DEVELOPMENT OF MAINTENANCE ASSISTING SOFTWARE APPLICATION FOR MOBILE WORK MACHINE

Ville Saari

Master’s thesis
March 2016
Automation Technology
ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Automation Technology

SAARI, VILLE:
Development of Maintenance Assisting Software Application for Mobile Work Machine

Master's thesis 48 pages, appendices 6 pages
March 2016

Maintenance assisting software application has been helping in the maintenance of a mobile work machine, made for container handling, over a decade. Software application has been used to read alarm data and statistical information from the machine control system. These machine parameters have helped with machine service and designing of the preventative maintenance.

As a part of this thesis a user survey and a market comparison was executed to determine user needs for different machine parameters and other maintenance assisting functionalities in the software application.

This document serves as a functional description and specifies technical information needed for the implementation of a new version of the software application. With this specification all the essential characters and new developed characters can be transferred into the new platform.

Key points in the software application development are:
- Updating machine parameters and software application functionalities to serve modern-day requirements and customer demands to all machine variations. Customer demands are based on the user survey.
- Improved alarm data and statistical information analyzing to help the user in fault finding and therefore decrease the machine down-time.
- Changing the communication from serial bus to Ethernet using Omron FINS-commands. For the future Ethernet based communication gives better possibilities to implement wireless communication between machine and the software application.
- Harmonize user interface visualization to other machine related user interfaces.

Key words: maintenance, software application
LIST OF REFERENCES .. 48
APPENDICES .. 49
 Appendix 1. User survey form .. 49
 Appendix 2. Control system memory areas .. 51
 Appendix 3. FINS command codes ... 53
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>DEC</td>
<td>Decimal value</td>
</tr>
<tr>
<td>DA</td>
<td>Destination Address</td>
</tr>
<tr>
<td>DNA</td>
<td>Destination Network Address</td>
</tr>
<tr>
<td>ECU</td>
<td>Engine Control Unit</td>
</tr>
<tr>
<td>FINS</td>
<td>Factory Interface Network Service</td>
</tr>
<tr>
<td>GCT</td>
<td>Gateway Count</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HEX</td>
<td>Hexadecimal value</td>
</tr>
<tr>
<td>HS</td>
<td>Health and Safety</td>
</tr>
<tr>
<td>ICF</td>
<td>Information Control Field</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>RSV</td>
<td>Reserved</td>
</tr>
<tr>
<td>SA</td>
<td>Source Address</td>
</tr>
<tr>
<td>SNA</td>
<td>Source Network Address</td>
</tr>
<tr>
<td>SID</td>
<td>Service ID</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Background and motivation

Maintenance assisting software application has been helping in the maintenance of a mobile work machine, made for container handling, over a decade. Software application has been used to read alarm data and statistical information from the machine control system. These machine parameters have helped with machine service and designing of the preventative maintenance.

This software application requires updating in order to answer modern-day requirements. The application is starting to have compatibility problems with the newest computer operating systems. Serial bus connection used is beginning to be more off an optional bus in the control systems and therefore needs to be changed to Ethernet based communication. Also machine level development has brought new requirements for the machine parameters.

Existant layout of the software application user interface and report can be seen in the pictures 1 and 2.

![User interface](FIGURE1.png)

PICTURE 1: User interface
1.2 Development targets

The aim of this document is to create a functional description and specify technical information needed for the implementation of a new version of the software application. With this specification all the essential characters and new developed characters can be transferred into the new platform.

Key points in the software application development are:

- Updating machine parameters and software application functionalities to serve modern-day requirements and customer demands to all machine variations. Customer demands are based on the user survey.

- Improved alarm data and statistical information analyzing to help the user in fault finding and therefore decrease the machine down-time.

- Changing the communication from serial bus to Ethernet using Omron FINS-commands. For the future Ethernet based communication gives better possibilities to implement wireless communication between machine and the software application.

- Harmonize user interface visualization to other machine related user interfaces.
2 USER SURVEY

2.1 Target

The aim of the survey was to gather information about the needs of different target groups regarding the available machine parameters. With the results from this survey the application will be developed to serve all target groups and also avoid unnecessary information and functionalities to make the application as easy as possible to use and maintain.

2.2 Implementation

User survey was implemented by using Google Forms -platform. Form included multiple-choice questions and free comment fields concerning necessity of the machine parameters and application functionalities. Survey was distributed via email to approximately 75 persons including inner and outer customers. Participants were selected from all departments (management, engineering, product support, commissioning, project delivery and service) to get as wide view as possible. Survey was divided into four main points, statistics, alarm, GUI remote use and others. Survey form is presented in appendix 1.

2.3 Results

The user survey was answered by 31 respondents, which makes the response rate approximately 40 per cent. With this response rate it is possible to define all the required machine parameters and application functionalities. Unfortunately most of the responses were received from inner customers who use this application monthly or less. Respondent profile can be seen from figure 1.
In the survey the necessity of different parameters were made using numerical value from 1 to 5. One means that parameter is not relevant and five means that parameter is definitely needed in the software application.

2.3.1 Statistics

In a mobile work machine made for container handling, hour, distance, container handling calculations give the user a view from the usage of the machine. According the survey all these parameters can be seen necessary. Only driving direction specific hour and distance calculations are less relevant. The necessity of the hour, distance and container handling calculations is presented in figures 2, 3 and 4.
Environmental values are modern-day interests and this can also be seen from the necessity values provided by the survey. Energy consumption helps the user to compare the fuel consumption between different machines. Operation between different machines can vary but used energy versus fuel gives an equal comparison. The necessity of fuel and energy consumption is presented in figure 5.
Safety parameters are important to follow in order to improve safety at work. Follow-up of safety parameters helps to identify the possible training needs of the operator in order to improve safety and therefore prevent the worst case from happening. Necessity of safety parameters is presented in figure 6.

![Figure 6. Necessity of safety calculations](image)

In the open comments the following answers were received concerning statistics:

- Long term and short term statistics separately
- Description of machine speed, hoist speed etc. during occurrence of stability alarm
- Duty cycle profile
- Require the data to be retained for longer than 30 days.
- Improved ability to download data for driver ability management reports, no of alerts by driver, day, week, etc.
- Reset for short time memory. Total values shown.
- Hoist weights with hoist length.
- Data should not reset after 9999.
- Fuel consumption based on efficiency - km/hoist/lower/containers handled.
- Hoist and lowering meters to determine the wire rope lifecycle.
- Time from last maintenance (maintenance hours).
- Algorithm for rope life - km/hoist/lower/container weight and record this along with reset facility.
- Time of operation per day or per week for central lubrication. Helps to adjust the optimal time for lubrication.
- Timestamp from service box connection and maintenance key usage.
- Timestamp when Overrides (hoist bypass/ t-lock bypass) are used.
Overall statistic parameters are important for the users. As a conclusion from statistic part of the survey the software application needs to have a total and trip counters for the statistic information. In the survey the reset functionality to the statistical information was required by 55 per cent of the respondents. Also the range of different parameters needs to be verified to prevent loss of data.

2.3.1 Alarms

Correct and specific alarm information is important to the maintenance personnel to speed-up the fault diagnostic and to keep the machine down-time as short as possible. Necessity of alarm information features is presented in figure 7.

![Alarm Information Diagram](image)

FIGURE 7. Necessity of alarm information

In the open comments the following answers were received concerning alarms:
- Long term top 10 alarms.
- Description of corresponding machine parameters during alarm occurring, example machine speed and spreader height.
- The alarms (particularly stability) need some review as today we have many irrelevant alarms (informal) which fill the list too fast and make the user numb for critical issues.
- Reset only once investigation is completed.
- Alarming system is too sensitive and generates too many alarms in the list that it is difficult to use it as an analytical tool.
- Worth considering having all alarms in the list, but counting occurrence and recording the latest alarm (time & date).
- Need to record all the automation alarm codes with time stamps
The onboard system to send alerts to management, when example pre-determined level of stability alarms is activated. Currently it is possible to drive through alarms, i.e. I believe a high level stability alarm should stop the machine and only reset to continue following some maintenance intervention and possibly a driver investigation.

I wish to trigger an HS incident requiring management investigation prior to the driver in question continuing, particularly if the event is a repeat for that asset/driver.

Alarms, classified by the severity of operation

Commonly customer required statistics and manufacturer interested statistic

To save memory space, customers could reset faults, but some "Internal" serious faults should be kept for company use. Stability, driving speed history, spreader height history, priority 1 alarms etc.

Would be nice to have sort of "triggers" (emergency stop, overheat, stability, overload...) and when active certain parameters are recorded in those situations (re. clarifying the situation when failure, accident etc. happened)

Operation hour recording when operating with central lubrication alarm active.

Record brake cooling temperatures in same data packet as the alarm and timestamp.

Alerts to maintenance staff and operation management, including type, time, driver, and a record of when the alarm was activated, driver at the time, response by (mechanic name) and what was the solution/fix.

Too many not-critical alarms. Possibility to reduce or just have display pop-up without recording these alarms

Critical alarms should trigger recording of surrounding events.

Survey presents that it is important to know when, in which situation and what sort of alarm has occurred. Chronological order for the alarm list is more pleasing for 78 per cent of the respondents. In the software application alarm list should be made as a combination of chronological and frequency based listing. Reset functionality to the alarm information should also be added as it was required by 81 per cent of the respondents.
2.3.2 GUI viewer

Monitoring of the driver’s GUI is more required functionality than remote operation and from the safety perspective this is also a better option. Remote connection should also cover maintenance view and not just driver’s view of the GUI. Necessity of GUI remote connection is presented in figure 8.

![Figure 8. Necessity of GUI remote connection](image)

In the open comments the following answers were received concerning remote connection to GUI:

- Possibility to save a test log or screens.
- Good to have but not mandatory.
- This shall cover most of it.
- Consider to highlight the critical stability in reporting and on operators screen.
- Available nodes and IP addresses on the display including all automation/smart units.
- Pin hole camera recording driver/maintenance person and jpg taken and sent to record the image of who presses the acknowledgement

GUI viewer is a new feature to the software application and according the survey it is a wanted feature. Where the software application contains the machine level statistics and alarms the GUI viewer gives the user an access to monitor the machine more accurately at sensor level.
2.3.1 Others

Even though world is moving towards digitalization, a printable report from the machine is still required. Also a lot of the archiving of maintenance operations is done by using manual paper work. Necessity of the printable report is presented in figure 9.

In the open comments the following answers were received concerning other functionalities:

- Maintenance counters.
- Printable report in excel for statistics.
- Driver ID is a key component of this process and that system requires many additional features. Event/alert reporting by driver, asset, day, month to a downloaded file for management use to review driver ability, identify retraining needs or removal from driving, etc.
- Possibility to save history in text format before reset.
- Report should be in format that could be inputted in excel and filtered with time, alarm, etc.
- USB to USB cable connector on machine. No need for USB-Serial adapter (Omron display data port, for example).
2.4 Survey conclusions

According the user survey the following parameters will be stored in to the memory of the control system and will be shown in the software application.

Statistic parameters:
- Machine type
- Machine number
- Engine hours (separate value for total and trip)
- Hybrid hours (separate value for total and trip)
- Traveling hours forward (separate value for total and trip)
- Traveling hours backward (separate value for total and trip)
- Hoisting and lowering hours (separate value for total and trip)
- Standing hours (separate value for total and trip)
- Traveling distance forward (separate value for total and trip)
- Traveling distance backward (separate value for total and trip)
- Number of 20ft containers (separate value for total and trip)
- Number of 40ft containers (separate value for total and trip)
- Number of twinlift container picks (separate value for total and trip)
- Number of critical stability events
- Timestamp from the 10 latest critical stability events
- Fuel consumption
- Energy consumption

Alarm information:
- Total number of alarm events
- Table for 100 alarms including:
 o Alarm identification number
 o Two additional error codes for intelligent units e.g. engine
 o Occurrence count
 o Latest occurrence
 o First occurrence

Other functionalities to be implemented to the software application are GUI remote monitoring, specific troubleshooting information for each alarm code, user manual
implementation and printable report functionality. Also the format of printable report should easily support data analyzing.

For future improvements a possibility to add driver identification system and maintenance counters to the control system and therefore to the software application should be considered.
3 MARKET COMPARISON

3.1 Konecranes Truconnect®

Truconnect® is a remote monitoring application for Konecranes CXT® and SMA RTON® cranes. Remote connection is included in new cranes but can also be retrofitted to existing cranes (picture 3).

Application provides operating and productivity data from the crane usage. From the operating data the application estimates the remaining theoretical design working period and service life for crane components. Data is collected using a separate diagnostic unit that collects the information from the crane. The operating data is sent periodically to the Konecranes remote data center. The data center analyzes and compiles the information into graphical reports that the user can view online.

For prompt reaction to certain issues the user has possibility to receive notifications via email and/or text message thus giving the user the ability to address problems and take corrective actions.

User can also optimize crane usage by identifying operator training needs to improve crane safety and productivity with certain crane usage patterns provided by the application. (Konecranes)

PICTURE 3. Truconnect®. (Konecranes)
3.2 Bromma Green zone™

Green zone™ is a remote monitoring application for Bromma crane spreaders (picture 4).

Application provides operating and productivity data from the spreader usage. Application helps the user to prioritize maintenance operations and to resolve problems before they have effect on productivity.

Green zone consists of three different programs:

- Fleet doctor™
 - Monitors operating data of the spreader to detect decelerating performance and faults.
 - Provides troubleshooting information to the maintenance personnel in advance to minimize the spreader downtime when fault occurs.

- Roadmap™
 - Monitors production data of the spreader by following KPI’s
 - Provides 10 most frequent fault areas and helps the user to design predictive maintenance to improve spreader performance.

- Workorder™
 - Help user in maintenance planning and scheduling. (Bromma)
3.3 Agco Power WinEEM4

WinEEM4 is an online monitoring application for AGCO diesel engines (picture 5).

Application provides operating data from the engine, including error logs and engine usage profiles. Application can also be used for online monitoring of engine variables, perform test runs and uploading software to the ECU.

Connection is done via engine CAN bus. Remote monitoring is not included into this application.

PICTURE 5. WinEEM4
4 CONTROL SYSTEM FEATURES

4.1 Control system description

Simplified structure of the used control system consists of Omron CJ2-programmable logic controller (PLC), Omron NS8-graphical user interface (GUI) and Ethernet/IP bus for data connection. Software application will be connected to the control system via RJ-45 connector on the Ethernet/IP bus (picture 6).

![Simplified structure of used control system](image)

PICTURE 6. Simplified structure of used control system.

4.2 Recording of the maintenance information to the control system

This chapter defines specification for the statistical and alarm information stored into the memory of the control system. Specified memory areas for statistic and alarm information can be found from appendix 2.

4.2.1 Statistics

Statistic information is stored in to the memory of the control system including following parameters:

Machine type:

- This value is a hard coded number in the control system. This can be used to show or hide certain data in different machine. Example in non-hybrid machine, the hours of the hybrid system are not shown. Also some
visualization for the user interface can be done using this parameter. For example to add a picture of the type of the machine where connection is established.

Machine number:
- This parameter is to identify the machine. Operator can add the machine number from operator’s display.

Engine hours (separate value for total and trip):
- This parameter shows total engine hours. Calculation is done when engine is running, engine rpm’s over 400, with 1s resolution.

Hybrid hours (separate value for total and trip):
- This parameter shows total hybrid hours. Calculation is done when hybrid is activated with 1s resolution. This value is calculated only when selected machine type is hybrid.

Traveling hours forward (separate value for total and trip)
- This parameter shows total traveling hours to driving direction forward. Calculation is done when actual machine speed is greater than 0.5 km/h with 1s resolution.

Traveling hours backward (separate value for total and trip)
- This parameter shows total traveling hours to driving direction backward. Calculation is done when actual machine speed is greater than 0.5 km/h with 1s resolution.

Hoisting and lowering hours (separate value for total and trip)
- This parameter shows total hoisting and lowering hours. Calculation is done when hoisting or lowering speed is greater than 0 m/min with 1s resolution.

Standing hours (separate value for total and trip)
- This parameter shows total standing hours. Calculation is done when machine is standing still without any movements for driving, hoisting or lowering and engine is running or the hybrid is activated, with 1s resolution.
Traveling distance forward (separate value for total and trip)
- This parameter shows total traveling kilometers to driving direction forward. Calculation is done when actual machine speed is greater than 0.5km/h with 0.1km resolution.

Traveling distance backward (separate value for total and trip)
- This parameter shows total traveling kilometers to driving direction backward. Calculation is done when actual machine speed is greater than 0.5km/h with 0.1km resolution.

Number of 20ft containers (separate value for total and trip)
- This parameter shows total number of picked 20ft containers.

Number of 40ft containers (separate value for total and trip)
- This parameter shows total number of picked 40ft containers.

Number of twinlift container picks (separate value for total and trip)
- This parameter shows total number of done twinlift picks, 2 x 20ft container picks.

Number of critical stability events
- This parameter shows total number critical stability events. Stability event is determined to be critical when stability goes to less than 30 per cent.

Timestamp from the 10 latest critical stability events
- These parameters show timestamp for the 10 latest stability alarms.

Fuel consumption
- This parameter shows average engine fuel consumption in litres per hour.

Energy consumption
- This parameter shows average energy used for driving, hoisting and lowering in kilowatts.
3.2.2 Alarms

Alarm information is stored in the memory of the control system including following parameters:

- Total number of alarm events
- Table for 100 alarms including:
 - Alarm identification number
 - Two additional error codes for intelligent units e.g. engine
 - Occurrence count
 - Latest occurrence
 - First occurrence

Alarm information handling in the control system is explained below. For an example, alarm identification 100 is used with description of ALARM 100 and without any additional error codes.

In the control system each alarm is specified to control output as a sign of an active alarm. ALARM 100 is activated if condition 1 is on and condition 2 is off (picture 7).

![ALARM NUMBER 100](image)

PICTURE 7. Alarm output control.

Saving the alarm data to the alarm event table is executed on the Alarm -function block. Function block execution is activated on the rising edge of the alarm bit. Inputs to the function block are alarm identification number and two additional error codes. As an output, alarm log full and alarm log 80 per cent full information’s are provided. These can be used to control service light on the machine (picture 8).
PICTURE 8 Alarm data function block

Alarm -function block handles alarm event table and contains variables shown in the table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>Memory address</th>
<th>Initial Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>BOOL</td>
<td>internal</td>
<td>false</td>
<td>Controls execution of the Function Block</td>
</tr>
<tr>
<td>InAlarmID</td>
<td>UINT</td>
<td>internal</td>
<td>0</td>
<td>Alarm number</td>
</tr>
<tr>
<td>InAdditionalErrorCode1</td>
<td>UINT</td>
<td>internal</td>
<td>0</td>
<td>First additional error code</td>
</tr>
<tr>
<td>InAdditionalErrorCode2</td>
<td>UINT</td>
<td>internal</td>
<td>0</td>
<td>Second additional error code</td>
</tr>
<tr>
<td>RowNumber</td>
<td>UINT</td>
<td>internal</td>
<td>0</td>
<td>Alarm list row number</td>
</tr>
<tr>
<td>AlarmAddedToList</td>
<td>BOOL</td>
<td>internal</td>
<td>false</td>
<td>Alarm was added to the list</td>
</tr>
<tr>
<td>FaultLogFull</td>
<td>BOOL</td>
<td>internal</td>
<td>false</td>
<td>Fault log is full</td>
</tr>
<tr>
<td>FaultLog80Percent</td>
<td>BOOL</td>
<td>Internal</td>
<td>false</td>
<td>Fault log is 80% full</td>
</tr>
<tr>
<td>YEARPLUSMONTH</td>
<td>WORD</td>
<td>A353</td>
<td>-</td>
<td>Year and month</td>
</tr>
<tr>
<td>DATEPLUSHOUR</td>
<td>WORD</td>
<td>A352</td>
<td>-</td>
<td>Date and hour</td>
</tr>
<tr>
<td>MINPLUSSEC</td>
<td>WORD</td>
<td>A351</td>
<td>-</td>
<td>Minutes and seconds</td>
</tr>
<tr>
<td>TotalNumberOfAlarms</td>
<td>UINT</td>
<td>E3_99</td>
<td>-</td>
<td>Total number of alarms</td>
</tr>
<tr>
<td>AlarmID</td>
<td>UINT[100]</td>
<td>E3_100</td>
<td>-</td>
<td>Alarm id from row 0 to 99</td>
</tr>
<tr>
<td>AdditionalCode1</td>
<td>UINT[100]</td>
<td>E3_200</td>
<td>-</td>
<td>Additional error code1 from row 0 to 99</td>
</tr>
<tr>
<td>AdditionalCode2</td>
<td>UINT[100]</td>
<td>E3_300</td>
<td>-</td>
<td>Additional error code2 from row 0 to 99</td>
</tr>
<tr>
<td>NumberOfAlarms</td>
<td>UINT[100]</td>
<td>E3_400</td>
<td>-</td>
<td>Number of alarms from row 0 to 99</td>
</tr>
<tr>
<td>LastYearMonth</td>
<td>WORD[100]</td>
<td>E3_500</td>
<td>-</td>
<td>Last year and month of alarms from row 0 to 99</td>
</tr>
<tr>
<td>LastDayHour</td>
<td>WORD[100]</td>
<td>E3_600</td>
<td>-</td>
<td>Last day and hour of alarms from row 0 to 99</td>
</tr>
<tr>
<td>LastMinuteSecond</td>
<td>WORD[100]</td>
<td>E3_700</td>
<td>-</td>
<td>Last minute and second of alarms from row 0 to 99</td>
</tr>
<tr>
<td>FirstYearMonth</td>
<td>WORD[100]</td>
<td>E3_800</td>
<td>-</td>
<td>First year and month of alarms from row 0 to 99</td>
</tr>
<tr>
<td>FirstDayHour</td>
<td>WORD[100]</td>
<td>E3_900</td>
<td>-</td>
<td>First day and hour of alarms from row 0 to 99</td>
</tr>
<tr>
<td>FirstMinuteSecond</td>
<td>WORD[100]</td>
<td>E3_1000</td>
<td>-</td>
<td>First minute and second of alarms from row 0 to 99</td>
</tr>
</tbody>
</table>
PLC code in the function block is done using structured text format. To improve the readability of the code all the comments are added using green color. Code structure is shown and explained below:

(* Initializing values *)
RowNumber := 0;
AlarmAddedToList := FALSE;
FaultLogFull := FALSE;
FaultLog80Percent := FALSE;

(* Total number of alarms *)
TotalNumberOfAlarms := TotalNumberOfAlarms + 1;

(* Adding Alarms to Fault List *)
(* WHILE loop is executed as long as AlarmAddedToList or FaultLogFull variables becomes true *)
WHILE AlarmAddedToList = FALSE AND FaultLogFull = FALSE DO

(* If AlarmID with correct additional error can be found from rows 0 to 99 then number of alarms is added by one and last occurrence time is updated *)
IF AlarmID[RowNumber] = InAlarmID AND AdditionalCode1[RowNumber] = InAdditionalErrorCode1 AND AdditionalCode2[RowNumber] = InAdditionalErrorCode2 THEN
 NumberOfAlarms[RowNumber] := NumberOfAlarms[RowNumber] +1;
 LastYearMonth[RowNumber] := YEARPLUSMONTH;
 LastDayHour[RowNumber] := DATEPLUSHour;
 LastMinuteSecond[RowNumber] := MINPLUSSEC;
 AlarmAddedToList := TRUE; (* AlarmAddedToList is set to true and WHILE loop execution is ended *)
END_IF;

(* If an alarm row with content of 0 can be found from rows 0 to 99 then number of alarms is added by one and first occurrence time is updated *)
IF AlarmID[RowNumber] = 0 THEN
 AlarmID[RowNumber] := InAlarmID;
 AdditionalCode1[RowNumber] := InAdditionalErrorCode1;
 AdditionalCode2[RowNumber] := InAdditionalErrorCode2;
 NumberOfAlarms[RowNumber] := 1;
 FirstYearMonth[RowNumber] := YEARPLUSMONTH;
 FirstDayHour[RowNumber] := DATEPLUSHour;
 FirstMinuteSecond[RowNumber] := MINPLUSSEC;
 AlarmAddedToList := TRUE; (* AlarmAddedToList is set to true and WHILE loop execution is ended *)
END_IF;

(* Row number is added by one because alarm id in this row wasn't 0 or the same as the currently active alarm id *)
RowNumber := RowNumber + 1; IF RowNumber >= 100 THEN (* Alarm rows 0 to 99 already contained alarm ID that is different than the current active alarm id -> fault log is full *)
 FaultLogFull := TRUE; (* FaultLogFull is set to true and WHILE loop execution is ended *)
END_IF;
END_WHILE;

IF AlarmID[80] <> 0 THEN (* alarm rows 0 to 80 already contain an error code. Alarm list will soon become full if download/reset is not executed *)
 FaultLog80Percent := TRUE;
END_IF;
5 SOFTWARE APPLICATION FEATURES AND USER INTERFACE

5.1 Basic requirements

The application shows main statistics and alarm history for the maintenance personnel. Software application will be done to support Windows based operating system. The actual source code will be done using C++-programming language and the visual features of the user interface will be done using software called QT Creator.

Using this application the service personnel can print a diagnostics report to be attached to the maintenance archives. Report will be in Microsoft Excel format, so the further analysis from the report can be easily done.

The user interface of the software application is divided into five separate main views:
- Statistics
- Alarms
- GUI remote viewer
- Manuals
- Setting

5.2 Statistics

In the statistics view user can see all the main statistics from the machine use. All machine parameters consist of 2 values. Total value which shows machine lifetime statistics and trip statistics which can be reset with intervals the user defines, for example during scheduled maintenance (picture 9).

Statistic information is read to the user interface using FINS-command called memory area read. This FINS-command is executed every 1 second by the software application.

Trip values can be reset from the control system using FINS-command called memory area fill. Software application sends value \(0000_{\text{hex}}\) to all memory areas which contains a trip value. This FINS-command is executed when user enables reset trip -button on the user interface.
In the alarm view user can see machine alarm history with timestamps and occurrence frequencies. User can sort the alarm list using all columns on the list to help the user to make the list as easy as possible to interpret. When user activates the alarm row a troubleshooting window will open on the bottom of the screen. Troubleshooting window contains specific information from the alarm. It shows the terms which caused the selected alarm and also troubleshooting tips to be checked first (picture 10).

Software application reads alarm id number, additional error codes, occurrence count, first and last occurrence time from the control system using FINS-command called memory area read.

Software application contains separately parameterized file which contains cross-reference list to match the alarm identification number to the correct alarm description and troubleshooting information. To support multilingual user interface this parameter file will be added for every language separately. This separately parameterized file makes it possible to add and maintain the alarm list without the need of changing the actual source code of the software application.
From the reset all-button the user can reset alarm history from the control system using FINS-command called memory area fill. When alarm list is resetted using this software application the control system handles resetting of the alarm list also in the GUI interface on the machine, so that all the alarm lists on the machine are synchronized.

5.4 GUI viewer

GUI viewer allows maintenance personnel to monitor machines GUI remotely. This helps maintenance personnel to resolve problems immediately by connecting and seeing exactly what the local operator sees (picture 11).

From the GUI viewer the maintenance personnel can allow maintenance page access to the local operator but for safety reasons cannot operate any controls on the GUI remotely.

From Allow Maintenance Pages –button, the software application writes FFFF_{hex} to the specified memory address on the control system using FINS-command called memory area write. After this the control system allows maintenance view access for the local operator. If the local operator has not touched the display in 2 minutes then control system will close the maintenance view automatically and operator display will change back to operator’s view.
GUI viewer is done by accessing http://192.168.1.50/monitor.htm via web browser (Omron 2008).

![GUI viewer view](image)

PICTURE 11. GUI viewer view

5.5 Manuals

Operation, maintenance and spare part manuals are implemented to the Manuals view. Manuals are implemented as pdf –files and updating the manual does not require any changes to the source code of the software application. Just updating of new manual files is needed (picture 12).

![Manuals view](image)

PICTURE 12. Manuals view
5.6 Settings

From the setting view maintenance personnel can select preferred language to be used in the application. Selected language determines language of all text tags in the user interface and the used parameter file in the alarm view (picture 13).

PICTURE 13. Settings view
6 DATA TRANSFER BETWEEN SOFTWARE APPLICATION AND CONTROL SYSTEM

6.1 Overview of Omron FINS-protocol

Data transfer between software application and control system is done using Omron FINS—messages using UDP-protocol via Ethernet/IP bus. Software application sends FINS—command to the PLC and receives the response from the PLC (picture 14). This chapter defines needed message structures to fulfill all the functionalities designed for the software application.

![Data transfer sequence](PICTURE 14. Data transfer sequence)

FINS commands are a command system for message services across different OMRON networks. They can be used for various control operations, such as sending and receiving data, changing controller operating modes, executing forced set and reset operations and performing file operations. FINS commands can be used in serial and Ethernet networks. FINS -command and -response frame variables are presented in pictures 15 and 16.

![FINS command frame configuration](PICTURE 15. FINS command frame configuration)
The ICF determines the form of the FINS frame. If the frame is configured to be a command then also the need of the response message can be configured. Configuration of the ICF is shown in the picture 17.

RSV is reserved for the system use and should always contain a value of \(00_{\text{hex}}\).

GCT is used when communicating across different network layers. If communication takes place through different network layers this value is set to \(07_{\text{hex}}\), otherwise \(02_{\text{hex}}\) when sending. In the response message this value is decreased by one at each network level and result is received. This value is for the system use.

DNA specifies the location of the FINS command destination and SNA specifies the location of the FINS command source. DNA and SNA are configured within the ranges of \(00_{\text{hex}}\) when communicating in the local network and \(01_{\text{hex}}\) to \(7F_{\text{hex}}\) when communicating to remote network addresses.
DA1 is destination node address and SA1 is the source node address. These are configured within the ranges of 00_{hex} when communicating internally in the PLC, 01_{hex} to 20_{hex} when communicating in the Controller Link Network, 01_{hex} to FE_{hex} when communicating in the Ethernet network and FF_{hex} for broadcasting. In the Controller Link Network DA1 determines destination node address and SA1 is similar to the source. In the Ethernet network DA1 is the last address part of the destination IP address and SA1 is similar for the source.

DA2 and SA2 are configured according to the unit type used in the connection. For CPU unit 00_{hex} is used, FE_{hex} for Controller Link unit or Ethernet unit, 10_{hex} to $1F_{\text{hex}}$ for CPU Bus unit and $E1_{\text{hex}}$ for Inner Board.

SID is used to identify the data transmission. This can be set between 00_{hex} and FF_{hex}. FINS response frame contains same SID as the FINS command it is responding to.

Command code defines the data content of the command and response frame. All the command codes can be found from the appendix 3.

End code defines the status of the FINS response. When sent command is executed normally the 0000_{hex} is received. Other end codes refer to an error in the communication (Omron 2010).

6.2 Used FINS –commands in the software application

When using Ethernet UDP -protocol the FINS header consists of following parameters:

- $ICF = 80_{\text{hex}}$
- $RSV = 00_{\text{hex}}$
- $GCT = 02_{\text{hex}}$
- $DNA = 00_{\text{hex}}$
- $DA1 = FD_{\text{hex}} = \text{Last digit of the PLC IP address} = 192.168.1.253$
- DA2 = 00\text{hex}
- SNA = 00\text{hex}
- SA1 = 63\text{hex} = \text{Last digit of the software application IP address} = 192.168.1.99
- SA2 = 00\text{hex}
- SID = \text{varies between } 01\text{hex} \text{ to } 07\text{hex} \text{ to identify sent command}

6.2.1 Memory area read

Memory area read –command reads the contents of the specified memory addresses. This is used to read statistics and alarm information from the PLC.

Reading statistic information, memory areas E3_1 to E3_82, is executed with following command sent from the software application (picture 18):

- SID = 01\text{hex}
- Command code = 0101\text{hex}
- I/O memory area code = A3\text{hex} = E3 (EM area, bank3)
- Beginning address = 0001\text{hex} = E3_1
- Number of items = 000052\text{hex} = 82 words

![Diagram of Memory area read command](picture18.png)

PICTURE 18. Memory area read –command
Response from the control system is received in following format (picture 19):

- Command code = 0101\text{hex}
- End code = 0000\text{hex} = normal completion
- Data: Values of the selected memory areas

![Picture 19. Memory area read –response](image)

Below is an example from the memory area read command/response for statistics data. In the example memory address values match to the actual memory address, \(E3_1 = 1_{\text{dec}}, E3_2 = 2_{\text{dec}}, E3_3 = 3_{\text{dec}}\) and so on. Pictures 20 and 21 are taken using Wireshark Ethernet analyzer. In the pictures FINS frame is underlined with green color, command/response frame with red color and received data with blue color.

![Picture 20. Memory area read -command on Wireshark for statistics data](image)
Reading of the alarm information is divided into 2 different FINS – commands, because the maximum number of read memory addresses is 999 on the Ethernet network.

First command reads memory addresses E3_99 to E3_599, then command is in format:

- \(\text{SID} = 02_{\text{hex}} \)
- \(\text{Command code} = 0101_{\text{hex}} \)
- \(\text{I/O memory area code} = A3_{\text{hex}} = \text{E3 (EM area, bank3)} \)
- \(\text{Beginning address} = 0063_{\text{hex}} = \text{E3_99} \)
- \(\text{Number of items} = 0001F5_{\text{hex}} = 501 \text{ words} \)

An example from the first command to read alarm information is presented in the pictures 22 and 23. In the example memory address values match to the actual memory address, E3_99 = 99_{\text{dec}}, E3_100 = 100_{\text{dec}}, E3_101 = 101_{\text{dec}} and so on. Pictures are taken from Ethernet analyzer software called Wireshark.
PICTURE 22. Memory area read - command on Wireshark for alarm data (E3_9 - E3_599)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000</td>
<td>00 00 00 00 00</td>
<td>18 18 18 18</td>
<td>Ethernet</td>
<td>64 64</td>
<td>Memory Area Read</td>
</tr>
</tbody>
</table>

PICTURE 23. Memory area read - response on Wireshark for alarm data (E3_9 - E3_599)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000</td>
<td>00 00 00 00 00</td>
<td>18 18 18 18</td>
<td>Ethernet</td>
<td>64 64</td>
<td>Memory Area Read</td>
</tr>
</tbody>
</table>

Second command reads memory addresses E3_600 to E3_1099, then command is in format:

- SID = 03\text{_{hex}}
- Command code = 0101\text{_{hex}}
- I/O memory area code = A3\text{_{hex}} = E3 (EM area, bank3)
- Beginning address = 0258\text{_{hex}} = E3_600
- Number of items = 0001F4\text{_{hex}} = 500 words

An example from the second command to read alarm information is presented in the pictures 24 and 25. In the example memory address values match to the actual memory address, E3_600 = 600\text{_{dec}}, E3_601 = 601\text{_{dec}}, E3_602 = 602\text{_{dec}} and so on. Pictures are taken from Ethernet analyzer software called Wireshark.

![Wireshark](image)

PICTURE 24. Memory area read -command on Wireshark for alarm data (E3_600 - E3_1099)
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol Length</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>41.10.0.0.0/0</td>
<td>0.0.10.0.0/0</td>
<td>152.168.1.253</td>
<td>152.168.1.253</td>
</tr>
<tr>
<td>0000</td>
<td>00:55:29</td>
<td>00:00:00:00:00:00</td>
<td>00:00:00:00:00:00</td>
<td>00:00:00:00:00:00</td>
<td>00:00:00:00:00:00</td>
</tr>
</tbody>
</table>

PICTURE 25. Memory area read -response on Wireshark for alarm data (E3_600 - E3_1099)
6.2.2 Memory area fill

Memory area fill – command write specified data to the specified memory addresses. This is used to reset statistics and alarm information from the PLC.

Resetting statistical trip indicators, memory areas E3_70 to E3_82, is executed with following command sent from the software application (picture 26):

- SID = 04\text{hex}
- Command code = 0103\text{hex}
- I/O memory area code = A3\text{hex} = E3 (EM area, bank3)
- Beginning address = 0046\text{hex} = E3_70
- Number of items = 00000D\text{hex} = 13 words
- Data = 0000\text{hex} = 0\text{dec}

![Memory area fill command](picture26.png)

PICTURE 26. Memory area fill -command

Response from the control system is received in following format (picture 27):

- Command code = 0103\text{hex}
- End code = 0000\text{hex} = normal completion
Pictures 28 and 29 present the memory area fill -command for the statistical trip data in Wireshark Ethernet analyzer.
Resetting the alarm information is divided into 2 different FINS –commands, because the maximum number of written memory addresses is 996 on the Ethernet network.

First command resets memory addresses E3_99 to E3_599, then command is in format:

- SID = 05\text{\textsubscript{hex}}
- Command code = 0103\text{\textsubscript{hex}}
- I/O memory area code = A3\text{\textsubscript{hex}} = E3 (EM area, bank3)
- Beginning address = 0063\text{\textsubscript{hex}} = E3_99
- Number of items = 0001F5\text{\textsubscript{hex}} = 501 words
- Data = 0000\text{\textsubscript{hex}} = 0\text{\textsubscript{dec}}

Second command resets memory addresses E3_600 to E3_1099, then command is in format:

- SID = 06\text{\textsubscript{hex}}
- Command code = 0103\text{\textsubscript{hex}}
- I/O memory area code = A3\text{\textsubscript{hex}} = E3 (EM area, bank3)
- Beginning address = 0258\text{\textsubscript{hex}} = E3_600
- Number of items = 0001F4\text{\textsubscript{hex}} = 500 words
- Data = 0000\text{\textsubscript{hex}} = 0\text{\textsubscript{dec}}

6.2.3 Memory area write

Memory area write –command writes specified data to the specified memory addresses. This is used to allow maintenance page access for the GUI viewer.

Allowing maintenance page access is done by writing value FFFF\text{\textsubscript{hex}} to the memory address E3_90. This is executed with following command sent from the software application (picture 30):

- SID = 07\text{\textsubscript{hex}}
- Command code = 0102_{hex}
- I/O memory area code = A3_{hex} = E3 (EM area, bank3)
- Beginning address = 005A_{hex} = E3_90
- Number of items = 000001_{hex} = 1 word
- Data = FFFF_{hex}

PICTURE 30. Memory area write -command

Response from the control system is received in following format (picture 31):

- Command code = 0102_{hex}
- End code = 0000_{hex} = normal completion

PICTURE 31. Memory area write -response

Pictures 32 and 33 shows the memory area write -command in Wireshark Ethernet analyzer.
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>6</td>
<td>192.168.1.99</td>
<td>192.168.1.253</td>
<td>OROM</td>
<td>62 Command : Memory Area write</td>
<td></td>
</tr>
</tbody>
</table>

PICTURE 32. Memory area write -command on Wireshark

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>6</td>
<td>192.168.1.99</td>
<td>192.168.1.253</td>
<td>OROM</td>
<td>60 Response : Memory Area write</td>
<td></td>
</tr>
</tbody>
</table>

PICTURE 33. Memory area write -response on Wireshark
7 CONCLUSIONS

Overall the user survey was a success. It shows that the machine parameters used in the software application are correct and valued by the users. The amount of ideas, given as open comments, shows that the topic was important to the respondents and they were highly motivated to give their own ideas on this matter. Open comments are in many way more valuable than numerical results. Open comments given in this survey should be used for future development after the application base line is taken into use.

In the market comparison three different applications were introduced. Truconnect® and Green zoneTM are more concentrated on productivity data where as WinEEM4 is mainly focused on operation data and fault diagnostics. According to the user survey combining productivity and operation data with specific fault diagnostic information will give the best outcome for the user.

This new maintenance assisting software application answers to all development key points which were set when this work started. Machine parameters were updated to serve modern-day needs and machine types and their necessity was confirmed in the user survey.

Alarm diagnostics were improved adding specific alarm description, conditions for alarm activation and troubleshooting information individually for each alarm which will fasten the fault diagnostics and therefore decrease machine down-time.

Communication will be changed to Ethernet which prepares the machine for all future data transfer possibilities. Simplest and most cost effective way for adding wireless communication between machine and a maintenance laptop or mobile device can be done by adding WLAN access point on the machine. The range of the access point signal can be limited so that it doesn't cause long range disturbances in other WLAN networks. Also adding GPRS -modem to the machine will open similar possibilities for wireless communication as WLAN, but some additional costs will come from the transferred data, depending on the used tele operator. Also adding an additional on-board data logger to the machine should be considered. This would help with the integration to an external servers and cloud services.
Drafts from the new user interface were presented in this work. These drafts will work as guideline but the final layout will be determined later.

In conclusion for future development adding a real-time monitoring for certain machine parameters should be considered. Parameters like tire pressure, oil level and fuel level would help the maintenance person quickly to check the daily inspections.
LIST OF REFERENCES

Konecranes, http://www.konecranes.com/service/truconnect

Bromma, http://www.brommagreenzone.com

Omron 2008, Web interface manual V100-E1-01

Omron 2010, Reference manual for communications commands W342-E1-15
APPENDICES

Appendix 1. User survey form

1. Name: ______________________________________

2. Company:
 Cargotec / Other

3. Department:
 Engineering / Commissioning / Product Support / Service / Management /
 Other: __________

4. How often do you use the program or report?
 Daily / Weekly / Monthly / Yearly / Never

Statistics

5. Engine Hours [h]:
 1 2 3 4 5
 not relevant definately needed

6. Total hours (in hybrid machines different than engine hours) [h]:
 1 2 3 4 5
 not relevant definately needed

7. Driving hours [h]:
 1 2 3 4 5
 not relevant definately needed

8. Driving hours according to driving direction [h]:
 1 2 3 4 5
 not relevant definately needed

9. Standing hours [h]:
 1 2 3 4 5
 not relevant definately needed

10. Hoisting/Lowering hours [h]:
 1 2 3 4 5
 not relevant definately needed

11. Driving distance [km]:
 1 2 3 4 5
 not relevant definately needed

12. Driving distance according to driving direction [km]:
 1 2 3 4 5
 not relevant definately needed

13. Number of containers [pcs]:
 1 2 3 4 5
 not relevant definately needed

14. Number of containers according to pick mode [Single, Twin,..]:
 1 2 3 4 5
 not relevant definately needed

15. Number of containers according to container length [20ft, 40ft,..]:
 1 2 3 4 5
 not relevant definately needed

16. Fuel consumption [l/h]:
 1 2 3 4 5
 not relevant definately needed

17. Energy consumption [kWh]:
 1 2 3 4 5
 not relevant definately needed

18. Number of stability alarms [pcs]:
 1 2 3 4 5
 not relevant definately needed

19. Timestamp for the stability alarms:
 1 2 3 4 5
 not relevant definately needed
20. Timestamp for use of the hoist bypass:
1 2 3 4 5
not relevant definately needed

21. Is it required to reset statistic information?
Yes / No

22. Any other requirements for statistics?

Alarms

23. Alarm timestamp:
1 2 3 4 5
not relevant definately needed

24. Alarm with additional error code:
1 2 3 4 5
not relevant definately needed

25. Alarm priority:
1 2 3 4 5
not relevant definately needed

26. Alarm list type:
Chronological / Frequency / Other:

27. Is it required to reset alarm information?
Yes / No

28. Any other requirements for alarms?

GUI viewer

29. Remote monitoring of the driver display:
1 2 3 4 5
not relevant definately needed

30. Remote operation of the driver display:
1 2 3 4 5
not relevant definately needed

31. Remote access to the maintenance menu’s in the driver display:
1 2 3 4 5
not relevant definately needed

32. Any other requirements for HMI viewer?

Others

33. Printable report (e.g. *.pdf or *.txt):
1 2 3 4 5
not relevant definately needed

34. Other comments:
Appendix 2. Control system memory areas

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data type</th>
<th>Address</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MachineType</td>
<td>UINT</td>
<td>E3_1</td>
<td>Machine type</td>
</tr>
<tr>
<td>MachineNumber</td>
<td>UINT</td>
<td>E3_2</td>
<td>Machine number</td>
</tr>
<tr>
<td>EngineHoursTotal</td>
<td>UDINT</td>
<td>E3_3</td>
<td>Engine hours (total)</td>
</tr>
<tr>
<td>HybridHoursTotal</td>
<td>UDINT</td>
<td>E3_5</td>
<td>Hybrid hours (total)</td>
</tr>
<tr>
<td>TravelingHoursTotalFwd</td>
<td>UDINT</td>
<td>E3_7</td>
<td>Traveling hours forward (total)</td>
</tr>
<tr>
<td>TravelingHoursTotalBwd</td>
<td>UDINT</td>
<td>E3_9</td>
<td>Traveling hours backward (total)</td>
</tr>
<tr>
<td>HoistLowerTotalHours</td>
<td>UDINT</td>
<td>E3_11</td>
<td>Hoisting and Lowering hours (total)</td>
</tr>
<tr>
<td>StandingTotalHours</td>
<td>UDINT</td>
<td>E3_13</td>
<td>Standing hours (total)</td>
</tr>
<tr>
<td>Traveling DistanceTotalFwd</td>
<td>UDINT</td>
<td>E3_15</td>
<td>Traveling distance forward (total)</td>
</tr>
<tr>
<td>Traveling DistanceTotalBwd</td>
<td>UDINT</td>
<td>E3_17</td>
<td>Traveling distance backward (total)</td>
</tr>
<tr>
<td>20ftCountTotal</td>
<td>UDINT</td>
<td>E3_19</td>
<td>Number of 20ft containers (total)</td>
</tr>
<tr>
<td>40ftCountTotal</td>
<td>UDINT</td>
<td>E3_21</td>
<td>Number of 40ft containers (total)</td>
</tr>
<tr>
<td>TwinCountTotal</td>
<td>UDINT</td>
<td>E3_23</td>
<td>Number of twin picks (total)</td>
</tr>
<tr>
<td>NumberOfStabilityAlarms</td>
<td>UDINT</td>
<td>E3_25</td>
<td>Total number of stability alarms</td>
</tr>
<tr>
<td>StabilityAlarm1_YM</td>
<td>WORD</td>
<td>E3_27</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm1_DH</td>
<td>WORD</td>
<td>E3_28</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm1_MS</td>
<td>WORD</td>
<td>E3_29</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm2_YM</td>
<td>WORD</td>
<td>E3_30</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm2_DH</td>
<td>WORD</td>
<td>E3_31</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm2_MS</td>
<td>WORD</td>
<td>E3_32</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm3_YM</td>
<td>WORD</td>
<td>E3_33</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm3_DH</td>
<td>WORD</td>
<td>E3_34</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm3_MS</td>
<td>WORD</td>
<td>E3_35</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm4_YM</td>
<td>WORD</td>
<td>E3_36</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm4_DH</td>
<td>WORD</td>
<td>E3_37</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm4_MS</td>
<td>WORD</td>
<td>E3_38</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm5_YM</td>
<td>WORD</td>
<td>E3_39</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm5_DH</td>
<td>WORD</td>
<td>E3_40</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm5_MS</td>
<td>WORD</td>
<td>E3_41</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm6_YM</td>
<td>WORD</td>
<td>E3_42</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm6_DH</td>
<td>WORD</td>
<td>E3_43</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm6_MS</td>
<td>WORD</td>
<td>E3_44</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm7_YM</td>
<td>WORD</td>
<td>E3_45</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm7_DH</td>
<td>WORD</td>
<td>E3_46</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm7_MS</td>
<td>WORD</td>
<td>E3_47</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm8_YM</td>
<td>WORD</td>
<td>E3_48</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm8_DH</td>
<td>WORD</td>
<td>E3_49</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm8_MS</td>
<td>WORD</td>
<td>E3_50</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm9_YM</td>
<td>WORD</td>
<td>E3_51</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm9_DH</td>
<td>WORD</td>
<td>E3_52</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm9_MS</td>
<td>WORD</td>
<td>E3_53</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>StabilityAlarm10_YM</td>
<td>WORD</td>
<td>E3_54</td>
<td>Stability alarm timestamp - Y & M</td>
</tr>
<tr>
<td>StabilityAlarm10_DH</td>
<td>WORD</td>
<td>E3_55</td>
<td>Stability alarm timestamp - D & H</td>
</tr>
<tr>
<td>StabilityAlarm10_MS</td>
<td>WORD</td>
<td>E3_56</td>
<td>Stability alarm timestamp - M & S</td>
</tr>
<tr>
<td>Field Name</td>
<td>Data Type</td>
<td>Address</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Fuel Consumption</td>
<td>UINT</td>
<td>E3_70</td>
<td>Fuel consumption l/h (trip)</td>
</tr>
<tr>
<td>Energy Consumption</td>
<td>UINT</td>
<td>E3_71</td>
<td>Energy consumption kW (trip)</td>
</tr>
<tr>
<td>Engine Hours Trip</td>
<td>UINT</td>
<td>E3_72</td>
<td>Engine hours (trip)</td>
</tr>
<tr>
<td>Hybrid Hours Trip</td>
<td>UINT</td>
<td>E3_73</td>
<td>Hybrid hours (trip)</td>
</tr>
<tr>
<td>Traveling Hours Trip Fwd</td>
<td>UINT</td>
<td>E3_74</td>
<td>Traveling hours forward (trip)</td>
</tr>
<tr>
<td>Traveling Hours Trip Bwd</td>
<td>UINT</td>
<td>E3_75</td>
<td>Traveling hours backward (trip)</td>
</tr>
<tr>
<td>Hoist Lower Trip Hours</td>
<td>UINT</td>
<td>E3_76</td>
<td>Hoisting and Lowering hours (trip)</td>
</tr>
<tr>
<td>Standing Trip Hours</td>
<td>UINT</td>
<td>E3_77</td>
<td>Standing hours (trip)</td>
</tr>
<tr>
<td>Traveling Distance Trip Fwd</td>
<td>UINT</td>
<td>E3_78</td>
<td>Traveling distance forward (trip)</td>
</tr>
<tr>
<td>Traveling Distance Trip Bwd</td>
<td>UINT</td>
<td>E3_79</td>
<td>Traveling distance backward (trip)</td>
</tr>
<tr>
<td>20 ft Count Trip</td>
<td>UINT</td>
<td>E3_80</td>
<td>Number of 20 ft containers (trip)</td>
</tr>
<tr>
<td>40 ft Count Trip</td>
<td>UINT</td>
<td>E3_81</td>
<td>Number of 40 ft containers (trip)</td>
</tr>
<tr>
<td>Twin Count Trip</td>
<td>UINT</td>
<td>E3_82</td>
<td>Number of twin picks (trip)</td>
</tr>
<tr>
<td>Maintenence View Access</td>
<td>UINT</td>
<td>E3_90</td>
<td>Allows maintenance page access</td>
</tr>
<tr>
<td>Total Number Of Alarms</td>
<td>UINT</td>
<td>E3_99</td>
<td>Total number of alarms</td>
</tr>
<tr>
<td>Alarm ID</td>
<td>UINT[100]</td>
<td>E3_100</td>
<td>Alarm id from row 0 to 99</td>
</tr>
<tr>
<td>Additional Code 1</td>
<td>UINT[100]</td>
<td>E3_200</td>
<td>Additional error code 1 from row 0 to 99</td>
</tr>
<tr>
<td>Additional Code 2</td>
<td>UINT[100]</td>
<td>E3_300</td>
<td>Additional error code 2 from row 0 to 99</td>
</tr>
<tr>
<td>Number Of Alarms</td>
<td>UINT[100]</td>
<td>E3_400</td>
<td>Number of alarms from row 0 to 99</td>
</tr>
<tr>
<td>Last Year Month</td>
<td>WORD[100]</td>
<td>E3_500</td>
<td>Last year and month of alarms from row 0 to 99</td>
</tr>
<tr>
<td>Last Day Hour</td>
<td>WORD[100]</td>
<td>E3_600</td>
<td>Last day and hour of alarms from row 0 to 99</td>
</tr>
<tr>
<td>Last Minute Second</td>
<td>WORD[100]</td>
<td>E3_700</td>
<td>Last minute and second of alarms from row 0 to 99</td>
</tr>
<tr>
<td>First Year Month</td>
<td>WORD[100]</td>
<td>E3_800</td>
<td>First year and month of alarms from row 0 to 99</td>
</tr>
<tr>
<td>First Day Hour</td>
<td>WORD[100]</td>
<td>E3_900</td>
<td>First day and hour of alarms from row 0 to 99</td>
</tr>
<tr>
<td>First Minute Second</td>
<td>WORD[100]</td>
<td>E3_1000</td>
<td>First minute and second of alarms from row 0 to 99</td>
</tr>
</tbody>
</table>
Appendix 3. FINS command codes

<table>
<thead>
<tr>
<th>Type</th>
<th>Command code</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O memory area access</td>
<td>01 01</td>
<td>Memory area read</td>
<td>Reads the contents of consecutive I/O memory area words.</td>
</tr>
<tr>
<td></td>
<td>01 02</td>
<td>Memory area write</td>
<td>Writes the contents of consecutive I/O memory area words.</td>
</tr>
<tr>
<td></td>
<td>01 03</td>
<td>Memory area fill</td>
<td>Writes the same data to the specified range of I/O memory area words.</td>
</tr>
<tr>
<td></td>
<td>01 04</td>
<td>Multiple memory area read</td>
<td>Reads the contents of specified nonconsecutive I/O memory area words.</td>
</tr>
<tr>
<td></td>
<td>01 05</td>
<td>Memory area transfer</td>
<td>Copies the contents of consecutive I/O memory area words to another I/O</td>
</tr>
<tr>
<td>Parameter area access</td>
<td>02 01</td>
<td>Parameter area read</td>
<td>Reads the contents of consecutive parameter area words.</td>
</tr>
<tr>
<td></td>
<td>02 02</td>
<td>Parameter area write</td>
<td>Writes the contents of consecutive parameter area words.</td>
</tr>
<tr>
<td></td>
<td>02 03</td>
<td>Parameter area fill</td>
<td>Writes the same data to the specified range of parameter area words.</td>
</tr>
<tr>
<td>Program area access</td>
<td>03 06</td>
<td>Program area read</td>
<td>Reads the user memory area</td>
</tr>
<tr>
<td></td>
<td>03 07</td>
<td>Program area write</td>
<td>Writes the user memory area</td>
</tr>
<tr>
<td></td>
<td>03 08</td>
<td>Program area clear</td>
<td>Clears the user memory area</td>
</tr>
<tr>
<td>Operating mode changes</td>
<td>04 01</td>
<td>Run</td>
<td>Changes the CPU Unit’s operating mode to RUN or MONITOR.</td>
</tr>
<tr>
<td></td>
<td>04 02</td>
<td>Stop</td>
<td>Changes the CPU Unit’s operating mode to PROGRAM.</td>
</tr>
<tr>
<td>Machine configuration reading</td>
<td>05 01</td>
<td>CPU unit data read</td>
<td>Reads CPU Unit data.</td>
</tr>
<tr>
<td></td>
<td>05 02</td>
<td>Connection data read</td>
<td>Reads the model numbers of the device corresponding to addresses.</td>
</tr>
<tr>
<td>Status reading</td>
<td>06 01</td>
<td>CPU unit status read</td>
<td>Reads the status of the CPU Unit.</td>
</tr>
<tr>
<td></td>
<td>06 20</td>
<td>Cycle time read</td>
<td>Reads the maximum, minimum, and average cycle time.</td>
</tr>
<tr>
<td>Time data access</td>
<td>07 01</td>
<td>Clock read</td>
<td>Reads the present year, month, date, minute, second, and day of the week.</td>
</tr>
<tr>
<td></td>
<td>07 02</td>
<td>Clock write</td>
<td>Changes the present year, month, date, minute, second, or day of the week.</td>
</tr>
<tr>
<td>Message display</td>
<td>09 20</td>
<td>Message read/clear</td>
<td>Reads and clears messages, and reads FAL/FALS messages.</td>
</tr>
<tr>
<td>Access rights</td>
<td>0C 01</td>
<td>Access right acquire</td>
<td>Acquires the access right as long as no other device holds it.</td>
</tr>
<tr>
<td></td>
<td>0C 02</td>
<td>Access right forced ac-</td>
<td>Acquires the access right even if another device already holds it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0C 03</td>
<td>Access right release</td>
<td>Releases the access right that has been acquired.</td>
</tr>
<tr>
<td>Error log</td>
<td>21 01</td>
<td>Error clear</td>
<td>Clears errors or error messages.</td>
</tr>
<tr>
<td></td>
<td>21 02</td>
<td>Error log read</td>
<td>Reads the error log.</td>
</tr>
<tr>
<td>Command Code</td>
<td>Description</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>21 03</td>
<td>Error log clear</td>
<td>Clears the error log pointer.</td>
<td></td>
</tr>
<tr>
<td>21 40</td>
<td>FINS write access log read</td>
<td>The CPU Unit automatically keeps a log of any access for FINS write commands. This command reads this log.</td>
<td></td>
</tr>
<tr>
<td>21 41</td>
<td>FINS write access log clear</td>
<td>Clears the FINS write access log.</td>
<td></td>
</tr>
<tr>
<td>22 01</td>
<td>File name read</td>
<td>Reads file memory data.</td>
<td></td>
</tr>
<tr>
<td>22 02</td>
<td>Single file read</td>
<td>Reads a specified length of file data from a specified position within a single file.</td>
<td></td>
</tr>
<tr>
<td>22 03</td>
<td>Single file write</td>
<td>Writes a specified length of file data from a specified position within a single file.</td>
<td></td>
</tr>
<tr>
<td>22 04</td>
<td>File memory format</td>
<td>Formats (initializes) the file memory.</td>
<td></td>
</tr>
<tr>
<td>22 05</td>
<td>File delete</td>
<td>Deletes specified files stored in the file memory.</td>
<td></td>
</tr>
<tr>
<td>22 07</td>
<td>File copy</td>
<td>Copies files from one file memory to another file memory in the same system.</td>
<td></td>
</tr>
<tr>
<td>22 08</td>
<td>File name change</td>
<td>Changes a file name.</td>
<td></td>
</tr>
<tr>
<td>22 0A</td>
<td>Memory area-file transfer</td>
<td>Transfers or compares data between the I/O memory area and the file memory.</td>
<td></td>
</tr>
<tr>
<td>22 0B</td>
<td>Parameter area-file transfer</td>
<td>Transfers or compares data between the parameter area and the file memory.</td>
<td></td>
</tr>
<tr>
<td>22 0C</td>
<td>Program area-file transfer</td>
<td>Transfers or compares data between the UM (User Memory) area and the file memory.</td>
<td></td>
</tr>
<tr>
<td>22 15</td>
<td>Directory create/delete</td>
<td>Creates or deletes a directory.</td>
<td></td>
</tr>
<tr>
<td>22 20</td>
<td>Memory cassette transfer</td>
<td>Transfers and verifies data between a Memory Cassette and the CPU Unit.</td>
<td></td>
</tr>
<tr>
<td>23 01</td>
<td>Forced set/reset</td>
<td>Force-sets or force-resets bits, or releases force-set status.</td>
<td></td>
</tr>
<tr>
<td>23 02</td>
<td>Forced set/reset cancel</td>
<td>Cancels all bits that have been force-set or force-reset.</td>
<td></td>
</tr>
<tr>
<td>28 03</td>
<td>Convert to CompoWay/F command</td>
<td>Encapsulates a CompoWay/F command in a FINS command and sends it to a serial port.</td>
<td></td>
</tr>
<tr>
<td>28 04</td>
<td>Convert to Modbus-RTU command</td>
<td>Encapsulates a Modbus-RTU command in a FINS command and sends it to a serial port.</td>
<td></td>
</tr>
<tr>
<td>28 05</td>
<td>Convert to Modbus-ASCII command</td>
<td>Encapsulates a Modbus-ASCII command in a FINS command and sends it to a serial port.</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Convert to host link fins command</td>
<td>Sends any FINS command to a PLC connected to the serial port of a Serial Communications Board or Unit.</td>
<td></td>
</tr>
</tbody>
</table>