. 15). This might suggest that plants are better able to grow in 

areas where even a smidgen of sedimentation has occurred; smaller material size of-

fers more surface area which could increase nutrient availability and water retention 

capabilities. Additionally, the microbial mats present might be assisting sedimentation 

as well as fixing nitrogen and adding organic material (Michel and Henein, 2007).  

 

 

 
 Hilly surface of the Top Heap with patches of grass predominantly in lower Figure 15.

levels and in the west edge. Microbial mat pic no. 1. Source: Author, 2014.  

4.1.2 Bottom Heap 

The Bottom Heap is composed by finer grained re-processed waste material ( 72% 

silt (Mighanetara, 2008)) with seemingly higher macrobiotic diversity e.g., taller, 

more foliose and abundant heathers, more grass species, lichen, moss and small coni-

fers. However, the conifers were chlorotic and the grass showed in general poor 

health. In addition, the presence of puddles on the Bottom Heap (Fig. 16) suggests 

better water retention than the Top Heap. Moreover, the Bottom Heap has banks on its 

edges (Fig. 16), which may provide additional hydrological and growing advantages 

such as wind protection and less surface erosion.  
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 View of Bottom Heap from Top Heap. Presence of puddles and banks on Figure 16.

edges and centre. Source: Author, 2014.  

4.1.3 Organic Matter 

The amount of organic matter (OM) found in the tailings area ranges from 

1.6 𝑡𝑜 6.3 %, with an average value of 𝑶𝑴 ≈ 𝟑. 𝟑 ± 𝟎. 𝟑 % and a median value of 

3.4%. Values in Fig. 18 are presented to contrast the two heaps as well as the vegetat-

ed and bare soil.  

 
 Manure in coarse Top Heap with grass patches.  Source: Author, 2014 Figure 17.
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In both heaps animal droppings were found near most grass and heather patches (Fig. 

17) contributing to the OM in vegetated areas. The results likewise show that the soil 

in vegetated areas had significantly (p< 0.05) more OM than the non-vegetated (bare 

soil) areas (Fig. 18). Additionally, the results indicate that soil samples (vegetated and 

non-vegetated) in the Bottom Heap have significantly higher OM content than the Top 

Heap samples (Fig. 18). Moreover, in the Bottom Heap OM is significantly (p< 0,05) 

and highly correlated with Mg, K and negatively correlated with PO4, which likely 

indicate that plants are incorporating PO4. On the other hand, the absence of correla-

tion with NO3-N was unexpected (Tables 12-13).  

 

Finally, it is possible to observe graphically (Fig. 18) that the majority of the values 

fall between the literature value ranges (McGrath and Loveland, 1992) in the vegetat-

ed area, especially in the Bottom heap. However, the majority of bare soil values, es-

pecially in the Top heap, fall under average soil OM values in the Southwest.  
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 Comparisons of organic matter in bottom vs top heap and vegetated vs bare Figure 18.

soils. The circles inside boxes represent the average values and the central horizontal 

lines represent median values. The red dotted lines represent the literature value range.   

4.2 Chemical observations 

The individual results for each sample and analyte can be found in in Appendix 2(1-4) 

(Table 22) and summary figures with averages and median values can be found in 

each section (4.2.1 - 4.2.5). Additionally, 3 correlation matrices were devised (One 
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matrix for the overall correlation of all samples (Appendix 2(4), Table 26), a second 

Table (12) for the samples from the Bottom Heap, and a third Table (13) for the sam-

ples from the Top Heap. In these correlation matrices, the correlation coefficients (r) 

are set in bold, with their corresponding p-values underneath them. The correlation 

coefficients were arbitrarily highlighted if R-values < -0.5 or > 0.5 and p-values < 0.1 

were also highlighted. Correlation values are discussed more in detail where relevant.   

  Correlation matrix for Bottom Heap soils Table 12.
BH OM pH EC As PO4 Ca Mg Na K 

pH 
-0.553 

        
0.097 

        

EC 
0.944 -0.716 

       
0.000 0.020 

       

As 
0.600 -0.341 0.546 

      
0.067 0.335 0.102 

      

PO4 
-0.645 0.743 -0.626 -0.569 

     
0.044 0.014 0.053 0.086 

     

Ca 
-0.146 0.578 -0.143 -0.149 0.756 

    
0.687 0.080 0.694 0.681 0.011 

    

Mg 
0.933 -0.478 0.923 0.496 -0.464 0.118 

   
0.000 0.162 0.000 0.145 0.177 0.746 

   

Na 
0.436 -0.049 0.404 -0.061 -0.003 0.412 0.678 

  
0.208 0.894 0.247 0.867 0.993 0.237 0.031 

  

K 
0.751 -0.261 0.705 0.629 -0.224 0.121 0.707 0.188 

 
0.012 0.467 0.023 0.051 0.534 0.738 0.022 0.603 

 

NO3-N 
-0.033 0.210 -0.076 -0.157 0.503 0.404 0.062 0.333 0.320 

0.928 0.560 0.835 0.665 0.138 0.247 0.865 0.348 0.367 

 Correlation matrix for Top Heap soils Table 13.
Top Heap OM pH EC As PO4 Ca Mg Na K 

pH 
-0.229                 

0.553                 

EC 
0.055 -0.473               

0.889 0.199               

As 
0.022 -0.446 -0.144             

0.954 0.229 0.711             

PO4 
-0.366 0.354 -0.510 -0.281           

0.332 0.351 0.161 0.464           

Ca 
0.272 0.259 -0.118 0.155 0.275         

0.480 0.502 0.763 0.690 0.474         

Mg 
0.433 0.298 0.484 -0.363 -0.239 0.502       

0.244 0.436 0.187 0.337 0.536 0.169       

Na 
0.511 0.307 0.142 -0.748 0.091 0.170 0.657     

0.159 0.422 0.716 0.020 0.816 0.662 0.055     

K 
0.850 -0.158 -0.086 0.095 -0.131 0.231 0.342 0.357   

0.004 0.684 0.826 0.808 0.737 0.550 0.367 0.346   

NO3-N 
0.154 -0.228 -0.207 0.107 0.431 0.511 -0.212 -0.103 0.027 

0.693 0.556 0.594 0.785 0.246 0.160 0.584 0.791 0.946 
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4.2.1 pH 

The pH values found (Fig. 19) agreed with literature values of 3.1 - 5.6 (Rieuwerts et 

al., 2014) and ranged from 3.4 𝑡𝑜 5.2 in agreement with Mighanetara’s (2008) report-

ed values (4.7-5.4). A mean value of 𝒑𝑯 ≈ 𝟒. 𝟔 ± 𝟎. 𝟐 and a median value of 4.8 was 

found, suggesting that the soils range from very acidic (3.0 - 5.0) to acidic (5.1-6.0) 

(RHS, 2015). Additionally, these findings suggest that nutrient bioavailability may be 

severely limited (see Table 5 in section 2.8.3) and that the solubility of metals might 

reach biologically toxic levels e.g., phytotoxicity 𝐹𝑒 > 1000 𝑚𝑔/𝑘𝑔,  𝐶𝑢 > 20 −

100 𝑚𝑔/𝑘𝑔. (McBride, 1994, pp. 169, 326).    

 

Additionally, it is possible to see from (Fig. 19) that the pH levels between heaps dif-

fer significantly (p<0.001) supporting that, during the re-processing of the Bottom 

Heap for arsenic extraction, limestone was added during the process to reduce acidity. 

(Palumbo-Roe and Klinck, 2007) 
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 pH values where the red dotted line is the threshold for very acidic soils and Figure 19.

the green line the average threshold for severely low nutrient availability. Nutrients gen-

erally very limited in soils pH < 5 – 6. (Kumar et al., 2013, 18) 

 

In the Top Heap there appears to be no correlation between analytes and pH; however 

in the Bottom Heap, pH values appear to be directly correlated with PO4. If all data 

from both heaps is taken into account, pH is significantly (p=0.004) and inversely 

correlated (r = -0.625) with As and directly correlated with PO4, Ca, Na and K. The 
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pH - As inverse correlation probably arises due to the formation of As and Fe oxyhy-

droxides minerals under acidic conditions (Rieuwerts et al., 2014). Therefore, the sig-

nificant pH difference in the Heaps and its correlation with nutrients indicates that low 

pH affects significantly nutrient availability, particularly in the Top Heap.  

4.2.2 Arsenic content 

The arsenic content values (pseudo-total) represent the amount of extractable As that 

is likely to be in the inert phase as well as the potentially mobile fraction (Rieuwerts et 

al., 2014). The As content in the waste heaps (tailings) ranged from 10 620 𝑡𝑜 

27 010 𝑚𝑔/𝑘𝑔 with an average value of 𝑨𝒔 ≈ 𝟏𝟖𝟕𝟎𝟎 ± 𝟏𝟐𝟎𝟎 𝒎𝒈/𝒌𝒈 and a medi-

an value of 17 100 𝑚𝑔/𝑘𝑔. The heaps appear to be ca. 1340 times more contaminated 

relative to rural areas in England (Rural background Asconcentration = 13.9 mg/kg, Env. 

Agency, 2007) and around 9 times richer in As relative to areas with mineralisation 

but no mining (Mineralisation areas Asconcentration = 2019 mg/kg, Klinck et al., 2005).  

A summary of the arsenic content is presented (Fig. 20) to contrast these values.  

 

Overall, As is significantly inversely correlated with PO4 (r=-0.579, p=0.009), perhaps 

suggesting ion competition in soils (Bolan et al, 2013). In the Top Heap arsenic shows 

a significant (P=0.020) inverse correlation with Na (Table 13), unlike the Bottom 

Heap which shows a significant (P=0.051) correlation with K.  

 

The results (Fig. 20) show that the Bottom Heap is significantly (p=0.037) less con-

taminated by As than the Top Heap as expected due to the reprocessing and re-

extraction of As of the Bottom Heap. The concentrations of As in vegetated soils are 

noticeably (p=0.396) lower than in their paired bare soils. Additionally, the median 

value obtained in this study is compared with the median value reported by Klinck et 

al. (2005) in Fig. 20 with a yellow and a red line respectively. The ~2000 mg/kg dif-

ference might lie in the sampling strategy used; this study was targeted to vegetated 

areas and their surroundings (19 soil samples), whereas the Klinck et al. (2005) sam-

pling strategy appears to be untargeted and randomised (10 soil samples). Moreover, 

this difference could indicate the following: vegetation “prefers” generally areas with 

less As contamination or that vegetation has removed a portion of the As from the soil 

underneath. However, it is also possible to be a combination of both.  
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 Arsenic comparisons. Red line = Klinck et al., 2005 median value and yellow Figure 20.

= median value in this study.  

 

4.2.3 Uptake of arsenic 

All vegetation samples appear to intake arsenic into their aerial parts to some extent 

and these values are summarised by genus in Fig. 22 as arsenic content in dry biomass 

as well as a percentage of uptake (Formula 5).  

 

 

 Grass 3 and grass 5 respectively Figure 21.
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 As concentration in different genera and their uptake Figure 22.

 

Grasses sampled appear to be the highest accumulators ranging from 185 – 2720 

mg/kg of As (0.93 - 13.60 % As uptake) with an average value of 𝑼𝒑𝒕𝒂𝒌𝒆 ≈ 𝟔. 𝟎 ± 𝟑. 𝟎 %  

and a median value of 4.99 % (Table 14). These results agree with literature values 

(Porter and Peterson, 1977 & De Koe, 1994). The big differences in uptake may lie in 

the fact that not all species belonged to the Agrostis genera (e.g., grass 4, Fig. 23) and 

remain unidentified. Grass 3 and 5 (Fig. 21) however, were both identified as Agrostis 

capillaris and both appear to be hyperaccumulating. Additionally, although grass 

samples were carefully rinsed, cross contamination cannot be ruled out completely.  

 

 Grass 4 Figure 23.
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The second highest accumulator seems to be moss with an uptake of ≈ 𝟓. 𝟒%. Ac-

cording to the literature “incorporation” is a more appropriate term, since mosses do 

not interact sufficiently with the underlying substrate and accumulation via uptake 

appears to be unlikely (Harmens et al., 2007).  Other mechanisms might however play 

a role in the incorporation of arsenic from dust and although the moss sample was also 

thoroughly rinsed; cross-contamination may have influenced the results.   

 

The conifer sampled was growing in the least contaminated area sampled and was 

found to accumulate 𝑨𝒔 ≈ 𝟐𝟖𝟑. 𝟖 ± 𝟏. 𝟒 𝒎𝒈/𝒌𝒈 in the needles, which equals to 

an 𝑼𝒑𝒕𝒂𝒌𝒆 ≈ 𝟐. 𝟕 %. The conifer sample was also rinsed and cross-contamination is 

very unlikely.  

 

Lichen was found to uptake ca. ≈ 𝟒𝟏𝟒 ± 𝟏𝟑 𝒎𝒈/𝒌𝒈 𝒐𝒓 𝟐. 𝟒 % and it is likely to be 

accumulated by the fungal symbiont (Nieboer et al., 1984a). The lichen sample was 

very carefully picked and rinsed; cross-contamination should not have affected the 

results significantly. 

 

Finally, As concentrations in heathers ranged from 19 – 1470 mg/kg (0.09 – 6.32 % 

uptake) with a mean value of ≈ 396 ± 240 𝑚𝑔/𝑘𝑔 ( 2.0 ± 1.1 %) and a median 

value of 147 mg/kg (0.71%). Although literature suggests that heathers in highly con-

taminated areas can accumulate up to 4130 mg/kg (Porter and Peterson, 1975), the 

values found in heather 4 differ almost 2.6 std. dev., suggesting sample contamination. 

Therefore, the uptake should be considered as ranging from 19 – 570 mg/kg (0.09 – 

4.10%) with a mean value of 𝑨𝒔 ≈ 𝟏𝟖𝟎 ± 𝟏𝟎𝟎 𝒎𝒈/𝒌𝒈 (𝟏. 𝟐 ± 𝟎. 𝟖 % 𝒖𝒑𝒕𝒂𝒌𝒆) 

and a median value of 60 mg/kg (0.38%), in agreement with literature range values of 

0.01 – 1.3 % (Slejkovec et al., 2010).  

 Arsenic concentration per genus Table 14.
  N samples Average Median Min Max Std. Dev 

As      
concentra-

tion in 
plants 

[mg/kg] 

Heather 6* 396 147 19 1470 566 

Grass 5 1198 713 185 2720 1072 

Moss 1 793.6 - - - - 

Lichen 1 413.7 - - - - 

Conifer 1 283.8 - - - - 

Uptake [%] 

Heather 6* 2.02 % 0.71 % 0.09 % 6.32 % 2.59 % 

Grass 5 5.92 % 4.99 % 0.93 % 13.60 % 4.91 % 

Moss 1 5.24 % - - - - 

Lichen 1 2.42 % - - - - 

Conifer 1 2.67 % - - - - 

*Including likely contaminated sample 
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Additionally, heathers and grasses uptake of As concentration was analysed for corre-

lation against analytes in their corresponding vegetated soil samples (Table 15); no 

evident correlation was found in the uptake of As by grasses.   

  Correlation matrix for uptake of As and corresponding soil analytes Table 15.
Uptake OM % pH EC As P Ca Mg Na K N  

Heather 
-0.537 -0.958 0.844 0.285 -0.476 -0.828 -0.834 -0.541 -0.775 0.227 

0.272 0.003 0.035 0.584 0.340 0.042 0.039 0.268 0.070 0.666 

Grass 
0.343 -0.255 0.375 0.258 -0.379 -0.154 0.335 0.278 0.071 -0.376 

0.657 0.745 0.625 0.742 0.621 0.846 0.665 0.722 0.929 0.624 

 

On the other hand, heathers showed significant (p=0.003) inverse correlation           

(r=-0.958) between As uptake and soil pH, suggesting an increase in uptake of arsenic 

as soil pH decreases. However, the solubility of Fe-Arsenate minerals decreases with 

lower pH, whereas the solubility of Fe-Arsenite increases with lower pH (Tu and Ma, 

2003), suggesting that As uptake is likely in the form of arsenite, which could explain 

the visible stress. Additionally, significant inverse correlations were found between 

uptake of As in heathers and soil nutrients, where higher nutrient availability corre-

sponded to a decrease in As uptake in heathers. This might suggest that “healthier” 

soil allows more efficient uptake exclusion either due to the mycorrhizal fungi or 

heathers’ own exclusion mechanism.  

 Correlation matrix of As in plants [mg/kg] versus arsenic and PO4 in vegetat-Table 16.

ed soil.  

 
As in Plants As in vegetated soil PO4 in vegetated soil 

As in vegetated soil 
0.468 

  
0.091 

  

PO4 in vegetated soil                
-0.348 -0.503 

 
0.222 0.067 

 

Uptake of As                 
0.970 0.267 -0.254 

0.000 0.355 0.381 

 

Additionally, no significant influence was found between phosphates in soil and As 

uptake. However, the results moderately suggest that in general higher concentration 

of As in soil increases the amount of As in plants. (Table 16) 

4.2.4 Nutrients 

All nutrients, with the exception of NO3-N, were found in significantly (p< 0.05) 

higher concentrations in the Bottom Heap than in the Top Heap. On the other hand, 

the differences in nutrient availability between vegetated and non-vegetated soils were 

not highly significant but noticeable; all nutrients with the exception of PO4 and Ca 

were found in slightly higher quantities in vegetated soils (Fig. 24 - 30).  
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Nitrogen 

The nitrogen concentrations in both heaps ranged from 0.12 - 0.63 mg/kg with a mean 

value of  𝑵𝑶𝟑 − 𝑵 ≈ 𝟎. 𝟑𝟏 ± 𝟎. 𝟎𝟒 𝒎𝒈/𝒌𝒈 and a median value of 0.27 mg/kg.   

 

The preliminary analysis that was required to identify the approximate nitrogen con-

centration of the samples (HACH analysis) produced highly elevated results (Blank  

4.5 mg/l  22.5 mg/kg). These high results may have resulted from the interference of 

the inorganic salt (KCl) anions (Cl
-
) having a much higher concentration relative to 

the soil organic anions (NO3
-
). However, the 6 samples analysed (3 from each waste 

heap) produced data that correlates with the corresponding samples of the Skalar data 

(r=0.835, p=0.038), suggesting that the absolute values of the HACH analysis, when 

2M KCl is used for extraction, are not reliable but the relative values might be good 

approximations if properly corrected. On the other hand no other correlation was 

found between NO3-N and any other analyte in this study. The lack of correlation with 

OM could indicate the absence of microbial mineralisation in the tailings.   

 

According to Barber (1995, pp. 189-190) the minimum concentration at which nitro-

gen influx stops differs with plant species. However, grass species investigated by 

Warncke and Barber (1974) suggest a minimum average value represented as a red 

dotted line in Fig. 24. It is clear that the high majority of NO3-N results were below 

this threshold, which could indicate that nitrogen availability is seriously deficient at 

the DGC.  Additionally, according to the U.S.A. Environmental Protection Agency 

(2013) an acceptable range of total nitrogen is 2 to 6 mg/l, but for this thesis neither 

total nitrogen nor ammonia were measured.   

 

Notwithstanding, there is the possibility that the air-dried storage method utilised 

might have rendered the results untrustworthy; studies have shown this method to be 

unreliable for soil sample storage as the NO3-N content might change. (Esala, 1996). 
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 NO3 – N in mg/L boxplot comparison. Red dotted line represent average Figure 24.

minimum influx concentration  

 

Phosphorus 

The orthophosphate concentrations in both heaps ranged from 8.2 – 52.1 mg/kg with 

an average of 𝑷𝑶𝟒 ≈ 𝟐𝟖. 𝟑 ± 𝟒. 𝟎 𝒎𝒈/𝒌𝒈 and a median value of 22.9 mg/kg. A 

summary of all results can be found in Fig. 25.  

 

Overall phosphates (PO4) show a highly significant direct correlation with Ca 

(r=0.827, p<0.001) and a significant but moderate correlation with K (r=0.535, 

p=0.018). Furthermore the Bottom Heap alone shows a correlation (r=0.756, p=0.011) 

between PO4 and Ca, whereas the Top Heap does not (r=0.275, p=0.474). This could 

indicate a common source of PO4 and Ca in the Bottom Heap perhaps as a result of 

the reprocessing and adding of limestone. Additionally, the PO4 and Ca concentrations 

were found to be significantly more abundant in the Bottom Heap (Fig. 25), which 

supports the assumption of a common source. Phosphate concentrations were found to 

be slightly lower in vegetated areas suggesting that vegetation is taking up phosphates 

from these soils. However, most values fall under the lower range of optimum P con-

tent (Fig. 25) for plant nutrition of 50-80 mg/kg  (Janssens et al., 1998), suggesting 

that PO4 is somewhat deficient, especially in the Top Heap (Fig. 25). Notwithstanding, 

phosphate does not appear to be the growth limiting factor at the DGC.  
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 Phosphate Boxplots. Red dotted line represent the lower range of P concen-Figure 25.

tration optimum value 

 

NO3:PO4 Ratio 

At the DGC the highest ratio occurs at the Top Heap not because of its NO3-N abun-

dance but because of its PO4 deficiency. According to the literature (Janssens et al., 

1998 & Agren et al., 2012), optimum N:P ratios should be skewed towards nitrogen as 

it is required by plants in the largest quantities. The ratios are on the other hand heavi-

ly skewed towards PO4 (Fig. 26), supporting the assumption that NO3 is deficient at 

the DGC.  
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 N:P Ratio Figure 26.
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Potassium 

The potassium concentrations in both heaps ranged from 1.6 – 59.1 mg/kg with an 

average of 𝑲 ≈ 𝟐𝟕. 𝟎 ± 𝟓. 𝟎 𝒎𝒈/𝒌𝒈 and a median value of 23.6 mg/kg. A summary 

of all K results can be found in Fig. 27.  

 

Potassium (K) is the third most important macronutrient for vegetation growth (Yang 

et al., 2014). The concentration values found at the DGC fall short of Janssens et al. 

(1998) optimum K concentration of 200 mg/kg, where higher values are more compat-

ible with higher biodiversity. Nevertheless, the concentrations in the Bottom Heap 

appear to be only 4 - 5 times deficient, whereas the Top Heap is ~20 times more defi-

cient (Fig. 27).  When taking into account both heaps, potassium is highly correlated 

with most analytes with the exception of NO3-N and As, the latter being only weakly 

correlated in the Bottom Heap (r=0.629, p=0.051) with K. This absence of correlation 

between As and K in the Top Heap but borderline significant correlation in the Bot-

tom Heap could indicate that K levels are also related somehow to the reprocessing. 

Nevertheless, in the Bottom Heap no evident correlation between K and Ca or PO4 

was found, ruling out the obvious common source that is limestone. The source of K 

on the Bottom Heap thus remains unclear, yet a significant difference in concentration 

with Top Heap suggests that the difference cannot be explained by chance. In the Top 

Heap however, K is correlated with OM (r=0.850, p=0.004). 

 

Bare soilVegetated soilTop HeapBottom Heap

60

50

40

30

20

10

0

K
 c

o
n

c
e

n
t
ra

t
io

n
 [

m
g

/
k

g
]

K concentrations

Vegetated vs Bare soil P-value=0.125Bottom vs Top Heap P-value=0.000

 

 K boxplot comparison Figure 27.



48 

 

Calcium 

The calcium concentrations in both heaps ranged from 117 – 707 mg/kg with an aver-

age of 𝑪𝒂 ≈ 𝟒𝟎𝟎 ± 𝟓𝟎 𝒎𝒈/𝒌𝒈 and a median value of 317 mg/kg. A summary of Ca 

results can be found in Fig. 28.  

 

The calcium concentrations in the Bottom Heap differ significantly with the concen-

trations of the Top Heap. As previously suggested, higher Ca values may arise from 

the reprocessing of the Bottom Heap for additional As extraction, in which reportedly 

limestone was added to decrease acidity. There is no significant difference between 

vegetated and bare soil concentrations but like PO4, Ca was found in slightly lower 

concentrations in vegetated soils (Fig. 28).  
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 Ca boxplot comparison Figure 28.

 

Magnesium 

The magnesium, concentrations in both heaps ranged from 6.8 – 50.7 mg/kg with an 

average of 𝑴𝒈 ≈ 𝟐𝟐. 𝟖 ± 𝟑. 𝟎 𝒎𝒈/𝒌𝒈 and a median value of 20.4 mg/kg. A sum-

mary of all Mg results can be found in Fig. 29.   

 

Mg concentrations are significantly (p=0.041) higher in the Bottom Heap and higher 

in vegetated soils, similar to other nutrients (Fig. 29). Taking into account all soil 
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samples magnesium showed a significant correlation with organic matter (r=0.821, 

p<0.001). In the Bottom Heap, in addition to Mg being very highly correlated with 

OM (r=0.933, p<0.001), Mg also appears to be correlated with K (r=0.707, p=0.022), 

however no correlation between Mg and K was found in the Top Heap. Mg, K and 

OM show significant correlations (P≤0.022) in the Bottom Heap indicating a common 

source.  
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 Mg boxplot comparison Figure 29.

 

Sodium 

The sodium concentrations in both heaps ranged from 1.3 – 28.8 mg/kg with an aver-

age of 𝑵𝒂 ≈ 𝟏𝟐. 𝟖 ± 𝟐. 𝟎 𝒎𝒈/𝒌𝒈 and a median value of 11.9 mg/kg. A summary of 

all Na results can be found in Fig. 30.  

 

Sodium appears to be moderately correlated with Mg in both Heaps (R=0.715, 

P=0.001) and inversely correlated with As in the Top Heap (r=-0.748, p=0.020). Simi-

larly to other nutrients, the Bottom Heap showed significantly higher concentrations 

of Na and slightly higher concentrations in the vegetated soil (Fig. 30).  

 

Although sodium (Na) is not a vital nutrient for many plants, exchangeable sodium 

percentage (ESP) is associated with poor structural stability properties. Soils high in 

ESP are susceptible to swelling, surface crusting, sealing and erosion. (McBride, 

1994, pp. 282)  On average, the soils at the DGC heaps result in a value of 𝐸𝑆𝑃 ≈

3.0 ± 1.0 % remaining well under 6% which is when soils are considered to have 
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structural problems (van de Graaff and Patterson, 2001) and thus it indicates that the 

soil salinity is unlikely a growth limiting factor. This is additionally corroborated by 

the low average EC value of 𝐸𝐶 ≈ 46.0 ± 9.0 𝜇𝑆/𝑐𝑚 , which is clearly under the 

value of “barely saline soil” of 𝐸𝐶 ≈ 4000 𝜇𝑆/𝑐𝑚. (McBride, 1994, pp. 302) 
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 Na boxplot comparison Figure 30.

 

4.2.5 Species/genera specific results 

Two tables (17 and 18) were devised, where the average values of the vegetated soil 

on which each particular plant was growing are reported in order to give a broad view 

of what environments appear to be suitable for their growth. Heather and grass results 

should be more statistically significant and representative results than the moss, coni-

fer and lichen values due to the fact that 6 heather samples and 5 grass samples were 

taken, in comparison to 1 moss, 1 conifer and 1 lichen sample.  

 

Heathers in general appear to better withstand lower pH than other vegetation types 

sampled. However, overall grass appears to be able to grow where higher As concen-

trations were present, as well as to accumulate higher levels of As. Moss appears to 

need or bring to the system higher OM content than other vegetation.  Moss addition-

ally appears to be growing where higher concentrations of all nutrients are to be 

found. 
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 Summary of uptake, OM, pH and As content of soil under each genus. Table 17.
Plant Uptake % Organic Matter % pH As [mg/kg] 

Heather 

Average 2.0 ± 1.2 4.2 ± 0.7 4.5 ± 0.3 18000 ±2 000 

Median 0.7 4.2 4.7 17971 

Range 0.1 – 6.3 2.1 - 6.3 3.4 - 5.1  13930 - 23240 

Std. Dev 2.6 1.5 0.6  3958 

Grass 

Average 5.9 ± 3.0 4.7 ± 0.9  4.8 ± 0.2 19 000 ± 3 000 

Median 5.0 3.7 4.9 19993 

Range 0.9 -13.6 3.4 – 6.3 4.2 – 5.2 14300 - 26230 

Std. Dev 4.9 1.5 0.4 4450 

Moss    5.2 5.3 4.9 15148 

Lichen    2.4 3.8 5.1 17085 

Conifer   2.7 3.1 4.6 10616 

 

Conifers on the other hand appear to grow where lower concentrations of nutrients are 

found relative to other vegetation, but this could also indicate that it has removed from 

the soil a fraction of the available nutrients.  

 Summary of soil nutrient content of vegetated soil Table 18.
Plant P [mg/kg] N [mg/kg] K [mg/kg] Ca [mg/kg] Mg [mg/kg] Na [mg/kg] 

Heather 

Average 26.5 ± 6.0 0.33 ± 0.08 34.0 ± 9.0 400 ± 100 29.8 ± 7.0 15.7 ± 3.0 

Median 27.0 0.26 35.7 401.0 28.4 13.5 

Min 8.2 - 40.7 0.16 – 0.60 7.7 – 59.1 140 - 630 10.3 – 50.7 8.7 – 28.8 

Std. Dev 12.3 0.18 20.7 227.5 16.8 7.3 

Grass 

Average 28.8 ± 8.0  0.38 ± 0.12  45.3 ± 11.0   520 ± 80 32.7 ± 9.0  14.4 ± 3.0 

Median 21.3 0.31 59.0 572.7 22.5 14.6 

Min 17.1 – 52.1 0.17 – 0.60 14.0 – 59.1 310 - 710 19.2 – 50.7 7.6 – 18.8 

Std. Dev 14.2 0.23 20.3 150.9 16.5 4.8 

Moss    32.8 0.52 48.7 597.9 47.4 28.8 

Lichen    22.6 0.17 36.5 317.3 16.9 11.4 

Conifer   17.4 0.12 9.0 220.7 33.6 26.2 

 

The values obtained by the species Calluna vulgaris (Heathers) can be compared with 

the values from Marrs and Bannister (1978), where they analysed the soils in which 

heather is known to grow (Table 19).   

 Soil properties of places where Calluna vulgaris is known to grow. Data Table 19.

source: Marrs and Bannister, 1978 

  pH OM (%) N [mg/kg] P  [mg/kg] K [mg/kg] Na [mg/kg] Mg[mg/kg] Ca[mg/kg] 

Range 3.6 - 6.9 1.2 - 12.8 1260 - 4100 1.3 - 5.3 101 - 170  97 - 227 20 - 1653 2.1 - 2776 

 

It can be seen that the values obtained for pH, OM, Ca and Mg, fall well within the 

ranges in which heathers usually grow. However, nitrogen values and potassium ap-

pear to be considerably lower in the Devon Great Consols than at the usual range in 

which heathers are known to grow suggesting at least severe nitrogen deficiency.  
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5 CONCLUSIONS 

5.1 Conclusions 

The assessment of the tailings at the Devon Great Consols mining area indicates seri-

ous As pollution in agreement with previous investigations. However, the largest frac-

tion of As appears to be strongly bonded with iron oxyhydroxides reducing its mobili-

ty. Notwithstanding, the mobile fraction 𝐴𝑠𝑚𝑜𝑏𝑖𝑙𝑒 ≈ ~29% of pseudo-total As (Ri-

euwerts et al., 2014) is a substantial amount of As under these circumstances.  

 

The arsenic concentrations vary on site, yet the Top Heap appears to be significantly 

more contaminated than the Bottom Heap: 𝐴𝑠 ≈ 21 000 ± 2000 𝑎𝑛𝑑 16 300 ±

900 𝑚𝑔 ∙ 𝑘𝑔−1 respectively. Additionally, the vegetated soils appear to contain in 

general less As than the bare soils: 𝐴𝑠 ≈  17 800 ± 1 500 and  20 000 ± 2 000 𝑚𝑔 ∙

𝑘𝑔−1  respectively, which could indicate that vegetation generally succeeds in areas 

with less As contamination or that vegetation has removed a portion of the As in the 

soil underneath. It may however be a combination of both.  

 

In regards to the soil structure, the re-processing of the Bottom Heap for As extraction 

appears to have brought different kind of advantages such as different soil texture, pH 

and composition due to the addition of limestone. It appears that the advantage in the 

Bottom Heap is due to the less coarse texture of the soil and higher pH value which 

increase significantly both water retention capacity and nutrient availability, respec-

tively. Thus, a trend was found where nutrient availability is higher in the Bottom 

Heap and in vegetated soils, with the exception of Ca and PO4, whose content in vege-

tated soils are slightly lower than in bare soils. The lower content of PO4 under vege-

tated soil could be explained by plant usage and uptake. Additionally, the significant 

negative correlation between PO4 and As could indicate that their ions are competing 

in soil for absorption as suggested in the literature (Bolan et al, 2013).  

 

The heather community growing in the tailings appear to have developed tolerance to 

As mainly through exclusion strategies as most plants showed low As content in their 

aerial tissues: 𝐴𝑠 𝑢𝑝𝑡𝑎𝑘𝑒 ≈ 1.2 ± 0.8 %. While this makes them inadequate for As 

extraction, they are very valuable in the phytostabilisation of the heaps due to both 

their As resistance and their ability to grow in very acidic and relatively lower nutrient 
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availability conditions. Notwithstanding, nitrogen and potassium concentrations were 

clearly under the normal range in which heathers grow and could explain the limited 

growth at the DGC. Nonetheless, heathers provide a relatively safe browsing oppor-

tunity to animals due to low aerial As accumulation.  

 

Grasses also appear to have developed a tolerance to arsenic as it appears that they are 

able to grow at relatively higher As concentrations than heathers and to accumulate As 

to a higher extent, making them highly suitable for the stabilisation of the heaps 

through phytoaccumulation and phytostabilisation. Unlike grasses and heathers, it is 

not very clear how conifers, mosses and lichen have adapted to these environments. 

However it appears that they were able to grow where soil conditions were the least 

harsh. In particular, conifers and their corresponding soil environment should be in-

vestigated more in detail as they appear to accumulate As to some extent and provide 

valuable stability to the heaps and therefore a decrease As leaching.   

 

There appears to be two likely scenarios that would explain the nitrogen results. Either 

the tailings really are very NO3-N deficient making it the obvious growth limiting fac-

tor for the vegetation or that the methods for extraction were inadequate i.e., air-dried 

storage and long thawing (overnight) of samples after extraction. However, even the 

results provided by the HACH analysis, which showed more elevated concentrations 

(see results and discussion 4.2.4), showed relatively low nitrate concentrations, sug-

gesting that mostly long thawing time and time before analysis could have interfered 

with the results and/or that anyway available nitrogen is heavily deficient at the DGC.  

 

In conclusion, the agreement of the results with available literature provide confidence 

to suggest that the major limiting factors for vegetation growth on the site include 

moisture retention on the Top Heap due to the coarse texture of the soil and low or-

ganic content as well as limited nutrient content and availability in both heaps, more 

specifically nitrogen, possibly due to low pH values. The vegetation community at the 

DGC appears to have successfully developed tolerance mechanisms to As and there-

fore is unlikely to be the main growth limiting factor in itself. However, it may con-

tribute to some extent to the stress on the vegetation. Perhaps also, due to the low pH, 

the toxicity of other metals (Al, Cu, Fe) in the tailings might play a role to some extent 

and should be looked into more carefully.  
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5.2 Recommendations 

By analysing the available data, it appears that the Bottom Heap only needs minor soil 

amendments to continue developing successfully; however, the restoration of the re-

cently developed gully will be necessary in order to avoid further soil erosion. On the 

other hand, the revegetation of the Top Heap appears to need more extensive soil 

amendments if it is to support a full vegetation cover. Feasible and possibly inexpen-

sive solutions would comprise the addition of Calcium carbonate (CaCO3). Trials 

should be carried out on site, where e.g., ~100kg of CaCO3/m
2
 are added and mixed 

with the top 10 cm of the soil. This amount of CaCO3 should increase the Ca content 

to the same amount of Ca in the Bottom Heap and increase its pH to a more compara-

ble level with the Bottom Heap without affecting too much As solubility. A small in-

crease in pH values would not stop plant uptake of As (grasses and heathers), but it 

would be suited for better nutrient release and therefore more successful revegetation 

of conifers and grasses. Consequently, mosses, lichen and other bryophytes will have 

a better chance to develop due to increases in OM and water retention. Additionally, 

low cost solutions such as the addition of sewage sludge and forest soils have shown 

to have favourable impacts on vegetation growth in As contaminated sites (Kar-

czewska et al., 2013 & Hart and Luckai, 2012) and could be carried out in a trial ex-

periment to provide the soils with additional sources of OM content and hence higher 

water content and nutrient availability.    

 

According to the chemical results obtained and physical observations NO3-N is se-

verely deficient; therefore nitrogen fixing vegetation or microbial mats should be in-

vestigated in order to assess their feasibility to bring nitrogen into the system or to 

determine whether the addition of N fertilizer is necessary. The incorporation of fungi 

(AMF) and rhizobacteria into trials should be implemented and not be overlooked; as 

they have shown to provide many advantages in many different levels, from arsenic 

filtration to detoxification by methylation, and the increase of the nutrient available 

fraction (Porter and Peterson, 1977; Sharples et al., 2000; Bentley and Chasteen, 2002; 

Fomina et al., 2005; Titah et al., 2013 & Zhang et al., 2015). 

 

Future research could be concentrated in NO3-N availability to verify these results and 

to improve soil conditions and fertility. Additionally N:P ratios in biomass could be 

investigated to conclude specific growth limiting factors. Moreover, the biological 

investigation of the soils could provide some valuable insight into the niches that 
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could be amended to improve soil quality. Finally, it could be investigated whether 

other metals (Al, Cu, Fe) are also contributing to phytotoxicity under present envi-

ronmental conditions at the Devon Great Consols.   
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APPENDIX 1(1) 

Operating conditions 

  Operating conditions for continuous flow inductively coupled plasma atomic Table 20.

emission spectrometry (ICP-OES) measurements.  
  UV Visible 

Exposure time (s) 2.0 2.0 

Radiofrequency power (W) 1150.0 1150.0 

Nebuliser gas flow (L/min) 0.5 0.5 

Viewing Height (mm) 12.0 12.0 

Capture full frame No No 

  

  
Coolant gas flow (L/min) 12 

Aux. gas flow (L/min) 0.5 

Add. Gas flow (L/min) 0 

 

 

 Calibration curves of nutrients and wavelengths Figure 31.



APPENDIX 1(2) 

Operating conditions 

 

 Calibration curves (continuation) Figure 32.



APPENDIX 1(3) 

Operating conditions 

 Operating conditions for segmented flow analyser measurements (SKALAR).  Table 21.

Sensitivity (mg/L) 0.2 - 5 

Sample time (s) 60.0 

Wash time (s) 60.0 

Air time (s) 0 
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 Calibration curve for Skalar analysis Figure 33.
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APPENDIX 2(1).  

Result tables (Individual values) 

  Results Table 22.

Sam-
ple 

Location 
Sample 

type 
OM 
% 

pH 
EC 

(S/ 
cm) 

As (mg/kg) P (mg/kg) Ca (mg/kg) Mg (mg/kg) Na (mg/kg) K (mg/kg) N (mg/kg) 

Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 

1 
Bottom 
Heap 

Heather 1       60 8                         

2 
Bottom 
Heap 

Soil vege-
tated 

4.4 5.1 29.2 15949 1 40.7 0.3 635.2 3.1 31.5 1.1 15.6 0.3 50.4 1.7 0.25 0.03 

3 
Bottom 
Heap 

Soil bare 2.4 5.2 20.4 12705 898 46.8 1.5 684.1 3.3 17.9 0.2 18.3 0.2 28.0 0.2 0.18 0.03 

4 
Bottom 
Heap 

Grass 1       467 17                         

5 
Bottom 
Heap 

Soil vege-
tated 

3.5 5.3 24.2 16935 131 52.1 0.8 706.7 38.9 22.5 1.3 14.6 0.6 59.0 1.9 0.63 0.20 

6 
Bottom 
Heap 

Soil bare 2.9 5.3 18.9 14435 178 45.2 1.1 673.3 10.2 15.7 0.1 17.3 0.1 23.6 0.8 0.35 0.10 

7 
Bottom 
Heap 

Heather 2        26 2                         

8 
Bottom 
Heap 

Moss        794 55                         

9 
Bottom 
Heap 

Soil vege-
tated 

5.3 5.0 35.1 15148 382 32.8 0.5 597.9 3.2 47.4 0.4 28.8 1.2 48.7 1.2 0.52 0.07 

10 
Bottom 
Heap 

Soil bare 3.6 5.1 28.1 14900 56 46.5 1.0 652.5 19.9 25.8 0.7 16.6 0.4 38.0 1.4 0.32 0.02 

11 
Bottom 
Heap 

Grass 2       713 13                         

12 
Bottom 
Heap 

Soil vege-
tated 

3.4 4.8 29.0 14305 98 32.1 0.1 430.7 11.6 19.2 0.5 11.9 0.9 35.3 0.3 0.31 0.01 

13 
Bottom 
Heap 

Soil vege-
tated 

3.8 5.1 24.0 17085 8 22.6 1.5 317.3 15.0 16.9 0.8 11.4 0.2 36.5 1.7 0.17 0.06 

14 
Bottom 
Heap 

Lichen 
(White) 

      414 13                         

15 
Bottom 
Heap 

Heather 3       19 1                         

16 
Bottom 
Heap 

Soil bare 4.2 5.0 30.6 21933 223 29.2 0.5 595.5 8.1 33.1 1.0 16.9 0.1 47.5 0.7 0.25 0.04 

17 
Bottom 
Heap 

Soil vege-
tated 

6.3 4.9 42.3 19993 119 21.3 0.5 572.7 13.7 50.7 1.2 18.8 0.6 59.1 1.4 0.17 0.06 

18 
Bottom 
Heap 

Grass 3       2721 86                         

19 
Bottom 
Heap 

Grass 4       185 6                         



APPENDIX 2(2).  

Result tables (Individual values) 

 Results (continuation) Table 23.

Sam-
ple 

Location 
Sample 

type 
OM 
% 

pH 

EC 

(S/
cm) 

As (mg/kg) P (mg/kg) Ca (mg/kg) Mg (mg/kg) Na (mg/kg) K (mg/kg) N (mg/kg) 

Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Error 
Concen-
tration  

Er-
ror 

20 
Top 
Heap 

Heather 4       1472 10                         

21 
Top 
Heap 

Soil vege-
tated 

4.1 3.4 100.1 23245 137 8.2 1.3 138.6 9.3 13.5 0.4 11.3 1.5 19.7 0.2 0.27 0.06 

22 
Top 
Heap 

Soil bare 2.1 4.1 39.7 27012 144 22.4 1.2 197.4 12.0 10.4 0.7 3.3 0.4 5.5 0.3 0.30 0.12 

23 
Top 
Heap 

Heather 5       566 26                         

24 
Top 
Heap 

Soil vege-
tated 

2.1 4.2 45.0 13933 163 36.5 6.4 207.5 26.1 10.3 1.3 11.3 0.5 7.7 1.7 0.59 0.27 

25 
Top 
Heap 

Soil bare 1.9 4.4 35.0 19214 498 12.7 2.5 116.5 17.9 6.8 0.8 1.9 0.4 2.0 0.4 0.18 0.17 

26 
Top 
Heap 

Heather 6       234 3                         

27 
Top 
Heap 

Soil vege-
tated 

3.2 4.4 52.7 22372 363 19.4 1.2 229.2 4.9 25.4 1.1 8.7 0.3 22.7 2.7 0.16 0.06 

28 
Top 
Heap 

Soil bare 1.8 3.8 162.5 23154 338 11.1 0.7 209.8 10.0 22.8 2.3 1.3 0.4 1.6 0.2 0.30 0.05 

29 
Top 
Heap 

Grass 5       1896 84                         

30 
Top 
Heap 

Soil vege-
tated 

3.7 4.2 33.6 26230 572 17.1 1.4 313.3 17.4 20.4 0.2 7.6 0.1 14.0 0.1 0.62 0.16 

31 
Top 
Heap 

Soil bare 1.6 4.2 35.4 25786 346 22.9 0.5 205.1 14.5 9.4 0.5 2.1 0.2 4.7 0.3 0.18 0.07 

32 
Top 
Heap 

Conifer       284 2                         

33 
Top 
Heap 

Soil vege-
tated 

3.1 4.6 93.3 10616 67 17.4 2.1 220.7 11.7 33.6 0.4 26.2 0.8 9.0 0.1 0.12 0.07 

 

 



APPENDIX 2(3).  

Result tables (Individual values) 

 Concentration of Arsenic in plants, soil and uptake.  Table 24.

 

As in Plants [mg/kg] As soil under [mg/kg] As bare soil [mg/kg] Plants As uptake [%] 

Plant 
Concen-
tration 

Error 
Concentra-

tion 
Error 

Concen-
tration 

Error Uptake Error 

Heather 1 60 8 15950 10 12700 900 0.38 0.05 

Heather 2  26.3 1.5 15100 400 14900 60 0.17 0.02 

Heather 3 18.7 0.2 19990 120 21900 300 0.09 0.01 

Heather 4 1470 10 23250 140 27000 150 6.32 0.08 

Heather 5 570 30 13900 200 19200 500 4.1 0.3 

Heather 6 234 3 22400 400 23200 400 1.04 0.03 

Grass 1 470 20 16940 140 14400 200 2.77 0.13 

Grass 2 713 13 14300 100 14900 60 4.99 0.13 

Grass 3 2720 90 19990 120 21900 300 13.6 0.6 

Grass 4 185 6 19990 120 21900 300 0.93 0.04 

Grass 5 1900 90 26200 600 25800 400 7.3 0.5 

Moss  790 60 15100 400 14900 60 5.20 0.6 

Lichen  414 13 17084 8 21900 300 2.42 0.08 

Conifer 283.8 1.4 10620 70 
Not   

sampled 
Not 

sampled 
2.67 0.04 

 

 

 Uptake of Arsenic per genus. EC [uS/cm], As, P, Ca, Mg, Na, K and N Table 25.

[mg/kg] 

Sam-
ple 

Plant 
Up-
take 
[%] 

Organic 
Matter 

[%] 
pH EC As P Ca Mg Na K N  

2 Heather 0.4 4.4 5.1 29.2 15949 40.7 635.2 31.5 15.6 50.4 0.3 

9 Heather 0.2 5.3 5.0 35.1 15148 32.8 597.9 47.4 28.8 48.7 0.5 

17 Heather 0.1 6.3 4.9 42.3 19993 21.3 572.7 50.7 18.8 59.1 0.2 

21 Heather 6.3 4.1 3.4 100.1 23245 8.2 138.6 13.5 11.3 19.7 0.3 

24 Heather 4.1 2.1 4.2 45.0 13933 36.5 207.5 10.3 11.3 7.7 0.6 

27 Heather 1.0 3.2 4.4 52.7 22372 19.4 229.2 25.4 8.7 22.7 0.2 

5 Grass 2.8 3.5 5.3 24.2 16935 52.1 706.7 22.5 14.6 59.0 0.6 

12 Grass 5.0 3.4 4.8 29.0 14305 32.1 430.7 19.2 11.9 35.3 0.3 

17 Grass 13.6 6.3 4.9 42.3 19993 21.3 572.7 50.7 18.8 59.1 0.2 

17 Grass 0.9 6.3 4.9 42.3 19993 21.3 572.7 50.7 18.8 59.1 0.2 

30 Grass 7.3 3.7 4.2 33.6 26230 17.1 313.3 20.4 7.6 14.0 0.6 

9 Moss  5.2 5.3 5.0 35.1 15148 32.8 597.9 47.4 28.8 48.7 0.5 

13 Lichen  2.4 3.8 5.1 24.0 17085 22.6 317.3 16.9 11.4 36.5 0.2 

33 Conifer 2.7 3.1 4.6 93.3 10616 17.4 220.7 33.6 26.2 9.0 0.1 

 

 

 

 



APPENDIX 2(4).  

Result tables (Individual values) 

 

 Correlation matrix for all analyses (samples) Table 26.
  OM  pH EC As PO4 Ca Mg Na K 

pH 
0.360 

        
0.130 

        

EC 
-0.204 -0.674 

       
0.401 0.002 

       

As 
-0.124 -0.625 0.220 

      
0.612 0.004 0.365 

      

PO4 

0.081 0.768 -0.613 -0.579 
     

0.743 0.000 0.005 0.009 
     

Ca 
0.496 0.848 -0.520 -0.464 0.827 

    
0.031 0.000 0.022 0.046 0.000 

    

Mg 
0.821 0.397 0.033 -0.233 0.087 0.499 

   
0.000 0.092 0.894 0.338 0.725 0.029 

   

Na 
0.632 0.598 -0.220 -0.697 0.439 0.622 0.715 

  
0.004 0.007 0.365 0.001 0.060 0.004 0.001 

  

K 
0.814 0.699 -0.448 -0.310 0.535 0.806 0.675 0.605 

 
0.000 0.001 0.054 0.196 0.018 0.000 0.002 0.006 

 

NO3-N 
0.063 -0.015 -0.154 0.000 0.353 0.205 -0.031 0.067 0.131 

0.798 0.951 0.529 0.999 0.139 0.399 0.900 0.784 0.594 

 

 Blank results vs analytical detection limits Table 27.

  N. of Blanks Average [mg/kg] Blanks SD 
Detection limit 

[mg/kg] 
Corrected 

As soil 4 0.04 0.02 25 No 

As plants 2 -0.04 0.00 2.5 No 

P 4 0.00 0.00 0.04 No 

Ca 4 0.20 0.06 0.01 Yes 

Mg 4 0.01 0.00 0.001 No 

Na 4 0.35 0.04 0.13 Yes 

K 4 0.20 0.11 0.85 Yes 

N 3 0.05 0.02 0.02 mg/l Yes 

 

 NO3 comparison SKALAR and HACH analysis [mg/kg] Table 28.

  Skalar HACH (Blank corrected) 

  Bottom Heap Top Heap Vegetated soil Bare soil Overall 
Bottom 
Heap 

Top Heap 

N Samples 10 9 11 8 19 3 3 

Average 0.32±0.05 0.30±0.07 0.35±0.07 0.26±0.03 0.31±0.04 10.7±4.0 12.3±5.0 

Median 0.28 0.27 0.27 0.28 0.30 9.0 13.5 

Range  0.17 - 0.63 0.12 - 0.62 0.12 - 0.63 0.18 - 0.35 0.12 - 0.63 5.5 - 17.5 3.5 - 20.0 

Std. Dev.  0.15 0.18 0.20 0.07 0.16 6.2 8.3 
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