
Matias Arpikari

Weather Map Design and
Configuration User Interface

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

15 January 2016

Abstract

Author
Title

Number of Pages
Date

Matias Arpikari
Weather Map Design and Configuration User Interface

53 pages + 6 appendices
15 Jan 2016

Degree Master of Engineering

Degree Programme Information Technology

Specialisation option Telecommunications

Instructors Ville Jääskeläinen, Principal Lecturer
Tuomo Lauri, System Designer

During the past few years in the field of weather map production there has been an
increasing awareness of the importance of more informative, decorative and up to
date layouts for the weather products. Additionally, the weather products should
only be created on demand in order to save server computing power and storage
resources.

This has led the case organization, the Finnish Meteorological Institute, to consider
more modern ways to produce, configure and deliver weather data to the audi-
ences.

This thesis concerns the creation of the design and configuration user interface for
weather maps and animations. The requirements for the user interface included
that it had to be effortless to use even for the non-technical end users of the case
organization. Additionally, the user interface should be implemented in the existing
weather delivery channel of the case organization.

The theoretical part of this thesis describes the main principles for creating a test
plan to acquire information of the user interface even without writing a single line
of code.

In the practical part, the acquired test results were utilized to develop an easy to
use interface and a working prototype was developed. The methods and theory
presented in the thesis should be applicable to other user interface design and
development projects too.

The findings of this study indicate that it is recommended that the case organiza-
tion utilizes the usability testing methods increasingly in the future to achieve user
friendly user interfaces in the upcoming UI development projects.

Keywords meteorology, weather, user interface, usability, paper prototyping,
user experience testing

Contents
 Glossary ...1
1 Introduction ..2

1.1 Weather Data Production in the Case Organization ..2
1.2 Current Technical Challenges ..4
1.3 Objective ...5
1.4 Scope and Content ...7
1.5 Research Design and Structure ..8

2 Background ..10

2.1 Core Concepts in Weather Image Production ...10
2.2 Current Production System at the Case Organization 11
2.3 Obstacles Solved ...11
2.4 Obstacles to Be Solved ...12
2.5 Requirements ..12
2.6 Standards and Technologies ...12
2.7 Contradictions ...13

3 Principles of User Interface Design and Usability Theory 14

3.1 Usability Testing Theory ..17
3.2 Usability Testing Criticism ..21
3.3 Creating Test Plan ...22

3.3.1 Reporting and Decision Making ...22
3.3.2 Gathering Information of Needed Features ..22
3.3.3 How to Create Usable Interface? ...23
3.3.4 Paper Prototyping ..24
3.3.5 Testing while Developing ..26
3.3.6 Final Testing and Continuous Improvements ..26

4 Description of Solution ...27

4.1 Gathering Information of Needed Features ...30
4.2 Creating Test Plan and Executing Tests ..33
4.3 Development of User Interface ..37

5 Testing and Evaluation of Solution ...48

6 Discussion and Conclusions ..50

7 References ..52

1

Glossary

Brainstorm An HTTP based weather data API developed and used by the

Finnish Meteorological Institute.

Dali The name of the back end system for the weather image production.

The name comes from Salvador Dali, the famous artist.

Geoserver GeoServer is an open source server for sharing geospatial data.

Ilmanet Ilmanet is an HTTP based weather product delivery system which is

maintained and developed by the Finnish Meteorological Institute

and used by it's employees and customers.

Ilmatie The administration section of the Ilmanet. Only available for the

employees of the Finninsh Meteorological Institute.

JSON JavaScript Object Notation, is an open standard format that uses

human-readable text to transmit data objects consisting of attribute–

value pairs.

MetOClient
UI

MetOClient UI is an open source JavaScript library developed by the

Finnish Meteorological Institute which expands the OpenLayers

library with visualized animation features.

Model Computer calculated weather predictions.

qdcontour A contouring program developed and used by the Finnish

Meteorological Institute to read querydata format and draw static

weather images like jpeg or png formats.

SVG Scalable Vector Graphics

UI User Interface

WMS A Web Map Service (WMS) is a standard protocol for serving

georeferenced map images over the Internet that are generated by a

map server using data from a GIS database. The specification was

developed and first published by the Open Geospatial Consortium in

1999.

2

1 Introduction

The case organization, the Finnish Meteorological Institute (FMI), serves as a weather

research and service agency. The case organization provides the best possible

information of the weather in Finland and in areas nearby. The case organization also

ensures the public safety by providing information and warnings of possible airborne

hazards and satisfies the need for specialized meteorological products.

There are around 400 weather stations in Finland managed by the case organization.

The stations measure different weather parameters which are then delivered near real-

time to the case organization's database. In addition to ground stations weather data is

gathered from many other sources such as weather radars and satellites. While the

measurements show the current weather condition the weather forecast models serve

the need to predict the future. Different forecast models are produced around the world.

The case organization itself produces a multitude of different models and some are

exchanged with other similar agencies.

The data itself is often raw, meaning that it is basically in some binary format or simple

numerical data which usually do not tell too much to an inexperienced eye. This is why

it is important to process the raw data into an understandable and effortless format.

Images and especially animations are a good way of delivering a lot of weather

information quickly and so that it is easy to understand.

1.1 Weather Data Production in the Case Organization

The Finnish Meteorological Institute has to deal with huge amounts of data. The

weather data itself is often not self-evident but requires a lot of processing into an

understandable format. There are definitive separations between the raw data and the

actual end-user products. Therefore, the case organization has to find ways to optimize

this process because now a lot of it is done by manual processes. Basically, all work

revolves around the data collection, processing and delivery, and all of these steps

have many challenges.

Due to this the production chain is relatively slow and the produced weather images

are often not representative enough, and it is important that the case organization can

3

produce more informative, decorative and up to date layouts, images and other

weather products faster. Figure 1 shows an old animation configuration user interface.

In Figure 1 there is a screen shot of the old weather animation configuration user

interface (Animbrowser website, 2015). While it is still functional and in use it lacks the

flexibility and is rather difficult to configure. Additionally, the old weather animations are

not responsive enough and are not updated frequently enough.

Figure 1: Old animation configuration user interface (Animbrowser website, 2015).

4

1.2 Current Technical Challenges

The current challenge is the automation of the production and ease of configuration of

visually impressive weather images, maps and animations. Presently, the case

organization can already produce weather images but the configuration is still very

difficult and time consuming with the case organization's old hard-coded and highly

specific drawing systems. Also, the variation of different kinds of weather image

products as well as the real time requirements are rapidly growing, so the case

organization needs to address this by developing a production system that answers to

the needs.

For this reason a back end system Dali is currently being developed. Dali aims to

produce more attractive weather images in SVG format but its configuration is currently

challenging and practically impossible for non-technical persons (Heiskanen, 2015).

The design and development of the weather image configuration user interface was

conducted at the Finnish Meteorological Institute. A new configuration user interface

was needed because previously the configuration was by large extent a manual

process. The manual process was time consuming and required technical expertise.

Additionally, the images were previously all created every time new data was available.

This consumed a lot of computer power. The new system creates weather images only

when needed. The goal was to create a user interface that does not need any special

technical knowledge of how to configure weather images and which is in production

after the study was finished.

The user interface greatly speeds up the deployment time and releases the resources

of the programmers for other tasks. The main end users are the sales managers of the

case organization who may with the help of the user interface independently configure

and create showy weather images for their customers.

The case organization has not widely utilized user interface and usability testing in

previous projects so this thesis targets to serve as an insight to this kind of software

development.

5

1.3 Objective

This study is about designing and developing an easy-to-use user interface for

configuring the back end system. The technical challenge for this study relates to the

need of the case organization to improve the automation and distribution of

configuration of weather refining processes to configure the images by people who

have different levels of technical background.

The case organization aims at producing an intuitive and self-evident system which will

ease up the configuration of weather images and animations. The case organization

has its own web-based weather product delivery system (Ilmanet) which is planned to

serve as the host for this new configuration user interface. In addition, a research

needs to be done on how much configuration will eventually be allowed via the user

interface.

To create such a user interface requires knowledge of the configuration of the back end

system of the weather image engine (Dali) as well as the Weather Map Service (WMS)

and the Geoserver which is an open source server for sharing geospatial data. Basic

knowledge of the SVG image technology and manipulation is also needed. In addition,

the best practises of how to design and develop an usable browser based configuration

interface were researched. The finalized user interface produces JSON configuration

files for the back end according to the user's specifications. Figure 2 shows the process

map of the weather map confiruration.

6

This study aims to design and develop an easy-to-use user interface to configure the

weather image production back end system. The simplified process map of the

configuration is shown in Figure 2. The green box (Animation Configuration UI) in the

figure indicates the main objective of this study. Other technologies needed in the

project were PHP, JavaScript, CSS and HTML.

To make this improvement, the case organization had to deal with the following issues:

1. Gather information on what needs to be configured and how the UI should be

designed

2. Research the best practises in user-centered design

3. Develop the UI

4. Test the UI and improve the UI according to the feedback

Figure 2: Process map of the weather map configuration.

7

1.4 Scope and Content

This study describes how to design and develop a fresh and easy-to-use user interface

for configuration of the weather image production system. For this to be achieved

information of different configurable parameters needed to be decided and collected.

The best methods of creating a self-evident and effortless user interface are also

discussed. The user interface had to be easily adopted by those with little or no

technical background.

The main task was to actually develop the user interface. The goal was to design and

program it so that it is easy to refine and develop later in a way that nothing would be

blocked out during the process. An important part of the thesis was the initial test with

the paper prototypes to gather information and minimize the unnecessary work.

A test period was defined during which the testers could provide feedback and changes

were made accordingly. After this the user interface was taken into production. The

development of Dali is not included in this study.

Another feature out of the scope of the thesis was the accessibility. Accessibility refers

to the design of products, devices, services, or environments for people with disabilities

and is often considered in user interface design. Accessibility is disregarded because

the end solution is used only internally by the account managers and technical

personnel. This is not to say there will never be disabled persons using the

configuration UI but the accessibility as a whole is a much bigger task than this study

could include. Additionally, the surrounding framework is not designed to be accessible

so it makes no sense to design and develop the configuration UI in such a way. Of

course, some key principles of accessibility are discussed.

Since the solution in this thesis was done for a specific case organization and inside a

specific product delivery channel (Ilmanet) the actual end product is not necessarily

reusable. But the presented theory on how to produce scalable and rich image services

can be used as a starting point for creating one's own production system. Additionally,

the part of how to design and test a self-explanatory and easy-to-use user interfaces

for non-technical persons is likely to be applicable in most web applications.

8

Since the solution was implemented into the still non-responsive framework of Ilmatie

(the administration section of the Ilmanet) the responsiveness was disregarded in this

study. The client application (MetOClient) is of course responsive but the development

of that was mainly out of scope of this thesis. The exclusion of responsiveness

speeded up the actual programming but did not set a limitation for such a technology to

be implemented later.

1.5 Research Design and Structure

The design part of the user interface started with an examination of the requirements of

the configuration tool. This included researching the documentation and functionality of

the back end system (Dali) and finding out the parameters which needed to be

configurable via the user interface. The expectations of the sales managers were also

taken into account. Additionally, the user interface was programmed so that it would not

narrow down the future development. Next, the current best practise user interface

literature was studied in order to create an intuitive and self-explanatory user

experience since the end users are inexperienced with technical configuration.

Additionally, a preview functionality was added.

A prototype user interface programmed with PHP, JavaScript, CSS and HTML was

presented. A series of test periods were arranged for the colleagues and the sales

managers and based on the user feedback modification needs were discussed and

made to the user interface.

To accomplish the requirements of the weather map design and configuration user

interface research of the best practise usability literature was done. Additionally, the

test and interviewing results are presented here and development decisions were

made accordingly.

The thesis consists of six main chapters. After an introduction, background and basis of

the weather map production were presented in Chapter 2. This includes a short

description of the current situation and the obstacles detected. Second, some general

and advisable principles of how to design and develop an user interface that is

considered as usable are discussed in Chapter 3. Additionally, a short introduction to

the usability testing is given and an example of paper prototype testing for gathering

information for the user interface is presented in Chapter 3. Finally, the development of

9

a prototype application is explained in Chapter 4 and the results of the solution are

evaluated in Chapter 5 and the discussion and conclusions are presented in Chapter 6.

10

2 Background

This section describes the background and requirements in an automated weather map

production system in the case organization. Some of the best practices in user-centred

user interface design and guidelines are also presented.

2.1 Core Concepts in Weather Image Production

In order to produce automated weather images and other related rich products one has

to have knowledge of weather map visualization technology. The procured raw weather

data has to be refined into descriptive and understandable images. There are a number

of different existing visualization tools developed by other meteorological institutes

such as Metview, Synopsis and SatRep (Tervo, 2011; 25-27).

It has been a trend for some years already to allow users to interact with the web

applications rather than just display the information. This greatly improves the user

experience by allowing the user to decide what and to display the information. In the

case of weather images this might include things such as how the user specified

weather parameters, location and time.

Since the weather data is almost always location based it often makes sense to display

it on a map. Another thing to consider is that weather changes over time. Thus, some

kind of an animation is many times an apparent way to present the data. One might

also be interested on how the weather develops around the specific location which is

why zooming and dragging are useful functionalities for a pleasant user experience.

Until the zoomable and draggable user interfaces such as the OpenLayers as well as

on-demand map servers such as the Geoserver were developed and became widely

supported huge numbers of weather images needed to be created in advance, even

though no one ever looked at them (Open Source Geospatial Foundation 2015). This

consumed a lot of physical disk space and server time. The old way of doing weather

map animations meant that there needed to be a massive number of already

processed weather images located somewhere in the memory of the server. It is

estimated that the Customer Services unit of the case organization alone created

around one million images per day (Tervo, 2011; 8). These images were then fetched

11

and displayed to the user with various technologies and they existed regardless if

anyone ever downloaded them. Additionally, the known and even expected features of

today like the zooming and dragging were troublesome with the old weather image

systems.

2.2 Current Production System at the Case Organization

The case organization has traditionally used an in-house program called the qdcontour

for the weather image production. Although the current system is still operational the

configuration of this program is complex and time consuming which is why the case

organization has decided to develop a new weather image production system called

Dali. Dali is a part of the next generation weather data production system called the

Brainstorm. Dali also solves the problem where the images can be created just when

needed and unnecessary storage consumption can be minimized. Additionally, the

reason for not relying solely to the existing systems (e.g. MapServer or GeoServer) to

produce the weather images is that they had quality issues and difficulties supporting

certain wanted properties (Tervo, 2011; 38-39).

The case organization utilizes the Open Geospatial Consortium (OGC) standards such

as the Web Map Service (WMS) protocol to serve the maps and weather images

produced by Dali.

2.3 Obstacles Solved

The case organization has already solved many obstacles of how to automate the

production of attractive, rich and on-demand weather images. These solutions include

the hardware and software for the map servers, enduring databases, geospatial

technologies, back end production systems, etc.

MetOClient is an open source JavaScript library developed by the case organization to

display weather images. It utilizes the OpenLayes library and supports both the WMS

and Dali images. MetOClient was chosen to be the user interface through which the

case organization serves the specially configured weather images to its customers.

12

2.4 Obstacles to Be Solved

Although Tervo (Tervo, 2011; 75) presented one possible solution for the configuration

user interface in his thesis, he found out that it needed too much of technical

knowledge. So, the case organization is still missing the self-explaining and easy-to-

use user interface for designing and configuring the weather image and animation

products. The user interface needs to be clear enough and easily adoptable even for

the non-technical persons. How to design and develop such an interface is the main

emphasis of the present study.

2.5 Requirements

Since the weather image configuration user interface is meant to be a part of the

internal weather product delivery channel Ilmanet there are some limitations to

consider. Ilmanet has an administration section called the Ilmatie. Ilmatie was designed

so that independent plugins can be developed via the Ilmatie application interface. The

main implementation technology is JavaScript and its supporting framework jQuery.

Since Ilmatie is a PHP based framework the plugin needs programming in PHP too.

The weather map configuration UI should output JSON formatted string that is to be

stored in the Ilmanet database. The JSON needs be in the format specified by the

client library MetOClient which does the visualization of the end product (see

Reference 1 for an example).

Additionally, the UI should be usable for the non-technical Account Managers of the

case organization. The end users need to be able to login to the Ilmatie and create a

new weather animation for the customer. The end user needs to be able to do the

weather animation configuration easily and without technical knowledge. Finally, the

configured weather animation needs to be visible to the customer in the Ilmanet.

2.6 Standards and Technologies

This chapter shortly describes some of the key standards and technologies that need

to be understood in order to create a solution. The standards and technologies involve

downloading or displaying configured geospatial data in a web browser.

13

Scalable Vector Graphics (SVG) is an open standard of an XML-based vector image.

Usually one XML document defines the SVG image and can it be scaled to any size

without any loss of the quality. Since the image is basically just XML the content can be

easily manipulated with any text editor or programming languages such as JavaScript

and viewed in all modern web browsers. (W3C, http://www.w3.org/Graphics/SVG)

JavaScript Object Notation (JSON) is an open standard and completely language

independent format to describe data objects as attribute-value pairs. The benefit of the

JSON over XML is that it is considered to be easier to write and read. (W3C,

http://www.w3schools.com/json/)

A Web Map Service (WMS) is a standard protocol for serving georeferenced map

images over the Internet. The WMS provides an HTTP interface for requesting geo-

registered map images from one or more distributed geospatial databases. The

response of the WMS can be an image like a JPEG or PNG which can be displayed in

a browser application. The WMS interface also supports transparency so that multiple

different layers may be displayed on top of each other. (Open Geospatial Consortium,

http://www.opengeospatial.org/standards/wms)

Geoserver allows users to share and edit geospatial data. It supports a number of open

standards such as Web Feature Service (WFS) and Web Map Service (WMS). It is

possible to create and edit different kinds of layers in the Geoserver. These layers may

then be displayed in a client application. (Geoserver, http://docs.geoserver.org)

2.7 Contradictions

The case organisation already has a working production system for creating weather

maps. The problem is that the configuration of the current system requires technical

knowledge and plenty of time as well as resources from the developers. Additionally,

the current system is unable to serve the ever growing need to produce more attractive

weather maps in an efficient way. The purpose of this thesis is to alleviate these

contradictions by providing recommendations and solutions to the problems in the

current system.

14

3 Principles of User Interface Design and Usability Theory

This chapter describes how good and easy user interfaces should be designed. If one

considers it any user interface is basically a form. Forms are used to collect

information in an organized format from the users. Almost every form, or a UI therefore,

usually includes different kinds of selectors and control inputs. It is quite easy to create

a complex UI but designing a self-explanatory and effortless UI needs some planning

and testing.

One should consider the following key design principles (Wroblewski, 2008; 19):

1. Minimize the pain. No matter how great design and functionality the UI has

people actually only want what is on the other side of the form.

2. Illuminate the path to completion. Show the steps what it takes to complete

the task to get to the other side of the form.

3. Consider the context. All forms have different target audiences, applications

and businesses. Consider how to implement the form into the context.

4. Ensure consistent communication (one voice instead of many from i.e.

marketing, privacy, engineering, design, business).

Effortless UI includes only what it needs and no more. Asking unnecessary information

is a fault (Jarrett & Gaffney, 2008). If some information is not needed it is best to

remove it completely. If it is needed only every now and then one should consider

hiding it so that it is not distracting but still available if needed. (Krug, 2011; Chapter 5)

Whenever the form needs user input the first step for the user is to understand the

question. Then, the user seeks for an answer. Next, the user decides whether the

answer fits the question and finally user enters the answer. (Tourangeau, Rips, and

Rasinski , 2000)

15

The more the UI makes the user to think the less likely it becomes to receive an

answer. This is why it is a good principle to not make the user to think or make him

think as little as possible.

Put simply, the most important content should stand out the most, and the least

important should stand out the least. In other words, a reader should be able to deduce

the informational structure of the page from its layout (Tidwell, 2011; 134).

Questions that should be self-evident to the user in any UI are (Krug, 2014; Chapter 1):

• What is this and what can I achieve with this?

• Where should I start?

• What are the most important things on this page?

• Why is that named like that?

• Is that a part of the form?

• Where is the functionality I'm looking for?

It is critical that the UI or form explains what the user can do with it. This should, of

course, be self-explanatory but it is understandable that not everything can be made in

that way. Additionally, any control input and their labels should be easy to understand

and replying or controlling them should be made effortless. (Krug, 2014; Chapter 1).

Tool tips are often used to display additional instructions. Tool tips help to minimize the

amount of text in the UI and thus makes it more easy to scan them.

People usually do not want to learn to use things, at least consciously. They want

everything to be made easy and as self-evident as possible. According to Krug's first

law of usability one should not make people think when it comes to the user interfaces

(Krug, 2014; Chapter 1). People are amazingly unaware of all of the incoming

information that is directing decision making. The changes which the external

stimulation triggers in the system are not necessary conscious experiences. (von

Fieandt, 1972).

The truth that is often forgotten is that the users actually spend most of their time on

other websites. Thus, anything that is a convention and used on the majority of other

websites will be burned into the users' brains and you can only deviate from it on pain

16

of major usability problems. The former is known as the Jakob's Law of the Web User

Experience (Nielsen, 1999).

This applies especially if the new user interface is created inside an existing

framework. One should recycle its previously learned features and functionalities as

much as possible. Every new feature or functionality has a learning curve and makes

the UI less usable. Hence, the designer has to consider whether to reuse or slightly

modify the existing elements or to create something completely new, thus endangering

the user experience.

17

3.1 Usability Testing Theory

There are certain things to consider when creating and testing a new user interface. In

a perfect world the testing could take a year or more and one would not need to worry

about the budget. Unfortunately, this is rarely the case but the key principle is that

some testing is definitely better than none at all.

It is also a great matter of debate of how to distinct or call different kinds of usability

tests. Others like to separate i.e. user experience testing from the usability or the

accessibility testing. All in all, testing in general is always a positive thing, no matter

how you may want to call it. Furthermore, it is beneficial to familiarize one self with the

certain key aspects of testing so that it is easy to collect valuable and useful

information.

Most of the usability experts recommend to do the usability testing in multiple phases

and with external test persons. In each subsection of testing it is worthwhile to provide

the test person a short description of what is being tested and that the test person

himself is not the one who is being tested, the UI and its features are. It is practically

impossible for the test person to make mistakes. It is also advantageous to explain that

anything the test person says can not hurt the feelings of the developer or the tester.

The target is to get get as much feedback as possible and this is only possible if the

test person will be honest.

Key properties of a successful tester include the understanding of the basics in user-

centered design, good people skills and an excellent memory. Quick learning and

flexibility to deviate the test plan will ease up the testing process. The tester needs to

have a long attention span with good and empathic communication skills. Among all the

other things the tester should always think about the “big picture” and try to get the

most of out of the test persons. (Rubin & Chisnell, 2008; Chapter 2).

18

In a user-centered approach the user feedback is expected and received in each phase

prior to moving to the next phase. This can involve a variety of techniques, usability

testing being only one of these. The various other methods include techniques sucs as

focus group research, surveys, team walk-throughs, paper prototyping and follow-up

studies. (Rubin & Chisnell, 2008, Chapter 1).

Things that the tester should consider while examining the test person in any UI test

include questions such as (Krug, 2014, Chapter 9):

• What are the best and worst properties of each approach?

• Which are the biggest obstacles for the user?

• After a short learning curve which properties are the most useful to the user?

• In which things the user needs help, more information or supporting

documentation?

• What kind of written documentation is needed? Pre-knowledge, theoretical,

perspectual, functional, examples or education?

Figure 3: Questions and methods for answering them (Rubin & Chisnell,
2008, Chapter 1).

19

• Which of the discovered problems should be fixed and how?

• Is the UI technically well developed and is information secured?

Common Guidelines to Testers

In all phases the tester(s) should consider which are the best and worst properties of

different solutions. Questions such as which are the biggest problems or after a short

period of learning which are the most valuable features to the user should be dis-

cussed. Is it clear where the user needs additional information or documentation? Al-

though problems are confronted which of those are the ones that should be handled

and fixed.

The tester should also consider whether the user interface is usable. The UI should be

beneficial and efficient meaning that it should do what it is supposed to do and prefer-

ably efficiently so without consuming too much of effort and time. A desirable UI is also

learnable which means that an UI can be learned and memorized without doing it every

time again. A simple way of finding out whether an UI is usable is to observe the end

users. How do the end users find the UI? Is it needed and how do they feel about using

the UI? If the end users do not think it is delightful to use the UI something is not cor-

rect. And finally, a special consideration towards the reachability should be taken into

account if people with incapabilities should be able to use the UI. In this UI the reach-

ability aspect was agreed to be disregarded in order to save time and resources.

A set of example research questions depending on the test subject can be seen in Fig-

ure 4.

20

Figure 4: List of example of research questions depending on the product. (Rubin &
Chisnell, 2008; Chapter 5)

The tester may use specific questions depending on what kind of user interface is

being tested. Figure 4 lists some examples of such questions.

21

3.2 Usability Testing Criticism

Although usability testing in general is usually accepted to be advantageous in the UI

development it is sometimes looked down on for various reasons. It could be

questioned whether the usability testing takes just too much time. While it is usually

true that the proper testing does take some time it could be argued that in the long run

the testing actually saves time because many obstacles have already been solved

before writing a single line of code. (Tullis & Albert, 2008; 11).

Another complaint might be that usability testing simply costs too much. This might be

because people tend to think that a proper usability testing can only be done by a

highly specialized individual or company. This of course is not true. Additionally, many

advanced usability tools are available free of charge online. (Tullis & Albert, 2008; 11).

Usability testing opponents might argue that testing is not useful when focusing on

small improvements or that the testing does not help to understand the real causes of

the usability problems. But by looking at the severity and frequency of the usability

issues and why they occur is an excellent way to focus resources during the design

process. You can also identify where in the system users experience problems and use

the metrics to tell where and even why some problems occur. (Tullis & Albert, 2008; 11-

12).

One of the biggest criticism is targeted towards the matter that usability data is too

“noisy”. Although this can be true an experienced tester can design the tests so that

minimal noise wil occur and filter out the remaining noise (Tullis & Albert, 2008; 12). A

lot of times in the UI development guesswork is used instead of usability testing data.

Intuition is many times great but a fact based data is always better (Tullis & Albert,

2008; 12).

It is a widely held belief that a large sample size is required to collect any reliable

usability test results. And of course, a large sample size does provide better results for

sure. But often even a few test persons can provide so much more useful data than

doing no testing at all. (Tullis & Albert, 2008; 13).

22

3.3 Creating Test Plan

Writing a test plan is helpful in answering questions such as what the user interface will

be about, who will be using and what should it include. In this chapter some common

principles of writing a test plan and conducting UI tests are described in more detail.

Things to consider when creating a test plan include at least the following (Rubin &

Chisnell, 2008, Chapter 5):

• What are the properties needed in the UI?

• What is the proper way to implement the above properties?

• Have the required properties been implemented according to the best practices

of usability principles?

• Has the technical development or a mock up been done in a way that it

respects the project requirements and information security?

The test plan will also serve as a blue print for the test. It is the foundation and the main

communication vehicle of the whole test (Rubin & Chisnell, 2008, Chapter 5).

3.3.1 Reporting and Decision Making

Rather than solely making decisions of what to include and what to disregard and how

to conduct things it is preferable to assemble a team of few members that will do the

final decisions together. The tester should present the results of each test phase in a

compact and understandable format. The presentation should also include the goals,

scientific methods, logistics and the backgrounds of the test persons. After this the

tester presents the results of the original research questions and gives the associated

numerical data as well as explains the backgrounds of the questions and data. Images

are often a descriptive and supportive way of presenting the results. In the end the

team considers each point and decides the future steps. (Rubin & Chisnell, 2008,

Chapters 11-12)

3.3.2 Gathering Information of Needed Features

It is always a good way to start a new user interface design process by researching

what is really needed. Often a lot more is initially discussed and required than is

23

actually necessary. This is where an experienced and talented tester can save a lot of

time and resources by defining the substantial requirements. That being said, one

should always develop the user interface so that it would limit the potential future

development as little as possible. This is why it is important to remain open and upfront

to the ideas emerging from the test persons and do compendious notes.

One way of gathering information is to arrange some relatively short interviews with the

key persons to whom the user interface will be targeted to. In Don't Make Me Think, the

author Steve Krug says that one should not interview too many but even one is better

than none. The optimal number is around 3-8 persons. (Krug, 2014).

The background of the testers should vary. The greater the variance the better. Of

course it should be considered if persons outside the target group are needed to test

the UI. As a rule of thumb, if the UI is meant to serve people with different backgrounds

external (outside of the target group) should be used. In this case some reasonable

compensation should be considered to make the test more tempting. (Krug, 2014)

3.3.3 How to Create Usable Interface?

How to know if a user interface is usable? Of course testing is the primary way of

discovering the usability of an UI but there are some general directing objectives that

should be considered when designing the UI. It is important to realize that usability is

not a single, one-dimensional property of a user interface. Usability has multiple

components (Nielsen 1993; 26).

First of all, the most important thing is the following. Does the UI do what it is supposed

to do? It makes no point of creating something that is not really needed. This is almost

impossible to judge without some proper testing. Even though the UI should be created

so that it is as self-evident as possible, it is important that it will be easily learnable.

This is because many times it is very difficult to make everything as easy-to-use and

clear. And because of the previous reason it is obligatory to make the difficult things at

least re-collectable instead of learning it every time again. (Krug, 2014; Chapter 11).

The UI should be also usable, meaning that it needs to do what it is supposed to do

and in an efficient way within a considerable time frame.

24

The end users should use the UI because they need it not because they have to.

Additionally, using the UI should be delightful, or even fun! Nothing is more depressing

than using an UI that makes you feel unpleasant even without actually using it.

Last but not least, a good UI is reachable when needed. Reachability includes design

patterns which need to take in account things like if and when persons with

incapabilities use the UI. It is practical to note that not all UIs need to be reachable but

if an UI is designed ”for everyone” reachability should definitely be considered (Krug,

2014, Chapter 11).

3.3.4 Paper Prototyping

Paper prototyping, even though it sounds just like sketching and working with A4s, may

be a lot more than actually drawing into a piece of paper. Paper prototyping is a

common phrase for rapidly and economically test the UI ideas. Whether it is actually

conducted with sheets of papers or some other way makes no difference. The point of

paper prototyping is to gather instant feedback of the suggested UI and its properties

without the need of actually creating a working UI. In order to do paper prototyping one

should have a picture of what the UI should do. The purpose is to research if all the

needed properties are included and if there is anything that can be disregarded and

how to make the desired properties usable (Snyder, 2013).

Paper prototyping is a very efficient way of testing multiple different scenarios and use-

cases inexpensively. It is very effortless and one can quickly make modifications even

during the test period and before a single line of code is written. A good way to start is

to create a mock up UI with the needed properties with as little styling as possible. This

way the layout or the styling does not overwhelm the test person. Only the functionality

and the actual content count.

Sketching a paper prototype is beneficial because then one will spend time thinking

about the content and the priorities rather than fiddling with the design tool of choice.

Creating the mock ups will be quicker, because of the clear idea at the outset of what

needs to go where. Potential problems can be discovered earlier. It is easier and

reassuring to move onto the finer design details if the UI works on paper. (Allen &

Chudley, 2012).

25

When conducting a paper prototype testing one should arrange a quiet location for

about an hour long session. The actual layouts can be drawn on sheets of paper by

hand or with some drawing software. Today there are even a multitude of free and

affordable cost online services to create layout mock ups such as the pidoco.com.

Figure 5 illustrates an example of paper prototyping.

Before each test phase it is important to explain to the test person what is going to

happen. This helps the test person to get oriented on the subject. Questions to ask

from the test persons may include the following (Snyder, 2003; 150-151):

• What do you expect to accomplish with this UI?

• In your opinion, what are the most important features in it?

• How much time are you willing to spend to achieve what you are trying to

achieve with the UI?

One will most likely be amazed by the answers given. Some of them are irrelevant but

some will most likely be the ones nobody has even thought about before. This is why

some kind of prototyping is critical when designing a new UI. You do not want to spend

time and resources of doing something what is not really desired.

Some usability experts recommend recording the test situations or having observers to

receive and catch more information. One tester can only process so much information

so additional help in the form of recordings or observers may be beneficial.

Figure 5: Rough example of paper prototyping. (Snyder, 2003; 4)

26

3.3.5 Testing while Developing

It is always a good practise to do as many test cycles as possible. Preferably always

when there is a new feature implemented. This way it is easier to modify the UI to the

desired direction with minimal work.

The above, of course, is rarely the reality in life so one should at least include certain

milestones and status meetings to the test plan. This way it is easier to follow the big

picture and make future decisions accordingly. Too strict rules can also have a negative

effect on the project.

3.3.6 Final Testing and Continuous Improvements

When the UI is somewhat ready, meaning that all the decided requirements are

implemented and functional, at least one final test should be conducted. The test is

divided between the actual end users and technical testing. The end users test the UI

one final time when everything is supposed to be in place and provide feedback. The

purpose of the technical review is to find possible security concerns which may have

slipped from the developers. It is also important that the technical review is done by

some others than the actual developers. According to the test results modification

decisions are made.

27

4 Description of Solution

The goal of this thesis was to design and develop an easy to use weather map

configuration interface that would be effortless to use even by the technically

inexperienced Account Managers of the case organization. In this chapter an example

of a real life paper prototyping and development of an actual working application for

configuring weather maps that is in production is described.

First, the process of the user interface testing is described. Although many great testing

methods exist the paper prototyping method was chosen to be used in this study. The

paper prototyping is an efficient way of gathering information cost-efficiently of how to

create an easy-to-use user interface for a specific task. Secondly, how to create a test

plan and test execution is discussed. Third, this chapter gives examples of how to

acquire information of the needed features in the new UI and how to decide what to

included and what not. Last, this chapter describes how the test results were used to

develop the prototype application.

The basic functionality of the new weather map work flow is presented in the following

image (see Figure 6).

28

Figure 6: Flow chart of the new animation work flow.

Everything starts by opening and defining the values in the weather map design and

configuration UI (see the box named Ilmatie Weather Map Configuration User Interface

in Figure 6). After the user is satisfied with the configuration the properties will be saved

to the Ilmanet database. Ilmanet is the parent framework of the weather map configura-

tion UI. Animbrowser 2.0 Client (aka MetOClient) is the client UI previously developed

by the case organization. This UI is used to display the client side end product, the ac-

tual animation with selected layers, that is.

Because of the Ilmanet framework's plugin development requirements the code of the

existing MetOClient was first copied, edited and refactored for the new plugin called the

Animator. The Animator is responsible of the configuration UI as well as some of the

additional features on the client side. The Animator plugin development is what this

thesis is really about.

29

When loading the client side animation the Animator plugin reads the database and

creates a JSON that is needed to display the chosen features. An example of the

JSON can be seen in Appendix A. The layer images are called through the case organ-

ization’s open data API. For this an apikey is required (registration needed). The HTTP

call goes through the F5 load balancer which validates the apikey against the Postgr-

eSQL database.

Depending on which kind of data is requested the call is then directed to either a WMS

server in the case of the observation data or to the Brainstorm’s Dali plugin which is re-

sponsible of the forecast data. In both cases the typical reply is a PNG image of a cer-

tain area and time with the corresponding weather data.

An example of the observation image HTTP call in the JSON:

http://2.p.wms.fmi.fi/fmi-apikey/f01a92b7-c23a-47b0-95d7-cbcb4a60898b/geoserver/wms?LAY-

ERS=KAP:skandinavia_dbz_eureffin&TILED=true&VERSION=1.1.1&TRANSPARENT=TRUE&

FORMAT=image%2Fpng&TIME=2015-10-31T10%3A00%3A00.000Z&SERVICE=WMS&RE-

QUEST=GetMap&STYLES=&SRS=EPSG

%3A3067&BBOX=181246.432,7773016.936,443390.432,8035160.936&WIDTH=256&HEIGHT

=256

Here the URL consists of the server indicator number (2.p) and the actual open data

API’s domain data.fmi.fi. The fmi-apikey (f01a92b7-c23a-47b0-95d7-cbcb4a60898b) in-

dividualizes the user. The geoserver part indicates that this call is directed to the geo-

server to request observation data from the WMS server. Next, the desired layers are

defined (here KAP:skandinavia_dbz_eureffin, meaning some radar dbz data from the

Scandinavian area). Additionally, some more definitions are given like the time, projec-

tion and the area. An example of the response image of a certain area and time can be

seen in Figure 7.

30

An example of the forecast image HTTP call in the JSON:

http://2.p.data.fmi.fi/fmi-apikey/f01a92b7-c23a-47b0-95d7-cbcb4a60898b/wms?

LAYERS=fmi:pal:rawtemperature&TILED=true&VERSION=1.3.0&TRANSPARENT=TRUE&FO

RMAT=image%2Fpng&TIME=2015-10-

31T14%3A00%3A00.000Z&EXCEPTIONS=INIMAGE&SERVICE=WMS&REQUEST=GetMap&

STYLES=&CRS=EPSG

%3A3067&BBOX=181246.432,7510872.936,443390.432,7773016.936&WIDTH=256&HEIGHT

=256

The URL consists mainly of the same parameters as the geoserver call but is missing

the geoserver part. This call is therefore directed to the Brainstorm’s Dali plugin to ac-

quire the forecast images.

The client application calls these images according to the JSON configuration data pro-

duced by the weather map design and configuration user interface. The images are

then handled and arranged by the the client UI and the animation may start running.

4.1 Gathering Information of Needed Features

The case organization wanted to have a new user interface for designing and creating

weather maps and animations. The UI was to be designed so that it is easy to

understand and use even for the non-technical persons. As many times it was not

Figure 7: An example PNG image (tile) of the
wind from the WMS server.

31

totally clear what was actually wanted so a paper prototyping technique was chosen to

clarify the subject. In this project actual paper sheets with mock-up UIs were used.

First, a series of meetings with the project key persons were held. In these meetings

rough guidelines of what should be included to the UI were formed and written down.

From these guidelines the skeleton for the feature interviews with the test subjects was

created. The skeleton of the testing was divided into four different phases as illustrated

in Figure 8 below.

Figure 8: Weather animation configuration user interface features.

Based on the meetings it was decided that at least the properties indicated in Appendix

D should be implemented. Figure 8 shows the initial views and the wire frame of the

32

functions and features which the weather map configuration UI should have. There are

four different main sections on the left side of the figure: Parameters, Area, Time and

Other. All of these have their subsections, or features that each section should include.

On the right side there is the automatically updating preview map.

Additionally, discussions about the unity of the layout of the configuration UI were held.

The new UI should respect the existing layout and functionalities. This means that

some the usability guidelines needed to be broken in order to honor the existing layout.

For example, the usability guidelines do not recommend tabs in forms but because of

the parent framework this rule was broken (Jarrett & Gaffney, 2011; 111-112). This

should be fine since the end users have already gotten used by it in other plugins. But

in this UI it was decided that numbering of the tabs makes the progress more simple.

Additionally, descriptive tab texts were carefully chosen to represent the contents of

each tab. In order to make things even more clear, It might make the selected tab more

obvious if its color would change accordingly to the selected page. This would unfortu-

nately again break the existing policy of the framework also so it was not applied even

though it was originally recommended in some of the early layout propositions (See Ap-

pendix E).

From the very beginning an automatically updating preview of the animation was con-

sidered as a helpful addition to the configuration UI. The challenge was to make it fit to

the layout so that it would not take too much room but would still be useful.

Next in the program some new layouts were created for the starting point of the layout

discussion. These were created without coding a line and thus minimal time and effort

were needed. One of them is represented in Figure 9. Some more mock ups created

with an image editing software are available in Appendix E.

33

Figure 9: One of the very first drafts for the layout.

In Figure 9 everything inside the red square belongs to the weather map design and

configuration user interface. The outer part belongs to the Ilmanet’s framework. This

mock up was used to start the discussion of what to include and how to place them in

the configuration UI. Not a single line of code had been written in this phase and even

big alterations were easy to do.

4.2 Creating Test Plan and Executing Tests

It is beneficial to have the basic understanding of the functions and desired features of

the UI before creating a test plan. This is why some mock ups were first drawn and

discussed. After the project team shares a rough understanding about the UI the test

plan can be written. Creating a test plan is a professional way of starting any test

project. In this chapter an example of how to create a test plan for software project is

presented.

34

The purpose of the testing was to discover which features the UI should have. Addition-
ally, the purpose was to clarify how to develop the desired features so that the UI is ef-
fortless to use and does not require technical knowledge.

The test consisted of four different phases:

1. Test to find out which are the desired functions of the UI.
2. Test how the desired features should be implemented.
3. Test and evaluate if the functions have been implemented with the usability per-

spective in mind.
4. Test and evaluate the technical implementation and security.

First, the tester procured a group of testers. Usually, the more test persons there are

the better. Of course, the time and resources are limiting factors. The procurement of

the test persons started by sending an email to a group of potential test persons. The

email consisted of a brief overview of the subject and emphasized that the testing was

about the features and properties of the UI not the test persons themselves. In the end,

a total of seven test persons were chosen inside the case organisation. The test per-

sons had differing backgrounds from an Account Manager to the technical Chief of

Group. In this case there was no need for external testers since the UI would only be

used by those working in the case organization.

Testing: Phase 1

The tester started this test phase by describing that the goal of this phase was to

design a UI for the weather map design and configuration. The purpose is to discover

what the test subject thinks what the UI is about. So the first thing is to ask what does

the test subject assume that the UI is capable of doing or what he/she expects to

achieve with the UI. Secondly, the test subject was asked to describe the most import-

ant features of the UI. Thirdly, the tester asked how much of time the user is willing to

spend to achieve whatever he/she is trying to achieve with the UI.

Overall, the test took around 30-60 minutes per test person. The test was arranged in a

meeting room and the tester interviewed the test person while taking notes. No mock

ups or other material was presented.

The above questions gave the tester valuable information of the desired features. Many

times the desired features can be in contradiction with the willingness to spend time for

35

a specific task. These kinds of methods may help the tester to decide which of the fea-

tures and functionalities are the ones that are really needed.

The results of the test phase 1 were carefully studied and presented in the project

meeting. After evaluating the results decisions were made for the future steps. The test

results can be found in Appendices B, C and D.

Testing: Phase 2

In the second phase of testing the tester had created paper mock ups according to the

test phase 1. In this phase the results of the previous phase were rendered as a visible

layout. The layouts, or mock ups, were still very rough and just drafts without much of a

structure or colors. The purpose was still to test the desired features and functionalities

and how they should be implemented to the UI.

It is necessary to note that the test persons may be different from those in the previous

phase. This is why the tester started this test phase again by explaining what the test

was about. In this phase it was important to give the test person direct instructions of

what to do. Each test person was tested separately in a quiet meeting room.

The test person was once again guided that the test was not about him/her but about

the UI and that the test subject could not do mistakes. Additionally, the test person was

told that the tester could not reply to the possible questions (unless the test person be-

came totally confused of what to do next). It was crucial that the test person was asked

to think out loud. He/she needed to speak as much as possible of everything running in

his/her head so that the tester could follow his/her thinking process.

The test started by handing out the test person the first mock up layout of the configur-

ation UI (see Figure 10). The tester then asked the test person to start creating a new

weather map animation. The test person was asked to add a temperature layer to the

animation. The tester then observed how and what the test subject did while writing

notes. Secondly, the tester asked if the test person could add a new wind layer with

wind arrow symbols to the animation. Again, the tester observed and made notes of

what was happening and where the test person had problems. Finally, the tester asked

the test person to centre the weather map so that the centre would be in Jyväskylä,

Finland.

36

The purpose of this test phase was to find out where and how the test subject started

and what he/she did first. Additionally, it was interesting what the test subject did next

and what was clear or unclear. The test subject was asked what were the features and

functionalities needed and what were not. If the test subject was not speaking he/she

was asked what was running in his/her mind right now and what were the things that

caused the pause. The tester asked what was the thing the test person expected to

happen when something that the test person did not expect happened.

This phase is one of the most time consuming but also the one that provides the most

information. The tester presented the results acquired in this test phase to the project

team. The results of were again extensively studied and the decisions made accord-

ingly.

The rest of mock ups used to gather information may be found in Appendix F.

Testing: Phase 3

After the previous test phase the desired features and the functionalities of the UI were

now known. Depending on the project one might want to have additional paper proto-

type tests here but for this project a working prototype of the UI was created according

to the results of the previous phase.

Figure 10: A mock up layout of the configuration UI.

37

The actual questions in this phase may be the ones used in phase 2 and those were

the ones used in this phase. Again, valuable information was gathered. In this phase

the possible changes were not that radical anymore but small improvements were

made. Particularly, the main functionalities and features were already set. If one

needed to do big modifications in this phase it would have meant that the previous

phase had failed.

The final step was to do the reporting and present the results. After each phase the

tester created a short summary of the results including the goals, scientific methods, lo-

gistics and the backgrounds of the testers. The tester then presented the results of the

original questions to the project team by displaying the numerical data with graphics

and provided the background of the questions and details. Finally, the results were dis-

cussed, recommendations were made and decisions of further testing were suggested.

Testing: Phase 4

In the final test phase the purpose is to validate the technical implementation and the

security of the application. This phase requires technical UI and source code review.

The actual testers should differ from the developer.

4.3 Development of User Interface

The target of this thesis was to design and develop a user interface for the weather

map design and configuration. The UI was to be developed so that it would be easy-to-

use even for the non-technical persons. This chapter describes the technical

implementation of such a UI.

After the paper prototyping and decision making was over a functional UI was

developed according to the results. Not all the wished features were implemented in

the first phase but the ones that were considered the most important.

Since the UI should be implemented as a plugin for an existing framework called the

Ilmanet the development started by copying an existing plugin called the MetOClient.

Ilmanet has an API for new plugins. MetOClient administration UI (see Figure 11) is an

earlier version of Animator (name of the plugin developed in this thesis). Because

MetOClient administration section was developed rather quickly to basically

38

demonstrate the client side functionality it lacked many of the required features but

served as an excellent place holder plugin for a more developed plugin. With

MetOClient it was easy to demonstrate the functionalities and requirements of the more

enhanced weather animations. The development of MetOClient administration UI had

not included usability testing and it was considered rather difficult to use by the Account

Managers of the case organization.

Still, the work and solutions done in MetOClient helped the development of the

Animator quite extensively. A lot of code had already been written in both PHP and in

javascript.

After the existing MetOClient was copied and pasted as a new plugin called the

Animator the UI development started. The goal here was to use the existing code as

much as possible in order to speed up the development. This is why the client side

experienced only a few modifications which will be discussed later in this chapter.

Figure 11: MetOclient configuration user interface.

39

The development of the new plugin started by creating three different tab layouts

according to the test results and the project team decisions. The first layout was

responsible of majority of the weather animation configuration functionalities. The latter

two are responsible mainly of the time and area selection of the animation. It is not

usually a good practise to create form fields in separate tabs but since the function of

each tab is quite distinct from each other it made more sense from the usability

perspective. Additionally, the users of the Ilmatie are already used to tabs. The tabs

were also emphasized by adding descriptive titles on each tab as well as adding

numbering.

Rather than placing some uninformative titles such Parameters, Time line and Area

more descriptive titles were placed. The titles included the main function of each tab in

literal form: 1. Edit parameters, 2. Adjust time line and 3. Edit area. This way it was

much clearer what each tab was about. Additionally, the numbering helped the end

user to follow the work flow of the configuration more easily.

Ilmanet relies heavily on javascript and is strongly event based. In the project meetings

it had became apparent that if possible the javascript based Ilmanet shopping cart

widget should be used as the selector for the different weather parameters. This is

because its purpose and functionality were already known by the end users. An

example of the shopping cart widget is displayed in Figure12. The original shopping

cart widget consisted of only two areas: the one that holds all the available weather

parameters and the one that serves as a place holder for the chosen parameters. The

red arrow in Figure 13 illustrates how the weather parameter can be dragged from one

area to the other. This functionality is used in many other plugins in Ilmatie which is

why this method was considered as a good approach to select the parameters in the

Animator plugin too.

40

It quite soon became clear that the implementation of the original shopping cart to the

Animator plugin was not going to be effortless. This was because the new UI should

have three separate areas from where to choose the available weather parameters in

order to make the distinction of each group (maps, observations and forecasts) more

clear (See Figure 13).

Additionally, the UI should have two different dropping areas, or baskets, for the chosen

weather parameters: the one for the observations and another one for the forecasts.

The existing shopping was not designed to have these kinds of functionalities. So, a

decision had to be made whether to actually modify the existing shopping cart widget,

or try to overcome the problems discovered in the Animator plugin. Although it probably

would have been better for the overall development of the Ilmanet framework if the

existing javascript code of the shopping cart widget was improved, it would have taken

too much of time to confirm that all the other plugins were still functioning with the

newly made editions. This is why it was decided that all the encountered problems

should be handled in the Animator plugin rather than modifying the parent framework

itself.

Figure12: The shopping cart widget in another plugin.

41

Because the animation is based on the open source javascript library OpenLayers it

makes sense to call the weather parameters as layers too. The OpenLayers works by

grouping different layers on top of each other. The layers may also be transparent so

that the layers below are visible too. With this technology it is possible to display

weather data like rain areas and contours on top of a map background.

In Figure 13 there are five different areas of interest marked with red numbers. The

area number 1 is for the background and foreground layers. These include the map

backgrounds and for example the map borders and city names, layers which usually

need to displayed on top of all other layers. Other possible layers in this area may

include different kinds of overlay symbols or figures.

Figure 13: Animator design and configuration user interface.

42

The area number 2 is for weather observation layers and the area number 3 is for

forecast layers. Number 1 and 2 areas are also grouped by different producers like the

weather stations, radars and models so that each parameter can be found more easily.

All three areas include a search box that can be used to narrow down the parameter

lists. All of the mentioned layers are fetched from the WMS application interface with a

special getCapabilites request and rearranged properly.

The area number 4 serves as a dropping area for the observation layers and area

number 5 serves as a dropping area for forecast layers. If observations are dragged to

the forecast area they are disregarded and removed and the other way around. The

areas 4 and 5 are placed side by side to make it appear more like a time line.

Observations are first dragged and dropped on the left box and forecasts are dragged

after them to the right box. This way the user should be able to associate that he/she

can combine the observation and forecast layers together by placing them on the same

level on both sides. If the observation and forecast parameters combine logically

together the animation will first run smoothly through the observations and then

continue directly to the forecasts.

Each new line in the dropping areas represent a new layer in the animation. By default,

the uppermost layer will be at the bottom in the animation. So it makes sense to start

creating the animation with some background layer. Of course, the order of the layers

can be later updated.

It should be noted that the animation is functional even if either one of the dropping

areas is left blank. This just means that only either observations or forecasts are

displayed.

When ever a new layer is dropped on the areas 4 or 5 an edit button (a pencil icon) is

added to the layer. By clicking this icon the user can open a dialog window that serves

as the layer property form (see Figure 14). In the dialog window the user can i.e.

rename the layer, define the layer visibility in the client animation and adjust the

thresholds for the parameter (if it is possible for the parameter). If a threshold is defined

only the values between the threshold limits are displayed in the client animation for the

parameter. In this case a set of special parameters are set to the configuration JSON

which are delivered to Dali. Dali then clips the values outside of the threshold limits

43

away. With this technology it is possible to i.e. display the temperature contours only in

areas where the temperature is between 20-25 degrees Celsius.

Another icon which appears to each dropped layer is the delete button. The newly

dropped layer is placed to the end of the area number 4 or 5 list from where it may be

dragged to any place inside the area. When ever the dragging occurs the

corresponding layer on the other side moves along.

The functionalities described earlier in this chapter were not something the shopping

cart widget was designed to do so a lot of plugin specific code was needed to

overcome the problems confronted to create the desired functionality. Most of them

were solved by creating additional plugin specific javascript events and functions as

well as AJAX calls.

Figure 14: Dialog window for forecast parameter properties.

44

On each tab a preview of the animation is displayed (see Figure 15). By default the

animation is not updated every time when some modification is done but it may be

enabled by checking the check box on the top of the preview area. This functionality

removed the need to open the client animation every time. The preview is basically the

client side animation but since it was not designed to be displayed on the

administration side it required some additional programming.

In Figure 15 there are also a few other functionalities such as the time line at the

bottom. This is the time line of the animation which the can be configured in the second

tab of the configuration UI (see Figure 17). It is possible to configure the number of

observations and forecasts displayed in the animation. Additionally, one can set the

time step to something else than the default of one hour. Of course, these adjustments

affect the time line correspondingly. It is not possible for now to adjust the time step

separately between the observations and forecasts.

There is a layer switcher on the right side of the animation demonstrated in Figure 16.

By clicking on this the UI displays a group of the layers configured for the animation.

Figure 15: Preview of the animation.

45

The layers can be made hidden or visible by checking the visibility check box inside the

switcher. Additionally, a special functionality to display the layer specific legend was

added.

A special check box for the automatically updating preview was added to the

configuration user interface. By checking it the user can see the changes made refresh

automatically.

The following image (see Figure 17) illustrates the time line adjustment user

configuration interface.

Figure 16: An example of the animation switcher content.

46

The need to set the default area for the animation was overcome by creating a tab

where the configurator can click the preview area and centre the map to that exact

point (see Figure 18). This was considered as an intuitive way of defining the centre

location and it is emphasized by numbering the step and giving instructions on the

page. Another way to centre the map is to type a location to the location input field and

select a place from the special auto complete drop down. The case organization has

developed an advanced auto complete functionality for location names. Unfortunately,

within the given time span the already available auto complete widget could not be

implemented here. Instead, the jQuery auto complete widget was used and modified.

When the user starts typing the location, the name and coordinates are then displayed

below. Currently the location cannot be defined by providing the latitude and longitude

coordinates directly. The second numbered step is for defining the default zoom level of

the animation. Sometimes the configurator may want to zoom to a smaller area and

sometimes he/she may want to display the whole Scandinavia by default. Here, the

smaller number in the zoom level indicates a broader view. To make things even more

clear the configurator may click the plus and minus symbols on the left side of the

preview area too and the zoom level is set correspondingly (see Figure 15).

Figure 17: Animation time line adjustment user interface.

47

The default way to store the chosen configuration properties is to save them into the

MySQL database. The default way of saving the form did not work in this scenario

because it included so many modifications and a specific saving functionality needed to

be created.

Figure 18: Animation area adjustment user interface.

48

5 Testing and Evaluation of Solution

In this section a selected set of the test results of the published application are given

and evaluated. At this point the application had been used by the end users for a few

months.

Since the new user interface was published the continuous testing has revealed

several small areas that require improvements. Some of the feedback is targeted to the

parent framework which is more difficult to change but is still valuable information for

the developers.

While the improvements in the new user interface where desperately needed and the

UI is appreciated certain things still bother the end users. The dragging of the layers to

the correct areas is still not as self-evident as it should be. This functionality can

definitely be learned but if one wants to develop an easy to use user interface it should

be clear. Additionally, when adding a new layer to the observation or forecast area the

layer should go directly where it is dropped. Now, because of technical issues, the layer

item is dropped at the end of the list from where it can be dragged to an another

position.

The preview was considered to be awesome in the paper prototyping phase but in

reality it turned out to be too heavy to be instantly updated. It was just too time

consuming and even frustrating to wait for the animation to be reloaded with new

properties. This is why an additional functionality was added to shut down the preview

functionality by default. The end users also wished that the preview area would be

bigger but it is quite difficult to achieve this with the current properties of the parent

layout.

Originally adjusting the time line was supposed to be totally redesigned. Unfortunately,

due to the lack of time the functionality had to be copied from existing plugins. The

usability of the feature is definitely not as intuitive as it should be. Additionally, a feature

for setting the time step separately for each observation and forecast layers was

requested but not yet implemented.

49

Currently, the default centre location can only be defined by either clicking on the map

or typing the location to the auto complete input field. Providing the latitude and

longitude coordinates directly is not yet supported.

The loading time of the animation was greatly criticised. This latency is not really a

problem of the map configuration user interface but a bigger problem in the background

system. The production system is not yet fully developed and requires further

optimization in order the make the loading times more reasonable.

The final technical testing was done by a couple of colleagues. They gave a few

technical improvement suggestions that will be implemented in the upcoming releases.

The security level of the application was found to be sufficient for this kind of service.

50

6 Discussion and Conclusions

The goal of this thesis was to develop a user interface for designing and configuring

weather map animations. The UI needed to be effortless to use even for the non-

technical end users. Additionally, the UI had to comply with the parent framework

Ilmanet. A considerable time was consumed to gather information on what were the

real user requirements. The initial perceptions differentiated quite a lot from the end

result. This is not a negative thing because the project revealed several things that

were not known by anyone in the early phases of the project. This shows that many

times in the early phases of a software development project it is often unknown what

features and requirements of the software are really needed.

As to all application development projects none of them are ever really finished. It is a

continuation of cyclic periods of testing, feature requests and development. Even

though there are predefined models and examples for designing and developing user

friendly interfaces all user interfaces are one of a kind and compromises are usually

needed. That being said, it is crucial to research the best practises in the user

experience and usability literature in order to avoid the major bottlenecks in the user

interface development. Usually, it is still easier to say what one should not do than to

recommend what to do. This is why testing is still so important in each project. Even a

little bit of testing is better than none at all. The tester can learn considerably even by

researching just one of the users trying to achieve something with the user interface.

In this thesis the goal was to develop a weather map design and configuration user

interface that was effortless to use even for the non-technical end users. Because

short testing phases were included in the project many obstacles were avoided and

only the really needed features were implemented at first. Continuous testing was done

through out the project and the end users were kept up to date. This saved a lot of

development time and frustration levels remained minimal for both the developer and

end users. Everybody knew what was going to happen and which features were to be

implemented first.

The case organization had not previously done a lot of testing especially in advance so

this was one of the first projects in that area. Overall, the feedback was very positive

because the actual end users had the chance to be part of the project and to have an

51

influence on how and what was to be developed. It really makes no sense to develop

something which no one likes or wants to use.

In the end a working and live UI was published. Many compromises had to be made on

the way because of the limitations of the existing parent framework but in overall the

result was considerably better than it would have been without gathering the initial

information and the usability testing. If the work had been done without any testing a lot

of unnecessary features would have been developed. This would have consumed a lot

of resources and time to things that were not really needed.

Ultimately, the processes and methods described in this thesis should enable one to

design and develop a user interface that is effortless to use and requires no technical

experience. Of course, each project is unique and requires an adaptive approach

especially when creating the test plan.

Overall, the methods used in this thesis have received a considerable amount of

acknowledgement. The methods are not new per se but most of them have not been

applied widely in the case organization. The testing methods used in this thesis were

not that highly sophisticated yet because of the inexperience of the tester. To become

an expert more time, knowledge and experience is needed.

But as a consequence, the results of this study support the use of similar methods in

the case organization in the possible future projects too.

52

7 References

Allen, Jesmond & Chudley, James (2012), Smashing UX Design, Foundations For

Designing Online User Experiences. West Sussex (UK): John Wiley & Sons Ltd.

Animbrowser website (2015), [internal website], URL:

http://weather.weatherproof.fi/animbrowser. Accessed 8th November 2015.

Eisenberg, David J. (2002), Producing Scalable Vector Graphics with XML. SVG

Essentials. Sebastopol (USA): O'Reilly Media.

Geoserver, Geoserver [online], URL: http://docs.geoserver.org. Accessed 9th

November 2015.

Heiskanen, Mika, Brainstorm Dali JSON Reference [internal document]. Accessed 8th

November 2015.

Jarrett, Caroline & Gaffney, Gerry (2011), Forms That Work - Designing Web Forms for

Usability. Goydon (UK): Elsevier Ltd.

Krug, Steve (2014), Don’t Make Me Think, Revisited - A Common Sense Approach to Web

Usability. USA: New Riders.

Nielsen, Jakob (1993), Usability Engineering. London: Elsevier Ltd.

Nielsen, Jakob (1999), Do Interface Standards Stifle Design Creativity? [online], URL:

https://www.nngroup.com/articles/do-interface-standards-stifle-design-creativity.

Accessed 10th January 2015.

Open Geospatial Consortium (OGC), Web Map Service [online], URL:

http://www.opengeospatial.org/standards/wms. Accessed 6th November 2015.

Open Source Geospatial Foundation, OpenLayers: Free Maps for the Web [online]. URL:

http://openlayers.org/two. Accessed 11th November 2015.

53

Rubin, Jeff & Chisnell, Dana (2008), Handbook of Usability Testing, Second Edition: How to

Plan, Design, and Conduct Effective Test. Indianapolis: Wiley Publishing, Inc.

Snyder, Carolyn (2003), Paper Prototyping: Fast and Simple Techniques for Designing and

Refining the User Interface. USA: Morgan Kaufmann.

Tervo, Roope (2011), Master's Thesis: Product Definition Mechanism and High Level

Architecture of FMI Weather Map Service.

TheKarppinen, MetOClient UI [online]. URL: https://github.com/fmidev/metoclient-ui.

Accessed 8th November 2015.

Tidwell, Jenifer (2011), Designing Interfaces, Second Edition. Canada: O'Reilly.

Tullis, Por Thomas & Albert, William (2008), Measuring the User Experience:

Collecting, Analyzing, and Presenting. Burlington: Elsevier Ltd.

von Fieandt, Kai (1972), Havaitsemisen maailma. Porvoo: Werner Söderström.

W3C, SVG Tutorial [online], URL: http://www.w3schools.com/svg/. Accessed 7th

November 2015.

Wroblewski, Luke (2008), Web Form Design: Filling in the Blanks.

Tourangeau & Rips & Rasinski (2000), The Psychology of Survey Response. USA:

Rosenfeld Media.

APPENDIX A

1 (1)

An Example of Configuration JSON

{
 map: {
 className: 'OpenLayers.Map',
 args: [
 {
 allOverlays: true,
 projection: 'EPSG:3067',
 units: 'm',
 resolutions: [
 2048,
 1024,
 512,
 256,
 128,
 64
],
 maxExtent: [
 -4537345.568,
 3840856.936,
 2889342.313,
 8254755.58
]
 }
]
 },
 layers: [
 {
 className: 'OpenLayers.Layer.WMTS',
 args: [
 {
 name: 'Taustakartta',
 url: [
 'http:\/\/1.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/gwc\/service\/wmts',
 'http:\/\/2.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/gwc\/service\/wmts',
 'http:\/\/3.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/gwc\/service\/wmts',
 'http:\/\/4.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/gwc\/service\/wmts'
],
 format: 'image\/png',
 layer: 'KAP:Europe_Basic_NoNames',
 buffer: 0,
 style: '',
 isBaseLayer: true,
 matrixSet: 'ETRS-TM35FIN',
 matrixIds: [
 {
 identifier: 'ETRS-TM35FIN:2'
 },
 {
 identifier: 'ETRS-TM35FIN:3'
 },
 {
 identifier: 'ETRS-TM35FIN:4'
 },

APPENDIX A

2 (1)

 {
 identifier: 'ETRS-TM35FIN:5'
 },
 {
 identifier: 'ETRS-TM35FIN:6'
 },
 {
 identifier: 'ETRS-TM35FIN:7'
 }
]
 }
]
 },
 {
 className: 'OpenLayers.Layer.Animation.Wms',
 capabilities: {
 url: '\/\/ilmatie.ilmanet.fi\/geoserver\/wms',
 layer: 'KAP:BasicMap'
 },
 args: [
 'BasicMap',
 [
 'http:\/\/1.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/2.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/3.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/4.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms'
],
 {
 hasLegend: false,
 layers: 'KAP:BasicMap',
 tiled: true,
 version: '1.1.1'
 },
 {
 buffer: 0,
 animation: {
 hasLegend: false,
 fadeIn: {
 time: 0
 },
 fadeOut: {
 time: 0
 },
 isForecast: false,
 endTime: 'auto',
 autoLoad: true
 }
 }
]
 },
 {
 className: 'OpenLayers.Layer.Animation.Wms',
 capabilities: {
 url: '\/\/ilmatie.ilmanet.fi\/dali\/wms',
 layer: 'fmi:ecmwf:rawtemperature'

APPENDIX A

3 (1)

 },
 args: [
 'ecmwf rawtemperature',
 [
 'http:\/\/1.p.data.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/wms',
 'http:\/\/2.p.data.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/wms',
 'http:\/\/3.p.data.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/wms',
 'http:\/\/4.p.data.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/wms'
],
 {
 hasLegend: false,
 layers: 'fmi:ecmwf:rawtemperature',
 tiled: true,
 version: '1.3.0'
 },
 {
 buffer: 0,
 animation: {
 hasLegend: false,
 fadeIn: {
 time: 0
 },
 fadeOut: {
 time: 0
 },
 isForecast: true,
 endTime: undefined,
 autoLoad: true
 }
 }
]
 },
 {
 className: 'OpenLayers.Layer.Animation.Wms',
 capabilities: {
 url: '\/\/ilmatie.ilmanet.fi\/geoserver\/wms',
 layer: 'KAP:fmi_above_animation_fi'
 },
 args: [
 'fmi above animation fi',
 [
 'http:\/\/1.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/2.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/3.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/4.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms'
],
 {
 hasLegend: false,
 layers: 'KAP:fmi_above_animation_fi',
 tiled: true,
 version: '1.1.1'

APPENDIX A

4 (1)

 },
 {
 buffer: 0,
 animation: {
 hasLegend: false,
 fadeIn: {
 time: 0
 },
 fadeOut: {
 time: 0
 },
 isForecast: false,
 endTime: 'auto',
 autoLoad: true
 }
 }
]
 },
 {
 className: 'OpenLayers.Layer.Animation.Wms',
 capabilities: {
 url: '\/\/ilmatie.ilmanet.fi\/geoserver\/wms',
 layer: 'Radar:anjalankoski_dbzh'
 },
 args: [
 'anjalankoski_dbzh',
 [
 'http:\/\/1.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/2.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/3.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms',
 'http:\/\/4.p.wms.fmi.fi\/fmi-apikey\/f01a92b7-c23a-47b0-
95d7-cbcb4a60898b\/geoserver\/wms'
],
 {
 hasLegend: false,
 layers: 'Radar:anjalankoski_dbzh',
 tiled: true,
 version: '1.1.1'
 },
 {
 buffer: 0,
 animation: {
 hasLegend: false,
 fadeIn: {
 time: 0
 },
 fadeOut: {
 time: 0
 },
 isForecast: false,
 endTime: 'auto',
 autoLoad: true
 }
 }
]
 }

APPENDIX A

5 (1)

],
 showAnimationInitProgress: true,
 showAnimationLoadProgress: true,
 defaultZoomLevel: 6,
 animationRefreshInterval: 3600000,
 animationFrameRate: 500,
 animationResolutionTime: 3600000,
 animationDeltaToBeginTime: 7200001,
 animationDeltaToEndTime: 7200001,
 browserNotSupportedInfo: 'Selain ei ole tuettu'
}

APPENDIX B

1 (1)

List of features desired in the UI

APPENDIX C

1 (1)

List of important features in the UI

APPENDIX D

1 (1)

List of planned features in the UI

APPENDIX E

1 (1)

Early mock ups of the UI

Mock up 1: A clear way to present the selected tab with matching background colors.

APPENDIX E

2 (1)

Mock up 2: An alternative way to display the selected tab and grouping of different features.

APPENDIX E

3 (1)

Mock up 3: An alternative way to display the selected tab and grouping of different features.

APPENDIX F

1 (1)

APPENDIX F

2 (1)

APPENDIX F

3 (1)

	Glossary
	1 Introduction
	1.1 Weather Data Production in the Case Organization
	1.2 Current Technical Challenges
	1.3 Objective
	1.4 Scope and Content
	1.5 Research Design and Structure

	2 Background
	2.1 Core Concepts in Weather Image Production
	2.2 Current Production System at the Case Organization
	2.3 Obstacles Solved
	2.4 Obstacles to Be Solved
	2.5 Requirements
	2.6 Standards and Technologies
	2.7 Contradictions

	3 Principles of User Interface Design and Usability Theory
	3.1 Usability Testing Theory
	3.2 Usability Testing Criticism
	3.3 Creating Test Plan
	3.3.1 Reporting and Decision Making
	3.3.2 Gathering Information of Needed Features
	3.3.3 How to Create Usable Interface?
	3.3.4 Paper Prototyping
	3.3.5 Testing while Developing
	3.3.6 Final Testing and Continuous Improvements

	4 Description of Solution
	4.1 Gathering Information of Needed Features
	4.2 Creating Test Plan and Executing Tests
	4.3 Development of User Interface

	5 Testing and Evaluation of Solution
	6 Discussion and Conclusions
	7 References

