

Jarko Poutiainen

MER CELLULAR TELEPHONY ARCHITECTURE

Software Analysis and Description

MER CELLULAR TELEPHONY ARCHITECTURE

Software Analysis and Description

 Jarko Poutiainen
 Master’sThesis
 Autumn 2015
 Degree Programme in Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences

Degree Programme in Information Technology

Author: Jarko Poutiainen

Title of Master’s thesis: Mer Cellular Telephony Architecture

Supervisor: Lauri Pirttiaho

Term and year of completion: Autumn 2015 Number of Pages: 66

Modern mobile phones use multi-purpose operating systems similar to those
used in desktop computers providing a similar set of features for end users. The
essential feature set needed by a mobile phone contains the cellular modem
telephony support. This thesis describes and analyses the cellular telephony
software architecture of the Mer system.

The software covered in this work is publicly available software. Therefore this
work covers how that software can be utilized in other systems than the original
system, the concepts of free and open source, as well as software licensing.

The work covers the concept of Android and its cellular telephony support parts
that are relevant to this work. A section of this work is dedicated to how the parts
of Android, that are relevant to cellular telephony, can be reused. The concept of
Mer as a system is described and how it relates to Android.

The main focus of this thesis is in describing the Mer cellular telephony
architecture and its parts. This thesis also presents some findings worth noting
regarding the Mer cellular telephony architecture. The conclusion chapter
contains the personal opinions formed of the system that was analysed and
described.

Keywords

Cellular telephony, software architecture, open source, free software, Mer

4

PREFACE

The idea for this thesis formed during the time I worked for Jolla Ltd. This thesis

however is not at the request of the aforementioned company nor by anybody

else. It is done out of personal and professional interest. Originally, it was to help

me on my work. The findings of this work has been used for project and feature

planning. The idea crystallized during the autumn period of 2014 and the work

itself was done during the year 2015.

I would like to thank my supervisor Lauri Pirttiaho for his patience. I would also

like to thank many of my colleagues who worked with me on the Mer project for

Jolla, for their willingness to always lend a hand or share a thought. I would

especially like to thank my son for being both patient and understanding despite

his age and my wife for support and believing in me completing this work even

when I did not.

Oulu, Finland, November 2015

Jarko Poutiainen

5

CONTENTS

ABSTRACT 3

PREFACE 4

1 INTRODUCTION 9

2 FREE AND OPEN SOURCE SOFTWARE 10

2.1 Open source 10

2.2 Free software 11

2.3 Software community work 12

2.4 Fork 13

2.5 Free and open source software licensing 13

2.5.1 Permissive licenses 14

2.5.2 Copyleft licenses 15

3 ANDROID 17

3.1 Android Architecture 19

3.1.1 Applications and Application framework 20

3.1.2 Inter-process communication mechanism 20

3.1.3 System services 21

3.1.4 HAL 21

3.1.5 Kernel 22

3.2 Reusing the Android software 23

3.3 RIL 25

3.3.1 RIL Architecture 26

3.3.2 RIL communication 27

4 MER 29

4.1 Nemo Mobile 30

4.2 Sailfish OS 30

4.3 Reasoning behind the naming 31

4.4 Qt 32

4.5 D-Bus 33

6

5 MER CELLULAR TELEPHONY ARCHITECTURE 34

5.1 Mer connection handling 35

5.2 Telepathy Framework 37

5.3 Mer cellular voice call and message handling 41

5.4 Mer Contacts handling 43

5.5 Mer cellular modem state handling 44

5.5.1 StateFS 45

5.5.2 MCE 46

5.6 Mer cellular modem abstraction 46

5.7 Other cellular modem dependant modules 50

5.7.1 Cellular positioning 51

5.7.2 Cellular Network Time 51

5.7.3 Cellular USB Tethering 51

5.7.4 Seamless Software Update 52

5.7.5 Mer Cellular Bluetooth handling 52

6 CONCLUSION 54

REFERENCES 56

7

ABBREVIATIONS

AIDL Android Interface Definition Language

ANSI American National Standards Institute

AOSP Android Open Source Project

API Application Protocol Interface

BSD Berkeley Software Distribution

CBS Cell Broadcast Service

CID Cell Id

DHCP Dynamic Host Communication Protocol

FOSS Free and Open Source Software

FSF Free Software Foundation

GPL General Public License

GPRS General Packet Radio Service

GSM Global System for Mobile communications

GUI Graphical User Interface

HAL Hardware Abstraction Layer

IMEI International Mobile Equipment Identity

IP Internet Protocol

IPC Inter Process Communication

ISI Intelligent Service Interface

ISO International Organisation for Standardization

LAC Location Area Code

LGPL Lesser General Public License

MCC Mobile Country Code

8

MCE Mode Control Entity

MMS Multimedia Messaging Service

MNC Mobile Network Code

NITZ Network Identity and Time Zone

OHA Open Handset Alliance

OS Operating System

OSD Open Source Definition

OSI Open Source Initiative

POSIX Portable Operating System Interface

QML Qt Modelling Language

RAM Random Access Memory

RIL Radio Interface Layer

RILD RIL Daemon

SIG Special Interest Group

SIM Subscriber Identity Module

SIP Session Initiation Protocol

SMS Short Message Service

SSU Seamless Software Update

TCP Transmission Control Protocol

UI User Interface

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

VoIP Voice over IP

XMPP Extensible Messaging and Presence Protocol

9

1 INTRODUCTION

At the heart of every mobile phone lies the support for cellular telephony which

enables the user to make, for example, phone calls and send messages.

Therefore, still today a key service for any operating system used in a mobile

phone is the cellular telephony support. Cellular telephony support covers the

applications, the middleware and the cellular modem adaptation software.

Only a few open source based operating systems for mobile devices with cellular

modem support exist besides Android. Android is a widely used, well known and

documented system. However, Android is mainly developed and controlled by a

single company, therefore making any competing solution interesting, especially

if it is more “open” or “free” would be appealing. In December 2013 Jolla

smartphone sales started using Sailfish as its operating system. The core of the

Sailfish OS is based on the Mer distribution which is free and open source

software.

Although the source code of the Mer is freely available, hardly any documentation

exists or it is inconsistent. The purpose of this work is to describe and analyse

the cellular telephony support in the Mer system. What it consists of, how well it

covers the functionality required to build a mobile phone and analyse the found

caveats. Typically, the implementation of a modem hardware adaptation is not

made publicly available, as it is the case with Android. There usually are some

requirements regarding the background system, e.g. the used system software

and application framework, which the cellular telephony software stack uses.

These dependencies are introduced.

Audio handling is not part of this work since audio adaptation, including cellular

voice, is usually handled as its own entity. For example, Android has separate

interfaces for modem adaptation and audio adaptation.

10

2 FREE AND OPEN SOURCE SOFTWARE

There are many ways of distributing the software but in principle it can be

distributed in two forms: Either providing the source code in an open source form

or providing the software as binary and not releasing the source code that the

binary is based on. The latter form can be called a closed source. In the closed

source the source code is kept as a trade secret and thus not provided freely but

it may be available for a payment or possibly not at all. In the open source form

the source code is made publically available to everyone to read. However, the

licensing affects how “free” the provided source code is. There are many ways of

describing what open source is. One way is to consider open source being

divided in two: The open source software and free software.

FOSS is an abbreviation of a term Free and Open Source Software trying to

include both the terms open source and free software into one. However, the use

of this term to cover the free software is questioned by the Free Software

Foundation (FSF). (Stallman 2014, date of retrieval 3.11.2015.)

2.1 Open source

Software where the source code is provided publically could be considered by

some as an open source software. Here the term “open source” is used in the

way defined by the Open Source Initiative (OSI). The Open Source Initiative is a

non-profit organisation advocating the benefits of open source development

(Open Source Initiative 2015a, date of retrieval 3.11.2015). It was formed in 1998

and one of the first tasks it did was drafting the Open Source Definition (OSD) to

define the term open source and distinguish it from the term free software that

was considered by some as being philosophically and politically focused (Open

Source Initiative 2015b, date of retrieval 3.11.2015).

The OSD basically defines what kind of license can be called an open source

license, or in other words under what kind of license the software and the source

code should be distributed so that it can be labelled as being “open source”. The

OSD specifically dictates that the term open source software does not just mean

access to source code but that it must fulfil a list of criteria to be called one.

11

Among these criteria are the freedom of distribution, the freedom of modification

and the freedom of other software, respectively named as “Free Distribution”,

“Derived Work” and “License Must Not Restrict Other Software”. The “Free

Distribution” criterion specifically dictates that the used license shall not restrict

the selling or giving away of the software as a part of other software, basically

giving the right to others to reuse the software. The “Derived Work” criterion

dictates that the license allows the derived work and modifications. The “License

Must Not Restrict Other Software” criterion dictates that the license used must

not force the other software released together with the licensed software to be

licensed with the same license or as an open source software. In other words,

this criterion gives freedom for mixing the closed source and the open source

software or in general mixing the software distributed under different licenses.

(Open Source Initiative 2015c, date of retrieval 3.11.2015.)

2.2 Free software

Source code, whether distributed as closed or open source, can in a sense be

considered free if there is no payment required for example for running the

program. However, in this context the “free” does not mean free from payment

but rather freedom to use it and to use it in ways other than it was originally

designed for. Here the term free software follows the definition published by the

FSF. The FSF is a non-profit organisation promoting the freedom to create,

modify, distribute and study computer software and it is campaigning against

what it sees as a threat to computer users’ freedoms (Free Software Foundation

2015a, date of retrieval 3.11.2015).

The definition of free software provided by FSF consists of four freedoms that the

recipient of the software should have for the software to be called free. These

freedoms give the recipient the freedom to run the program for any purpose, to

study and modify it, as well as the freedom to redistribute it and the modified

versions of it. These freedoms require access to source code as otherwise the

freedoms could not be considered meaningful. (Free Software Foundation 2015b,

date of retrieval 3.11.2015.)

12

It is difficult to make a difference between what is considered an “open source”

and what is considered a “free software”. Essentially the difference between

these two terms is in the philosophical nature of the term “free software”,

according to Richard Stallman (2015, date of retrieval 3.11.2015). Basically, the

idea of free software is that all software should be free for anybody to use and

modify it and therefore it is fundamentally against proprietary and closed source

software. Open source in distinction advocates the practical benefits of the

development model of distributing the software in an open form. Advocates of

open source are not as such against the closed source or proprietary software.

Neither open source nor free software are labels against financially benefiting

from the software. The business models behind the financial gain between open

and free software and that of proprietary (closed source) software of course differ.

2.3 Software community work

The community work can be seen as an integral part of both open source

development and free software development. The term community here refers to

a group of developers and others alike who contribute to a software project with

an agreed goal. This is done in a way that is open to all the members of the

community and that, at least in principle, the community is open for anybody to

participate in. The principle is that one can, for example, make a fork of the

community project software, modify it, use it and provide the modifications back

to the community. The community then evaluates the modifications and either

accepts or rejects the modification. In the case of rejection an explanation for the

rejection should be provided so that the developer may further revise the

modification and submit it for re-evaluation. This bi-directional communication

then provides the base for the quality benefits provided by the community

development model. Furthermore, once the modifications are accepted by the

community, these modifications become part of the work of others, whose work

is based on the community project, i.e. at least in principle, gaining the benefit of

the wider user and developer base and getting a better test coverage by being

run on other devices and software platforms than would otherwise be possible.

13

Both open source and free software movements promote the idea of community

work but from different perspectives. The open source movement sees it as a

beneficial development model where the developers and users alike benefit from

the work done by the community, whereas advocates for free software see the

developer community as an integral part of the philosophy of the movement. The

difference is in the point of view: Where open source community sees the benefits

gained by the developer from the community, the free software community sees

the benefits that the community gains from the developers. The licensing models

are the manifestation of this difference. As explained later in this chapter the truly

“open” license lets the user have access to the source code, modify it and use it

without any obligations, whereas a truly “free” software license forces the user to

return all the modifications back to the community. It could be said that the

difference in the approach between open source and free software communities

is that they are two sides of the same coin. On the one hand the community needs

to provide something for the members to join in and on the other hand the

members need to contribute back to the community for the community to stay

alive.

2.4 Fork

A fork is a commonly used term for a copy of a source code of a specific software

at a specific moment of time, used as a baseline for parallel work. A fork may be

used, for example, when the community is seen as being too slow or reluctant for

accepting modifications needed by the developer or developers in their own work.

The work done in a fork may later be accepted by the community and be joined

back to the mainline. However, the fork may also become a baseline for a new

community project aiming towards a goal different from the original community

project.

2.5 Free and open source software licensing

A software license is a way to control the use and distribution of the software by

legally granting and/or restricting the rights of the recipient of the software. A

multitude of different software licenses exists and anybody can write their own

license. Licensing can be seen as a way how the principles of open source and

14

free software are enforced in practice. The software licenses in general can be

classified based on how restrictive they are concerning the use and redistribution

of the source code.

In principle, any software that is published without copyright can be considered

free software. However, releasing the software without any restrictions enables

the reuse of that software in a non-free way because it does not restrict the

redistribution of that software with a non-free copyright or license. It could be said

that the free software licenses can be more restrictive than for example licenses

used with proprietary software. For example, in terms of preventing the changing

of the used license and in redistribution of the software and any software that is

considered as derivative work of that software, the free software license can be

more restrictive. In other words, a restrictive free software license is restrictive in

terms of changing the license but permissive in use and redistribution under the

same license. In general, the free software licenses can be divided into those that

do not restrict redistribution or use in anyway and to those that limit redistribution

and use in some ways as well as to those that prevent redistribution and use in

any way that could be considered as taking away the freedoms discussed in

subsection 2.2. Another way to divide the free software licenses is to divide them

into permissive and restrictive or copyleft licenses. The difference between these

two is similar to that of the open source software and the free software although

more concrete in a sense that the ramifications of the used license on how the

software can be used and redistributed. (Free Software Foundation 2015c, date

of retrieval 4.11.2015; Free Software Foundation 2015d, date of retrieval

4.11.2015.)

2.5.1 Permissive licenses

At least in principle the permissive licenses are licenses that give freedom to use

and distribute the software, in anyway wanted. This includes, for example, the

freedom of redistributing the modification under another license including non-

free license as well as the use of the software together with non-free software.

Apache License 2.0 and BSD (Berkeley Software Distribution) 2 and 3 -clause

licenses are examples of permissive licenses. (Free Software Foundation 2015c,

date of retrieval 4.11.2015.)

15

Both mentioned BSD licenses give the freedom of distribution and use without

the reuse of the license although the unmodified source code must retain the

original license. This means that software released using either one of the

mentioned BSD licenses can be used as a part of almost any program under

almost any license including non-free and free. Only those licenses that are

explicitly incompatible cannot be mixed with them. (Open Source Initiative 2015d,

date of retrieval 4.11.2015; Open Source Initiative 2015e, date of retrieval

4.11.2015.)

Apache license 2.0 is in principle as permissive as BSD but is considered more

complete as it covers, for example, patent rights such as patent termination

clause that prevents enforcing patents relating to the licensed software. Apache

license 2.0 also expects the use of the same license on unmodified parts of the

software. (The Apache software foundation, 2015, date of retrieval 4.11.2015.)

2.5.2 Copyleft licenses

Copyleft licenses are more restrictive than permissive licenses regarding the

redistribution and use of the software licensed under copyleft license. The

restrictiveness of copyleft license is due to the principle behind such a license.

The principle of copyleft license is to guarantee that the freedoms to use and

modify the software, is passed along when redistributed with or without changes.

The intention is that the freedoms includes any work that is derived from the

copyleft licensed work. In short, the principle is to restrict the rights regarding

further licensing to preserve the freedoms of the software. GNU General Public

License and GNU Lesser General Public license are examples of copyleft

licenses. (Open Source Initiative 2015d, date of retrieval 4.11.2015.)

GNU General Public License (GPL) is a strong copyleft license which requires

not only the work itself but all the derivative work to be licensed with the same

license. In principle, using the software licensed under GPL as a part of another

software to form a program means that the whole program becomes covered by

the GPL license. (Free Software Foundation 2007a, date of retrieval 4.11.2015.)

16

GNU Lesser General Public License (LGPL) is less restrictive than GPL and is

considered as a weaker copyleft license. Unlike GPL, LGPL permits linking the

non-free and free software modules, covered by different license without

enforcing LGPL license to cover the linked module. (Free Software Foundation

2007b, date of retrieval 4.11.2015.)

17

3 ANDROID

Android was in the second quarter of 2015 by far the most used operating system

in smartphones. With its over 82% market share it was selling more than all its

competitors combined (International Data Corporation 2015, date of retrieval

21.10.2015; Gartner Inc. 2015, date of retrieval 21.10.2015). Although Android is

mostly used in mobile phones and similar devices, such as tablets, it is used in

other devices as well, such as in televisions and cars. (Google Inc. 2015a, date

of retrieval 20.10.2015). Due to the growing ecosystem around Android, it is in a

sense becoming the de facto application framework for mobile devices at least in

consumer electronics as many hardware design companies are providing

Android support for their products. Amongst these companies there are such as

ARM, TI, Qualcomm, Freescale and NVidia (Yaghmour 2013, 8). They alone do

not make an ecosystem. Many of the major device manufacturers such as Sony,

Samsung, HTC, Motorola, LG, Dell, and ASUS have shipped devices running

Android (Yaghmour 2013, 8). To complete the ecosystem a number of companies

and private individuals have made a number of applications for Android that can

be retrieved and installed from for example https://play.google.com/store.

Initially, Android was developed by Android Inc. The Android Inc. was bought by

Google Inc. in 2005 (Yaghmour 2013, 1-2). In 2007 Google Inc. made the Android

public, together with the founding of Open Handset Alliance (OHA). OHA was

said to be devoted to advancing open standards for mobile devices although the

role of OHA is somewhat unclear (Yaghmour 2013, 2, 8). The source code is

released under open source licenses by Google. However, usually devices using

Android are shipped with a mixture of open source and proprietary software. This

mixture is possible through the licenses used in Android and partly through the

architectural decisions made in Android. (Yaghmour 2013, 10-13.)

Most of the code released by Google to Android Open Source Project (AOSP), is

licensed under Apache License 2.0 and some with BSD (Yaghmour 2013, 12).

As previously explained in section 2.5.1 of this work, neither Apache License 2.0

nor BSD require the derived work to be published. This means that software

based on software under either license need not be published. As mentioned

18

before, the architectural decisions made in Android enable mixing the software

under different licensing models. Linux kernel is licensed under GPL and, as

explained in section 2.5.2 of this work, it requires that not only the changes made

to the software licensed under GPL must be made public but so too must all the

derivative works be licensed under GPL and therefore made public. However,

Linus Torvalds, the original contributor of Linux kernel, added a note to a file

named “COPYING” in the kernel sources stating that the GPL license is subject

only to the kernel sources and therefore any software running on top of the kernel

is not considered as a derivative work (Torvalds 1994, date of retrieval

20.10.2015). A good example of how the architecture enables combining different

licensing models is the using of sockets by means of communication between

different components. Socket communication is considered as a mechanism

which is normally used between two separate programs (Free Software

Foundation 2015e, date of retrieval 20.10.2015).

In Android devices the most logical part to contain proprietary code would be the

Hardware Abstraction Layer (HAL), as that by its nature contains the hardware

specific code. Radio Interface Layer (RIL), as an example, is typically provided

by the company who designed the modem. AOSP only provides reference

implementation of RIL and through both the design and licensing model the

hardware vendor may implement and use its own version of RIL without

publishing the code. This is because the communication between RIL and the

application layer is done through a socket. Thus, the RIL cannot be considered a

derived work and the public parts of RIL implementation, which includes the RIL

daemon, used in the final products are licensed with Apache License 2.0. The

conclusions made in this paragraph are based on analysing the contents of the

RIL software repository. (Google Git 2015a, Date of retrieval 20.10.2015).

The development of Android is done in private by Google until it is ready to publish

the source code without necessarily any prior announcement of when and/or what

is published. In this the Android development differs from the most open source

projects. Usually, the open source projects have public development branches

and a forum for developers to discuss the upcoming changes. Although the

software provided by Google may be open, the development of the software itself

19

is not and therefore Google can in principle at any point change anything they

choose without prior warning. (Yaghmour 2013, 5-6.)

The released Android as such is not likely to be automatically ready for a specific

hardware but will require extra work as the official source code provided by

Google typically runs only on the so called lead devices. So, Google does not

provide hardware specific adaptation software other than those used to develop

the new Android release. (Yaghmour 2013, 7, 51.)

3.1 Android Architecture

As shown in the Figure 1, the Android system can be divided into five major parts:

The applications and application framework, the system services, the hardware

abstraction, the kernel and the inter-process communication (IPC) mechanism

enabling the communication between the different parts (The Android Open

Source Project 2015a, date of retrieval 21.10.2015). In a sense, to a certain

extent, most of the operating systems available could be described in a similar

manner. This division can help to compare operating systems as well as help to

understand the purpose of the parts of the system and their relation to the rest of

the system, as is done later in this and the following chapters.

FIGURE 1. Android system architecture

20

3.1.1 Applications and Application framework

For any operating system to be a complete software platform from the end user

perspective, it will need application software, that is, pieces of software carrying

out specific functionality such as word processing, a tic-tac-toe game or sending

an SMS (Short Message Service) message. To be able to provide these

functionalities the application software needs system software to execute

because the system software manages and integrates the device capabilities. An

application framework is a software framework used by application software

developers to develop applications with a standard structure and a means of

using system software. Graphical user interface (GUI) is typically developed in

an application by using an application framework. Both the application software

and the application framework may to a certain degree be operating system

agnostic. For an application to be operating system agnostic it needs to have

been developed by using the so called cross-platform application framework such

as Qt, that can run in two or more operating systems. Android applications are

developed using Java language, which is CPU architecture independent.

Although Java is a cross-platform computing framework, Android deploy Java in

a manner that is different from others. One difference is that it relies on Dalvik or

Android runtime instead of Java Virtual Machine. (The Android Open Source

Project 2015b, date of retrieval 19.11.2015; Yaghmour 2013, 60-63.)

3.1.2 Inter-process communication mechanism

The main IPC mechanism used in Android is called Binder. The Android Binder

is based on the work of the OpenBinder project and although it is inspired by it, it

is not a derivative of it but a work of its own. As its name hints at, the purpose of

the Binder IPC is to bind the Android processes by providing IPC mechanism so

that one process can call a routine of another process in Android. Although Binder

provides a means for one application to talk to another, its main purpose is to

provide a means for application frameworks, hence the applications, to

communicate with the Android system services. The application developers do

not need to be aware of the existence of the Binder itself as they can use Android

Interface Definition Language (AIDL) as a means to create IPC between the client

and a service. AIDL hides the Binder. Binder is very much a part of the fabric of

21

which the Android is made of. The way it provides system services differs from

that of the more traditional Linux approach. One typical way to extend a system’s

functionality in Linux would be to implement a new daemon to provide a new

service. Whereas Binder provides the same by offering a means to add remotely

invocable objects that can be implemented with any desired language. These

objects may have their own process or share the same process space with other

remote services. (Yaghmour 2013, 40-41.)

3.1.3 System services

As previously mentioned for the applications to be executable there needs to be

system services available as they manage and integrate the devices capabilities.

System services are pieces of software running in the background without a direct

interaction with the user. They are typically started during the system boot.

System services provide the means of communication with any peripheral

devices. They take care of the error handling and the program restart, if so

required, as well as the file system access.

In Android the system services are mostly bundled in two servers: the Media

server and the System server. The Media server covers everything related to

playing or recording the media, e.g. camera services and audio related services.

Most of the system services run in the System server, amongst them are Window

Manager, Power Manager and Activity Manager. (Yaghmour 2013, 64-65.)

3.1.4 HAL

In any operating system there needs to be a means to connect to the actual

hardware while keeping the rest of the software stack hardware agnostic. In

Android the hardware abstraction is done in the HAL. Unlike typical Linux

distribution the Android does not rely on the kernel device drivers to provide the

hardware abstraction but on the shared libraries provided by the hardware

manufacturers that may or may not be part of the official AOSP and may or may

not be published. In practice the principle of Android HAL is simple. It provides a

set of header files that introduce a set messages and/or functions, i.e. a HAL

Application Protocol Interface (API). The HAL API needs to be implemented in

22

the shared library provided by the manufacturer. In the end there is still a need

for a kernel device driver to exist, the same as with any Linux distribution.

However, due to the way HAL is designed, the actual logic as to how a specific

hardware is used can be kept as a proprietary software and regardless remains

at least to some extent Android specific because of the HAL API. It is possible to

design the HAL implementation so that it can be used, with minor effort, in another

Linux distribution by simply structuring the implementation so that the driver and

the actual abstraction are separated from the HAL API. (Yaghmour 2013 46-50.)

3.1.5 Kernel

As mentioned earlier, the Android kernel is based on the Linux kernel found at

http://kernel.org. As with the most of the Linux distributions, it is patched to

customize it to the needs of the specific distribution and in this case for Android.

The differentiation in Android is to such extent that the Android user-space

components will not run with the "standard" Linux kernel. These differences

include IPC mechanisms, such as Binder driver and Anonymous Shared Memory

(ashmem), memory management systems such as wake locks and low memory

killer, and own logging mechanism. The main reason behind these

changes/additions is the aim to provide a better support for small memory mobile

devices. For example syslog, the default logging mechanism used in most Linux

distributions, uses sockets to send messages and stores the information into files,

therefore creating task switches and generates writes to the storage devices. The

logging mechanism used in Android uses a circular RAM (Random Access

Memory) buffer hosted by a kernel avoiding task switches and file writes, which

means that by default the information is lost when the system is shutdown. The

changes made to the Android kernel do not affect the way the device drivers are

implemented. So at least in principle, Android device drivers should work with

the default Linux kernel and therefore with any other Linux distribution.

Furthermore, some of these changes may eventually end up being a part of the

standard Linux kernel. (Yaghmour 2013, 34-45.)

23

3.2 Reusing the Android software

As stated before, the Android is the most dominant mobile operating system at

the moment. That means it has a broad hardware support, and as previously

explained, every operating system, on one hand needs a HAL to make it

hardware agnostic and on the other hand means that for every hardware there is

a need to implement a corresponding abstraction. From device manufacturers

point of view the existing hardware support means reduction in both cost and time

to market. Thus, an operating system that could reuse the hardware support

made for Android would be interesting to device manufacturers.

The upper software layers of Android are harder to integrate to another Linux

distribution than the lower layers. This is due to Android’s structure as the

dependencies to Android's special properties tend to increase in upper layers.

Binder, The Android IPC mechanism, alone makes it very hard to "tear off" any

piece of software from the application layer as it is the main mechanism used to

communicate with the system services. As explained earlier, Binder also needs

changes to the kernel to work. The application framework that hides the system

services from the applications uses the Binder. So although it might be possible

in some cases to take a single application or a single piece of software from an

Android stack with relative ease, basing a set of features on an Android

implementation would require a lot of integration work. It may require an

integration of so many other pieces of Android that it could be argued if the

distribution where one is trying to integrate, becomes a mere Android fork,

keeping in mind the fact that Google may at any stage decide to change the

behaviour of any part of the system. Hence, one cannot rely on any community

support other than the one built around their own fork. This raises a question if

such an approach is worthwhile.

The more feasible way to reuse some parts of the Android and gain the benefit

of the large hardware support that exists is to find a part that has the least Android

specific dependencies. As mentioned earlier, the upper layers of Android stack

have more dependencies of Android specific properties and the lower layers less.

Kernel and HAL are the least dependant. Although the kernel changes made to

Android may on their own be of value in some cases to someone, it is the HAL

24

that is more likely to provide the greatest benefit. This is because it brings the

hardware support and because of its public, unified interface that enables a faster

way to adapt an existing system to desired hardware. Unified does not mean here

the same as having the same or similar interface throughout the HAL, but within

a set of features it provides a unified interface across a multitude of hardware.

Therefore, once a system is adapted to a version of Android HAL, it is adapted to

all the hardware that supports that version of Android. The problem is, however,

that one does not simply take the HAL binaries and use them. One reason for

this is the use of Bionic in Android. The Bionic is a standard C library used in

Android as opposed to, for example the GNU C library or glibc, as it is more

commonly known (Google Git 2015b, date of retrieval 9.11.2015). The GNU C

library is the most widely used C library on Linux distributions (Linux

Programmer’s Manual 2014, date of retrieval 19.10.2015).

To be able to program, using the C-language, while maintaining the portability of

the software, the operating system must have a standard C library which provides

support for the standard C-language originally published by American National

Standards Institute (ANSI). The standard C library provides e.g. functions,

macros and type definitions for mathematical computations, string manipulation

and memory allocation. (ISO/IEC 9899 2003, date of retrieval 9.11.2015.)

The GNU C library was primarily designed to provide a standard C library

following the relevant standards. Besides the standard C-language support, the

GNU C library provides support for POSIX standards and some other features as

long as they do not conflict with the relevant standards. (Free Software

Foundation 2015e, date of retrieval 19.10.2015.)

Bionic is a standard C library developed by Google to be used in Android based

systems. The core idea behind Bionic was to have a C library that provides only

a lightweight wrapper around the kernel facilities. Bionic is not based on the GNU

C library but consists of a mix of the BSD C library and some custom Linux parts.

As a whole, it is released under the BSD license. It is not POSIX compliant and

has a limited C++ compliancy. It has its own dynamic linker and it is not binary

compatible with the GNU C library meaning that you cannot build something

25

against the GNU C library and dynamically link it against Bionic. (Google Git

2015c, date of retrieval 20.10.2015.)

One option to reuse the Bionic based software together with the GNU C library

based software is to port either Bionic to your environment or simply take the

Android kernel and Bionic as a base for your environment. Both options, of

course, have their difficulties.

Libhybris provides the solution to the incompatibility between the Bionic based

software, i.e. Android and the GNU C Library based Linux distributions, without

the need to support both libraries in a same system. It allows the use of Bionic

based HW adaptation, such as binary-only Android drivers, in a system using the

GNU C library. To explain in simple terms how the Libhybris works: it basically

converts the Bionic system calls into GNU C library system calls. (Libhybris 2015.

Date of retrieval 20.10.2015.)

3.3 RIL

From the telephony point of view the most important part of HAL is the Android

RIL. Despite the somewhat misleading name, RIL handles only the cellular

modem adaptation of the Android system, not the other radio technologies such

as Bluetooth and WiFi.

There is no standard for how the modem software interface must be

implemented. Although an AT command based specification exists as a part of

3GPP standards, it is not mandatory (The 3rd Generation Partnership Project

(3GPP) 2015, date of retrieval 20.10.2015). Many other interface specifications

exist and typically without a public documentation. The implementation and thus

the specification is typically a modem supplier’s proprietary. Although many AT

command based modems exist, they can contain a supplier specific extension to

the public command set. This proprietary command set is then typically needed

to use the full functionality of the modem in question. The benefits of the reuse

of RIL is that it provides support to the multitude of modems, including the ones

using a proprietary command set. It also provides the translation of different

modem communication interfaces into one fairly standard interface.

26

3.3.1 RIL Architecture

RIL consists of three main parts located in HAL as shown in Figure 2: The RIL

Daemon (RILD), the vendor RIL and the libril. They all share a header file ril.h

that defines the modem agnostic interface. The common parts of RIL are licensed

under the Apache License version 2.0 but the vendor RIL may use some other

license. These conclusions are based on analysing the contents of RIL repository

(Google Git 2015a, date of retrieval 20.10.2015).

FIGURE 2. Simplified Android telephony architecture

RILD is a relatively small and simple daemon provided as part of the AOSP

(Google Git 2015d, date of retrieval 20.10.2015). RILD is dependable on libcutils

the Android utils library for C (Google Git 2015e, date of retrieval 20.10.2015). By

analysing the source code, it can be concluded that RILD initializes the vendor

specific RIL implementation, i.e. vendor RIL, that the vendor RIL is loaded at

runtime and that RILD receives the path to the vendor RIL through a configuration

file. (Google Git 2015d, date of retrieval 20.10.2015.)

Libril is a shared library linked by both RILD and the vendor RIL statically (Google

Git 2015e, date of retrieval 20.10.2015; Google Git 2015g, date of retrieval

20.10.2015; Google Git 2015j, date of retrieval 20.10.2015). Besides the libcutils,

27

it is dependable on libbinder and libutils (Google Git 2015g, date of retrieval

20.10.2015). However, the libbinder is, besides the libcutils and the Android utility

function library libutils, dependable only on liblog, the logger interface (Google Git

2015h, date of retrieval 20.10.2015). Libril is a part of the AOSP like RILD. By

analysing the source code, it can be stated that libril provides RIL event

mechanism and implements the communication mechanism between the

application framework and vendor RIL. (Google Git 2015f, date of retrieval

20.10.2015.)

The vendor RIL handles the communication with the modem driver and the

modem specific abstraction. A simple reference implementation of vendor RIL

exists, supplied as a part of AOSP. However, the vendor RIL may be structured

as the supplier prefers and it can consist of several modules. These conclusions

are based on analysing the contents of reference RIL repository (Google Git

2015i, date of retrieval 20.10.2015).

3.3.2 RIL communication

Running RIL in another system is not enough for the purposes of reusing the

Android modem support. There is also a need to establish the communication

with the RIL, too. As shown in Figure 2, the communication between RIL and the

application framework is through a socket.

There are two types of commands used in RIL interaction through the socket: The

solicited commands and unsolicited responses. The solicited commands are

originated by the application framework and include their responses. The

unsolicited responses are indications originating from the modem. For example,

the indication of incoming call is received as an unsolicited response. Another

way to describe this is from the implementation view. As explained earlier, the

communication with RIL is done through a socket, therefore there are the socket

read and socket write related commands. The socket write commands consist of

solicited commands whereas the socket read commands consist of unsolicited

responses and the responses to the solicited commands. These conclusions are

based on analysing the contents of RIL repository and ril.h file available at that

28

repository. (Google Git 2015a, date of retrieval 20.10.2015; Google Git 2015k,

date of retrieval 20.11.2015)

The data passed in a command is constructed as a parcel object. A Parcel object

is a container for an IPC message used in Android (Google Inc. 2015b, date of

retrieval 20.10.2015). The implementation of a Parcel class is part of libbinder

(Google Git 2015h, date of retrieval 9.11.2015).

29

4 MER

Mer is a free and open source software distribution, targeted at hardware vendors

to serve as a middleware for Linux kernel based mobile-oriented operating

systems. It is based on the MeeGo project. Architecturally, the Mer derives from

the MeeGo 1.3 architecture. If compared to Figure 1 describing the Android

system, the Mer could be said to provide the Application framework, the system

services, the IPC mechanism and to some extent the hardware adaptation. As

Mer is a middleware, it does not come with a kernel or a user interface (UI).

However, the term middleware is somewhat unclear and does not specify what

is included. For example, whether a hardware adaptation is included or not,

depends on what is defined as a hardware adaption. The Mer wiki specifically

excludes the hardware adaptation, yet components, such as oFono, contain parts

which can be considered to be part of the hardware adaptation, especially when

looking at the AT command based modem support. The Mer architecture is a

modular architecture, as it uses many software modules provided by a separate

projects to create a whole entity. For example, the Mer uses Qt and D-BUS

respectively as its application framework and IPC mechanism. Furthermore,

ConnMan is used for network handling and oFono to provide a cellular

abstraction. These are all components originally developed outside the Mer

community and are used as such or with some modifications. (The Mer Wiki

2015a, date of retrieval 10.11.2015; The Mer Wiki, 2012, date of retrieval

10.11.2015.)

According to Wikipedia, there were three operating systems based on Mer by the

end of October 2015 (Wikipedia 2015, date of retrieval 10.11.2015). Of these

three operating systems, the Nemo Mobile is totally community driven and the

Sailfish OS is the only one running in a product available on the market. It is hard

to distinguish what is Mer, Nemo Mobile and what is Sailfish OS project work

partly due to same people contributing to all of them (Edge 2014, date of retrieval

10.11.2015).

30

4.1 Nemo Mobile

Nemo Mobile is a project aiming to create an open, community driven operating

system. It is a free Linux distribution to be used in mobile devices. It is based on

Mer. Since it is aiming to be a complete OS, it includes the UI. During the writing

of this work, the Nemo Mobile project had not been very active for more than a

year, when looking at the lack of updates on the project Wiki page. (The Mer Wiki

2014, date of retrieval 10.11.2015.)

4.2 Sailfish OS

Sailfish OS is a commercial Linux distribution developed by Jolla Ltd. based on

the Mer and Linux kernel (Jolla Ltd. 2015b, date of retrieval 10.11.2015; The Mer

Wiki 2015b, date of retrieval 10.11.2015). The Figure 3 is a simplified picture of

the Sailfish system. The figure uses the same structure as seen in the one used

to describe the Android system. As with the Android, the figure is not a

comprehensive illustration of the system.

FIGURE 3. Generic Sailfish OS system architecture

On the Sailfish OS homepage it is stated: "The core OS is based on Mer Project,

an open source, mobile optimised distribution while the UI is proprietary software

owned by Jolla" (Jolla Ltd. 2015a, date of retrieval 10.11.2015). There was a link

to the Nemo Mobile bug tracking tool (https://bugs.nemomobile.org/) at the

Sailfish OS homepage, which indicates that on some parts Sailfish is based on

31

Nemo Mobile (Jolla Ltd. 2015a, date of retrieval 10.11.2015). Because Sailfish

OS is based on Mer, it uses the D-Bus IPC mechanism, the application framework

is based on Qt, and it utilizes the same system services as Mer. During the writing

of this work, there were no instructions on how to compile or which version of the

Linux kernel should be used together with Mer. It is stated in the Mer project Wiki

that Sailfish OS uses “Mer drivers layer and Android drivers through libhybris”

(The Mer Wiki 2015b, date of retrieval 10.11.2015). It is unclear what does “Mer

drivers layer” stand for, but it could be understood that Sailfish OS utilizes the

Android hardware support and that it has some native hardware support, too.

The Sailfish OS has an active developer community (The Mer Wiki 2015c, date

of retrieval 10.11.2015) and there are instructions on how to develop applications

to Sailfish OS (Jolla Ltd. 2015c, date of retrieval 10.11.2015). The open source

software part of the Sailfish OS is available at http://releases.sailfishos.org/

sources/.

4.3 Reasoning behind the naming

When comparing different sources, it was not quite clear what was part of the Mer

project and what was part of the Nemo Mobile. In GitHub one can find three

projects: Nemomobile, Nemomobile-packages and Mer. Furthermore, at some

point some of the Github projects were moved to GitLab and merged into the Mer

core. For example, the GitHub Nemomobile-packages project oFono was moved

to GitLab as part of the Mer core (Nemomobile-packages 2015, date of retrieval

10.11.2015; Mer-core 2015a, date of retrieval 10.11.2015). During the writing of

this work there was a following statement at Nemomobile bugzilla:

"ANNOUNCEMENT: Nemo Middleware is moving to Mer. File all MW bugs under

http://bugs.merproject.org - Mer Core" (Nemomobile 2015a, 10.11.2015).

Emphasizing the previous announcement, the following comment could be found

in the LWN.net article: “Nemo Mobile was a project started to create the

middleware and UI for Mer, but most who are using Mer also use the middleware,

so the middleware has been moved into Mer. That means that Nemo Mobile is

just UI now, --” (Edge 2014, date of retrieval 10.11.2015). Because of these

findings, explained in this subsection, and because of an archived posting in the

mer-general posting list regarding the Nemo/Mer merge (Greaves 2015, date of

32

retrieval 10.11.2015), the author of this work decided that it was more descriptive

to use term “Mer” instead of “Nemo/Mer” in the title of this work.

4.4 Qt

Qt is a cross-platform application development framework originally developed

by the Trolltech, which is now known as The Qt Company, a wholly owned

subsidiary of Digia Plc. There exist a commercial and free software licensed

versions of the Qt platform. The supported platforms include Android, Microsoft

Windows, iOS and several Linux distributions including Ubuntu and Sailfish. The

framework is written with C++ and can be compiled by a standard C++ compiler

such as GCC (GNU Compiler Collection). The language used is C++ with

platform specific extended features. The Qt has its own integrated development

environment (IDE), called Qt Creator. The GUI can be implemented with either

C++ by using a Qt Widgets module or with QML (a Qt-specific declarative

language) by using a Qt Quick module. Although the Qt comes with the support

for C++ and QML languages, there are a third party developed bindings for other

languages. Typically, the application UI is implemented with QML and the

application logic with C++. The cross-platform build system that comes with Qt is

called qmake, which is a user interface for platform native build systems.

However, it is not mandatory to use the qmake. (Digia Finland Ltd. 2015a, date

of retrieval 10.11.2015.)

The Qt comes with a number of different software modules. The essential

modules, such as the Qt Core and the Qt GUI, are general and useful for most of

the Qt applications and they are available for all the supported platforms. Add-on

modules are for a special purpose and they may or may not be available for all

the platforms. An example of an add-on is the Qt D-Bus module. Besides the

modules released as part of the Qt, there are modules that are released

according to their own schedule. (Digia Finland Ltd. 2015b, date of retrieval

10.11.2015.)

Qt supports creating a custom plugins to extend the functionality. Besides

implementing plugins to extend the functionality of an application, it is also

33

possible to create new custom plugins that extend the functionality of the Qt

platform. (Digia Finland Ltd. 2015c, date of retrieval 10.11.2015.)

4.5 D-Bus

The D-Bus is an IPC mechanism used for local communication within the same

host defined by the freedesktop.org project. Several implementations or high-

level bindings exist, including one for Qt, and there is one developed by the

freedesktop.org as a reference. The D-Bus can be used for communication

between applications, between system services and applications as well as

between system services. There are two types of communication provided: the

system wide and a session based. They are called the system bus and the

session bus. Every bus has an address and every connection is assigned with a

unique name. The communication is message based and the messages are sent

to objects. The objects support a particular interface providing methods and

signals. The methods are used by clients to send a specific request whereas the

signals are used by clients to listen to a specific event emitted by a particular

object. The methods are one-to-one connections and provide a two-way

communication in which both ends need to be present at all times. The signal is

a one-way and one-to-many mechanism where the signal may be emitted even

when no client is registered to listen. (Freedesktop.org 2013a, date of retrieval

10.11.2015; Freedesktop.org 2015a, date of retrieval 10.11.2015.)

Mer uses D-Bus as the communication mechanism throughout the cellular

support domain. A Nemo Mobile D-Bus QML plugin exists allowing D-Bus access

to the Mer system services for QML applications in, e.g. Sailfish OS (Jolla Ltd.

2015d, date of retrieval 10.11.2015).

34

5 MER CELLULAR TELEPHONY ARCHITECTURE

The Mer cellular telephony architecture consists of many components. The

components that are needed to implement the traditional feature set are shown

in Figure 4 below. The component is considered relevant if it is a part of the whole

that forms the more traditional telephony feature set. In this document that feature

set consists of voice call, data, message and contacts handling. Without these it

would be hard to consider a device to be a mobile phone. The components that

are not in the figure but are relevant, in a sense that they extend or enhance the

use of cellular telephony, are explained later in the chapter. The extension

features provide a means to implement a feature set that can be found in most of

the modern mobile phones but are not present in all of them.

FIGURE 4. Mer Cellular Telephony Architecture

35

5.1 Mer connection handling

Mer connection handling provides a cellular network access to the Internet. The

Mer connection handling consists of five components. One extension component,

a Provisioning-service, and four main components: ConnMan, Libconnman-qt,

Nemo-qml-plugin-connectivity and ConnectionAgent. The four main components

are shown in Figure 4. The descriptions and findings presented in this section are

based on the analysis of the software repositories of each corresponding

component (Intel corporation 2015a, date of retrieval 5.11.2015; Mer-core 2015b,

date of retrieval 5.11.2015; Mer-core 2015c, date of retrieval 5.11.2015; Mer-core

2015d, date of retrieval 5.11.2015; Mer-core 2015e, date of retrieval 5.11.2015;

Mer-core 2015f, date of retrieval 5.11.2015).

ConnMan (Intel corporation 2015a, date of retrieval 5.11.2015; Mer-core 2015b,

date of retrieval 5.11.2015) is a daemon managing network connections of

multiple technologies used in embedded devices. It supports multiple

technologies, both wired and wireless, (such as WiFi, Bluetooth and Cellular)

through a plugin design. The modular design makes ConnMan extendable, i.e.

support for new technologies can be added. Besides the support for new

technologies, extending the support for various services can be implemented as

plugins, such as configuration methods like DHCP (Dynamic Host

Communication Protocol) and the domain name resolving. The desired plugins

can be included and/or excluded with parameters (e.g. by using command line

interface) by either defining the plugins that should be loaded or by defining the

plugins that should not be loaded. The plugins in the context of ConnMan are not

loadable libraries built separate from the daemon, but are built as a part of the

daemon, so excluding a plugin at runtime will still consume a persistent memory.

It is possible to configure various settings for ConnMan by defining an optional

configuration file. The file can, for example, define the preference order of

technologies and a list of network interfaces that will not be handled by ConnMan.

ConnMan provides a build-time configuration and options, amongst which is the

possibility to disable the default built-in plugins, such as WiFi. This modular

configurable plugin design is similar to that of oFono.

36

ConnMan uses oFono as a cellular technology provider and the ConnMan’s

oFono support is implemented by an oFono plugin. The oFono support is by

default enabled but it is not necessary to have the oFono daemon running. This

is because the start of the oFono daemon is detected automatically. The

ConnMan oFono plugin is not needed to build the Connman.

ConnMan offers a high-level D-Bus API for use by the networking applications of

any license. Connman itself is a free software released under the terms of the

GPL version 2.0. ConnMan that is part of the Mer project is a fork from the project

available at the Git repository at kernel.org (git.kernel.org/pub/scm/network/

connman/connman.git).

Libconnman-qt (Mer-core 2015c, date of retrieval 5.11.2015) consists of two

libraries that provide access to the Connman D-Bus interfaces as Qt bindings and

a plugin for QML applications. These bindings are a direct reflection of the

interfaces provided by Connman.

Nemo-qml-plugin-connectivity (Mer-core 2015d, date of retrieval 5.11.2015) is a

dynamically loadable custom Mer QML extension plugin for QML

networking/connectivity applications using TCP/IP (Transmission Control

Protocol / Internet Protocol). It uses Libconnman-qt for communicating with

ConnMan to provide the required services.

The main purpose of ConnectionAgent (Mer-core 2015e, date of retrieval

5.11.2015) is to provide a daemon and a plugin library for QML applications to

access ConnMan’s Agent interface, i.e. “net.connman.Agent”, using the

UserAgent class provided by the Libconnman-qt library. ConnectionAgent also

provides support for the ConnMan “autoconnect” feature to turn the

connection/networking technology power on if the corresponding ConnMan

service has “autoconnect” set to as “True”.

Provisioning-service (Mer-core 2015f, date of retrieval 5.11.2015) is used for

Over the Air (OTA) provisioning, i.e. using the operator provided data coming as

a push message to initialise oFono Internet data and MMS (Multimedia

Messaging Service) data contexts. The data is first received by oFono, which

37

recognizes it as a push message and forwards it to the Provisioning-service to be

further processed. Based on the received data, the Provisioning-service then

initializes the oFono data and MMS contexts. After processing the data, the

Provisioning-service emits a signal expressing the result

(“apnProvisioningSucceeded”, “apnProvisioningPartiallySucceeded”,

“apnProvisioningFailed”). It is not mandatory to include the Provisioning-service

into an operating system. It only automates the provisioning of the MMS and

Internet connections. In a mobile phone using an operating system that contains

the Mer, the same data can be provided by the end-user through the UI

application.

5.2 Telepathy Framework

The middleware for a cellular voice call and an SMS is provided by using the

Telepathy framework. Figure 5 gives an overview of how the Telepathy

framework works in principle. Its primary purpose is to abstract the protocol or

technology used for a voice call and messaging by giving a unified interface. In

other words, from the Telepathy client perspective, sending a message or making

a voice call should be the same regardless of the protocol or technology used.

For example, in principle it should be no different for a client to make a cellular

voice call or an SIP (Session Initiation Protocol) based IP voice call using

Telepathy. This is made possible by using a modular design where each module

communicates with each other via the D-Bus communication framework. The Mer

cellular Telepathy implementation consists of Telepathy-glib, Telepathy-qt,

Telepathy-mission-control and Telepathy-ring. The descriptions and findings

presented in this section, regarding these components, are based on the analysis

of the software repositories of each corresponding component (Mer-core 2015g,

date of retrieval 5.11.2015; Mer-core 2015h, date of retrieval 5.11.2015; Mer-core

2015j, date of retrieval 5.11.2015; Mer-core 2015k, date of retrieval 5.11.2015).

38

FIGURE 5. Telepathy Architecture Overview (Freedesktop.org 2014, date of

retrieval 22.11.2015)

Each supported protocol and each client for each protocol is implemented as their

own processes. This makes Telepathy a modular communications service

provider with a unified application protocol interface. Telepathy consists of

several modules: Connection managers, account managers, channel dispatchers

and Telepathy clients. (Madeley 2015, date of retrieval 5.11.2015.)

The connection managers implement the Telepathy support for the desired

protocol and provide an interface for clients. The account manager stores the

Telepathy accounts and their parameters. The account manager establishes the

connection to account based on the account parameters or if requested by using

the associated connection manager. The channel dispatcher transmits the

relevant type channels on the connections created by the account manager.

(Madeley 2015, date of retrieval 5.11.2015.) The channel types supported by

Telepathy-qt (Mer-core 2015g, date of retrieval 5.11.2015) and Telepathy-glib

(Mer-core 2015h, date of retrieval 5.11.2015) according to the “all.xml” file in the

“spec” folder found from the Git repositories of both components, are “Call”,

“Contact List”, “Contact Search”, “DBus Tube”, “File Transfer”, “Room List”,

“Server Authentication”, “Server TLS Connection”, “Stream_Tube”, “Streamed

Media”, “Text” and “Tubes”. The Mer Telepathy-glib repository is basically just a

Git submodule, meaning that it contains some additional patches, but for the

actual source code the repository contains a link to another repository. This

repository is at anongit.freedesktop.org/git/ telepathy/telepathy-glib.git/ where the

source is in a binary form and can be retrieved and transformed in a readable

form by using relevant Git commands.

39

Telepathy itself is just a set of D-Bus API specifications. Hence, there is no single

Telepathy implementation, everybody must implement their own one based on

the specification or use one of the existing high-level language binding

implementations, such as Telepathy-glib or Telepathy-qt. The downside of this

approach is that there is no guarantee of the quality of the implementation, the

restrictions that the implementation brings or how well it follows the Telepathy

specification. For example, by analysing the interaction between Telepathy-glib,

Telepathy-mission-control (Mer-core 2015j, date of retrieval 5.11.2015) and

Telepathy-ring (Mer-core 2015k, date of retrieval 5.11.2015), it can be concluded

that Telepathy-glib closes the mainloop. The mainloop is the central control flow

construct that waits and dispatches events in a program. Telepathy-glib stops the

connection manager effectively whenever no connection exists. Therefore, for the

connection manager to remain active, it needs to remain in a connected state. In

the case of Telepathy-ring, this is cumbersome because a modem connection

through oFono may come and go, especially in the case where USB modems are

used. Thus, the Telepathy-ring must always remain in a connected state even

when no modem connection exists (Mer-core 2015i, date of retrieval 5.11.2015).

Telepathy-glib is a library for the Telepathy components using GLib (a utility

library for software written in C) (The GNOME Project 2014, Date of retrieval

21.11.2015). It provides high-level Telepathy GLib bindings for clients and service

providers implemented using the C-language.

Telepathy-qt is a library for Telepathy components using the Qt framework. It

provides Telepathy Qt bindings for clients and service providers implemented

with Qt C++.

Telepathy-mission-control handles accounts. When it starts, it loads or creates

accounts and each account will have a protocol manager associated. The

account parameters are stored by Telepathy-mission-control. Using the

parameters it brings the account online by communicating with the associated

protocol manager, for example with Telepathy-ring. Telepathy-mission-control

acts as a channel dispatcher, which dispatches incoming and outgoing

communication channels to the relevant applications. Telepathy-mission-control

uses Telepathy-glib to provide Telepathy bindings.

40

Telepathy-ring is a Telepathy cellular protocol manager handling an SMS and a

cellular voice call. Telepathy-ring provides support for a call (for making cellular

voice calls), an SMS (for sending, receiving, and manipulating spooled SMS

messages) and SIM (Subscriber Identity Module) services (for accessing some

SIM information).

Telepathy-ring consists of three main parts: The Telepathy-mission-control

plugin, the modem, meaning the oFono interface, and the connection manager

itself. Telepathy-ring uses Telepathy-glib to provide Telepathy bindings.

Telepathy-ring’s Telepathy-mission-control plugin sets the relevant properties

and provides the relevant functionality for the Telepathy-mission-control to act as

a Telepathy-ring account manager. For example, Telepathy-ring’s Telepathy-

mission-control plugin sets the “ConnectAutomatically” property as “true” and

because of that Telepathy-mission-control will try to connect, i.e. to start

Telepathy-ring whenever the “ConnectionStatus” property is disconnected. As

stated before, since Telepathy-ring uses Telepathy-glib it will be effectively

closed, i.e. its mainloop will exit if no connections exists. The “README” file that

can found from the Telepathy-ring repository states that by setting the

environment variable “RING_PERSIST”, the Telepathy-ring process would keep

on running, even if no connection would be active. By analysing the code, only

one place can be found where the variable in question is used in Telepathy-ring

and that is in the “ring_debug_set_flags_from_env” function in ring-debug.c file

of the project. The “RING_PERSIST” variable is used to set the Boolean variable

for the “tp_debug_set_persistent” function call. The “tp_debug_set_persistent” is

implemented in the Telepathy-glib project debug.c file, which indicates that the

“RING_PERSIST” environment variable is used for debug purposes. This

assumption is proved by the following code comments of the function

“tp_debug_set_persistent”: “Used to enable persistent operation of the

connection manager process for debugging purposes.”.

The implementation of Telepathy-ring used during the writing of this work

(commit: edbcace1) (Mer- core 2015l, date of retrieval 5.11.2015), based on the

build log, uses deprecated functions of Telepathy-glib, Telepathy-mission-control

and GLib. Telepathy-ring is also based on an older Telepathy specification using

41

“Streamed Media” as a channel type interface instead of “Call” as a channel type

interface which supersedes the “Streamed Media” (Freedesktop.org 2015b, date

of retrieval 10.11.2015; Freedesktop.org 2015c, date of retrieval 10.11.2015).

Telepathy-ring has not been updated to use the “Call” channel type interface and

this of course forces the Telepathy clients to implement the “Streamed Media”

channel support to have the cellular support available. The Telepathy account

name is hardcoded in the Telepathy-ring’s Telepathy-mission-control plugin file

mcp-account-manager-ring.c in the “mcp_account_manager_ring_init” function.

Although the Telepathy-ring has some support for multiple modems and/or

multiple accounts, it effectively does not provide support for multiple modems due

to this. The Telepathy-ring itself seems to work with multiple modems in a sense

that if one is removed, the account state does not change. However, it is unclear

if the cellular support still works after removing a modem. Assuming that there

are several modems, it is unclear how the Telepathy-ring chooses which modem

it will use. For example, in the dial case, will it use the first connected modem,

the last connected modem, the last modem with activity or will it decide by some

other means?

A fork of Mer Telepathy-ring providing a support for multiple modems/accounts is

available (Poutiainen 2015, date of retrieval 5.11.2015). Since this

implementation changes the way the accounts are named, it can affect the

telepathy clients using Telepathy-ring. For example, Commhistory-daemon

defines a hardcoded account path which, if used, will quite likely be incorrect

(Mer-core 2015m, date of retrieval 5.11.2015).

5.3 Mer cellular voice call and message handling

The more traditional part of the Mer cellular telephony architecture, meaning a

cellular voice call and a message handling, consists of four components:

Voicecall, Commhistory-daemon, Libcommhistory, and Mms-engine. They

interact with other parts of the system, such as Libqofono and Telepathy to enable

the implementation of applications for receiving and sending messages (SMS

and MMS), as well as receiving and making voice calls using the cellular network.

The descriptions and findings presented in this section are based on the analysis

of the software repositories of each corresponding component (Mer-core 2015n,

42

date of retrieval 5.11.2015; Mer-core 2015o, date of retrieval 5.11.2015; Mer-core

2015p, date of retrieval 5.11.2015; Mer-core 2015q, date of retrieval 5.11.2015).

Voicecall (Mer-core 2015n, date of retrieval 5.11.2015) provides abstraction for

voice call related features such as making and receiving a voice call and putting

the call on hold. It is written with Qt C++ and therefore uses Telepathy-qt to

provide Telepathy bindings. Voicecall consists of a voicecall-manager daemon,

a libvoicecall and plugin libraries, such as libvoicecall-telepathy-plugin and

libvoicecall-ngf-plugin. Logically, Voicecall consists of the manager for loading

protocol plugins and monitoring events, a library for implementing the

corresponding UI and the protocol plugins. Currently, Voicecall provides support

for a cellular voice call either by using Telepathy as a provider or oFono directly.

VoIP (Voice over IP) is supported through Telepathy. It is not clear if the system

would work if Voicecall used oFono as a provider while, for example, a voice call

audio control and event history logging would still use Telepathy. One option

could be that all related services would use oFono directly instead of Telepathy.

Then the challenge could be to ensure that there would be no timing issues, e.g.

with an alerting tone when creating a voice call. Either way to verify if Voicecall

could use oFono directly would require an extensive testing and a further

analysis.

Commhistory-daemon (Mer-core 2015o, date of retrieval 5.11.2015) is a daemon

for logging the communications history to a database. It listens oFono,

MMSEngine and Telepathy to send the logging data of instant messaging, SMS,

MMS and voice call. It is written with Qt C++ and therefore uses Telepathy-qt to

provide Telepathy bindings and Libqofono to access the oFono interface.

Libqofono is used by the Commhistory daemon for vCard (a file format for

electronic business cards) and vCalendar (a file format for electronic calendar

data) support for sending and receiving business cards and calendar events. The

SMS messages and voice call events are received via Telepathy-qt “Text

Channel” and “Streamed Media Channel”. MMS events are handled using

MMSEngine API “org.nemomobile.MmsEngine”. All the interfaces use the D-Bus

as an IPC mechanism. (Mer-core 2015o, date of retrieval 5.11.2015.)

43

In the case of receiving an SMS message, the Commhistory daemon receives

the message through Telepathy, records it to the database using libcommhistory

and sends the D-Bus signals about the changes in the database so that the UI

can act in the desired way. It also sends a signal to MCE (Mode Control Entity)

to put the display on. When receiving an incoming call signal, the role of the

Commhistory is more limited: It only records the information to the database.

Receiving an MMS message is similar to receiving an SMS message.

Libcommhistory (Mer-core 2015p, date of retrieval 5.11.2015) is a library for

accessing (both read and write) the database, and to synchronize changes to that

database between the processes using D-Bus signals. For example, the UI can

use Libcommhistory to read the messages from the database. The Commhistory

daemon uses it to write the messages to database. It also offers a library for QML

applications to use it.

Mms-engine (Mer-core 2015q, date of retrieval 5.11.2015) provides a daemon for

handling an MMS. It provides the D-Bus interface (org.nemomobile.MmsHandler)

for sending and receiving messages as well as for following the state of sent and

received messages. For receiving, it uses the Mer specific oFono Push Forwarder

plugin to receive WAP (Wireless Application Protocol) Push messages. These

messages come in an SMS format containing the URI/URL (Uniform Resource

Identifier/ Uniform Resource Locator) from where to retrieve the data. For data

connection Mms-engine uses an MMS specific data context provided by the

oFono Connection Manager D-Bus interface.

5.4 Mer Contacts handling

The Mer Contacts handling consists of four components: Nemo-qml-plugin-

contacts, Libcontacts, QtContacts-Sqlite and Contactsd. The descriptions and

findings presented in this section are based on the analysis of the software

repositories of each corresponding component (Mer-core 2015r, date of retrieval

6.11.2015; Mer-core 2015s, date of retrieval 6.11.2015; Mer-core 2015t, date of

retrieval 6.11.2015; Mer-core 2015u, date of retrieval 6.11.2015).

44

Nemo-qml-plugin-contacts (Mer-core 2015r, date of retrieval 6.11.2015) and

Libcontacts (Mer-core 2015s, date of retrieval 6.11.2015) form the contacts

handling support for the UI. Nemo-qml-plugin-contacts provides a dynamically

loadable, custom Mer QML extension plugin for QML contacts applications.

Libcontacts uses nemo-qml-plugin-contacts to provide in-memory caches,

indexes, and other functionality for those QML applications.

Qtcontacts-sqlite (Mer-core 2015t, date of retrieval 6.11.2015) is a plugin for the

Qt Contacts API, providing access to the SQLite database. Contactsd (Mer-core

2015u, date of retrieval 6.11.2015) listens XMPP (Extensible Messaging and

Presence Protocol) providers via Telepathy for contact list (XMPP term “roster”)

changes as well as changes of the presence of the contact. Once Contactsd

detects a contacts list change or a presence change, it forwards those changes

into the QtContacts-Sqlite's temporary or transient shared memory table.

Contactsd can be thought of as being a synchronisation adaptor for instant

messaging services.

From cellular telephony point of view the purpose of the Contactsd is to fetch the

contacts stored on the SIM card and write them to the local memory. Contactsd

uses oFono to fetch the SIM contacts. Those contacts are then injected into the

QtContacts-Sqlite database, as "sim" synctarget contacts, and from there

exposed to the UI or applications through the Nemo-qml-plugin-contacts and

Libcontacts.

5.5 Mer cellular modem state handling

In a mobile software platform it is necessary to handle the changes indicated by

the modem and the state changes of the modem. This can be done independently

by each application, by following the state changes forwarded by the modem

adaptation layer. In the Mer platform these indications come through oFono. The

previously mentioned method can create unwanted dependencies, so other

means are provided. In the case of Mer platform there are two other options which

provide information about system states, including the modem and modem

related states.

45

5.5.1 StateFS

StateFS consists of four packages: Statefs, Statefs-providers, Statefs-qt and

Statefs-loader-qt. The descriptions and findings presented in this subsection are

based on the analysis of the software repositories of each corresponding

component (Mer-core 2015v, date of retrieval 6.11.2015; Mer-core 2015x, date

of retrieval 6.11.2015; Mer-core 2015y, date of retrieval 6.11.2015; Mer-core

2015z, date of retrieval 6.11.2015). StateFS provides a framework for exposing

the system states such as SIM, modem and cellular network states. The states

are provided as properties wrapped into namespaces and written to files by

plugins that are shared libraries.

Statefs (Mer-core 2015v, date of retrieval 6.11.2015) provides the core of the

StateFS framework. It provides the provider, consumer and loader interfaces. It

implements the StateFS daemon and provides the basic structure, which all the

providers and loaders follow.

Statefs-providers (Mer-core 2015x, date of retrieval 6.11.2015) provides a set of

StateFS providers as plugins. From the cellular telephony point of view the most

important is the oFono provider that provides handling for the SIM, modem and

cellular network states.

Statefs-loader-qt (Mer-core 2015y, date of retrieval 6.11.2015) starts the main Qt

event loop in a dedicated thread so that a provider needing it can be loaded. The

“README.org” file in the Statefs-loader-qt repository states that:

“Some Qt components/code need main Qt event loop to be running
and it should be started in the thread where some (read any) Qt code
was used, it saves current thread as the main thread. So, this loader
create QCoreApplication and starts its event loop in a dedicated
thread. When event loop is started requested provider can be loaded
safely.”

Statefs-qt (Mer-core 2015z, date of retrieval 6.11.2015) library offers the StateFS

client interface to Qt-based applications and libraries. The use of this library is

optional because the system state information provided by StateFS can be read

directly from the file. The StateFS tree structure and location in the filesystem

46

hierarchy is not fixed and can therefore change. Thus, this library increases the

compatibility of the code with future changes of StateFS.

5.5.2 MCE

MCE consists of two components: the Mce-dev and MCE. The descriptions and

findings presented in this subsection are based on the analysis of the software

repositories of each corresponding component (Mer-core 2015aa, date of

retrieval 6.11.2015; Mer-core 2015ab, date of retrieval 6.11.2015). Mce-dev (Mer-

core 2015aa, date of retrieval 6.11.2015) is a separate package which provides

the header files that define the D-Bus interface of the MCE. MCE (Mer-core

2015ab, date of retrieval 6.11.2015) is a daemon that provides a mode control

functionality. MCE offers a single point for applications and other service

providers to receive and send an input from and to multiple sources by using the

D-BUS interface. MCE makes it possible to enable screen blanking and locking

during the call by following oFono call states and broadcasting them, while

offering an interface for controlling the screen. It also follows if the screen is lit or

not and signals whenever it changes, therefore making it possible to request the

modem to enter the power save mode, when no user interaction is expected.

5.6 Mer cellular modem abstraction

In a modern mobile software platform there is usually a cellular modem

abstraction layer that hides modem specific features and dependencies from

other software layers. It provides a standard interface and adapts a modem

specific behaviour to that interface. The cellular modem abstraction is a central

element in the telephony stack in a sense that the rest of the stack is designed

based on it. It would be hard to remove the cellular abstraction layer and replace

it with another without major changes to the rest of the stack. In the Mer platform

this abstraction consists of two modules: Libqofono and oFono. The descriptions

and findings presented in this section are based on the analysis of the software

repositories of each corresponding component (Mer-core 2015ac, date of

retrieval 6.11.2015; Mer-core 2015a, date of retrieval 10.11.2015).

47

The Libqofono (Mer-core 2015ac, date of retrieval 6.11.2015) package provides

a library for accessing the oFono (Mer-core 2015a, date of retrieval 10.11.2015)

daemon. The Libqofono package also consists of a plugin to allow QML

applications to access oFono using the Qt Quick module. Libqofono is basically

just a Qt wrapper of oFono. Although QML UI applications can use Libqofono to

communicate with oFono, this can be problematic in some cases. This is because

of two reasons. The first reason is that typically the QML UI application is closed

when the end-user exits the application, hence the application stops receiving

indications and replies to requests it has made. The second reason is the

behaviour of the oFono interface. For example, if the application makes a request

to start the network scan and is restarted while the scan is still in progress, it

cannot in some cases know that the scan is still in progress. Calling the oFono

“NetworkRegistration” D-Bus interface methods “Scan” or “Register”, or the

“NetworkOperator” interface method “Register”, while the “Scan” is still in

progress, will return with an error “InProgress”. So although it is the “Scan” that

is still in progress, it cannot be distinguished from the “NetworkRegistration”

interface method call “Register”.

OFono is a daemon that essentially provides a modem adaptation with a modem

independent D-Bus interface for the telephony application development. The

software license used is GPL version 2 but since oFono provides a D-Bus

interface for the application development, those applications can be of any

license. According to The oFono Project web page, the aim of the oFono software

project is to offer a 3GPP GSM/UMTS (Global System for Mobile communications

/ Universal Mobile Telecommunications System) standard compliant software

framework (Intel corporation 2015b, date of retrieval 6.11.2015). Based on the

documentation and the source code available in the oFono repository, the oFono

explicitly does not support all the GSM features, most notably the SIM phonebook

writing. This does not prevent anybody from forking the oFono project and then

adding the support not provided by the upstream project. The compliancy

includes such items as the decoding an SMS message and the de-fragmentation

of an SMS message. The Mer project has its own fork of oFono that has added

support to that of upstream project. There is added support for such as Network

Identity and Time Zone (NITZ) indication support and some added SMS handling

48

to enable MMS support in the Mer platform as well as some other platform specific

fixes.

The structure of oFono can be explained in several ways. The oFono

documentation talks about four main components, the core daemon, the atoms,

the drivers, and the plugins (Mer-core 2015ad, date of retrieval 10.11.2015).

The oFono core provides the internal interface that the plugins and the drivers

must implement, thus enabling the common D-BUS API to exist. It also loads the

plugins and drivers. The core manages each connected device independently

providing support for multiple modems and multiple SIM cards to be present at

the same time. Besides these core functionalities, it also provides common utility

functions for reading and writing the SIM card and interpreting the contents of the

SIM low-level Element File contents. There are also utility functions for decoding,

encoding and fragmentation of binary SMS protocol data units as well as

functions for decoding, duplicate detection and pagination of cell broadcasts and

character set conversion. The core also provides functions for detection of and

communication between oFono atoms.

OFono atoms are an integral part of the core. The oFono atom is more a concept

rather than an actual module meaning that there is no separate libraries or folders

or files for atoms. There is an atom for each main telephony/modem feature such

as SMS, CBS (Cell Broadcast Service) and SIM but they can represent

something else, too. It is the atoms that provide the oFono D-Bus interface. To

simplify, each oFono driver is linked to an atom and an atom is attached to a

modem. As mentioned earlier, the atoms can communicate between each other.

Therefore, they can detect the presence of each other and use the information

provided by other atoms for their own needs. For example, the GPRS (General

Packet Radio Service) atom requests the Network Registration atom to inform

changes in the network registration status.

The oFono drivers provide a means to integrate multiple device technologies.

Drivers handle the adaptation of a specific protocol. They translate generic oFono

requests, such as dial request, to a protocol specific request and forward the

request then to the correct device. For example, in an AT command based

49

modem a voice call dial request to a number 1234567 is translated to a command

"ATD1234567;". This way the oFono can support multiple types of devices based

on a variety of communication protocols. The upstream oFono has support for

multiple modems using the AT command set, and it includes an ISI protocol

based driver and a Qualcomm QMI modem driver.

The oFono plugins make it possible for developers to tailor the oFono for their

purposes. The main purpose of the plugins is to provide a means to recognize

the available modem or modems and enable the use of them by loading the

correct communication protocol, atoms and drivers. Besides these, a plugin can

be made to either provide optional interface support, such as network time

support, or simply extend the existing functionality, such as provisioning the

GPRS context.

Another way to describe the architecture or structure of oFono is to divide it into

five areas as shown in Figure 6: Core, plugins, a common modem and a protocol

independent D-Bus interface, a modem or vendor specific drivers, and a protocol

specific communication layer.

FIGURE 6. OFono overview

In this division the core is considered the same as the previously explained one

but the concept of atoms is considered as being part of it. The D-Bus interface is

implemented within the core or into a plugin but is considered as a separate

entity. The drivers and the plugins are also as explained earlier but the biggest

50

difference to the oFono documentation is to consider the communication layer

and the drivers as separate entities.

The communication layer takes care of the message scheduling and the queue

mechanism and provides a protocol specific communication channel. The idea

behind this division is that there can be several modems with their own command

set needing their own driver implementations but which can use the same

communication layer implementation.

The Mer project has modified and added features to their fork of oFono. These

include an enhanced GPRS context provisioning, a signalling of the changed

operator list, an interface for sending arrays of raw bytes to the modem, a

signalling of received SMS message status reports and support for forwarding

WAP push messages to Mms-engine as well as support for a ringback tone and

network time (NITZ). However, the main addition is the Android RIL support. This

means that if the system can utilize the Android binaries, the oFono can use the

Android RIL to communicate with the modem. The Mer oFono RIL support is

initially based on the one provided by Canonical Ltd. (Mer-core 2015ae, date of

retrieval 10.11.2015) but has since deviated from the Canonical version. The RIL

support consists of drivers providing RIL interface support; a communication layer

enabling the socket communication with the RIL daemon; and a set of plugins for

recognizing the existence of the RIL daemon, loading the related drivers and

starting the communication using the communication layer.

5.7 Other cellular modem dependant modules

The descriptions and findings presented in this section and subsection are based

on the analysis of the software repositories of each corresponding component

(Mer-core 2015af, date of retrieval 6.11.2015; Mer-core 2015ag, date of retrieval

6.11.2015; Mer-core 2015ah, date of retrieval 6.11.2015; Mer-core 2015ai, date

of retrieval 6.11.2015; Mer-core 2015aj, date of retrieval 6.11.2015; Nemomobile

2015b, date of retrieval 6.11.2015). In a modern mobile software platform there

are other technologies that are used together with the cellular telephony. These

technologies can either use the telephony technology to extend their functionality

51

or they are used to extend the functionality of the telephony technology. Here are

those found in the Mer context.

5.7.1 Cellular positioning

Geoclue (Mer-core 2015af, date of retrieval 6.11.2015) provides location services

offering a D-Bus interface for location aware applications. Geoclue supports

multiple technologies and methods for finding the current location. The

technology support is implemented as a provider and new providers can be

added. Geoclue has a GSM cell based position provider (gsmloc) that uses

oFono to fetch MCC, MNC, LAC and CID (Mobile Country Code, Mobile Network

Code, Location Area Code and Cell Id) which it then matches with the data

provided by the web service (http://www.opencellid.org/) and a lookup table. The

web service is used to fetch the latitude and longitude of the current cell. The

lookup table is used to map MCC with ISO (International Organisation for

Standardization) country code, e.g. MCC 244 equals ISO 3166-1 alpha-2 two

letter code FI of Finland.

5.7.2 Cellular Network Time

Timed (Mer-core 2015ag, date of retrieval 6.11.2015) is a daemon for managing

the device system time, time zone, time events and related settings used, for

example, by clock applications. Timed provides a D-Bus interface that can be

used directly or via C++ Qt-bindings. OFono is used by Timed to query the cellular

network time. If NITZ is supported by the network this information may be

received by oFono and thus by Timed in the following cases: When registering

on the network, the device geographically relocates to a different local time zone,

the network changes its local time zone, e.g. between the summer and winter

time, the network changes its identity, or at any time during a signalling

connection with a mobile station (The 3rd Generation Partnership Project (3GPP)

2013, date of retrieval 10.11.2015).

5.7.3 Cellular USB Tethering

Usb_moded (Mer-core 2015ah, date of retrieval 6.11.2015) is a daemon that

activates a USB (Universal Serial Bus) profile based on the USB cable connection

52

status that it tracks. It uses a D-Bus system bus for all the system wide

communications. Among other functionality the Usb_moded can set up a USB

tethering, meaning it can share the connection of the device for another device.

A typical case of this is a laptop using a mobile phone for connecting to the

Internet. When a cellular network is used to access the Internet, the oFono is

used to check if the device is roaming, and if so, if roaming is allowed. Roaming

means using the cellular connection outside the home subscription network.

5.7.4 Seamless Software Update

Over-The-Air software updating or upgrading in Mer is called SSU (Seamless

Software Update) and a part of this concept is ssu (Nemomobile 2015b, date of

retrieval 6.11.2015). The ssu is written in lowercase to distinguish the software

from the concept of SSU which is written in uppercase. The concept of SSU is

not covered here. The oFono dependency is used by ssu to check the device

International Mobile Equipment Identity (IMEI) to be used, if available, as a unique

identification number of the device. The software package was not yet merged

into the Mer as part of Nemo/Mer merge.

5.7.5 Mer Cellular Bluetooth handling

Bluetooth is a wireless technology specification developed, published, and

promoted by the Bluetooth Special Interest Group (Bluetooth SIG). The Bluetooth

is used for exchanging data over short distances (Bluetooth SIG, Inc. 2015, date

of retrieval 10.11.2015). The Bluetooth wireless headset can be used to receive

and transmit audio during the voice call and for a call control. The call control can

consist of accepting, rejecting or ending the call as well as making a call to the

last called number. It is also possible to make a voice call in the form of voice

dialling, which means using a voice recognition for a call creation. Mer Cellular

Bluetooth handling consists of two parts: Bluez and libbluez.

Libbluez-qt (Mer-core 2015ai, date of retrieval 6.11.2015) provides a library

containing Qt bindings for accessing a Bluetooth functionality and a plugin for

QML applications. Bluez (Mer-core 2015aj, date of retrieval 6.11.2015) is a

Bluetooth stack consisting of several modules providing a support for the core

53

Bluetooth layers and protocols for Linux kernel based operating systems (Bluez

project 2015, date of retrieval 10.11.2016). The Mer project has its own fork of

Bluez from the upstream projects Git repository at kernel.org. The Bluez offers a

high-level D-Bus API for the networking applications of any license. Bluez itself

is a free software released under the terms of the GPL version 2. The Bluez uses

the oFono as a cellular telephony support provider. For example, when a

Bluetooth device is used for initiating a voice call, Bluez sends a message to the

oFono interface to make a dialling request and during the call it keeps receiving

the call states. If a Bluetooth device is connected while an incoming call is

received, Bluez will receive an indication of this and if the Bluetooth device is

used to answer the call, Bluez tells the oFono to answer.

54

6 CONCLUSION

The software components covered in this work provide the cellular telephony

functionality needed in a mobile phone. The modular nature of the Mer cellular

telephony architecture makes it possible to replace parts of it with another part.

Most of the components are designed to be extendable, i.e. adding of a new

feature is made easy. Some parts of the architecture are harder to comprehend

than others, most notably the Telepathy framework is hard to comprehend. This

is partly due to the Telepathy specific concepts that need to be understood and

partly due to the two different language bindings that are used. The Telepathy

cellular support implementation is based on an older specification, whereas the

Voicecall component also supports the superseding specification. This way of

implementing a support only to a part of the system seems to be quite typical in

the Mer development model. It can be confusing but it also provides a way of

implementing a support for a new features overtime in parts, without a need for a

centralized planning. Also, some components contain only a partial

implementation of a feature or functionality.

There are no clear problems with the Mer cellular telephony system but the role

of the Telepathy could be considered. One option is to try to get rid of the

Telepathy dependency, but as previously explained, there are questions that

need to be answered before deciding to do this. The removal of Telepathy could

lead to having less IPC communication and it would simplify the architecture.

Another option is to make a new implementation of Telepathy-ring by using

Telepathy-qt, thus removing the Telepathy-glib dependency. This would,

however, mean that the functionality provided by the Telepathy-mission-control

would have to be implemented into the new Telepathy-ring as the Telepathy-

mission-control depends on the Telepathy-glib, too. The least that should be done

is to implement the support of the latest Telepathy specification to the Telepathy-

ring.

It is also recommendable to always consider if there is a need to have a daemon

to control the communication between the UI application and oFono. The daemon

55

can keep track of the requests and their responses even when the application is

closed.

The support for having multiple active modems and SIM cards in the device at

the same time is partially done. This work should be finished. This would enable

the Mer to support new hardware configurations that cannot be supported at the

moment.

To the best of the knowledge available no other work describing the Mer cellular

telephony exists currently. This work can be used as a base when building a new

mobile system requiring a cellular telephony support to help to decide if the

cellular telephony support of Mer or parts of it are relevant for that.

56

REFERENCES

The 3rd Generation Partnership Project (3GPP). 2013. 3GPP specification

22.042. Release 12. Date of retrieval 10.11.2015

http://www.3gpp.org/DynaReport/22042.htm.

The 3rd Generation Partnership Project (3GPP). 2015. 3GPP specification

27.007 Release 13. Date of retrieval 20.10.2015

http://www.3gpp.org/DynaReport/27007.htm.

The Android Open Source Project. 2015a. Android Interfaces and Architecture.

Date of retrieval 21.10.2015

https://source.android.com/devices.

The Android Open Source Project. 2015b. ART and Dalvik. Date of retrieval

19.11.2015

https://source.android.com/devices/tech/dalvik.

The Apache Software Foundation. 2015. Apache License Version 2.0. Date of

retrieval 4.11.2015

http://www.apache.org/licenses/LICENSE-2.0.

Bluez project. 2015. Bluez: About. Date of retrieval 10.11.2016

http://www.bluez.org/about/.

Bluetooth SIG, Inc. 2015. Bluetooth Technology Basics. Date of retrieval

10.11.2015

http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-

basics.

Digia Finland Ltd. 2015a. About Qt. Date of retrieval 10.11.2015

https://wiki.qt.io/About_Qt.

57

Digia Finland Ltd. 2015b. Qt Documentation: All Modules. Date of retrieval

10.11.2015

https://doc.qt.io/qt-5/qtmodules.html.

Digia Finland Ltd. 2015c. Qt Documentation: How to Create Qt Plugins. Date of

retrieval 10.11.2015

http://doc.qt.io/qt-5/plugins-howto.html.

Edge, J. 2014. Jolla and Mer. Date of retrieval 10.11.2015

https://lwn.net/Articles/597560/.

Freedesktop.org. 2013a. Introduction to D-Bus. Date of retrieval 10.11.2015

http://www.freedesktop.org/wiki/IntroductionToDBus/.

Freedesktop.org. 2014. Telepathy. Date of retrieval 22.11.2015

http://telepathy.freedesktop.org/wiki/.

Freedesktop.org. 2015a. What is D-Bus?. Date of retrieval 10.11.2015

http://www.freedesktop.org/wiki/Software/dbus/.

Freedesktop.org. 2015b. Interface Channel.Type.StreamedMedia. Date of

retrieval 10.11.2015

http://telepathy.freedesktop.org/spec/Channel_Type_Streamed_Media.html.

Freedesktop.org. 2015c. Interface Channel.Type.Call1. Date of retrieval

10.11.2015

http://telepathy.freedesktop.org/spec/Channel_Type_Call.html.

Free Software Foundation. 2007a. GNU General Public License Version 3. Date

of retrieval 4.11.2015

https://www.gnu.org/licenses/gpl.txt.

Free Software Foundation. 2007b. GNU Lesser General Public License Version

3. Date of retrieval 4.11.2015

58

https://www.gnu.org/licenses/lgpl.txt.

Free Software Foundation. 2015a. About the FSF. Date of retrieval 3.11.2015

https://www.fsf.org/about/.

Free Software Foundation. 2015b. What is free software?. Date of retrieval

3.11.2015

https://www.gnu.org/philosophy/free-sw.html.

Free Software Foundation. 2015c. Various Licenses and Comments about

Them. Date of retrieval 4.11.2015

https://www.gnu.org/licenses/license-list.html.

Free Software Foundation. 2015d. What is Copyleft?. Date of retrieval

4.11.2015

https://www.gnu.org/copyleft/copyleft.html.

Free Software Foundation. 2015e. Frequently Asked Questions about the GNU

Licenses. Date of retrieval 20.10.2015

http://www.gnu.org/licenses/gpl-faq.html#MereAggregation.

Free Software Foundation. 2015f. The GNU C Library (glibc). Date of retrieval

19.20.2015

https://www.gnu.org/software/libc/.

Gartner Inc. 2015. Gartner Says Worldwide Smartphone Sales Recorded

Slowest Growth Rate Since 2013. Date of retrieval 21.10.2015

http://www.gartner.com/newsroom/id/3115517.

The GNOME Project. 2014. GLib Refence Manual. Date of retrieval 21.11.2015

https://developer.gnome.org/glib/.

Google Git. 2015a. android/platform/hardware/ril/master. Date of retrieval

20.10.2015

59

https://android.googlesource.com/platform/hardware/ril/+/master.

Google Git. 2015b. android/platform/bionic/master. Date of retrieval 9.11.2015

https://android.googlesource.com/platform/bionic/+/master.

Google Git. 2015c. /android/platform/bionic/jb-

release/libc/docs/OVERVIEW.TXT. Date of retrieval 20.10.2015

https://android.googlesource.com/platform/bionic/+/jb-

release/libc/docs/OVERVIEW.TXT

Google Git. 2015d. android/platform/hardware/ril/master/rild. Date of retrieval

20.10.2015

https://android.googlesource.com/platform/hardware/ril/+/master/rild.

Google Git. 2015e. android/platform/hardware/ril/master/rild/Android.mk. Date

of retrieval 20.10.2015

https://android.googlesource.com/platform/hardware/ril/+/master/rild/

Android.mk.

Google Git. 2015f. android/platform/hardware/ril/master/libril. Date of retrieval

20.10.2015

https://android.googlesource.com/platform/hardware/ril/+/master/libril.

Google Git. 2015g. android/platform/hardware/ril/master/libril/Android.mk. Date

of retrieval 20.10.2015

https://android.googlesource.com/platform/hardware/ril/+/master/libril/

Android.mk.

Google Git. 2015h. android/platform/frameworks/native/master/libs/binder/

Android.mk. Date of retrieval 20.10.2015

https://android.googlesource.com/platform/frameworks/native/+/master/libs/bind

er/Android.mk.

60

Google Git. 2015i. android/platform/hardware/ril/master/reference-ril. Date of

retrieval 9.11.2015

https://android.googlesource.com/platform/hardware/ril/+/master/reference-ril.

Google Git. 2015j. android/platform/hardware/ril/master/reference-ril. Date of

retrieval 9.11.2015

https://android.googlesource.com/platform/hardware/ril/+/master/reference-

ril/Android.mk.

Google Git. 2015k. android/platform/hardware/ril/master/include/telephony/ril.h.

Date of retrieval 20.11.2015

https://android.googlesource.com/platform/hardware/ril/+/master/include/telepho

ny/ril.h

Google Inc. 2015a. Android. Date of retrieval 20.10.2015

http://www.android.com/.

Google Inc. 2015b. Parcel. Date of retrieval 20.10.2015

http://developer.android.com/reference/android/os/Parcel.html.

Greaves, D. 2015. [mer-general] Nemo/Mer merge update. Date of retrieval

10.11.2015

https://www.mail-archive.com/mer-eneral@lists.merproject.org/msg01557.html.

Intel Corporation. 2015a. Connman. Date of retrieval 5.11.2015

https://01.org/connman.

Intel Corporation. 2015b. OFono. Date of retrieval 6.11.2015

https://01.org/ofono.

International Data Corporation. 2015. Smartphone OS Market Share, 2015 Q2.

Date of retrieval 21.10.2015

http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

https://www.mail-archive.com/mer-general@lists.merproject.org/info.html
https://www.mail-archive.com/search?l=mer-general@lists.merproject.org&q=subject:%22%5C%5Bmer%5C-general%5C%5D+Nemo%5C%2FMer+merge+update%22&o=newest

61

ISO/IEC 9899. 2003. Rationale for International Standard Programming

languages C. Revision 5.10. Date of retrieval 9.11.2015

http://www.open-std.org/JTC1/SC22/WG14/www/docs/C99RationaleV5.10.pdf.

Jolla Ltd. 2015a. Sailfish.org. Date of retrieval 10.11.2015

https://sailfishos.org/.

Jolla Ltd. 2015b. All about us and the OS. Date of retrieval 10.11.2015

https://sailfishos.org/about/.

Jolla Ltd. 2015c. Get started. Date of retrieval 10.11.2015

https://sailfishos.org/develop/.

Jolla Ltd. 2015d. Nemo QML Plugin D-Bus. Date of retrieval 10.11.2015

https://sailfishos.org/develop/docs/nemo-qml-plugin-dbus/.

Libhybris. 2015. libhybris. Date of retrieval 20.10.2015

https://github.com/libhybris/libhybris.

Linux Programmer’s Manual. 2014. libc - overview of standard C libraries on

Linux. Date of retrieval 19.10.2015

http://man7.org/linux/man-pages/man7/libc.7.html.

Madeley, D. 2015. Telepathy. Date of retrieval 5.11.2015

http://www.aosabook.org/en/telepathy.html.

Mer-core. 2015a. Ofono. Date of retrieval 10.11.2015

https://git.merproject.org/mer-core/ofono.

Mer-core. 2015b. Connman. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/connman.

Mer-core. 2015c. Libconnman-qt. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/libconnman-qt.

62

Mer-core. 2015d. Nemo-qml-plugin-connectivity. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/nemo-qml-plugin-connectivity.

Mer-core. 2015e. Connectionagent. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/connectionagent.

Mer-core. 2015f. Provisioning-service. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/provisioning-service.

Mer-core. 2015g. Telepathy-glib. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/telepathy-glib.

Mer-core. 2015h. Telepathy-qt. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/telepathy-qt.

Mer-core. 2015i. [telepathy-ring] remove connection connecting timeout. Date of

retrieval 5.11.2015

https://git.merproject.org/mer-core/telepathy-

ring/commit/1b27f8da32f2c93a7627bf38b9e04f8e882bd476.

Mer-core. 2015j. Telepathy-mission-control. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/telepathy-mission-control.

Mer-core. 2015k. Telepathy-ring. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/telepathy-ring.

Mer-core. 2015l. Merge branch 'mer-1391' into 'master'. Date of retrieval

5.11.2015

https://git.merproject.org/mer-core/telepathy-

ring/commit/edbcace196871dedd59bafd7b6d15087e76da96c.

63

Mer-core. 2015m. Commhistory-daemon/src/constant.h. Date of retrieval

5.11.2015 https://git.merproject.org/mer-core/commhistory-

daemon/blob/master/src/constants.h.

Mer-core. 2015n. Voicecall. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/voicecall.

Mer-core. 2015o. Commhistory-daemon. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/commhistory-daemon.

Mer-core. 2015p. Libcommhistory. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/libcommhistory.

Mer-core. 2015q. Mms-engine. Date of retrieval 5.11.2015

https://git.merproject.org/mer-core/mms-engine.

Mer-core, 2015r. Libcontacts. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/libcontacts.

Mer-core. 2015s. Nemo-qml-plugin-contacts. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/nemo-qml-plugin-contacts.

Mer-core. 2015t. Qtcontacts-sqlite. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/qtcontacts-sqlite.

Mer-core. 2015u. Contactsd. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/contactsd.

Mer-core. 2015v. Statefs. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/statefs.

Mer-core. 2015x. Statefs-providers. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/statefs-providers.

64

Mer-core. 2015y. Statefs-loader-qt. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/statefs-loader-qt.

Mer-core. 2015z. Statefs-qt. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/statefs-qt.

Mer-core. 2015aa. Mce-dev. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/mce-dev.

Mer-core. 2015ab. Mce. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/mce.

Mer-core. 2015ac. Libqofono. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/libqofono.

Mer-core. 2015ad. ofono/ofono/doc/ofono-paper.txt. Date of retrieval

10.11.2015 https://git.merproject.org/mer-

core/ofono/blob/master/ofono/doc/ofono-paper.txt.

Mer-core. 2015ae. Squashed 'ofono/' changes from 649ee6bf..de0ccde. Date of

retrieval 10.11.2015

https://git.merproject.org/mer-

core/ofono/commit/eb0e3ed6674f93aa03fbce68460509ac01559fcd.

Mer-core. 2015af. Geoclue. Date of retrieval 10.11.2015

https://git.merproject.org/mer-core/geoclue.

Mer-core. 2015ag. Timed. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/timed.

Mer-core. 2015ah. Usb-moded. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/usb-moded.

Mer-core. 2015ai. Libbluez. Date of retrieval 6.11.2015

65

https://git.merproject.org/mer-core/libbluez-qt.

Mer-core. 2015aj. Bluez. Date of retrieval 6.11.2015

https://git.merproject.org/mer-core/bluez.

The Mer Wiki. 2012. Architecture. Date of retrieval 10.11.2015

https://wiki.merproject.org/wiki/Architecture.

The Mer Wiki. 2014. Nemo. Date of retrieval 10.11.2015

https://wiki.merproject.org/wiki/Nemo.

The Mer Wiki. 2015a. Main Page. Date of retrieval 10.11.2015

https://wiki.merproject.org/wiki/Main_Page.

The Mer Wiki. 2015b. Sailfish. Date of retrieval 10.11.2015

https://wiki.merproject.org/wiki/Sailfish.

The Mer Wiki. 2015c. Sailfish/CommunityMeetings. Date of retrieval 10.11.2015

https://wiki.merproject.org/wiki/Sailfish/CommunityMeetings.

Nemomobile. 2015a. Nemomobile bugzilla - Main page. Date of retrieval

10.11.2015 https://bugs.nemomobile.org.

Nemomobile. 2015b. Ssu. Date of retrieval 6.11.2015

https://github.com/nemomobile/ssu.

Nemomobile-packages. 2015. Ofono. Date of retrieval 10.11.2015

https://github.com/nemomobile-packages/ofono.

Open source initiative. 2015a. About the Open Source Initiative. Date of

retrieval 3.11.2015

http://opensource.org/about.

Open Source Initiative. 2015b. History of the OSI. Date of retrieval 3.11.2015

https://wiki.merproject.org/wiki/Main_Page
https://github.com/nemomobile/ssu

66

http://opensource.org/history.

Open Source Initiative. 2015c. The Open Source Definition. Date of retrieval

3.11.2015

http://opensource.org/docs/osd.

Open Source Initiative. 2015d. The BSD 2-Clause License. Date of retrieval

4.11.2015

http://opensource.org/licenses/BSD-2-Clause.

Open Source Initiative. 2015e. The BSD 3-Clause License. Date of retrieval

4.11.2015

http://opensource.org/licenses/BSD-3-Clause.

Poutiainen, J. 2015. Telepathy-ring. Date of retrieval 5.11.2015

https://github.com/jpoutiai/telepathy-ring/tree/multimodem.

Stallman, R. 2014. FLOSS and FOSS. Date of retrieval 3.11.2015

https://www.gnu.org/philosophy/floss-and-foss.html.

Stallman, R. 2015. Why Open Source misses the point of Free Software. Date

of retrieval 3.11.2015

https://www.gnu.org/philosophy/open-source-misses-the-point.html.

Torvalds, L. 1994. COPYING. Date of retrieval 20.10.2015

https://www.kernel.org/pub/linux/kernel/COPYING.

Wikipedia. 2015. Mer (software distribution). Date of retrieval 10.11.2015

https://en.wikipedia.org/wiki/Mer_%28software_distribution%29.

Yaghmour, K. 2013. Embedded Android. 1st edition. Sebastopol, CA: O’Reilly

Media, Inc.

