DIVERSITY CONTROLLER FOR
5,8 GHz VIDEO LINK

Jesse Kettunen
Tämän opinnäytetyön tavoitteena oli toteuttaa monimuotoisuusohjain RC-lennokkiykäyttöön. Laitteessa on käytetty BOSCAM:in valmistamia moduuleita, jotka toimivat 5,8 GHz taajuudella. Itse monimuotoisuus saadaan aikaan yksinkertaisella operaatiovahvistinkytkenällä, johon kuuluu vahvistimet molemmille moduleille, komparaattoriksi konfiguroitu operaatiovahvistin sekä Maximin valmistama videokytkinpiiri.

The aim of this thesis was to design diversity controller for radio controlled multicopter use. Receivers that were used in this project are made by BOSCAM, and the receivers work at 5.8 GHz frequency spectrum. The diversity itself is achieved with a simple operational amplifier circuitry. The circuitry includes amplifiers, comparator and a video switcher which is made by MAXIM.

First part of the project was to design a prototype circuit by making the schematic and layout. The printed circuit boards were ordered from a manufacturer in China. The boards were populated with components and the fundamentals of the circuit was tested. After the prototype was tested, the schematic and the layout were updated and problems found in the prototype version were fixed. Second batch of the boards was ordered from China and the boards were soldered and tested. The boards were found to be working good enough.

3D-printed closure was designed for the product and the closure was printed using a 3D-printer. The closure was printed with PLA-plastic which should be rigid enough for the use. Few versions of the closure were designed fixing the problems which were found out.

The antennas used by the device were manufactured using plans from the internet. The skew-planar wheel was decided to be used as a omni antenna and the helical antenna was a Helix-antenna. The antennas were manufactured using enamelled copper wire and the coaxial cable used in the antennas was ordered from EBAY.

Key words: radio controlled, spectrum, amplifier, comparator, pcb, 3d-printer
SISÄLLYS

1 JOHDANTO ... 7
2 PROTOTYYPPI ... 9
 2.1 Suunnittelu ... 9
 2.1.1 Piirikaavio .. 10
 2.1.2 Piirilevy .. 13
 2.2 Kokoonpano ... 15
 2.3 Testaus ... 16
3 LOPULLINEN VERSIO ... 18
 3.1 Suunnittelu ... 18
 3.1.1 Piirikaavio .. 18
 3.1.2 Piirilevy .. 23
 3.2 Kokoonpano ... 24
 3.3 Testaus ... 26
4 KOTELO .. 31
 4.1 Ensimmäinen versio ... 31
 4.1.1 Suunnittelu .. 31
 4.1.2 Tulostus .. 33
 4.2 Toinen versio .. 34
 4.2.1 Suunnittelu .. 34
 4.2.2 Tulostus .. 34
5 ANTENNIT .. 36
 5.1 Skew planar-antenni ... 36
 5.2 Helix-antenni ... 37
6 POHDINTA .. 38
LÄHTEET .. 40
LIITTEET ... 41
 Liite 1. Prototyypin piirikaavio .. 41
 Liite 2. Lopullisen kytkennän kytkentäkaavio ... 42
 Liite 3. Skew planar säteilykuvio ... 43
 Liite 4. RX5808 Module ... 44
 Liite 5. Mini DC-DC ... 45
 Liite 6. Normal Condition of PCB capabilities ... 46
 Liite 7. Requirements on the PCB Design ... 47
 Liite 8. Gerber Files Requirements ... 48
 Liite 9. Bill of Materials .. 49
 Liite 10. Design Rule Check .. 50
Liite 11. Kotelon kansi .. 51
Liite 12. Hakkuriregulaattori .. 52
LYHENTEET JA TERMIT

<table>
<thead>
<tr>
<th>RC</th>
<th>Radiocontrolled, radio-ohjattu</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAV</td>
<td>Unmanned aerial vehicle, miehittämätön lentokone</td>
</tr>
<tr>
<td>FPV</td>
<td>First person view, ensimmäisen persoonan kuvakulma</td>
</tr>
<tr>
<td>EIRP</td>
<td>Effective isotropic radiated power, isotrooppinen säteilyteho</td>
</tr>
<tr>
<td>RSSI</td>
<td>Receiver signal strength indicator, vastaanotetun signaalin voimakkuusindikaattori</td>
</tr>
<tr>
<td>LIPO</td>
<td>Lithium Polymer, litium polymeeri</td>
</tr>
<tr>
<td>DIP</td>
<td>Dual in-line kotelo</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode, valodiodi</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-aided design, tietokoneavusteinen suunnittelu</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility, sähkömagneettinen yhteen-sopivuus</td>
</tr>
</tbody>
</table>
1 JOHDANTO

KUVA 1. 250 mm kokoinen neliroottorinen multikopteri

KUVA 2. Esimerkki videolähettimestä

2 PROTOTYPPI

2.1 Suunnittelu

Tämän työn pohjana käytettiin Alex Greenen suunnittelemaa operaatiovahvistinkytenteää, jolla voidaan valita kahdesta videosignaalista laadultaan parempi (Greene, 2010). Videovastaanottimista saadaan RSSI-signaali, joka kertoo jännitteen voimakkuuden avulla, kuinka voimakas vastaanotettu videosignaalin on. Kahden vastaanottimen RSSI-tasoa voidaan vertailla komparaattorikytennällä, jonka ulostulolla ohjataan videovaihdinta. Videovaihdin vaihtaa komparaattorin ulostulon perusteella paremman signaalin mukaisen kuvan näytölaitteeseen.

KUVA 3. Videovastaanotinmoduuli, kuva alta

Järjestelmään syötetään sähköä 3S LIPO-akusta, jonka jännite täydessä varauksessa on 12,6 V. Piirilevylle täytty siis lisäätä virtalähde, joka laskee jännitteen 5 V:n tasolle ainakin vastaanottimia varten. Operaatiovahvistimet sekä videovaihdin toimisivat 12 V:n jännitteellä, mutta ensimmäisten testien perusteella videovaihdin lämpeni todella kuumaksi

2.1.1 Piirikaavio

Liitteessä 1 on esitetty prototyypin piirikaavio Altium Designerillä piirrettynä.

\[
V_{OUT} = V_{IN} \left(1 + \frac{R_1}{R_2} \right) = V_{IN} \left(1 + \frac{22k}{15k} \right) \approx V_{IN} \times 2,5
\]

KAAVA 1
KUVA 4. Ensimmäinen osio

KUVA 5. Komparaattori

Edellisen osion komparaattori vaihtaa ulostuloaan maan ja käyttöjännitteensä välillä sisääntulojen mukaan. Tämän johdosta kyseiseen kytkentään voidaan lisätä LED-valot indikoimaan, kumpaa vastaanotinta käytetään kyseisellä hetkellä. Näin saattaa olla hetkiä, jolloin ei haluta tapahtuvan automaattista vaihtamista, jolloin kytkentään lisätynä
kytkimellä voidaan ohittaa automaattinen toiminta ja käyttää vain haluttua vastaanotinta (kuva 6). Tällainen tilanne voi olla esimerkiksi silloin, kun etäisyys kopteriin on suuri ja käytetään suuntaavaa antennia. Signaalin heikentyessä ja virheiden lisääntyessä ei haluta vahingossakaan vaihtaa lyhyen kantaman antennille, jolloin yhteys katkeaisi kokonaan.

KUVA 6. Indikaattorit ja valintakytkin

2.1.2 Piirilevy

Koska ensimmäinen levy oli prototyyppi, haluttiin se suunnitella nopeasti ja yksinkertaisesti, jotta kytkennän toiminta voidaan tarkistaa ennen lopullisen levyn valmistusta. Piirilevylle lisättiin vain kaikki tarpeelliset komponentit, eikä liitettä essetä, jotta kytkennän toiminta voidaan tarkistaa ennen lopullisen levyn valmistusta. Komponenttien juotostäpläkuvioita ei suunniteltu vielä tässä vaiheessa, koska ei ollut varmuutta minkälaisia komponentteja hankitaan. Käytettyt komponentit tulisivat olemaan ensimmäiset, jotka kaapista löytyivät, joten komponenttien arvoillaan ei ollut suurta merkitystä.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Piirilevyn toinen vaihtoehtoinen valmistustapa olisi ollut käyttää piirilevyyrysintä. Jyrsimellä saataisiin todennäköisesti tarpeeksi tarkaa ja hyvänlaatuista jälkeä pienemmällä vaivalla, kuin syövyttämällä. Tässä olisi ollut huonoa puolustamaan verrattain sitkä ja halvaa, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Piirilevyn toinen vaihtoehtoinen valmistustapa olisi ollut käyttää piirilevyyrysintä. Jyr-simellä saataisiin todennäköisesti tarpeeksi tarkkaa ja hyvänlaatuista jälkeä pienemmällä vaivalla, kuin syövyttämällä. Tässä olisi ollut huonoa puolustamaan verrattain sitkä ja halvaa, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Piirilevyn toinen vaihtoehtoinen valmistustapa olisi ollut käyttää piirilevyyrysintä. Jyr-simellä saataisiin todennäköisesti tarpeeksi tarkkaa ja hyvänlaatuista jälkeä pienemmällä vaivalla, kuin syövyttämällä. Tässä olisi ollut huonoa puolustamaan verrattain sitkä ja halvaa, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Piirilevyn toinen vaihtoehtoinen valmistustapa olisi ollut käyttää piirilevyyrysintä. Jyr-simellä saataisiin todennäköisesti tarpeeksi tarkkaa ja hyvänlaatuista jälkeä pienemmällä vaivalla, kuin syövyttämällä. Tässä olisi ollut huonoa puolustamaan verrattain sitkä ja halvaa, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.

Suunnittelun valmistuttua tarkasteltiin, kuinka piirilevy valmistettaisiin. Piirilevy olisi voitu syövyttää, joskin reikien poraus, puolien tarkka sijoitus sekä läpikuparointi olisivat olleet hankalia. Tämä olisi ollut melko yksinkertainen työ, mutta koska laitteiden käyttäminen olisi vaatinut joko niiden hankkimista tai entiseen ammattikoulun menemistä, päätettiin, ettei tätä menetelmää käytettäisi.
tulevaisuutta varten, mitä mahdollisesti tulevassa työssä tarvitsisi tehdä, jos ajautuu piirilevysuunnittelun kanssa tekemisiin. Lopulta piirilevyltä saapuivat noin kolmen viikon kuluttua tilauksesta, joskin oma huolimattomuus hieman hidasti toimitusta, koska ensimmäisellä yrittämällä uupui yksi tiedosto, jota valmistaja tarvitsi.

KUVA 9. Valmis prototyyppipiirilevy

2.2 Kokoonpano

Piirilevyjen saavuttua valmistuksen jälki tarkastettiin silmämääräisesti, ja kun se todettiin hyväksi, ladottiin piirilevylle komponentit. Ensimmäinen virhe tapahtui tässä vaiheessa, kun huomaamatta oletettiin piirikaaviossa lukevien komponenttiarvojen olevan oikeat, vaikka ne olivat suunnitteluhjelmiston oletusarvoja. Suunnittelussa ei otettu kantaa kondensaattoreiden malliin, jonka vuoksi kondensaattoreiden juotostäplät olivat pintaliitokondensaattoreille tarkoitettuja. Tämä aiheutti hieman ongelmia radiaalielektroyyttikondensaattoreiden paikalleen juottamisessa (kuva 10).
KUVA 10. Prototyyppilevy komponentteineen

DIP-kytkimet korvattiin prototyypissä mikropiirikannalla. Tällä ei olisi periaatteessa merkitystä, koska testattaessa käytettiin kanavaa 1, jolloin kaikki pinnat kelluivat eli olivat irti. Lopullisessa versiossa tämä korvataan nelikanavaisella pintaliitos-DIP-kytkimellä, jolloin kanavan vaihtaminen on helppoa.

2.3 Testaus

Suorituskykyä mitattaessa järjestelmä kulutti 12 V:n jännitteellä virtaa noin 150 mA. Järjestelmä kytketään 12 V:n LIPO-akkuun, jonka kapasiteetti on 2200 mAh, tämä tarkoittaa
sitä, että akusta voi täyteen ladattuna ottaa 2,2 A yhden tunnin ajan. Tällöin akku menisi aivan loppuun, joka pilaisi akun. Akujen käyttämiseen on olemassa yleinen nyrkki-sääntö, jonka perusteella akusta ei saisi käyttää enempää kuin 80 %. Kolmekennoisen LIPO-akun jännite ei myöskään saa laskea pienemmäksi kuin 9,9 V, jolloin yhden kennon jännite on alle 3,3 V. Tällaisella akulla tätä piiriä voisi käyttää 14 tuntia. Jos samaan akkuun liittää järjestelmän vaatiman näytön, tulee käyttöajaksi todennäköisesti noin 5 tunnia.
3 LOPULLINEN VERSIO

3.1 Suunnittelu

Prototyypin testauksessa ilmeni ongelmia sopivien mittapisteiden käyttämisen kanssa, joften tähän versioon lisättiin testauspisteitä suoraan piirilevylle, jolloin jännitteiden mitattavuus helpottuu. Prototyyppissä ilmenneet komponenttien lämpenemiset koitetaan korjata lisäämällä juotospisteet, joiden avulla voidaan valita 12 V:n ja 5 V:n käyttöjännitteiden väliltä.

3.1.1 Piirikaavio

Lopullisen version haluttiin olevan täysin käyttövalmis kasaamisen jälkeen. Tämän takia kytkentään päätettiin lisätä virtaliittimet. Virtaliittimiksi päätettiin asettaa XD60, joka on eräänlainen standardi lennätystoiminnassa. Suurimmassa osassa lennätyskäyttöön myydyistä akuista on tällainen liitin, joten sen lisääminen oli varsin käytännöllistä. Lisäksi rinnalle päätettiin laittaa normaali 2,5 mm plug-tyylinen liitin. Tämä on käytännöllinen testauksessa, jolloin sähköt voidaan kytkeä ulkoisesta virtalähteestä. Kahden liittimen takia kytkentään lisättiin mahdollisuus poistaa toinen virtaliitin käytöstä, tämä onnistuu piirilevylä sijaitsevasta juotostäplistä. Näiden käyttäminen on kannattavaa varsinkin silloin,
jos on mahdollisuus, että käyttäjällä on kytkenässä kiinni LIPO-akku ja pistorasiaan kytetty virtalähde. Tällöin LIPO-akun ja virtalähteen välille syntyy oma virtapiiri, joka voi tuhota LIPO-akun, koska tällöin akkua ladattaisiin ilman virranrajoitusta.

KUVA 11. Virransyöttö

KUVA 12. Hakkurivirtalähde sekä jännitteen asetin

Eroina prototyyppiversioon ovat sekä RP SMA -liittimelle tehty, että DIP-kytkimelle tehty juotostäpläkuvio (kuva 13). Kondensaattori C8 on tässä versiossa muutettu oikean malliseksi, eli se on radiaalielktrolyyttiversio. RSSI-signaalille lisättiin testipiste, joka on kuvassa TP1-nimellä. Näitä testipisteitä lisättiin prototyypin jäljiltä sellaisiin kohtiin, joissa niiden huomattiin olevan tarpeellisia.

KUVA 13. Vastaanotinosas

KUVA 14. Vahvistin

Komparaattoriosaan lisättyjä ominaisuuksia ovat testipisteet sekä juotosillat käyttöjännitteille helpottamaan testausta ja vianetsintää (kuva 15). Kondensaattorit C7 ja C9 korvattiin radiaalielektrolyyteillä sekä trimmer-vastukselle tehtiin 3 mm pintaliitosmalli. Manuaalikytkimestä tehtiin oikeanlainen versio, jossa on korkeaimpedanssinasta, jolloin kytkentä toimii automaattiasetuksella. Komparaattorin ulostuloon lisättiin yksi testipiste, jotta voidaan tarkastella koko kytkennän toimintaa kokonaisuutena ennen videovaihdinta. Tällöin nähdään säätöjen kokonaisvaikutus kytkentään ilman, että olisi videolähettintä tai näyttöä saatavilla. Tästä voidaan päätellä, toimiiko itse analogielektroniikkakytkentä.
KUVA 16. Videovaihdin

3.1.2 Piirilevy

Komposiittivideosignaalien vedot pyrittiin pitämään mahdollisimman lyhyinä sekä muiden vetojen ylittäminen minimoihin. Tämän pitäisi vaikuttaa positiivisesti vedossa tapahtuviin ylikuulumisiin sekä impedanssiin.
Levyyn lisättiin neljä kiinnitysreikää, jotta levy voidaan kiinnittää 3D-tulostettuun koteloon. Reikien kooksi valittiin 3 mm, jonka pitäisi olla sopiva itsenäiselle M2-ruuville. Vasemman puoleiset reiät piirilevystä jouduttiin sijoittamaan keskemmälle piirilevystä vastaanotinmoduulin ja hakkurimoduulin takia (kuva 17).

KUVA 17. Piirilevyn mallinnus Altium Designerissä

3.2 Kokoonpano

RP SMA -antenniliittimille jyrsittiin käsityökalulla tilaa, jotta liittimen jalat olisivat mahdollisimman lähellä vastaanotinta. Tämän olisi voinut tehdä piirilevynsuunnittelussa, mutta suunnittelun aikana oli vielä epäselvää, minkälaisista liitintä käytettäisiin.

3.3 Testaus

[KUVA 19. Ladottu piirilevy]

[KUVA 20. Jännitelinjojen häiriöt]
Mittausten perusteella päätettiin jättää kondensaattorin pois, koska käyttöjännite pysyi puhtaana ilman sitä. Tällaisessa tapauksessa yhden kondensaattorin hinta ei ole kuitenkaan niin korkea, että sillä olisi suurta merkitystä kokonaishintaan. Kuluttajille tarkoitetuissa tuotteissa täällä olisi suurempi merkitys, koska valmistuskustannus haluttai aske mahdollisimman alhaiseksi. Lisäksi läpiladottavat radiaali elektrolyttikondensaattorit jouduttaisiin asentamaan käsin, jolloin piirilevyn ladonnassa hinta kasvaisi jonkin verran.

Muidenkin komponenttien jännitteenyötöt tarkastettiin oskilloskoopilla, jotta nähtäisiin, onko suurempia ongelmia jännitteen jakelussa. Operaatiovahvistimien sekä videovaihtimen jännitenastoista mitattiin noin 20 mV:n kohinaa, jonka ei pitäisi vaikuttaa toimintaan, joten niiden annettiin olla sellaisenaan.

Kytkennän toimivuus voidaan testata mittaamalla yksinkertaisesti jännitteet eri testipisteistä, joita sijaitsee kytkennässä. Testipisteiden mittaukset toimivassa kytkennässä olivat seuraavat (taulukko 1).

<table>
<thead>
<tr>
<th>Mittapiste</th>
<th>Jännite (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>0,88</td>
</tr>
<tr>
<td>TP2</td>
<td>0,4</td>
</tr>
<tr>
<td>TP3</td>
<td>1</td>
</tr>
<tr>
<td>TP4</td>
<td>0,896</td>
</tr>
<tr>
<td>TP5</td>
<td>3,82</td>
</tr>
<tr>
<td>TP6</td>
<td>1,02</td>
</tr>
<tr>
<td>TP7</td>
<td>0,376</td>
</tr>
</tbody>
</table>

TAULUKKO 1. Testipisteiden jännitemittaukset toimivassa kytkennässä

KUVA 21. Lähikenttämittapäähän indusoitunut häiriöteho

Lisäksi suoritettiin tarkemmin spektrianalyysaattorilla ja sähkökentän mitakärjillä hakkurivirtalähteen yläpuolelta, ja huomattiin että hakkuri ei kummemmin lähetä häiriötä 5,8 GHz kaistalla. Mittausten perusteella hakkuri säteilee 1 MHz:n ja sen monikertojen taajuksille (kuva 22). Liitteessä 5 olevassa datakirjassa mainitaan kytkentätaajuuden olevan 1 – 1,5 MHz:n välillä.

KUVA 22. Hakkurista säteily

KUVA 23. Lämpökamerakuva laitteesta

4 KOTELO

4.1 Ensimmäinen versio

4.1.1 Suunnittelu

Valmiille piirilevylle haluttiin tehdä kotelo, joka suunniteltiin ja valmistettiin 3D-tulostamalla. Ensimmäinen prototyyppi tehtiin itse 3D-tulostimella, ja kun kotelo on todettu sopivan kokoiseksi ja toimivaksi tullaan se tilaamaan esimerkiksi Shapeways palvelusta, joka tulostaa laadukkaammilla tulostimilla.

Koteloon haluttiin liittimille ja kytkimille sopivat reiät sekä, koska vastaanottimet lämpenivät jonkin verran tuli niille tehdä tuuletusreikiä kylkiin. Ominaisuudeksi tehtiin valonjohtimet LED-valoille, jolloin kotelon sisällä olevat valot saatiin näkymään kotelon ulkopinnalle (Kotelon kansi, liite 11). Etulevyyn tehtiin syvennys jolloin etulevyyn voidaan lisätä paksulle muoville tulostettu hyvän näköinen etupaneeli.

Suunnittelu tehtiin Autodesk 123D CAD-ohjelmalla, joka valittiin sen yksinkertaisuuden ja helppouden takia. Kyseistä ohjelmaa käytettiin ensimmäistä kertaa, joten ohjelman käyttöä opeteltiin samalla. Youtube-videopalvelussa on monia ohjeita tätä ohjelmaa varten, sekä itse ohjelmassa on melko hyvät ohjeet aloittelijoille.

KUVA 24. Kotelon pohjaosa

KUVA 25. Kotelon kansi
4.1.2 Tulostus

Tulostamiseen käytettiin Prenta Oy:n valmistamaan Prenta Duo 3D-tulostinta. Tulostettaessa kerrosvahvuudeksi asetettiin 0,25 mm. Kotelon pohja ja kansi tulostettiin samaan aikaan vierekkäin, koska tulostusalue oli tarpeeksi iso (kuva 26), ja näin säästettiin tulostusaikaa. Tulostusaika oli noin 3,5 tuntia näillä asetuksilla.

KUVA 26. Kotelon tulostus

Koteloa jouduttiin tulostuksen jälkeen hiomaan muutamasta kohdasta, jotta piirilevy asetti kunnollisesti sisälle ja että kansi mahtui kiinni (kuva 27). Tämä johtui siitä, että suunnitteluvaiheessa ei otettu huomioon toleransseja. Tulostaessa viimeistä kerrosta tulostuksen paksuus ei ole aivan tarkka, jolloin päällekkäin menevät osat ovat hieman liian isoja. Tällaisia kohtia jouduttiin hiomaan pienemmiksi. Lisäksi tuuletusritilöihin tuli tulostus-jäämiä, koska tulostin ei pysty tulostamaan tyhjän päälle kunnollisesti.
4.2 Toinen versio

4.2.1 Suunnittelu

Kanteen lisättiin ristituet, jotta ruuvikiinnikkeet pysyisivät paremmin kiinni, ja että niitä ei tarvitsisi liimata. Kannen pinnalle lisättyjen numeromerkintöjen pienennettiin. Ulkoreunoihin lisättiin sisäkorvat, jotta kansi ja pohja saadaan helpommin paikalleen. (Kotelon kansi, liite 11)

4.2.2 Tulostus

Edellä mainituista vioista huolimatta piirilevy mahtui kotelon sisään. Antennien reiät sekä liittimien paikat olivat oikealla kohdalla ja niitä ei täytynyt muokata jälkiäteen. Liittimien välissä olleet kapeat seinämät jouduttiin poistamaan kokonaan, koska ne eivät kestäneet kosketusta (kuva 29). Tämä johti tulostimen tekemästä virheestä, jonka takia kapean ja kiinteän seinämän liitoskohta tuli heikoksi.

5.1 Skew planar-antenni

Skew planar -antenni on tunnettu yhtenä parhaimmista vastaanotinantenneista. Antennielementin rakenne koostuu neljästä korvasta, jotka ovat 90° kulmassa suhteessa toisiinsa. Antennin rakenteella saadaan aikaiseksi donitsin muotoinen säteilykuvio (Skew planar säteilykuvio, liite 3). Elementin pituudet on suunniteltu tarkasti sen käyttämälle taajuusalueelle (kuva 30).

KUVA 30. Omatekoinen Skew planar-antenni
5.2 Helix-antenni

Suuntaava antenni rakennettiin käyttämällä yksipuolista piirilevyahiota, josta leikattiin 50 mm x 50 mm alue. Kierremäinen antennielementti rakennettiin käyttämällä 16 mm PVC-sähköputkea, jonka ympärille kierrettiin emaloitua käämilankaa. Sovitus 5,8 GHz taajuudelle tehtiin leikkaamalla 3,2 mm x 6,4 mm kokoinen kuparilevy, joka juotettiin elementin ja liittimen välille (kuva 31). Tämä on yksinkertaisin ja halvin sovitus, mitä voidaan tehdä.

KUVA 31. Itse tehty Helix-antenni
6 POHDINTA

KUVA 32. Laite koottuna

RSSI:n avulla toimivat monimuotoisuuskontrollerit eivät ole välttämättä parhaimpia, mitä voi olla. RSSI-arvot eivät aina ole oikein, jotkin häiriöt voivat nostaa RSSI-arvoa, jolloin tapahtuu virhevaihtamisia. Lisäksi läheisyydessä toimivan toisen lähettimen lähete saattaa sekoittaa vaihtimen, jolloin vaihdetaan väärään videokuvaan. Jotta tämä voitaisiin estää, tulisi vaihtimeen lisätä älykkyyttä, jonka avulla tarkka- ja tarkka- ja videon laatu on parempi. RSSI-signaalin ja videonlaadun tarkkailulla saataisiin todennäköisesti paljon parempia toimintoja, mutta täällä kytkentä olisi monin verroin monimutkaisempi, jossa täyttyisi olla prosessori sekä digitaalista signaalinkäsittelyä.
LÄHTEET

Viestintävirasto 15 AH/2015 M
Liite 1. Prototyypin piirikaavio
Liite 2. Lopullisen kytkennän kytentäkaavio
Liite 3. Skew planar säteilykuvio

Tot-gain [dBic]
Vertical plane

1280 MHz
-113 < dBi < 1.19
Phi= 250

Tot-gain [dBic]
Horizontal plane

1280 MHz
0.14 < dBi < 1.26
Max gain Phi.25

Theta= 110
MODE: RX5808

5.8G AV receiver Module

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF input impedance</td>
<td>50</td>
<td>Ohm</td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>-80</td>
<td>dBm</td>
</tr>
<tr>
<td>Receiver Frequency range</td>
<td>5705</td>
<td>MHz</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>3.5</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>170</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-10</td>
<td>°C</td>
</tr>
<tr>
<td>Video Band Width</td>
<td>0</td>
<td>MHz</td>
</tr>
<tr>
<td>Audio carrier Frequency</td>
<td>6.5</td>
<td>MHz</td>
</tr>
<tr>
<td>Video output Level</td>
<td>1.0</td>
<td>Vp-p</td>
</tr>
<tr>
<td>Video output Impedance</td>
<td>75</td>
<td>Ohm</td>
</tr>
<tr>
<td>Audio output Level</td>
<td>1.2</td>
<td>Vp-p</td>
</tr>
<tr>
<td>Audio output Impedance</td>
<td>10K</td>
<td>Ohm</td>
</tr>
<tr>
<td>Weight</td>
<td>10</td>
<td>g</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td>28 x 23 x 3 mm</td>
<td></td>
</tr>
</tbody>
</table>
Liite 5. Mini DC-DC

Features

- Input voltage: 4.5V-28V
- Output voltage: 0.8V-20V
- Output current: maximum 3A
- Conversion efficiency: maximum 96%
- Output Ripple: <30mV
- Switching frequency: 1MHz, maximum 1.5MHz
- Operating temperature: Industrial grade(-40°C to +85°C)
- Dimension: 22 * 17 * 4mm

Unit: (mm)
Liite 6. Normal Condition of PCB capabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layers</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Material</td>
<td>FR-4</td>
</tr>
<tr>
<td>Board Dimension (max)</td>
<td>380mm X 360mm</td>
</tr>
<tr>
<td>Board Dimension (min)</td>
<td>10mm X 10mm</td>
</tr>
<tr>
<td>Outline Dimension Accuracy</td>
<td>± 0.2mm</td>
</tr>
<tr>
<td>Board Thickness</td>
<td>0.40mm - 2.0mm</td>
</tr>
<tr>
<td>Board Thickness Tolerance</td>
<td>± 10%</td>
</tr>
<tr>
<td>Dielectric Separation thickness</td>
<td>0.075mm - 5.00mm</td>
</tr>
<tr>
<td>Conductor Width (min)</td>
<td>0.15mm (Recommend > 8mil)</td>
</tr>
<tr>
<td>Conductor Space (min)</td>
<td>0.15mm (Recommend > 8mil)</td>
</tr>
<tr>
<td>Outer Conductor thickness</td>
<td>35um</td>
</tr>
<tr>
<td>Inner Conductor thickness</td>
<td>17um - 100um</td>
</tr>
<tr>
<td>Copper to Edge</td>
<td>> 0.3mm</td>
</tr>
<tr>
<td>Plated Component, Plated via Diameter (Mechanical)</td>
<td>0.3mm - 6.30mm</td>
</tr>
<tr>
<td>Plated Hole Diameter Tolerance (Mechanical)</td>
<td>0.08mm</td>
</tr>
<tr>
<td>Unplated Hole Diameter Tolerance</td>
<td>0.05mm</td>
</tr>
<tr>
<td>Hole Space (min)</td>
<td>0.25mm</td>
</tr>
<tr>
<td>Hole to Edge</td>
<td>0.4mm</td>
</tr>
<tr>
<td>Annular Ring (min)</td>
<td>0.15mm</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>8:01</td>
</tr>
<tr>
<td>Solder Resist Type</td>
<td>Photosensitive ink</td>
</tr>
<tr>
<td>Solder Resist Color</td>
<td>Black, Green, White, Blue, Yellow</td>
</tr>
<tr>
<td>Solder Resist Clearance</td>
<td>0.1mm</td>
</tr>
<tr>
<td>Solder Resist Coverage</td>
<td>0.1mm</td>
</tr>
<tr>
<td>Plug Hole Diameter</td>
<td>0.3mm - 0.65mm</td>
</tr>
<tr>
<td>Selective Finish</td>
<td>HASL, ENIG</td>
</tr>
<tr>
<td>Silkscreen line width (mil)</td>
<td>6mil</td>
</tr>
</tbody>
</table>

Note: Routed via and blind via are not supported.
Liite 7. Requirements on the PCB Design

1. Measure the length and width of the board.
 No matter what shape your PCB design is, the length and width must take the max values. You should type the max values into the PCB width and length columns when place the small batches PCB order.

![Diagram of PCB star shape with max length and width标注](image)

2. About Silkscreen
 - Silkscreen line width (min: 6mil)
 - Silkscreen text height (min: 32mil)

3. About Via
 - Blind via
 - Through via
 - Buried via

Blind via and buried via are not within our capability for the moment. In other words, only through via will be accepted.
Liite 8. Gerber Files Requirements

1. Gerber files needed for 1-layer PCB boards:
 Bottom/Top layer: pcbname.GBL/GTL
 Solder Stop Mask Bottom/top: pcbname.GBS/GTS
 Silk Bottom/Top: pcbname.GBO/GTO
 NC Drill: pcbname.TXT

2. Gerber files needed for 2-layer & 4-layer PCB boards:
 Top layer: pcbname.GTL
 Inner Layer 1: pcbname.GL1 (for 4-layer board)
 Inner Layer 2: pcbname.GL2 (for 4-layer board)
 Bottom layer: pcbname.GBL
 Solder Stop Mask top: pcbname.GTS
 Solder Stop Mask Bottom: pcbname.GBS
 Silk Top: pcbname.GTO
 Silk Bottom: pcbname.GBO
 NC Drill: pcbname.TXT
 Outline layer: pcbname.GKO or pcbname.DO

Note:
 All the gerber files must be in RS-274x format, except the drill file should be in Excellon format.
 If there is no pcbname.GKO or DO file, please make sure the PCB outline or shape shall at least be specified in other layer, silkscreen or soldermask layer etc.
 If soldermask layers are not required, please clarify surface finish for both sides when you submit your gerber files.
<table>
<thead>
<tr>
<th>Osoite Designator</th>
<th>Footprint LibRef</th>
<th>Quantity</th>
<th>Yksikköhinta Mouser</th>
<th>Hinta € Mouser</th>
</tr>
</thead>
<tbody>
<tr>
<td>U3</td>
<td></td>
<td>10</td>
<td>80 €</td>
<td>31,532</td>
</tr>
<tr>
<td>TR2</td>
<td></td>
<td>1</td>
<td>2,735</td>
<td>107,55</td>
</tr>
<tr>
<td>SW1, SW2</td>
<td></td>
<td>20</td>
<td>0,029</td>
<td>0,546</td>
</tr>
<tr>
<td>C1, C3, C4, C6</td>
<td></td>
<td>40</td>
<td>6 €</td>
<td>2410</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td>100</td>
<td>41,36</td>
<td>14,67</td>
</tr>
<tr>
<td>R4, R5, R6</td>
<td></td>
<td>40</td>
<td>2,62 €</td>
<td>41,36</td>
</tr>
</tbody>
</table>

Kohde:
- http://fi.mouser.com/ProductDetail/Maxim-Integrated/MAX4547CEE+/?qs=sGAEpiMZZMvjbjwkTuU2adNBxajZCeJG9Ojky59bSbI3d
- http://eu.mouser.com/ProductDetail/Lelon/RGA101M1EBK-0611G/?qs=sGAEpiMZZMvwFf0viD3Y3ZPeeWspSkPKwMATVGPRbS8
- http://eu.mouser.com/ProductDetail/Bourns/TC33X-2-504G/?qs=sGAEpiMZZMtC25l1F4XBU%2fs9VYiqoifi6f1FSJbkWZU

Liite 9. Bill of Materials
Design Rule Verification Report

Date: 12.7.2015
Time: 14:27:24
Elapsed Time: 00:00:01
Filename: \1\theus\ah1dm\NetCheck\Kousu_hommel\Upjrn\ayetv\Upgr\ayetv\S-PkgDoc

Summary

<table>
<thead>
<tr>
<th>Rule Violations</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnings</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule Violations</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room opjrn\ayetv\ (Bounding Region = (1049.999mml, 2050.001mml, 4749.999mml, 4950.001mml)</td>
<td>0</td>
</tr>
<tr>
<td>[InComponentClass(opjrn\ayetv)]]</td>
<td></td>
</tr>
<tr>
<td>Net Antennae (Tolerance=0mil)</td>
<td>0</td>
</tr>
<tr>
<td>Silk printflow without silk layer</td>
<td>0</td>
</tr>
<tr>
<td>Silk to Silk (Clearance=3.037mil) (All) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Silk To Solder Mask (Clearance=5.905mil) (Lpad) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Minimum Solder Mask Silver (Gap=4mil) (All) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Hole To Hole Clearance (Gap=7.074mil) (All) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Hole Size Constraint (Min=12mil) (Max=25mil) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Width Constraint (Min=4mil) (Max=40mil) (Preferred=20mil) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Power Plane Connect Rule(Relief Connect Y)Expansion=19.665mil (Conductor Width=11.811mil / Air Gap=11.811mil)</td>
<td>0</td>
</tr>
<tr>
<td>[Entries=1 (All)]</td>
<td></td>
</tr>
<tr>
<td>Clearance Constraint (Gap=8mil) (All) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Un-Rooted Net Constraint (All)</td>
<td>0</td>
</tr>
<tr>
<td>Short-Circuit Constraint (Allowed=No) (All)</td>
<td>0</td>
</tr>
<tr>
<td>Clearance Constraint (Gap=0mil) (IsStitchingVia and InNet("GND") (IsVia and (Not IsStitchingVia) Or IsPad)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>
Liite 11. Kotelon kansi
Liite 12. Hakkuriregulaattori