
Bachelor's Thesis

Information Technology

Digital Media

2016

Max Lindblad

PROTOTYPING A SYSTEM
CAPABLE OF TRACKING THE
EXECUTION OF ARBITRARY
PRE-RECORDED FULL-BODY
MOVEMENTS

BACHELOR'S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Digital Media

2016 | 42

Instructor: Principal Lecturer Mika Luimula, Ph. D.

Max Lindblad

PROTOTYPING A SYSTEM CAPABLE
OF TRACKING THE EXECUTION OF
ARBITRARY PRE-RECORDED FULL-
BODY MOVEMENTS

This thesis is focused around the concept of full-body tracking and the process of developing a
system capable of evaluating the progress of executing a predefined full-body movement.

The first major part of the thesis focuses on the theory of full-body tracking, first with some
historical and industrial use of the concept, and then focuses on more recent developments
with consumer-grade technologies, with a tour of some of the most common solutions.

The second major part focuses on the development of the actual system, called Clinical Layer,
which is the most major element that the thesis focuses on. With the project starting in the
summer of 2014, the approximate timeline of different advancements in the project will be
described to the end of the development phase of the latest version in the summer of 2015.

The next portion of the second part consists of detailed technical description of the basic parts
of the system, including the embedded animation system and different ways of animation data
can be passed around in the system. After that the ways of creating content for the system are
depicted.

Describing the actual underlying algorithm of the tracking system, the next chapter lays out the
subsystem's main principles and discusses vital factors relevant to its operation.

With a more practical outlook, the following part takes a look at a few demonstration/testing
applications developed that utilize the system.

The last part before the conclusion takes a look at a comparable technology, called Visual
Gesture Builder (VGB), while comparing it's features to those of Clinical Layer. The conclusion
lays out that the software project was successful, having received good feedback, but also
mentions that an interested party should also look at Visual Gesture Builder.

KEYWORDS:

motion tracking, Kinect, digital games, pattern recognition, repetition tracking, software
development

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Mediatekniikka

2016 | 42

Ohjaaja: Yliopettaja, FT Mika Luimula

Max Lindblad

VAPAAMUOTOISTEN ENNALTANAUHOTETTUJEN
KOKOVARTALOLIIKKEIDEN SUORITUKSEN
SEURANTAAN TEHDYN JÄRJESTELMÄN
PROTOTYYPPAUS

Tämä opinnäytetyö on kohdistunut koko vartalon liikekaappauksen konseptin ja tästä saatavaa
dataa käyttävän järjestelmän kehityksen ympärille. Tämän järjestelmän tarkoitus on kyetä
seuraamaan ja arvioimaan ennaltakaapatun mielivaltaisen kokovartaloliikkeen suoritusta.

Opinnäytetyön ensimmäinen osa keskittyy kokovartaloliikeseurannan teoriaan, aloittaen
kuvaamalla ensin konseptin historiaa ja käyttöä ammattialoilla, ja sitten käy läpi
viimeaikaisempia kehittymiä, kuvaten muutamia yleisempiä ratkaisuja.

Toinen huomattava osa työtä keskittyy itse järjestelmään, joka onkin työn huomattavin
keskittymiskohde. Alkaen vuoden 2014 kesästä, järjestelmän kehitysprojektin eri vaiheet
kuvaillaan vuoden 2015 kesään, jolloin projektin viimeisin kehitysvaihe päättyi.

Toisen pääosan seuraava osa koostuu yksityiskohtaisesta teknisestä kuvauksesta järjestelmän
pääosista, mukaanlukien järjestelmän sisäisen animaatiojärjestelmän ja eri tapoja miten
animaatiodataa voi liikutella järjestelmässä. Tämän jälkeen, eri tavat luoda sisältöä järjestelmän
käytettäväksi luonnehditaan.

Kuvaten järjestelmän itse tarkoituksen eli liikkeen seuraamis- ja arviointitoiminnon, seuraava
kappale esittää tämän alijärjestelmän pääperiaatteen ja pui prosessin eri huomionarvoisia
seikkoja.

Ottaen käytännönläheisemmän näkökannan, seuraava osa kuvailee muutaman projektin aikana
kehitetyn, järjestelmää testaus- ja esityskäyttöön käyttävän sovelluksen.

Viimeinen osa ennen loppupäätelmiä ottaa katsannon vertailtavaan järjestelmään nimeltä Visual
Gesture Builder, verraten tätä kehitettyyn järjestelmään. Loppuluvussa todetaan projektin olleen
onnistunut saatuaan hyvää palautetta, mutta mainitaan että asiasta kiinnostuneen kannattaa
myös vilkaista Visual Gesture Builder -järjestelmää.

ASIASANAT:

liikkeentunnistus, kinect, digitaaliset pelit, hahmontunnistus, toistontunnistus, ohjelmistokehitys

CONTENT

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 7

2 FULL-BODY TRACKING 8

2.1 Early systems and applications 8

2.2 Current consumer-friendly systems 9

2.2.1 Microsoft Kinect 9

2.2.2 Microsoft Kinect for Xbox One / Kinect for Windows v2 11

2.2.3 Extreme Motion 12

3 THE DEVELOPED SYSTEM 15

3.1 Project timeline 15

3.1.1 Beginning of the project 15

3.1.2 Moving to Kinect 2 16

3.1.3 Onwards 17

3.2 Internal logic 18

3.2.1 Real-time input data handling 19

3.2.2 BodyOrientationFrames 19

3.2.3 Animations 20

3.2.4 Provider / Utilizer model 21

3.2.5 KinectBodyOrientationProvider (Provider) 21

3.2.6 MoveRepeater (Provider) 21

3.2.7 BodyFrameReceiver (Provider) 22

3.2.8 ModelControllerFollow (Utilizer) 22

3.2.9 MoveRecorder (Utilizer) 22

3.2.10 MoveRepeatTracker (Utilizer) 22

3.2.11 BodyFrameBroadcaster 23

3.2.12 Combining Providers and Utilizers 23

3.2.13 BodyOrientationFrame serialization 24

3.2.14 ClinicalMove serialization 25

3.3 Content creation methods 26

3.3.1 Direct recording 26

3.3.2 Animation importing 26

3.4 Content creation interface 28

3.4.1 New move creation 28

3.4.2 Managing existing moves (Properties view) 29

3.4.3 The timeline 30

3.4.4 Setting and metadata fields 31

3.4.5 Choosing ignored joints 32

3.4.6 Saving 32

3.4.7 Testing mode 33

3.5 Repetition tracking algorithm 34

3.6 Developed test and demonstration applications 35

3.6.1 Chair exercising game (Tuolijumppa) 35

3.6.2 Remote streaming prototype (Remote Proto) 36

4 VISUAL GESTURE BUILDER 39

5 CONCLUSION 41

REFERENCES 42

PICTURES

Picture 1. A motion capture setup using IR markers, side-by side with the resulting
computer generated "shot". (Bredow etc, 2005, 3) 9
Picture 2. Depth map and skeleton example output from the first-generation Kinect. 10
Picture 3. Depth map and skeleton example output from the second-generation Kinect.11
Picture 4. Skeleton generated by Extreme Motion overlaid on the input color image. 13
Picture 5. Screenshot of an early version of the system (Lindblad 2014a) 18
Picture 6. Partially shown contents of a ClinicalMove file. 25
Picture 7. Screenshot of the properties view. (Lindblad 2015) 30
Picture 8. Chair game prototype. (Lindblad 2014b) 36
Picture 9. A screenshot of an early version of the "Remote Proto" demo. 37
Picture 10. Example partial output from VGB's training process. (Lower & Hillier 2014)39

LIST OF ABBREVIATIONS

3D Three-dimensional

LED Light-emitting diode

IR Infrared

CMOS Complementary metal-oxide semiconductor

SDK Software development kit

API Application programming interface

JSON JavaScript Object Notation

FBX Filmbox

COLLADA COLLAborative Design Activity

BVH Biovision Hierarchy

VGB Visual Gesture Builder

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

1 INTRODUCTION

Many kinds of new input systems have become more and more commonplace

during the recent years, especially in consumer applications. Unlike while using

a common keyboard and a mouse, input systems like multi-touch, accelerome-

ters, integrated heart rate meters, fingerprint readers and various types of cam-

eras can make otherwise unnecessarily complex or impossible tasks where the

device needs to be able to obtain knowledge of its surroundings and the user,

much more feasible. In some uses, for example in health care and fitness, these

input methods can also provide information that would also otherwise be un-

known by the user or be unreliable.

Making interaction more natural can also result in making the activity much

more engaging and fun to the user, for example with body tracking technolo-

gies. When the user can't cheat the system but will also get encouraging feed-

back related to their performance, activities that otherwise are arduous and la-

borious can become a lot less annoying and, at their best, turn from negative

things that the user "needs to do" to fun, game-like experiences that the user

will keep coming back to. The latter effect is the aim of an effort called

gamification, and can be applied even without the use of advanced input sys-

tems, but using them can sometimes be very advantageous for user experience

and compliance.

One of the input methods that is getting more common is full-body tracking. This

is also the focus of this thesis. In the first major part, the state of the art of con-

sumer-oriented full-body tracking systems will be taken a look at. After that, the

process of developing a system utilizing full-body tracking data for tracking the

execution of pre-recorded movements will be described. In addition the devel-

oped system will also be compared to a similar system in retrospect.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

2 FULL-BODY TRACKING

The idea of full-body tracking is that a device can see where and in what pose a

person is and output that data. Even though the concept is simple, consumer

applications for this have started popping up only somewhat recently.

2.1 Early systems and applications

The earliest full-body tracking systems were used (and are still being used) by

movie industry for capturing lifelike animation for 3D (Three-dimensional) ani-

mated characters by using human actors.

Here the performance of an actor or actress was captured and stored (Motion

capture), and later this sequence of poses was utilized by mapping the per-

former's joints to the virtual character's matching joints, which often resulted in

the movements of the character being more believable than if the character was

animated by hand. Especially as physical interactions such as secondary mo-

tions, weight and exchange of forces are from a real-world source, the motions

seem a lot more natural to the human eye (Gutierrez etc. 2008, 56).

These motion capture systems use several technologies for capturing the mo-

tions, including passive (reflective) or active (equipped with light-emitting diode

(LED)) markers, which are tracked by cameras, or / and inertial systems, which

do the capturing with sensors attached to the joints they are tracking. Some-

times even mechanical exoskeletons are used. Often facial animation is cap-

tured simultaneously with full-body data, as capturing it separately would re-

quire large amounts of time spent re-timing and re-animating and would tend to

seem unnatural. An example setup used in a fully digitally animated movie utiliz-

ing infrared (IR) markers placed on the both the joints and the face can be seen

in Picture 1, along with the final computer generated shot utilizing the acquired

motion capture data. (Bredow etc, 2005, 8)

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

Picture 1. A motion capture setup using IR markers, side-by side with the result-
ing computer generated "shot". (Bredow etc, 2005, 3)

The problem with many of the systems mentioned above is that these systems

are usually very expensive, even the cheapest systems costing thousands of

dollars, and in addition these systems are too cumbersome to be feasible for

casual consumer applications. Because if this, the uses of these systems are

mainly limited to non-interactive motion capture duties.

2.2 Current consumer-friendly systems

As the feasibility of creating full-body tracking devices that don't require special

suits or special room setups, and simultaneously aren't prohibitively expensive

for consumer applications has improved, several these kinds of systems have

started attracting developers and have started making an impact on the market.

Here we will describe several of these systems in regards to full-body tracking

capabilities.

2.2.1 Microsoft Kinect

The Kinect sensor was first introduced in 2010 by Microsoft, who sought to ex-

pand the user base of their Xbox 360 console beyond the established gamer

niche.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

The hardware abilities of the sensor consists of a RGB camera, a depth sensor

and a multi-array microphone. The depth sensing ability is made possible by an

infrared laser projector combined with a monochrome complementary metal-

oxide semiconductor (CMOS) sensor and a technique called Structured Light

(Shao 2014, 3).

Initially, the sensor was to only work with the company's then-latest gaming

console, the Xbox 360. But as other depth cameras in the market couldn't offer

the value brought by the Kinect sensor, it wasn't long until the Kinect was re-

verse engineered for general-purpose uses by making the device work with

normal PC's, and soon after that Microsoft released an official SDK (Software

development kit) for developing Windows applications for the Kinect, along with

a version of the Kinect designed to be used with Windows and which can be

used for commercial applications on the platform. (Paul 2010; Microsoft 2011)

Among other outputs, the Kinect provides skeletal tracking in the form of joint

positions in 3D space for 20 individual joints, for up to 2 user's skeletons tracked

simultaneously. For up to 6 users total, the Kinect can also show their position,

but not their pose. A screen capture showing the depth map and body figure

produced by the sensor can be seen below in Picture 2.

Picture 2. Depth map and skeleton example output from the first-generation
Kinect.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

2.2.2 Microsoft Kinect for Xbox One / Kinect for Windows v2

The second generation Kinect sensor first became available as a mandatory

bundled peripheral for the Xbox One console when it was released in June

2014. Soon after the sensor became available separately and as an early-

access "Kinect for windows v2" device for developing with Windows. After the

first public release of the Windows SDK for the second-generation Kinect, Mi-

crosoft decided to focus on a single device, making it possible to use either the

Kinect for Windows v2 or the console version of the device on PC's using a sin-

gle adapter, and ceased selling the Windows-branded version of the device.

The two versions of the sensor are identical, save for a minimal cosmetic altera-

tions. From now on in this document, this device will mainly be referred to

as Kinect 2. (Fry 2015)

Compared to the first Kinect, the new version is improved in almost in every

way. The color camera's resolution was ramped up from 640*480 to 1920*1080

when reading frames at 30 frames per second. The raw resolution of the depth

images the device produces has increased, but also the perceived quality of the

depth information has improved dramatically, as can be seen in Picture 3. It

should be noted though, that the banding effect in the previous picture isn't re-

lated to quality of the sensor.

Picture 3. Depth map and skeleton example output from the second-generation
Kinect.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

This can at least partially be attributed to the changed technique of obtaining

the depth images; Instead of structured light, the v2 sensor calculates the depth

pixels by measuring the time it takes for emitted IR light to be reflected from the

target back to the sensor, a method called "Time-of-flight". It was also conclud-

ed by an experiment carried out by the writer that this also works much better

outside, as unlike with the earlier version, the v2 sensor doesn't get blinded on a

sunny day, save for a situation where the sun is shining directly at the target

and the sensor is facing the same direction as the sunlight is coming from.

With the enhanced depth fidelity, combined with improvements to software pro-

cessing of the depth image, the skeletal tracking abilities have also been greatly

improved. Now the sensor can sense 6 complete human figures, and the

amount of tracked joints has increased from 20 to 25. The tracking of the joints

is also more stable, so jitter isn't as large as a problem. The field of view of the

cameras has also widened, enabling the sensor to be used in smaller spaces

and to be able to see more. With the enhanced fidelity, hand states (closed /

open / lasso) can also be tracked, along with greatly improved facial tracking.

The improved fidelity also allows the application programming interface (API) to

provide the roll axis for joints, to some amount of precision. (Microsoft 2015)

2.2.3 Extreme Motion

Developed by an Israeli company called Extreme Reality, Extreme Motion is a

software-only solution. The system uses color images provided by normal web

cameras, and works with many web cameras out of the box.

The system doesn't provide data for all joints in the body though, only upwards

from the pelvis, as can be seen in Picture 4.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

Picture 4. Skeleton generated by Extreme Motion overlaid on the input color
image.

This isn't too limiting though, as gestures like crouching can easily be detected

by tracking the elevation of other joints. As the system only uses color images

and not depth, motions like turning your hands towards the sensor can't really

be tracked. Tracking the user's relative distance from the camera is possible

though, by monitoring changes in apparent size of the user's figure.

Unlike its competitors, the system cannot track multiple bodies at once. It

should be noted though that this, along with the missing lower body tracking,

would likely be problematic anyway when taking in the account the relatively low

field of view of most web cameras, along with physical space limitations in many

cases. This point is further validated taking in to account the less demanding

nature of the solution, as the user doesn't need to invest in any extra hardware.

In comparison to the latest Kinect sensor, the tracking accuracy is lower, and as

mentioned, only mostly works in two dimensions. However, many types of

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

games with inexact enough controls normally developed for the Kinect are fea-

sible with the system.

In addition to Windows, Extreme motion is also available for Mac, and even

works on the mobile platforms Android and iOS.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3 THE DEVELOPED SYSTEM

3.1 Project timeline

The timeline of the project spans from the summer of 2014 to the summer of

2015, during which development was taking place most of the time.

3.1.1 Beginning of the project

The project was begun in the summer of 2014 as a co-operation between Turku

University Of Applied Sciences and Serious Games Finland (Now named

Goodlife Technology), with funding from the Finnish public funding agency

Tekes. The aim of the project initially was to create a general-use system that

could be used to track the repetition of different body movements. The system

was planned to potentially be a part of Serious Game’s software, but to be ge-

neric enough so that it could potentially be used as an API for many kinds of

applications. The system was named, atleast as a working title, "Clinical Layer".

The name comes from the system's planned independence and separation from

the actual use case, as the system could be used in many kinds of applications.

The hinting towards healthcare wasn't unintentional either.

Because of the previous experience of the team in the tool, and the ease of pro-

totyping, the initial development environment was chosen to be the Unity game

engine. The idea was that after a way for the system to work was found, it could

be re-implemented without unnecessary dependencies / in a more appropriate

language without terrible effort, and possibly condensed to a single add-on li-

brary.

As the second version of the Kinect sensor Windows (Kinect for Windows v2)

was not yet available when the project began, the development was started us-

ing the original Kinect 1 sensor. This was done using a third-party wrapper li-

brary, as it was the best choice available that made the data from Kinect availa-

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

ble inside Unity. Utilizing some of the scripts in the wrapper package and alter-

ing them to fit the project’s needs, and programming some new functionality, the

first simple version of a repetition tracker was prototyped.

The algorithm used was a simple one, where a series of poses would be rec-

orded from the Kinect, recording them 30 per second, basically performing a

motion capture. Then to track the repeating of the recorded move, the pointing

direction(in relation to parent, local) of chosen joints(arm, forearm, etc) in the

body was compared between the corresponding joints of the recording and live

feed from the Kinect. If the calculated angle between the live feed and the first

recorded frame was small enough (like 30 degrees), the recording was ad-

vanced to the next frame. With this logic, the progress in the move could be

roughly tracked.

3.1.2 Moving to Kinect 2

Not too long after the start of the project, the Kinect 2 for Windows came availa-

ble and a prototype device was obtained. After this the test project has been

completely rewritten. This is partially because the interface for obtaining data

from the Kinect 2 differs greatly to the Kinect 1, as with Kinect 1 the best way to

get data from the device to Unity was to use a third-party wrapper, but with

Kinect 2 there’s an official wrapper that imitates the C# Kinect 2 API. The form

of the data that is obtained from the Kinect API was changed also, as the Kinect

2 API provides data about joint orientations, so that was used instead of world-

space positions of the joints. The final form of the analyzed data that is fed to

the repetition tracking system remains similar though, as the pointing directions

of the joints are converted to normalized direction vectors in every version of the

repetition tracking algorithm.

With the final hardware obtained, the first hurdle was to understand how the

proper data could be obtained from the official API of the Kinect 2. This proved

to be more troublesome than one would expect, as the API was still in closed

beta state, and even though there was an official wrapper for Unity, it was even

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

more incomplete than the API itself. Even a small bug fix to the wrapper itself

was required to even access the joint orientation data, which would be the main

data source for the project. Documentation was also nearly non-existent and

sometimes even wrong, so even being able to simply drive a 3D avatar took

some time to figure out and implement. The orientations of the Kinect skeleton

in a neutral stance (T-pose) were not documented and were not compatible with

normal character rigs, so a system that fits a rig to work with the data from

Kinect was made, enabling "avateering" with multiple different kinds of rigs.

What "avateering" means is basically driving an "avatar's" (A 3D character rep-

resenting the user) animations by one's own motions, here meaning successful-

ly being able to animate several characters on the screen simply by going in

front of the sensor.

After getting the necessary data to an relatively easily usable state in Unity, the

same kind of functionality that existed in the Kinect 1 project was developed,

including a move recorder and a repetition tracker with similar algorithm as the

Kinect 1 project had. The repetition tracking seemed like it could be improved

though, and work on a more accurate and robust repetition tracking method was

started.

3.1.3 Onwards

After some time, the basic idea of a better way to track the repetition of moves

emerged. Simultaneously work on improving the base framework for the system

was taking place, including improving the provider/utilizer model of passing an-

imation frames around, making a basic user interface for recording and cutting

the pre-defined moves, preview functionality to the list of predefined moves, etc.

With better tools and visualizations to control and see what’s going on, the algo-

rithm was could be better tested and was optimized further. A screenshot from a

video of this earlier version can be seen below (Picture 5), and the video in the

reference.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

Picture 5. Screenshot of an early version of the system (Lindblad 2014a)

Along the length of the project, development was ongoing continuously. Several

additional features and additions were developed, including the ability to import

input animations from other software, a small exercise game for testing and

demonstration purposes, further improved content creation interface bringing

together the abilities of the system (recording moves, cutting them, importing

them from another source, etc), a bare-bones example to ease the potential

integration of the system to other software, and a network-streaming demon-

stration application that was showcased at a physiotherapist exhibition. These

cases, along with the specifications of the internals of the system will be exam-

ined in the following chapters.

3.2 Internal logic

As the system consists of many parts and much of control is required for record-

ing the reference moves, post-processing them, testing them with the algorithm,

and continuously visualizing the process, the internal structure of the application

is somewhat complex. Note that in the following sub-chapters class and

method/function names of the system's (Clinical Layer's) C# source code

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

will be used in identifying some components of the system to avoid mis-

understandings.

3.2.1 Real-time input data handling

The Kinect 2 sensor and it’s API provide access to many kinds of feeds, includ-

ing the raw depth image, color image, skeleton data, audio from a microphone

array, and body index images which color the silhouettes of different bodies de-

tected. But the only feed that Clinical Layer utilizes is the skeleton data (Body

frames). On the Kinect 2 API side, the skeleton data is automatically construct-

ed by processing the depth image with advanced image processing algorithms.

The data is first brought available to Unity C# side by using the official Unity

wrapper for Kinect 2, where the Unity application polls for new frames in Update

function, in the BodySourceManager class. From BodySourceManager the ar-

ray of bodies (always 6 long) is passed to KinectBodyOrientationSensor. The

KinectBodyOrientationSensor picks a body from the array and then reads and

converts its position and joint orientations to Unity-specific Vector3 and Quater-

nion types so they can be processed easier. Next the rotations are converted so

that they are relative to T-pose, in which they are at zero. The last processing

step is taking in to account the Kinect sensor’s rotation offset and height from

ground, so that the Y-axis is always pointing in the same direction as real-world

gravity, instead of the sensor’s upwards facing side, as the sensor might be tilt-

ed. After this, “Utilizers” which are subscribed to the

KinectBodyOrientationSensor “Provider” are notified that there’s a new frame

available, which will be further explained below.

3.2.2 BodyOrientationFrames

The most important kind of data the application passes around is

BodyOrientationFrames. These contain the world position of the root of a skele-

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

ton, and the pose of the skeleton as local rotations of a specific kind of hierar-

chical skeleton rig.

The root’s position is saved as a Vector3, and the rotations as an array of Qua-

ternions. The Quaternion array is 25 items long and the order of joint rotations

contained conform to the Kinect 2 API's Kinect.JointType enumeration, though

not all of the slots are actually used. BodyOrientationFrame data is used for vis-

ually animating characters and also for tracking the repetition of moves.

Additionally each BodyOrientationFrame also has an “isTracking” boolean vari-

able indicating if the body was tracked during this frame (Usually only one frame

with this set to true is sent in sequence before pausing), and an array of boole-

an variables indicating which joints should not followed (ignored) by tracking,

though this is currently not in frame-specific use, instead being animation-

specific.

A modifier indicating the serialization quality of the frame is also contained. A

BodyOrientationFrame can be serialized to a byte array with the ToBytes()

method, and constructed from a byte array by using a constructor with a byte

array input parameter.

3.2.3 Animations

In the system, animations are stored in a custom "ClinicalMove" type. A

ClinicalMove is basically just a collection on BodyOrientationFrames forming an

animation. In addition to an array of BodyOrientationFrames, a ClinicalMove

also contains a name for the move(string), a description(string), the frame rate

of the move, a value indicating the angle comparison strictness used by repeti-

tion tracking of the move (angleComparisonStrictness), a modifier indicating the

serialization quality of the move (clipQuality), and integers for the minor and

major versions of the file format.

ClinicalMoves can be serialized to JSON strings using the ToJSON() method,

and created from JSON by using the CreateFromJSON() function. JSON stands

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

for JavaScript Object Notation, and is a human-readable textual data serializa-

tion format.

3.2.4 Provider / Utilizer model

Because there’s many components in the system that pass

BodyOrientationFrames around in similar ways, there’s a base class for compo-

nents that provide frames (BodyOrientationProvider), for example the

KinectBodyOrientationSensor, and a base class for components that do some-

thing with the frames (BodyOrientationUtilizer), for example MoveRecorder.

The way the data is passed around is so that first, a BodyOrientationUtilizer

needs to subscribe to a BodyOrientationProvider, then the provider will notify

the utilizer when a new frame is available. The utilizer may then get the data

from the provider. The most important Providers and Utilizers will be listed

below.

3.2.5 KinectBodyOrientationProvider (Provider)

This is the the original source for a Kinect 2 feed, as pointed out earlier. Either

picks any body that it sees is active (might change abruptly if the sensor sees

more than 1 person), or a person from a specific array index in the bodies array.

Developer note: For a more controlled obtaining of bodies, it is recommended to

use the KinectActiveAreaBodySelectorSource component with

BodyPositionMarkers, like in the "Remote Proto" app, that will be mentioned in

a latter chapter.

3.2.6 MoveRepeater (Provider)

This component plays back previously saved ClinicalMove animations and pro-

vides a feed of frames from them. Can be used to play the moves at their natu-

ral speed (using their set frame rate) or have the frame changes being set ex-

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

ternally, for example when the animation cutting timeline slider is dragged, or

showing the pose in the played animation that most resembles a live feed from

kinect (using MoveRepeatTracker).

3.2.7 BodyFrameReceiver (Provider)

Receives frames sent over the network by BodyFrameBroadcaster, and makes

them available to Utilizers. This component, along with BodyFrameBroadcaster,

is very experimental and not error-proof.

3.2.8 ModelControllerFollow (Utilizer)

This component will use the provided frames to drive a rig for a 3D character

(Playing back animation). Developer note: For joints (Transforms in Unity) that

need to be driven, the TrackedJoint script should be attached, and for child

joints of those joints, the child joint should be assigned. The

RigAdjusterForKinect script may need to be used if the joint’s rotations aren’t

zeroed at T-pose, otherwise the rig won’t animate properly.

3.2.9 MoveRecorder (Utilizer)

MoveRecorder is used simply for recording BodyOrientationFrames from a

BodyOrientationProvider and assembling them to a ClinicalMove.

3.2.10 MoveRepeatTracker (Utilizer)

This is the “main” component of the system, as this provides repetition tracking

information (user's progress in executing the predetermined move) from a feed

of BodyOrientationFrames that is fed to it. Preferrably a live feed from a

KinectBodyOrientationSensor is supplied.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.2.11 BodyFrameBroadcaster

Sends BodyOrientationFrames over the network to a BodyFrameReceiver. De-

veloper note: Quite simple of a component, depends on Unity’s legacy network-

ing system and having a connection, and a NetworkView (an Unity-specific

component) target. The target is the GameObject (an Unity-specific concept)

with the BodyFrameReceiver script.

3.2.12 Combining Providers and Utilizers

The Providers and Utilizers can be used in conjunction to implement many dif-

ferent kinds of functionalities. For example, a MoveRepeater and a

ModelControllerFollow can be connected together to create a simple animation

player. Alternatively, combining a KinectBodyOrientationProvider to a

MoveRecorder can be used to record the skeleton output from the sensor.

To set up a more meaningful system in a graphical application, the

KinectBodyOrientationProvider feed can be attached to both a

ModelControllerFollow and a MoveRepeatTracker to give greater feedback to

the user while they use the application, as they can see themselves on the

screen while the system also tracks if they are progressing with an exercise. To

clarify to the user what they are supposed to be trying to do, a

MoveRepeater+ModelControllerFollow combo could also be added to show the

reference move side-by side with the user's avatar (The virtual representation of

the user on the screen). Optionally the networking components

BodyFrameBroadcaster and BodyFrameReceiver could also be added for re-

mote observation by a physiotherapist for example, or even to add remote play-

ers to a game.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.2.13 BodyOrientationFrame serialization

BodyOrientationFrames can be serialized to sequences of bytes of predictable

lengths, and back. Efficient use of bytes is achieved by manually writing all rele-

vant data to to a bytestream using the standard library class BinaryWriter for

writing, and the class BinaryReader for reading. It is critical to know the exact

order in which the data making up a BodyOrientationFrame is encoded to the

bytestream as the binary format doesn’t really have any kind of headers for da-

ta. The order can be determined from the BodyOrientationFrame.cs source file.

The way the main payload (the array of body joint orientations) is encoded to

bytes differs depending on the quality setting used. There is 3 different quality

settings, each with their own quality / size characteristics. The settings are:

 High

The rotations are encoded as they are natively stored: as 4 32-bit float-

ing-point numbers, making up all the components of the Quaternion:

w,x,y and z.

 Medium

For this quality setting, the Quaternion is converted to an Euler angles

representation, and the 3 components (x,y,z) are stored as 16-bit inte-

gers.

 Low

For the lowest quality setting, the Quaternion is again converted to an

Euler angles representation, and the 3 components are stored as single

bytes. The quality degradation may be quite visible as there’s approxi-

mately 1.41 degrees of maximum error.

As the individual frames take less than a kilobyte even on the highest quality

setting, the frames can be streamed over a network even if the bandwidth is

poor, as long as the connection quality is reasonable.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.2.14 ClinicalMove serialization

ClinicalMove animations can be serialized to human-readable JSON strings, as

seen in Picture 6. The smaller parts (Name of the move, description, framerate,

angle comparison strictness variable, quality of the frames in the clip, major and

minor versions of the file format) are simply saved as their textual representa-

tions. The main bulk of the data, the array of BodyOrientationFrames, however,

is first serialized to bytes using the previously described method, byte sequenc-

es for individual frames being placed one after another, and then the combined

byte sequence converted to base64-encoded text. This decreases the size effi-

ciency by a factor (33%), but enabling the files to be human-readable and easi-

er to process is worth it, noting that the animation data never does take that

much space anyway (approximately 17 kilobytes a second at highest quality).

Picture 6. Partially shown contents of a ClinicalMove file.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.3 Content creation methods

For the movement repetition to work, the system obviously needs reference

moves to compare against. These need to be in the ClinicalMove format for the

system to be able to understand them. The system supports two ways of bring-

ing new animations to the system, described below.

3.3.1 Direct recording

The easiest way to produce new movements is to simply record them directly

from the Kinect’s skeleton input. This was good enough to produce good mate-

rial for testing the system, and there would be no compatibility problems when

comparing the rotations of the joints in the move repetition algorithm, as the

source for the poses was the same, the Kinect sensor. The ease of this method

could also potentially unlock new opportunities for content creation, as for ex-

ample in physiotherapist use, the recording could be created during an ap-

pointment, possibly even by the patient, which could give useful feedback the

the physiotherapist and the patient.

3.3.2 Animation importing

Even with all the good features the direct recording has, it still had some draw-

backs. One of these was the restless nature of the unfiltered Kinect input, as the

joints would jump around and rotate around their twist axes, sometimes to pro-

duce a quite frightening visage.

To remedy this, it was established that it’s necessary to find a way to bring ani-

mations to the application from external sources. Common export formats from

3D software packages seemed interesting, but the problem was that even

though these could be imported to Unity while in its development environment,

this would not be possible for built executables that Unity outputs (let alone if

the system was to be made not dependent on Unity). There also didn’t seem to

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

be easily accessible and usable add-on libraries that could do this task. The

formats themselves, for example the formats FBX (Filmbox) or COLLADA

(COLLAborative Design Activity), also were so complex that writing an importer

for any of these could be a too large task.

3.3.2.1 BVH animation format importer

After some research, a somewhat common and simple enough format was

found: BioVision Hierarchy (BVH), with the file extension .bvh . BioVision

Hiearchy is a format that was originally developed by a now-defunct motion cap-

ture company BioVision to serve the function of providing motion capture data

to their customers (Thingvold, 1999). BVH seemed perfect for the task, as the

format barely has any extra features, beside storing animation. Many existing

programs that are used for creating animation also had support for this format.

As the structure of the BVH file format is quite simple, decision was made to

develop an importer that could be used to read the contents of a BVH file and

produce a compatible ClinicalMove animation from that data.

It still took a while to write the code to read through a BVH file, and it wasn’t as

trouble-free as it seemed at start. Especially problems with reading the rotations

for different rotation axes in the right order, and the fact that some software

handle rotations differently (Right-handed versus Left-handed coordinate sys-

tems for example) caused headaches. Also making animations compatible

proved a challenge, as joints like the left elbow for example had different names

depending on the animation rig, and at worst cases, the hierarchy of the body

joints was different.

In the end, most of these problems were solved, and the importer was in work-

ing order. Even though it wasn’t necessary for the importing process, support

for reading the joint hierarchy and visualizing the original animation, even if it

was incompatible, was developed for debugging purposes.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.4 Content creation interface

To facilitate developing the different parts of the system, developing and testing

the repetition tracking algorithm, and readily testing it with different kinds of

movements that could be easily fed to the system, it was needed to develop an

user interface alongside the system.

The initial user interface was emergent, developed with the very first parts of the

system. It served its purpose, but eventually caused too much friction, especial-

ly with the user interface code not properly being separated from rest of the sys-

tem. The interface used Unity’s legacy "IMGUI" system, and its implementation

wasn’t planned ahead when it was developed, so when it was needed to add

features to the system and test them, hacking away at the old interface didn’t

feel right, especially with Unity’s long-awaited new UI system having been re-

leased.

So decision was made to make a new user interface for the system. This would

not only serve for debugging the system while developing it, but also for being

the tool for producing content (moves to repeat) for the system. This could then

be used when the system was utilized in another application as a control mech-

anism, for example.

With the main needed features of the system now being known, and having

noted where there were shortcomings with the older interface, most of the fea-

tures that the interface would end up having were planned from the start, and

are described below.

3.4.1 New move creation

Functionalities were created to the user interface for the two ways to introduce

new animation assets to the system:

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

 Direct recording

A simple recording interface, with a 3D avatar displaying the kinect’s

skeleton feed. When entered, the system first waits for a body to be de-

tected by the Kinect. When the Kinect properly sees a body (Not just par-

tially, all joints need to be non-inferred), a 3-second countdown for the

start of the recording begins. After the countdown, the actual recording

starts. The recording continues until the “Stop recording” button is

pressed. After this, the “Properties” view is entered with the just captured

raw recording having been loaded in.

 Animation importing

For the BVH animation file import option, the user is presented with a file

picker dialog, asking for a file with a .bvh extension. When a proper file is

selected, the file is given to the importer and if the conversion is success-

ful, the BVH-animation that is now converted to a ClinicalMove is loaded

to the “Properties” view, which is shown.

3.4.2 Managing existing moves (Properties view)

The Properties view can be accessed by either opening an existing

ClinicalMove file with the file picker, or by going through the direct recorder or

the BVH file import option, which will, after doing their work, pass the yet un-

saved ClinicalMove to this view. The Properties view allows the user to, view,

modify, and save the ClinicalMoves in several ways, described below. The Test-

ing mode can also be accessed from this view. A screenshot from a video that

shows parts of the interface be seen below (Picture 7), and the video in the ref-

erence. The screenshot shows the Properties view.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

Picture 7. Screenshot of the properties view. (Lindblad 2015)

3.4.3 The timeline

In the bottom of the screen, there is a timeline. On it there is a black pointer,

which signifies the current shown point in the animation. If the animation is play-

ing, this can be seen moving. This can also be dragged with the mouse, which

will scrub through the animation.

There is also pointers signifying the start and end points of the animation. The-

se can be moved, which in part crops the part of the animation that will be taken

in to account, effectively performing a cut, similar to using a video editing tool.

This cutting functionality is very useful for deleting unnecessary frames from the

start and end of the animation and making seamlessy repeating, loopable

movements. Few moves could be imported without moving the markers at least

a small amount. The functionality can also be used for extracting multiple small-

er movements from a long recording, saving them to separate files.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.4.4 Setting and metadata fields

 Position offset

The position offset setting allows the user to correct the location of the

character in the animation. This can be useful if for some reason the

character is under the ground or levitating in the air for example. The off-

set won’t itself be saved, this setting will just modify the animation frames

by applying the position offset to all of them, and the sliders will always

be at zero position when the properties screen is entered again.

 Angle strictness for tracking

This will modify the setting that the move repetition tracking will use for

this specific move. This may sometimes need to be lowered or in-

creased, if there is a relatively small amount of movement for example,

but this might cause other problems.

 Move name

Simply a name for the move. This may be different from the filename,

although this is not recommended. An yet unsaved move will be saved

with this as the filename, although sanitized, by default.

 Move notes

This is simply a field where extra information about the move can be put.

By default the system will state the source of the animation here (record-

ed with Kinect or imported from a BVH file).

 Frame rate

This field will show the frame rate setting of the animation. This won’t

normally be needed to be modified, as the Kinect recordings will always

have a frame rate of 30 and the frame rate of imported BVH animations

will be set according to the setting in the BVH file.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

 Length and frame count fields

These fields are uneditable, and will show the count of frames in the an-

imation, and the length of the animation in seconds, calculated from the

count of frames and the frame rate.

3.4.5 Choosing ignored joints

By pressing a button in the properties view, the user can go to a mode where

they can choose the body joints that will be taken in to account in the repetition

tracking. The 3D character will go in to a T-pose and joints that are selected to

be ignored are shown grey and those that aren’t are shown colored. The list of

ignored joints and not ignored joints will also be shown on a list for extra clarifi-

cation. These states can be toggled either by clicking the joints themselves, or

by using the automatic mode.

In the automatic mode, the statuses of the joints will be decided automatically,

depending on if they rotated over a certain degree threshold from their starting

positions at any point during the move. This threshold can be changed from a

slider in the view, and the effects can be seen instantly.

3.4.6 Saving

When the desired changes to the animation have been made, the move should

be saved. Pressing the save button will bring up the file dialog, now prompting

the user to choose a filename and a folder to place the move to. If the move

was opened from an existing file, the same filename will be suggested, other-

wise the name of the move will be suggested. The user can also change the

animation quality of the move in a dropdown menu, which will cause the system

to serialize the frames using a different quality setting when the save button in

the file dialog is pressed.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.4.7 Testing mode

The Testing mode can be accessed from the properties view after opening a

move, by pressing the “Test move with Kinect” button. In the testing mode, two

3D characters will be shown. The first one is displaying the raw Kinect feed, and

the second one is displaying the reference animation, playing independently

with a normal speed. The user will also be shown a visualization that shows

how the repetition tracking algorithm is working. This visualization will present

the weights that all the frames in the animation are given, and also showing the

current position in the move, and a repetition counter.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.5 Repetition tracking algorithm

The heart of the system is the process which evaluates if the user is doing the

move the system is tracking or not. By the simplest definition, when the system

is started it is first given a pre-recorded reference move (a recording,

ClinicalMove) and then the system starts taking in a stream of poses (preferably

the live feed from the Kinect), and outputs the user's progress in executing the

move that is being tracked.

If one would be to describe the core logic of the process the system repeats

tens of times a second in a single sentence, it would go:

Find a point in the reference animation that resembles the input pose the most,

while preferring selecting a point close to the point that was selected in the pre-

vious iteration.

In practice, the system works by continuously comparing all the individual poses

(skeleton animation frames) it's being fed at the rate of 30 poses a second to all

the individual poses in the reference move. During a single iteration, the system

takes in to account all the joints that have been pre-selected as the joints rele-

vant to the move and makes comparisons to the frames of the reference anima-

tion. The system attempts to select the point in time in the reference animation

that the user's motions correspond with the most, by taking in to account sever-

al factors including angular differences, the frame's positions in time and veloci-

ties. During the comparison, it's important to take in to account that some joints

might be in identical poses during multiple different points in the animation. Re-

sults of the previous iterations are also taken in to account. The "winning" pose

is selected by scoring the different options according to several factors, includ-

ing those mentioned, rewarding some traits and penalizing others. An assump-

tion is made and taken in to account that the user is progressing forwards in

time in executing the move to smoothen the process, although the system does

still retain some ability to keep the tracking contiguous if the user is executing

the move in a reversed manner.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

3.6 Developed test and demonstration applications

As mentioned earlier, for testing and demonstrating purposes a few additional

small applications were created, described below.

3.6.1 Chair exercising game (Tuolijumppa)

Although an exercise game with the simple objective of repeating sets of pre-

defined exercises isn't exactly the most original of game ideas, for the purpose

of quickly validating the performance of the repeat recognition system in a real-

istic setting it is great. Hereby this was the idea that was chosen for the first

demo app. There was a small specialty in the game idea though, as it was

planned that the exercise routine would be focused on utilizing a normal chair

for an accessory.

Some custom logic, like a Kinect-driven cursor and an unique way of choosing

the workout to execute, were developed as well. There was only one complete

move set was defined and recorded, but this was done with the help of a physi-

otherapist. The screenshot below (Picture 8) is taken from a video of the appli-

cation. The video can be seen from the reference.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

Picture 8. Chair game prototype. (Lindblad 2014b)

As can be seen in the video, the user is guided to do the correct movement by

showing the user's live animated character on the left, and an identical charac-

ter, which is repeating the move correctly, on the right. The user can repeat ex-

ercises at their own pace, and when a predefined amount of repeats is execut-

ed, the move changes. When all the different moves are completed, the game

ends.

3.6.2 Remote streaming prototype (Remote Proto)

The idea of this prototype application was to demonstrate remote viewing of the

Kinect's skeleton feed on a tablet device by a would-be-physiotherapist, while a

patient is repeating physiotherapist-chosen movements using their device, con-

nected to a TV for example. This application was developed mainly to be

demonstrated at a booth during the World Confederation for Physical Therapy

Congress 2015 exhibition.

First thing the application requires is connecting the tablet and the TV to each

other. In the prototype this was achieved by having the tablet and the TV in the

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

same local network, and reading the TV's IP address with the tablet's camera

using a QR code. After a connection is established, the " physiotherapist " is in

control of the session, and can choose an exercise for the "patient" to repeat.

This exercise (a ClinicalMove) would then be transmitted to the patient's device,

and the patient would be asked to begin executing it.

Now as the physiotherapist can see what the user is doing, they can verify that

the patient is doing the move correctly, while in addition the automatic progress

tracking algorithm's output is being shown on both devices. The physiotherapist

can also change the tracked move at any time, and see the reference move, in

split-screen view with the actual live stream from the patient.

What the patient sees depends on if they are repeating the asked move or not.

If the repeat recognition algorithm sees that the user isn't executing the move,

the character on the patient's screen turns transparent and starts demonstrating

the move by playing the reference move. If the user is recognized executing the

move, the character turns solid and starts playing the reference move so that it's

in sync with the patient's pace. The screenshot below (Picture 9) shows an early

version of the application in action.

Picture 9. A screenshot of an early version of the "Remote Proto" demo.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

This application used much the developed functionality, with the moves first be-

ing prepared by recording them with Kinect and then importing hand-animated

versions of them with the BVH importing functionality. Unity's built-in multiplayer

networking functionality was used to facilitate the client-server relationship and

the experimental BodyFrameBroadcaster and BodyFrameReceiver components

for sending and receiving the raw reference move data (ClinicalMove JSON)

and the raw live animation frames (BodyOrientationFrame byte arrays) between

the devices. In addition to the basic application, work was put to make the file

browsing view to play previews of the ClinicalMove files in the open folder, not

by using pre-generated image data but by actually reading the files in a back-

ground thread and rendering the thumbnails in real-time.

From feedback received, the demo did it's duty and functioned throughout the

exhibition, and received positive feedback. The largest problem was that one of

the tablet devices used for demonstrating couldn't stay on continuously even

while connected to an outlet, as the power draw was too high. This could have

potentially been avoided with performance optimizations and frame rate limita-

tions.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

4 VISUAL GESTURE BUILDER

Visual Gesture Builder (VGB) is a system developed by Microsoft for the se-

cond-generation Kinect. VGB is described as an "Data-driven solution for ges-

ture detection", and is mentioned in this work because of its similarity to Clinical

Layer, and the great relevance to the research problem of this thesis. (Mi-

crosoft, 2015)

The main outline of VGB as a solution is very similar to Clinical Layer. VGB al-

lows the user to make recordings from the Kinect's output, then process and

configure them manually for use with gesture recognition, test them, and finally

use them in a Kinect-enabled application to track the completion of

moves/gestures.

VGB Consists of several pieces of support software. To record the raw clips,

Kinect Studio is used. One might then want to use KSConvert to do a file con-

version. Next one needs to open the Visual Gesture Builder itself and create a

project if one doesn't yet exist, and go through a wizard setting particular set-

tings for the gesture, for example, if the move is symmetrical or not. VGB bene-

fits from using multiple recordings as input information, so now user needs to go

through a manual tagging process where they basically go through the clips and

tell the system when the user is executing the gesture. After this the system

goes through the training phase, during which it uses machine learning algo-

rithms to find out the most optimal way of tracking the execution of the move.

An example partial output of the training process is visible in Picture 10. This

process may take a long amount of time, depending on the amount of clips

evaluated. (Lower & Hillier 2014)

Picture 10. Example partial output from VGB's training process. (Lower & Hillier
2014)

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

After this, the user can test the moves by launching the live preview app. When

the time comes to use the gesture recognition data within one's own application,

they need to use the VGB's runtime library, which is contained in the Kinect's

API, to read the user-created gesture database, run the tracking, and then use

the output of the gesture tracker to drive their application.

The reason a more thorough comparison with Clinical Layer with testing wasn't

completed is because of the late point in the project when VGB came available

with good documentation to use in the same environment as Clinical Layer,

combined with having no extra time to conduct a proper, in-depth test during the

hurried development phase in the project, among while working on another pro-

ject utilizing motion controls.

Doing an educated guess, one could expect to get better results with VGB in

comparison to Clinical Layer, when taking in to account that VGB can intelli-

gently choose to track the best classifiers to conduct it's tracking. It should be

noted though that it does have some disadvantage in comparison to Clinical

Layer. Because of the overall complexity of the VGB's content creation process,

producing trackable gestures/moves is likely to take longer in both manual and

automatic processing steps, require the use of multiple different pieces of soft-

ware, multiple different custom file formats, and possibly the use of cumber-

some command-line tools. In comparison, Clinical Layer can quickly produce all

the data needed to track a move, including testing it, without leaving the single

content creation interface. In addition, Clinical Layer is subjectively easier to use

from application code.

Some additional differences between VGB and Clinical Layer are that Clinical

Layer is designed for tracking the "analog" progress variable in looped moves,

while VGB can do the same (continuous gestures, using the "RFRProgress"

machine learning algorithm) without expecting them to be looped, but also dis-

crete gestures (for example, seated or not seated, done using the

"AdaBoostTrigger" machine learning algorithm). (Microsoft 2015)

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

5 CONCLUSION

At the end of the first development phase, in the summer of 2015, the system

was functional, and fitted the definition that was laid out at the start of the pro-

ject, so it could be stated that the project was successful. The performance of

the system was evaluated with the two test/demonstration projects, the chair

exercise game and the exhibition demo, and both got positive feedback.

A package purposely built for integrating the system to other projects utilizing

the Unity engine was also created, including a bare-bones simple example app,

which makes utilizing the system in future applications relatively easy. Some

additional documentation not included in this thesis was also produced.

It could still be said that the system's performance isn't as it good as it could be,

as it does have trouble with some kinds of moves, and there's still some other

problems present, for example not all the moves brought to the system the im-

porting functionality can be used for tracking. The repetition tracking algorithm

could also be further developed and refined, for example to take in to account

angular velocities of joints, and by conducting more structured testing of differ-

ent move sets and taking the learned results in to account.

If one was searching for a solution for bringing continuous tracking of the re-

peating of arbitrary moves to an application, Clinical Layer could possibly fit the

bill. But they should evaluate if either Clinical Layer or the previously mentioned

Visual Gesture Builder works better in their project.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Max Lindblad

REFERENCES

Bredow, R; Hastings, A; Schaub, D; Kramer, D, Engle, R. 2005. From Mocap to Movie: The
Polar Express. USA: Sony Pictures Imageworks. Referenced 5.12.2015.
http://library.imageworks.com/pdfs/imageworks-library-from-Mocap-to-Movie-The-Polar-
Express.pdf

Gutierrez, M; Vexo, F; Thalmann, D. 2008. Stepping into Virtual Reality. Germany: Springer

Shao, L. 2014. Computer Vision and Machine Learning with RGB-D Sensors. Germany: Spring-
er

Paul, I. 2011. Kinect Hacked To Work On PCs. Referenced 3.12.2015.
http://www.pcworld.com/article/210494/Kinect_Hacked_To_Work_On_PCs.html

Meisner, J. 2011. Kinect for Windows SDK – It’s Here!. Referenced 6.12.2015.
http://blogs.microsoft.com/blog/2011/06/16/kinect-for-windows-sdk-its-here/

Fry, M. 2015. Microsoft to consolidate the Kinect for Windows experience around a single sen-
sor. Referenced 3.12.2015.
http://blogs.msdn.com/b/kinectforwindows/archive/2015/04/02/microsoft-to-consolidate-the-
kinect-for-windows-experience-around-a-single-sensor.aspx

Microsoft 2015. Kinect hardware. Referenced 3.12.2015.
https://dev.windows.com/en-us/kinect/hardware

Lindblad, M. 2014a. Clinical Layer Prototype (recording & playing). Referenced 8.2.2016.
https://www.youtube.com/watch?v=bGzZdBcwU0A

Thingvold, J. 1999. Biovision BVH. Referenced 6.12.2015.
http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

Lindblad, M. 2015. Clinical Layer content creation interface demo. Referenced 8.12.2016.
https://www.youtube.com/watch?v=58Aw5OSQS5o

Lindblad, M. 2014b. Tuolijumppa. Referenced 8.2.2016.
https://www.youtube.com/watch?v=G1qeMTqbI0A

Microsoft 2014. Visual Gesture Builder: A Data-Driven Solution to Gesture Detection. Refer-
enced 6.12.2015.
https://onedrive.live.com/view.aspx?resid=1A0C78068E0550B5!77743&app=WordPdf

Lower, B; Hillier, A. 2014. Custom Gestures End to End with Kinect and Visual Gesture Builder.
Referenced 6.12.2015.
https://channel9.msdn.com/Blogs/k4wdev/Custom-Gestures-End-to-End-with-Kinect-and-Visual-
Gesture-Builder

Microsoft, 2015. Detection Technologies. Referenced 6.12.2015.
https://msdn.microsoft.com/en-us/library/dn785523.aspx

