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Exploitation of hydropower in excess of 1.3 gigawatts is under development in the Upper 
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trol transfers to the government of Laos.  Hydropower is regarded as renewable, reliable 

and timeless; stores of potential energy, requiring only regular maintenance. 

This paper examines a creeping affliction, sedimentation which consumes reservoir volume 

and inevitably invalidates dam infrastructure. It focuses on the differential sedimentation 

found in hydrological modeling of climate change, land use change and dam operation. The 

findings illustrate a continuous relationship which maps sedimentation to regional change 

and predicts infrastructure senescence.  

Based on the findings and according to operational objectives, no justification could be made 

for mitigation infrastructure. Social and ecological factors are not considered.  The mecha-

nistic response from climate change and land use change has been documented and quan-

tified. A novel metric has been proposed for measuring reservoir sedimentation based on 

relationships found to exist in the modeled space. This instrument has the potential as a 

robust metric in hydropower capacity monitoring.    

Keywords Sediment Balance, Upper Nam Ngum, Dam senescence, Wa-
tershed sediment response with respect to Climate, Develop-
ment and Hydro-electric dams 



Main  

1 (65) 

 

 

Contents 
Tables ________________________________________________________ 2 

Figures _______________________________________________________ 2 

1 Justifications _______________________________________________ 3 

2 Theory and Background ______________________________________ 4 

2.1 Fluvial sedimentation _________________________________________ 4 

2.2 Points of reference, the region and the model _____________________ 8 

2.2.1 Nam Ngum River Basin ______________________________________________ 9 

2.2.2 Building the case for modelling with IWRM ______________________________ 10 

2.2.3 Cascade _________________________________________________________ 16 

2.2.4 IWRM software ____________________________________________________ 19 

2.3 Experimentation, Scenario Building ____________________________ 22 

2.3.1 Dams ___________________________________________________________ 25 

2.3.2 Climate change ___________________________________________________ 28 

2.3.3 Land use _________________________________________________________ 30 

3 Analysis __________________________________________________ 31 

3.1 Excluding Cascade __________________________________________ 31 

3.1.1 General discussion of metrics ________________________________________ 33 

3.1.2 Tracking sediment movement ________________________________________ 36 

3.1.3 Tracking sediment volume ___________________________________________ 38 

3.1.4 Summary of Sediment Observations ___________________________________ 39 

3.2 Incorporation of Cascade _____________________________________ 40 

3.2.1 General discussion of metrics ________________________________________ 41 

3.2.2 Sediment Density __________________________________________________ 41 

3.2.3 Sediment mobilization through impounds _______________________________ 44 

3.2.4 A case for sediment weir mitigation ____________________________________ 46 

3.2.5 A case for compound metrics _________________________________________ 47 

3.2.6 Connecting the dots ________________________________________________ 51 

3.2.7 Comparison to more traditional metrics _________________________________ 52 

3.2.8 Infrastructure Senescence ___________________________________________ 53 

3.2.9 Summary of sediment observations considering infrastructure _______________ 54 

3.3 Hydropower ________________________________________________ 55 

3.3.1 Sorting the mess __________________________________________________ 56 

3.3.2 Another look at Senescence _________________________________________ 59 

4 Conclusions _______________________________________________ 61 

5 Research suggestions ______________________________________ 64 

References ___________________________________________________ 64 

  

 
  



Main  

2 (65) 

 

 

Tables 

Table 1 Upper Nam Ngum reservoir data ................................................................... 17 

Table 2 Factorial experimental design array ............................................................... 24 

Table 3 Baseload objectives ....................................................................................... 28 

Table 4 Combined strategy objectives ........................................................................ 28 

Table 5 IWRM UNN, various metrics .......................................................................... 32 

Table 6 IWRM UNN, Summary Volume and Mass Illustration ..................................... 39 

Table 7 IWRM UNN, Specific Density Calculation ....................................................... 43 

Table 8 IWRM UNN, Fractional Specific Density Calculation ...................................... 43 

Table 9 Fractional Sediment Analysis Worksheet, Iwrm.............................................. 44 

Table 10 IWRM UNN Sedimentation figures ............................................................... 45 

Table 11 IWRM UNN, Reservoir Sedimentation Statistics Initial Phase Scenario +-- .. 49 

Table 12 Sediment rate 40-50 year selected scenarios............................................... 51 

Table 13 IWRM UNN, Node Specific Annual Deposition as % of Volume ................... 52 

Figures 

Figure 1 Upper Nam Ngum region ................................................................................ 9 

Figure 2 IWRM UNN, Land use and Soil type statistics............................................... 12 

Figure 3 IWRM UNN, River and grade statistics ......................................................... 13 

Figure 4 IWRM UNN,  Downstream Profile UNN watershed V1 .................................. 15 

Figure 5 IWRM UNN, FFT of Precipitation 1995-2007 ................................................ 15 

Figure 6 IWRM UNN,Autocorrilation Precipitation 1995- 2007 .................................... 16 

Figure 7 Example of flow curve objective .................................................................... 27 

Figure 8 IWRM UNN, Proportional Metrics .................................................................. 34 

Figure 9 IWRM UNN, Nodam Precipitiaton and Flow .................................................. 35 

Figure 10 IWRM UNN, Sediment figures .................................................................... 37 

Figure 11 IWRM UNN, Sediment Load and River Discharge, various assumptions .... 39 

Figure 12  IWRM  UNN, Sediment figures................................................................... 42 

Figure 13 IWRM UNN.vmp +++ .................................................................................. 46 

Figure 14. IWRM UNN, Cumulative Sediment Volume ............................................... 47 

Figure 15. IWRM UNN, Cumulative Sediment load ..................................................... 47 

Figure 17.IWRM UNN, Baseline Deposition Ratio ....................................................... 48 

Figure 16. IWRM UNN, Climate change deposition ratio ............................................. 48 

Figure 18 IWRM Deposition Rate and Ratio ............................................................... 50 

Figure 19 IWRM UNN Cascade Node Energy Capacity .............................................. 55 

Figure 21 IWRM UNN Node-Specific Cascade Production ......................................... 56 

Figure 20 IWRM Annualized Cascade Production ...................................................... 56 

Figure 22 IWRM UUN Selected Water Level Graphs .................................................. 57 

Figure 23 IWRM UNN  Monthly Nodal Production at 10 and 50 Year Timeframe ........ 58 

Figure 24 IWRM UUN, +-0 NN3 Water Volume .......................................................... 60 

 

  

https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446155983
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156008
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156009
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156010
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156011
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156012
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156013
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156014
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156015
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156016
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156017
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156018
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156019
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156020
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156021
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156022
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156023
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156024
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156025
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156026
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156027
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156028
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156029
https://d.docs.live.net/eb03a6e7772db5a9/Documents/4th/thesis/Technical/Sediment_Balance_UNN_v3.2.docx#_Toc446156030


Main  

3 (65) 

 

 

1 Justifications  

Environmental engineering is a specialized field focused on managing or mitigating the 

impacts of anthropogenic activities. The field is still defining itself; by category, such as 

air, water and soil, or by industry, such as regulatory compliance, water treatment or 

energy industry waste mitigation. This thesis combines categories and industries; a study 

of soil transmission through a natural watercourse modified by energy infrastructure.   

It has been suggested that the present geological era be deemed The Anthropocene. 

This term, attributed to Nobel Prize winner Paul Crutzen in 2000, distinguishes human 

activity as the primary driver of environmental change. In the geological timeframe, the 

shift from one climate regime to another is imperceptible. The gradual change is a prop-

erty of a system always in balance and at equilibrium.  Anthropogenic forces, notably 

emissions of carbon dioxide from extensive use of fossil fuels, have resulted in a state 

of flux, and the resulting change to the climate will be unpredictable. (IPCC 2013, 

Meybeck 2003) 

Modifications, or improvements to Continental Aquatic Systems (CAS) disrupt an equi-

librium which likewise results in a state of flux. Riparian phenomena are anchored to the 

geology and hydrology which are measurable and systematic. The improvements initiate 

specific changes to the water course which are also measurable and systematic. The 

system as it moves from one state to another is in flux, but it is possible to make infer-

ences based on the end states about the interim behavior. (Meybeck 2003) 

Few major CAS are free from anthropocentric modifications and sediment balance is a 

common topic of concern. Dam reservoirs are one of man’s mightiest creations, and 

sediment is their natural enemy. Managing the threat posed by sedimentation can extend 

dam lifetimes, increase dam profitability and mitigate the dam risk. (Morris 1998, 

Meybeck 2003) 

Nam Ngum River Basin (NNRB) In Laos PDR is undergoing a process of improvements 

which began in 1970 with the installation of Nam Ngum 1 (NN_1) hydro-electric dam. In 

2020 there will be 3 additional hydro-electric dams upstream of Nam Ngum 1. This cas-

cade of reservoirs provides power to Laos and its neighbors. The benefits of the improve-

ments will contribute to the Laos strategy of alleviating poverty and providing modern 

services to its people.   (Resources 2011, Shannon 2008, Lao People's Democratic 

Republic 2001)  
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In their Social and Environmental Impact Assessment of Nam Ngum 3, Snowy Mountain 

Engineering offered criticism of several aspects including that of sedimentation. This crit-

icism focused on the use of solely empirical methods and cite the wide deviation in re-

sults and the non-correlation with other, more thorough results in similar regions. This 

disregard for environmental issues is a common theme in developing nations. (Snowy 

Mountain Engineering Corporation 2001) 

This study applies a distributed physical model to address these concerns and to func-

tionalize all the available data. Climactic changes in precipitation, population induced 

land use change and strategic utilization of the water resource are roughly estimated and 

applied to the model. Sediment accumulation rate within the cascade is compared in 

various scenarios.  

The objective is not to predict actual sedimentation at discreet points in the future, but 

instead to measure individual and combined effects of changes which span a practical 

range. The results may be useful in choosing a particular sediment mitigation strategy or 

contrasting the costs of proactive vs reactive measures.    

2 Theory and Background 

2.1 Fluvial sedimentation  

The evidence of human activity on the ecology, geology, hydrology and atmospheric 

chemistry mark the boundary in the archive of the earth lithosphere (Crutzen and 

Stoermer 2000). Unlike the previous eras which are delineated by a clear boundary re-

cording a single cataclysmic event, the Anthropocene boundary is graduated by the ev-

idence of human development. Impacts from population and technology mark the profile 

which tracks local and regional change specifically and global change more generally. 

(Meybeck 2003) 

Continental aquatic systems (CAS) are central to many natural earth processes. As the 

primary arteries delivering nutrients, minerals and organics from the inner regions to low-

land deltas, they redistribute the wealth of terrestrial regions. Connecting distant geolog-

ical areas, they allow for complex aquatic lifecycles to exist. Situated between the major 

geological phases, they exhibit a significant contribution of water to the atmosphere and 

to the lithosphere. Though stable from a human time scale, they are dynamic systems 

continually approaching equilibrium. (Morris 1998, Meybeck 2003) 
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The anthropocentric value, traditionally halieutic resources, logistic utility, agricultural 

and domestic demand, more recently, recreational and hydroelectric potential motivates 

strategic modification. Diversion and impoundment are active improvements to CAS 

done intentionally and at great expense to control natural fluctuations and develop addi-

tional value to riverine systems. Emission of chemical, biological, nutrient or thermal pol-

lution from industry, agriculture or urban runoff can be intentional or unintentional pres-

sures on the natural system with potential long term consequences. Despite their subju-

gation to our collective will, CAS inevitably continue to perform at least some of their 

natural processes. These natural processes must be balanced in designing sustainable 

artificial systems.  (ICEM 2013, Meybeck 2003) 

The natural process of erosion is a fundamental force, building mountains and cutting 

them down. Organic material and decomposed minerals, dislodged by impact or traction, 

released from a stable state to one dictated by the properties they inherit upon combina-

tion. Frost, wind or rain can initiate the process and provide a medium for mobilization. 

The particles begin a journey driven by gravity forever down until finally the energy of the 

medium spent, it settles and is trapped. In time, the natural cycle of ebb and flow peaks, 

and it may be picked up to continue farther along or it may remain. At rest it is blanketed 

under an increasing burden, a lead blanket of matter squeezing even water from its 

shroud.  Together with its blanket of earth, the material will one day rise up strong and 

proud to face the world as stone, to begin the cycle over again. (Morris 1998) 

Sedimentary rock is evidence of this cycle and evidence that can be used to deduce the 

events of the distant past. The detectives examining the evidence are like cartographers 

making maps of the ancient CAS.  The strata, layering of matter according to size and 

composition defines an individual periodic cycle. Like counting the rings of a great tree 

the age of a strata can be estimated by the number of cycles of deposition that lie upon 

it. (Morris 1998) 

The chemical as well as physical properties of water are critical in the formation of strata. 

The process, formation of strata, is known as sedimentation when it takes place in water 

impoundments or reservoirs. Particles below a threshold size are dissolved solids, kept 

in suspension by the molecular motion within the water, they are transported as clay. 

Above that threshold, like the grape rolling to a stop, they gradually drop out of suspen-

sion, settling as silt deposits. The largest particles are rarely suspended but instead 

dragged along the river bottom in the powerful turbulent currents. The sand and gravel 



Main  

6 (65) 

 

 

score the clay and silt deposits as they pass; they smash into one another, are chiseled 

round and polished smooth, or they are lodged into the substrate and held firm. (Morris 

1998) 

These components make up the alluvium, or in rivers, the fluvial sediment. Fluctuations 

in the water flow periodically brush away the excess, like a diner cleaning up after a meal, 

but channel geometry dictates how effectively this takes place, and where the materials 

end up. Impoundments, natural and artificial slow the current of water. This drop in kinetic 

energy reduces the carrying capacity and the current sequentially drops its baggage. 

The sand and gravel comes to rest first, followed by silt then eventually some part of the 

clay. At the mouth of a river, the fan shaped profile of sediment spreading into the water 

body like a slow worm is known as a delta, and it is the natural enemy of the hydroelectric 

reservoir. (Morris 1998) 

Sediment is categorized into size fraction. Course fractions are known as sand or gravel. 

Fine fractions are known as silt and the ultrafine fraction is known as clay. The transport 

and deposition of these fractions is distinct from one another. The Brune curve general-

izes deposition considering water velocity as well as size fraction. (Morris 1998) 

Coarse fraction sediment or sand is separated from the finer fractions by the boundary 

of 62 µm, the finest fraction that can be sieved mechanically. It is transported as bedload, 

scoring the water channel. Sand deposition are representative of the parent materials 

from which they originate. (Morris 1998) 

Fine fraction sediment or silt has diameters of 62 to 4 µm, smooth to the touch, but having 

a gritty texture to the teeth. It remains suspended in moving water but in still water it 

settles in minutes. Upon deposition, silt particles trap water and occupy a large volume. 

(Morris 1998) 

Clay is the ultrafine fraction consisting of colloids with diameter of greater than 2 µm. It 

engenders a plastic quality to soil with addition of water. The clay fraction is the most 

chemically complex, it precipitates at different rates based on the ion concentrations in 

solution. In quiescent solution with low ion concentrations, it can remain in suspension 

for weeks. Clay platelets are composed of microscopic disks of silica tetrahedral chemi-

cally bound to alumina octahedral microcrystals. They coalesce into colloids due to ionic 

and Van-Der-Wahls forces. Due to the large surface area of clay colloids, surface tension 
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has many times the effect of gravity which accounts for the low precipitation rates. Ad-

sorbtion of pollutant ions can increase deposition rate and sequester the harmful chem-

icals. (Morris 1998) 

Mineral fractions in water are generally not smaller than 2 µm; thus, below this size the 

particulate is known as non-clay. It is composed of organic material, microbe bodies and 

ions. They interact with the clay fractions, acting as catalysts or inhibitors for colloid for-

mation. (Morris 1998) 

Sediment generated by erosion in a watershed is transported in riverine channels by 

discharge and deposited in impounds. The parent material undergoing active decompo-

sition by frost and friction is large and heterogeneous. Soluble components decompose 

in the stream resulting in a silicate / feldspar ratio which reflects the parent material. Silt, 

composed of the finest sand component and colloids of clay deposit rapidly in still water. 

Clays settles at low rates in still water and forms solid deposits which resist remobiliza-

tion. (Morris 1998) 

The rate of sediment entrapment is the speed at which a reservoir ages, or its senes-

cence. It typically is not the infrastructure that ends the life of an impoundment. Morris 

has suggested 3 phases of reservoir life defined by sedimentation. (Morris 1998) 

The first stage is pre-impoundment characterized by periodical fluctuation of sediment 

flow in a natural riverine channel. This near equilibrium has developed based on the 

meteorology and hydrology of the region and is stable from period to period. This phase 

is concluded at dam construction and subsequent filling. (Morris 1998) 

The second stage is the main operational life of the dam and is characterized by contin-

uous sediment trapping. Detainment reduces the water velocity and the sediment enter-

ing the upper reach is deposited in order of size. The bed load; consisting of sand and 

gravel, and some part of the silt form a delta, the clay and other suspended solids are 

carried further before precipitating. The clay deposit is well mixed and distributes evenly 

resulting in fairly uniform deposition.  This stage of the reservoir life concludes with the 

sedimentation of the dead pool and the encroachment of floodplain conditions from up-

stream affecting the usability of the plant. (Morris 1998) 



Main  

8 (65) 

 

 

It is noteworthy that the large fraction of the incoming sediment is deposited in the delta, 

and thus predominantly consumes active pool volume. In subsequent flood peaks sedi-

ment and debris is deposited over the delta causing aggradation. The elevated alluvium 

at the mouth is ideal for scrub vegetation which accelerates the capture in subsequent 

flood peaks and has a dramatic impact on evapotranspiration. This is an important con-

sideration when predicting hydro power capacity or estimating the useful lifetime. (Morris 

1998) 

The third stage of the lifecycle is characterized by sediment balance, and is very similar 

to the first stage, with periodic fluctuations of sediment transport depending on flow 

through the water channel. The new near equilibrium will be different than that of the 

natural system, with occasional irregular releases from the unstable newly formed flood-

plain. A reservoir in this phase of life no longer provides any hydropower or flood protec-

tion but instead represents a flood risk. This stage concludes with dam breach, by design 

or by natural causes and results in a large sediment release to the water channel. (Morris 

1998) 

2.2 Points of reference, the region and the model 

A rain drop is born in a bank of moist, dense air compelled by imperceptible currents, 

ever seeking peace and stability as it drifts through the space above the hectic tumult of 

land and sea. Pierced by diffuse sunlight, composed of countless prisms of condensation 

and de-sublimation man perceives the geography of the heavens. The condensate; crys-

tals drawn from the ether, bound to a particulate body, destine to fall, to be an element 

of destruction and an element of creation. Destine to affect change, ultimately destined 

to transpire, dissociate to atmosphere and repeat, ad infinitum.  

A generation of dew rapidly accelerates through space, descending into the atmosphere 

subject to increasing resistance. Buffeted by the air, they combine and are ripped apart 

again, a process which results in a uniform cohort of droplets moving at speed straight 

to earth. 

Approaching earth, the air warms up, and turbulent winds drive biases, shifting the whole 

population and redistributing the drops. Careening to the surface, the drops impact and 

dislodge solid materials from their scaffold. The liquid adsorbs to the materials and im-

parts new properties. As the materials saturate, the liquid phase combine in depressions 

and flow in miniscule rivulets and rills.  
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Moving across the surface and combining with other rivulets, the collective body trans-

ports more and heavier materials. Fluid running along established channels, dragging 

with it a host of dissolved and suspended solids. Like splayed fingers, spread across the 

landscape, it scratches its initials as it moves to the sea.  

A river channel is carved into its watershed by the force of erosion, mobilizing surface 

runoff, sediment, pollutants and organic debris. Established channels deliver seasonal 

discharge with a fluctuating load of detritus. As seasons and geography change load is 

picked up and released in a hydrological cycle endlessly approaching equilibrium. Figure 

1 depicts the dynamic nature of the region, the rugged terrain along which the river flows 

and the hydropower cascade nestled among the geography of mountains, foothills and 

plains.  

 

 

Figure 1 Upper Nam Ngum region 

2.2.1 Nam Ngum River Basin 

NNRB, the 5th largest watershed in Laos sports a mountainous drainage covering 16 906 

square kilometers with elevation ranging from 2684 to 6 masl (WREA, Sector 

Assessment 2011). Average annual rainfall fluctuates 1.3 to 3.5 meters. On an average 

year, approximately 37 billion cubic meters of water move through this basin as flowing 

water, seeping aquafer or evaporating vapor. According to ADB estimates, annual evap-

otranspiration of 1.06 to 1.36 meters, measured as liquid water, escapes as vapor. Rivers 

discharge 22 billion cubic meters into the Mekong river. (Kaluarachch 2013, Bartlett, ym. 

2012) 
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Sub-tropical rainforests clad the karst topology. Steep mountains hedged with deep wa-

ter courses, carved into the severely weathered geology. The shallow sea Mesozoic sed-

imentary substrate has been carved into dramatic vistas, canyons, pillars, sinkholes, 

caves and well defined waterways by distinct monsoon meteorology. Public statistics of 

the region indicate as of 2007 land cover consisted of 47% forest, 34% shrub land, 8% 

agriculture, 7% grassland, 3.98% and 0.02% developed urban space (WREA, Water 

Resources and Environment Administration: Nam Ngum River Basin Pro- 2008, Bartlett, 

ym. 2012, WREA, Sector Assessment 2011, Phommakaysone 2011).  

Water utilization in the region as of 2009 was 0.9 billion cubic meters (BCM), or 0.4% of 

the annual flow. Agriculture is the primary user, accounting for 0.89 BCM or 99% of the 

extracted water. Agricultural abductions are predominantly from lower reaches, below 

Nan Ngun 1 dam and the capital city of Vientiane.  Urban demand is 4.5 million cubic 

meters (MCM) or 0.52% of the extracted water and industrial demand is 0.72 MCM, or 

0.08% of the extracted water. (WREA, Water Resources and Environment 

Administration: Nam Ngum River Basin Pro- 2008, Bartlett, ym. 2012) 

Nam Ngum has been the subject of much scientific and socioeconomic attention as the 

ongoing development of hydropower infrastructure begins to affect the regional ecosys-

tem and local population. (Lao People's Democratic Republic 2001, Bartlett, ym. 2012, 

ICEM 2013) 

2.2.2 Building the case for modelling with IWRM 

The Nam Ngum river drains the entire Nam Ngum River Basin into the Mekong River. 

This paper studies sedimentation rates in reservoirs built on the watercourse.  Below is 

a brief evaluation of the catchment and justifications for utilizing the IWRM model.  

The rate and mobility of sediment in a fluvial system depends on many environmental 

and hydrological characteristics. In order to accurately simulate real phenomena, it is 

necessary to categorize and quantify the catchment and the environmental and hydro-

logical factors and relate them to experimentally verified hydrological mechanics. (Morris 

1998) 

The hydrological mechanics are generally well known, but applying them on the scale of 

Nam Ngum River Basin is challenging. In addition, it is not possible to make solid pre-

dictions when the underlying morphology changes, for example in the case of reservoir 

construction. (Morris 1998) 
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 IWRM modeling software is a product of EIA Centre of Finland. It distributes hydrological 

mechanics at discrete intervals across the region of study. Historical meteorological data 

provides input to the mechanistic components and observations of phenomena calibrate 

them. One may then extrapolate by changing the underlying morphology, flow patterns 

and even climate and still have some confidence in the model results. The application of 

IWRM has a 20-year precedent in the region having been used in decision support by 

the Mekong River Commission (MRC). (WREA, Water Resources and Environment 

Administration: Nam Ngum River Basin Pro- 2008, WREA, Sector Assessment 2011, 

Korhonen 2008, Resources 2011) 

Physical modeling of hydrological phenomena, such as sedimentation relies to a great 

extent on knowledge of the region. This geographic data is built into the IWRM geo-

graphic information system raster files. Historical data, meteorology and sampling rec-

ords are available from EIA Center of Finland. (Korhonen 2008) 

The following section includes statistics extracted from the data set with Riverlife GIS, a 

component of the IWRM suite of programs. It provides a picture of the setting and context 

for modeling results. 

Study Area, Upper Nam Ngum 

The Upper Nam Ngum (UNN) is an 8126.25 km2 subset of NNRB which terminates in 

Nam Ngum1 east of the capital city Vientiane. It encompasses the watershed feeding 

the network of impounds, Nam Ngum 1, Nam Ngum 2, Nam Ngum 3 and Nam Ngum 5. 

Annual rainfall ranging from 1.3 to 2.6 meters translates to 10.6 to 21.2 BCM of water. 

This is comparable with the 427 m3 mean annual flow reported in the EMSP 2011-2012 

report if one allows for evapotranspiration and infiltration of 60%, as was calculated from 

WREA 2008. (WREA, Water Resources and Environment Administration: Nam Ngum 

River Basin Pro- 2008, WREA, Sector Assessment 2011) 

Land use and ground cover have an effect on erosion by intercepting falling water and 

inhibiting sediment transport. Figure 2 communicates these regional statistics. Decidu-

ous forest and shrub land make up 85% of the ground cover. Water and coniferous 

woodland cover 9 and 2 % respectively. Agriculturally managed land only covers 0.5 % 

and urban areas less than 1 per mille. Floodplains found in the northern plateaus and at 

the southern NN1 delta account for 0.01%. Parametric values associated with each class 

modify the effects of precipitation in the hydrological model.    
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Sediments, originating from the soil are detached by precipitation and mobilized by sur-

face flow. They continue to move towards the sea unless they are deposited. Soil com-

position in Upper Nam Ngum is predominantly acrisols and lithosols. Acrisols are old, 

typically late Pliocene era alluvia with clearly defined A and B horizon and pronounced 

illuviation which is evidence of periodic saturation. Lithosols are course grained, devoid 

of horizon and typically devoid of weatherable material. Both soil types make poor agri-

cultural land and are prone to rill and gully erosion when disturbed. These soil types as 

well as the geological evidence indicate that sedimentation rates may be considerable. 

(Vattenfall Power Consultant AB. 2008) 

The volume and velocity of surface runoff has a pronounced impact on its sediment sat-

uration limit, or carrying capacity. Surface runoff moves more quickly down steep inclines 

carving rills which erode to form gullies. Mountain slopes over 43 degrees make up a 

relatively small portion (~8%) of the land area, but contribute significant amount of sedi-

mentary material. Wet season erosion as mentioned, but also dry season wind erosion 

deposits fine fraction silts in valleys. 83% of the land has less than 15-degree slope and 

sediment mobility is heavily dependent on land-use class. In the model space, precipita-

tion defines water delivery to the surface and inclination defines the flow velocity. 

 

Figure 2 IWRM UNN, Land use and Soil type statistics  
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The region is mountainous with a saddle contour splitting the northern reach. To the 

northeast, expanses of flat farmable land above 1000 masl drain into a channel hedged 

by rolling hills, the buried peaks of future mountains. Each node of the cascade is con-

nected by the Nam Ngum and contributes to the flow by channeling the precipitation from 

its specific catchment into a single location. Figure 3 summarizes statistics extracted 

from the model software regarding slope and river characteristics. 

Figure 3 IWRM UNN, River and grade statistics 
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 In the northwest, Nam Ngum 5 reservoir is secluded amongst the deep gorges and high 

peaks extending well over 2000 masl. Over 70% of the specific catchment lies above 

1100 masl. The long narrow 14.6 km2 impoundment with a full capacity elevation of 1100 

masl is filled at an annual mean rate of 17 m3/s by the 390 km2 catchment. At a mean 

depth of 21.8 meters, the 314 million m3 reservoir is recharged in approximately 217 

days.  Two francis turbines with a rated capacity of 120 MW at 337-meter head and a 

load factor of 90% deliver 507GWh electric power to Xieng Khuang transfer station to 

supply the local market and Vietnam.  

Nested in the saddle seat, Nam Ngum 3 retains water in a canyon impound with a full 

capacity level of 720 masl. Nearly 95% of the specific catchment lies above the full ca-

pacity elevation. The steep walls and deep bottom store 1.32 billion cubic meters at an 

average depth of 51 meters in the 25.6 km2 reservoir. It accepts the drainage from the 

northeast plateaus and consequently has the largest specific catchment in the cascade 

of 3888 km2. Combined flow from the specific catchment and NN river of 110.8 m3/s 

displaces the total volume in 138 days. Sense 2014 the rockfill concrete face dam has 

delivered 305-meter head to 4 francis turbines, supplying 440MW capacity, 2128 GWh 

to supply the Thai electric market.  

Following the river south, the mountainous aspect persists as the mean elevation drops. 

In the rugged, weathered topography, stream-beds cut deep and wide provide the 6.8 

billion cubic meters Nam Ngum 2 impoundment. 87% of the catchment lies above the 

full capacity elevation of 380 masl. The 87 km2 reservoir accepts an average inflow of 

193.5 m3/s from Nam Ngum river and the 1804.5 km2 specific catchment. Annual aver-

age inflow recharges the reservoir in 405 days. Nam Ngum 2 is rated at 615 MW and 

delivers 2200 GWh annually to the Thai market in 3 Francis turbines operated under an 

average head of 159 meters. 

At the southern reach, with its mouth only 6 km down-stream from Nam Ngum 2 power-

house, a giant body of water covering 360 km2 at full capacity surface height of 212 masl 

and surrounded with the ruined remains of mountains. Nam Ngum1 retains over 7 billion 

cubic meters of water from the rolling, farmable land covered by grass and shrub or leafy 

forest. The 2617.5 km2 specific catchment and Nam Ngum river supply an annual mean 

flow of 427 m3/s. At a mean depth of 19 meters the reservoir is recharged every 129 

days. Annual production from Nam Ngum 1 and the connected Nam Lik diversion is 1025 

GWh from the 155 MW powerhouse. 5 Francis turbines with a combined load factor of 
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75% working at an average 50-meter head provide power supplying the capital city of 

Vientiane and the local grid. 

The modeled UNN watercourses originate from depressions in the elevation raster. The 

mountain streams combine to fill the Nam Ngum river. Figure 5 shows the height profile 

of the watercourse from the northern plains to the Nam Ngum 1 tailrace. This is the river 

elevation and does not portray the water elevation at reservoirs. The reservoirs Nam 

Ngum 3, 2 and 1,  through which this profile passes, would inundate the land at elevations 

720,380 and 212 respectivly.  

Figure 4 and Figure 6 present seasonality through fast Fourier transform and an upward 

trend from autocorrelation analysis. 

Figure 5 IWRM UNN,  Downstream Profile UNN watershed V1 

Figure 4 IWRM UNN, FFT of Precipitation 1995-2007 
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The contribution of each consecutive specific watershed combine to produce an increas-

ingly large volume of water. The modeled space accounts for rivers with over 50 tribu-

taries, however 56% of them are less than a meter in depth, and 45% are less than 6 

meters wide. Larger rivers are mostly found in the south. 21% are over 3 meters deep 

and 35% are over 18 meters wide.  

Regional weather data provided with the model software comes from monitoring stations 

in the region. The monitoring stations in NNRB have precipitation records from 1995 to 

2008. Autocorrelation indicates smooth annual periodicity. The annual average daily pre-

cipitation increases at approximately 0.2 mm per year at the Vientiane observation sta-

tion series from 1970. According to this data, average rainfall has gradually increased 

from 1.5 to 2.7 meters per year. Average temperature over the 15 year daily observation 

period is 25.9 degrees Celsius with a standard deviation of 3.6 degrees. 35 degrees was 

the highest temperature achieved march 19th 1998.  

Note: All figures from region dataset, provided by EIA Center, and extracted using IWRM 

Riverlife data viewer. 

2.2.3 Cascade 

Table 1 summarizes information from various sources including EIA publications, public 

records, news articles and company websites. Reliability is based on 3 categories in 

decreasing order:   

 source,  

Figure 6 IWRM UNN,Autocorrilation Precipitation 1995- 2007  
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 age of publication  

 repetition 

 
Table 1 Upper Nam Ngum reservoir data 

Class Nam Ngum 1 Nam Ngum 2  Nam Ngum 3 Nam Ngum 5 

Production  

 Rated capac-

ity 

155 MW 

(148.7) 

615 mw 440MW  120 

annual pro-

duction 

(GWh) 

1025, (1006) 2220, 2300 2128, (2077) 507 

Turbine Rat-

ing (MW) 

3-40, 2-17.5 3- 205  4- 110  

Turbine Type francis Francis francis Francis(x2) 

Transmission 

length (km) 

 95 180  

Transmission 

type (kV) 

115kv 230/500 230  

load factor 75 %   90 

Location  

 Coordinates, 

utm48n 

241122.196 

2050701.724 

48 N 265790.589 

2076317.932 

276785.111, 

2111395.972 

48 N 

250688.557 

2142536.907 

coordinates 18.531048, 

102.547742 

18.9213,102.7404 

(102.778272, 

18.765281) 

102.878517, 

19.0833  

19.361472, 

102.626603 

location Vientiane Vientiane 130 km north 

of Vientiane 

Vientiane 

and Xieng 

Khuang 

design date 1964 1994   

Construction 

start 

1971 2004 2014 2007 

completion 

date 

1971,78,81,96 2011 2018 2012 

Dams  

http://www.ieahydro.org/reports/Annex_VIII_CaseStudy1202_NamNgum1_Laos.pdf
http://www.poyry.com/sites/default/files/media/related_material/29.pdf
http://ifcext.ifc.org/ifcext/spiwebsite1.nsf/f451ebbe34a9a8ca85256a550073ff10/f5037d5c01ea7d728525795d0079f4f4?opendocument
http://poweringprogress.org/new/9-operation-projects/22-nam-ngum-5-120mw
http://www.edlgen.com.la/en/page.php?post_id=30
http://www.edlgen.com.la/en/page.php?post_id=30
http://www.ptsole.com/nam-ngum-2
http://www.ifc.org/wps/wcm/connect/region__ext_content/regions/east+asia+and+the+pacific/countries/nam+ngum+3+-+development+impact
http://globalenergyobservatory.org/geoid/41641
http://www.poweringprogress.org/new/11-planned-projects/45-nam-ngum-3-440mw
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 D Type Concrete Grav-

ity 

Concrete Face 

Rock Fill 

CFRF Dam RCC 

D length (m) 468 470 460 237 

D Width (m) 6    

D Height (m) 75 185 (181) 220 99 

head (m) 25,00 159 (146) 305 337 

headrace l 

(m) 

  11000 8917 

headrace di-

ameter (m) 

  7,5 4,2 

penstock 

length (m) 

  150 2443 

penstock di-

ameter (m) 

  3,2 3,8 

Tailrace 

length (m) 

  930 68 

spillway cap 

(m3/s) 

4900  9000   

Average 

depth (m) 

18,95 77,67 51,56 21,78 

Elevations          

 Full Elevation 

FSL (m) 

212 375 720 1100 

Dead storage 

Elevation (m) 

196 345 660 1060 

Storage         

 Gross stor-

age (Bm3 ) 

7.03 6.77 1.31 0.448 

Dead Storage 

(Bm3 ) 

2.33 2.42 0.979 0.196 

 

Active stor-

age (Bm3) 

4.7 4.23 0.337 0.252 

Areas          
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 Dead Storage 

Area (km2) 

  15,124115  

Surface area 

at FSL (km2) 

370 km2 (400) 100 (7.5) 25,50 15 

Catchement 

A (km2) 

8460 km2 5640 km2 3888 483 

     

Flows          

 Average rain-

fall (mm) 

2000    

mean annual 

inflow (Mm3) 

   22,8 

annual mean 

flow (m3/s) 

300-1500 193,5 98 21,14 

Flow/a  

(Gm3) 

22 6,2 3,09 0,67 

 Hydraulic size 

(C:I) 

0.467 0.00103513 0.00060087 0.013365 

 

2.2.4 IWRM software 

IWRM is a physically based, distributed GIS 2.5 d model. It is a powerful tool which 

compensates for weak data with physical computations and parameter calibration. At 

heart, it is composed of 4 separate components each a collection of causal relationships 

formulated mathematically. The components work in concert to estimate complex hydro-

logical phenomena. 

The grid is composed of GIS raster-map overlays each containing specific data. A raster 

is a digital image; each pixel value represents specific information. At minimum IWRM 

requires a raster with elevations, land use, soil type and river information. These contain 

the basic information for the model components. The 50 m raster sets provided by EIA 

Centre of Finland were reduced to 500 m resolution in order to facilitate rapid computa-

tion.  

https://sites.nicholasinstitute.duke.edu/environmentaleconomics/files/2013/01/WP-EE-12-10.pdf
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Individually the model components describe surface flow, water quality, weather and 

crop productivity of the gridded study area. The weather algorithm interpolates temper-

ature and precipitation from observations and distributes it according to elevation. The 

surface model allocates the precipitation; assigning it to the surface, subsurface or evap-

oration based the grid and weather data. The water quality model estimates ion concen-

trations, pH and sediment based on information from the previous sets. The crop model 

estimates agricultural crops response to the combined set of data. Each component op-

erates simultaneously outputting discrete time series responses at each geographic 

point in the grid.    

In addition to the grid data, the components of the model require meteorological input. 

This is in the form of time series precipitation, temperature, river flow and other infor-

mation. These data, provided by EIA Centre of Finland are from measurement stations 

in the region. The locations are fixed on the grid and the weather model distributes ex-

trapolated values across the region.  

It has been described as a 2.5 d model, this can be understood as a Cartesian plane 

with elevation parameters associated to each cell. Height and time are not true dimen-

sions in the model. Phenomena such as inter-cell flow is derived from elevation of ad-

joining cells. One set of outputs is produced for each set of inputs and so phenomena 

that takes place in time can only be studied if there is a series of inputs representative of 

the period. In prediction of future phenomena, one must first calibrate the hydrological 

parameters then apply a representative input series.  

Model weaknesses 

In general, modeling is affected by two key weaknesses, data quality and mechanistic 

resolution. Physical models such as IWRM compensate for a degree of data weakness, 

but accuracy and reliability suffer. Model designers strike a balance between computa-

tional complexity and resolution. The inputs and formulas are chosen to achieve partic-

ular objectives. IWRM is a generally applicable hydrological model that can be run on 

low resource computational systems.   

The data quality from Laos is poor, in fact, every study conducted in the region cite sev-

eral classes of weaknesses, inconsistent reporting with weeks or months of unreported 

data at stations, abnormal jumps in established trends with no indication of change of 
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sampling methodology or merit, disjoined records with respect to upstream or down-

stream flows, rainfall and river flow data which rise and fall independently and in some 

cases completely opposite of intuition. These well documented accounts need not be 

evaluated further. Instead, the weakness is noted and an interested reader may refer to 

practically any other study of NNRB for more details.  (Snowy Mountain Engineering 

Corporation 2001) (Bartlett, ym. 2012, ICEM 2013, Resources 2011) 

A specific example of weak data at play in this set of experiments is the sediment cali-

bration observations. In calibrating sediment in the model they must fit observations, both 

quantity and quality count. In this case, there are only two one year sets of observations 

and they are composed of monthly values of averaged spot samples with no documented 

description of method, time or frequency.  The trend of sediment concentration fits well, 

but the observations themselves are questionable. 

Weak data injects two types of uncertainty; initial and cumulative. The values fed into the 

model affect the dynamics of the output. Uncertainty cumulates within the simulation 

each time step, as a result of each inaccuracy, assumption or approximation. The model 

component accuracy is proportional to the underlying data, so the results present a range 

of possible outcomes.  

Mechanistic resolution refers to the ability for the model components to reproduce phe-

nomena at an appropriate scale. The formulas in the model may be insensitive to com-

plexity, and unable to capture nuances. Alternatively, it may be overly sensitive and func-

tionalize relics or random variability. In either case, the model results may be compro-

mised.   

Two examples of this are specific deposition and erosion. Both exhibit causal behavior, 

which can be described with detailed knowledge of the system. The knowledge is not 

refined enough to apply functional relationships. And if it were, it would be far too com-

putationally demanding to be modeled on a desktop computer. In lue of using formula-

tions of these complex relationships, calibrated parameters of linear combinations es-

tablish the general erosion and sedimentation is distributed evenly across the reservoir. 

The case of soil depth illustrates a linear solution for lack of data which can be calibrated, 

but represents an undefinable amount of uncertainty. Soil depth data is not available for 

incorporating into the grid. The software assigns an adjustable group parameter for all 
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the depth related components. The depth can be calibrated to fit hydrograph observa-

tions, but the local variability is absent.   

Calibration of the model components with IWRM indicates a discrepancy between the 

grid and actual region. Literature provides component parameter values which are hy-

drologically accurate, but the representations only approximates the complexity of the 

system. Calibration provides an adjustment factor to fit the empirical values to observa-

tions.  

Calibration is modeling. In order to deliver particular information, the model must be 

forced to mimic that behavior. To make progress, the accuracy of other phenomena is 

ignored. When there are two objectives to calibrate to, one may have to compromise 

accuracy with both.   

An aspect that cannot be calibrated pertains to dam parameters. Hydro-electric dams 

are complex mechanisms and morphologically difficult to simulate. The IWRM reservoir 

module has limitations with respect to intake specifications, low level outlet capability, 

environmental flow settings, outlet specifications, rule curve settings and turbine effi-

ciency. These prevent the model from making sediment predictions with much precision. 

Instead, some part of the sediment is released per Brune equation based on the frac-

tional concentrations at the dam location and intake elevation and power is evaluated 

according to the hydraulic potential at the dam location. 

Regardless of the many sources of uncertainty and inaccuracy and the limitations as to 

hydraulic power production, the model is a useful tool. Making predictions is difficult, 

especially about the future, but the test set predictive power of this model was reliably 

found with a Nash Sutcliffe Coefficient to be over 0.65 in calibration runs prior to experi-

menting.   

2.3 Experimentation, Scenario Building 

The Upper Nam Ngum region presents a particular challenge to computational modeling. 

Though only some 8000 km2, there exists a wide range of varying geography ranging 

from mountain peaks and high elevation plateaus to flat plains. There may be significant 

variation which the model is simply not sensitive enough to capture. Calibration has been 

made from points in the plateau and again in the foothills. It follows the trend well, but 

the observation set is very limited, only one year of monthly measurements.  
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Modeling combines and functionalizes information enabling the experimentalist to track 

changes to actual metrics under simulated scenarios. Modeling is the preferred method 

to study complex subjects such as hydrology. The information can be observations or 

physical relationships. Information collection can be decoupled from analysis and the 

experimentation efforts can be compartmentalized to improve quality and productivity 

and reduce cost. Computational models make it possible to test specific assumptions in 

rapid succession to determine and forecast relevant phenomena. (IPCC 2013) 

Because of the ease of experimentation with computational models, scenario building is 

an important element of the process. IPCC for example has an array of development 

scenarios to which approved climate change models conform.  The assumptions implicit 

in the scenario are under evaluation, more than the actual predictions. 

In more traditional sciences, a well-designed experiment tests a hypothesis based on a 

theory. The result proves or disproves the hypothesis and thus the theory. The proof or 

disproof distinction does not exist in modeling experiments. Models make a prediction 

based on the assumptions specified by the scenario, the results of which are evaluated 

based on statistical accuracy when compared to independent observations. The predic-

tive power of a model is a normalized summary metric such as R2 or Nash Sutcliffe Co-

efficient. (Kaluarachch 2013, Massart 1988) 

The parametric value of the summary metric varies. Nash Sutcliffe Coefficient, for exam-

ple lies between - infinity and 1 which constitutes a perfectly determined relationship 

between observations and modeled values. In evaluating hydrological models, Nash Sut-

cliffe is insensitive to small magnitude fluctuations. It is more useful in determining the 

general dynamics of the system. Debate exists over what constitutes a useful score. 

According to many in the field, a score higher than 0 has predictive power and is useful, 

others assert that anything less than 0.9 embodies excessive uncertainty. (Krause 2005, 

Kaluarachch 2013) 

Modeling results are forecasts and the results embody the accumulated uncertainty of 

the observations and the equations that they feed. Therefore, the precise state of a sys-

tem cannot be determined with any real confidence. The trends in forecasts, though, do 

have meaningful implications with respect to the inputs. By adjusting input factor levels 

from one experiment to another, characteristic reflections of the input may be measured 

from the results.  
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Experimental design is a procedure enabling researchers to extract more information 

from a set of experiments. It involves using a structured methodology to set independent 

factor levels. This project involves sedimentation of reservoirs, and independent factors 

such as operations schedules, land-use change or climate change will surely have an 

effect on the sedimentation rate. Making accurate predictions of specific factor levels at 

some point in the future is beyond the scope of this project. By using experimental design 

and setting levels that span a possible range for each factor, the researcher can have 

confidence that the actual response is within the continuum described by his array of 

results. In addition, the impact of each individual factor expresses the relative importance 

with respect to the response. (Massart 1988) 

 The results from an experimental array quantify the relative importance of the factors. It 

can also be seen if the factors interact in characteristic ways. Factors used in this study 

include precipitation rate, an approximation of climate change, objective based flow 

curves and land use change to account for population growth.  

The design is based on fractional factorial kn design, named because of the binary ex-

pansion of the number of experiments.  The superscript indicates the number of varia-

bles, or factors under evaluation. The base indicates that each factor has k levels. In 

order to test every permutation of factors, there will be kn experiments. (Massart 1988) 

Table 2 lists the experiments performed and the factor levels applied in each one. Sym-

bolic code is used for clarity. The symbology is defined below.  

 
Operational 

strategy 
 Land use 
change  

Climate 
Change 

- - - 

- - + 

- - 0 

- + - 

- + + 

- + 0 

+ - - 

+ - + 

+ - 0 

+ + - 

+ + + 

+ + 0 

Table 2 Factorial experimental design array 
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Land use change 

 - Existing land use data 

 + Expanded urban and agricultural classes 

Climate Change 

 - Existing precipitation data  

 + RCP 4.5 scenario A 

 0 RCP 6.0 scenario B 

Impoundment status  

 - No artificial impoundments 

 + Ruled release 

2.3.1 Dams 

Hydro-electric infrastructure has two main advantages. It is dispatchable within minutes 

of demand and reliable year over year. Operators can utilize these factors to design a 

rule curve to cater to the unique needs of the local consumer.  The grid is a dynamic 

structure and hydro-electric power can stabilize supplies or compensate for peak de-

mands. Dam operators make contractual commitments to grid operators to guaranty a 

certain amount of power at particular times. (Shannon 2008) 

In order to satisfy the objectives defined by the commitments, operators store a volume 

of water suitable to account for a certain degree of seasonal variability. The release 

schedule is known as a rule curve or flow curve. The timing and dynamics of the rule 

curve disrupt the natural flow in the river. 

The choice of rule curve has an impact to people along the water course. One which 

stabilizes the flow throughout the year prevents seasonal floods and provides for irriga-

tion of dry season crops. One with erratic or unpredictable fluctuations increases the risk 

to fisheries and the local population. This social aspect is not taken into consideration in 

this project. (Bartlett, ym. 2012)1 

Historical weather records can be coerced to present several useful nuggets of infor-

mation. For example, the normal standard deviation of the monthly precipitation gives a 

range of preparedness for each reservoir. Seasonality offers the potential to periodically 

flush sediments if the dam is equipped with a bottom drain or to sustain large magnitude 

production in the lead up to the wet season. 2 

                                                

1 Development of rule curves accounting for social considerations 
2  Application of seasonal flush strategy to remove sediment deposits 
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The rule curves have been built to represent different operational strategies. IWRM soft-

ware determines sediment deposition under each scenario over a fixed period of time. 

The results indicate which strategy is the most sustainable in terms of infrastructure lon-

gevity.   

Dam Operation 

Real dams provide base and peak load by ramping flow in response to grid demand 

depending on the local production mix. The scenarios provided here are proposed as 

purely hypothetical strategies with specific objectives as described. If certain operational 

strategies have more pronounced sedimentation it will inform management and opera-

tions in the actual infrastructure.  (Krause 2005) 

In developing the flow curves, environmental flow is held constant and evaporation and 

rain fall for the period are extracted from IWRM calibration runs meteorological data. The 

resulting geographically averaged parameters are representative of the Upper Nam 

Ngum for the period January 2001 to December 2008. Environmental flow is additive 

from upstream reservoirs with individual contributions based on the size of the specific 

catchment.  

Equation 1 is an optimization model adapted from various sources including Morris, MIT 

linear programming and several YouTube videos. Equation 1 can be used to propagate 

volume at time with a rule curve. Optimization takes place when the equation series is fit 

using least squares to an objective series of volumes.   

The model produces a time series of volumes and can be optimized in excel using solver. 

Unfortunately, this method, was not capable of delivering working flow curves. There is 

a discussion of several operational strategy factor levels in the following text, but only a 

combined strategy was used in experimentation.  

The (-) dam operational strategy is actually a misnomer, because there is no dam! The 

sediment is tracked at the location of each node of the cascade. It is done to establish a 

basis of comparison. The (+) operational strategy utilizes a rule curve, taken from EIA 

Center of Finland, conforms to the regional data and approximates contractual grid com-

mitments. 
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Flow curve development occupied a substantial portion of the early project and though 

the curves were not used in the modeling, there still is room for discussion of the proce-

dures, presumptions and progress. Figure 7 has a flow curve plotted against time. Equa-

tion 1 is the rule curve optimization model, adapted from various sources: 

 

Baseload electrical demand is stable, fluctuating around daily and seasonal means. Wa-

ter flow to the powerhouse is constant and reserve volume accounts for historical sea-

                                                

3 Environmental flow is primarily established to provide access to the upstream spawning beds 
for migratory fish. Drawn from the reservoir, the artificial water course takes a path around the 
dam and discharges into the natural course downstream. It is noteworthy to mention that a ri-
parian diversion may play a role in an active sediment mitigation strategy. Depending on the lo-
cation of the bypass, some part of the incoming sediment will be prevented from depositing in 
the reservoir. This has not been considered in this study, though it warrants research.3 

 𝑉𝑡+1  = 𝑉𝑡 + 𝑄𝑡(±𝑆𝐷 ∗ 𝐹𝑝) − 𝑀𝑡 − 𝐻𝑝𝑡 − 𝑆𝑡 − 𝐸𝑡 (1) 

Where:  

  𝑉𝑡 =  Volume at beginning of period 

𝑄𝑡 = Inflow for period 

𝑆𝐷 =   Monthly standard deviation 

𝐹𝑝 =  Flood pool proportional to active  

𝑀𝑡 =  𝐴𝑉𝑡
∗ 𝑃𝐸𝑇𝑡 

𝐴𝑉𝑡
=    Reservoir area 

𝑃𝐸𝑇 =   Evapotranspiration 

𝐻𝑝𝑡 =  Turbine discharge 

𝑆𝑡 =  Spillage for period 

𝐸𝑡 = Environmental q3 

Figure 7 Example of flow curve objective 
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sonal variation, measured as standard deviation. The rule curve that correlates to base-

line operational strategy maintains the highest and most uniform flow for every given 

period. Table 3 summarizes the optimization criteria. 

Table 3 Baseload objectives 

V_t Minimize accounting for standard deviation of inflow 

Hp_t Minimize flow variation (ideally one single flow throughout year) 

S_t Minimize  

A combined operational strategy balances the steady release of a baseload strategy and 

the greatest possible reserve volume. The rule curve optimization maximizes volume, 

environmental releases and spillage maintain constant flow to in the water channel. 

Table 4 summarizes the optimization criteria. 

Table 4 Combined strategy objectives 

V_t Maximize for potential, minimize for evapotranspiration  

Hp_t Maximize sum of flow allowing free range of variability  

S_t Minimize spillage 

The results of these strategies are summarized in the Tables 3 and 4. This topic is han-

dled very lightly, but a more comprehensive development of rule curves is beyond the 

scope of the study. A more complete study of this topic would provide more detailed 

information. The work done here would provide an excellent starting point. 4 

2.3.2 Climate change 

The IPCC, Intergovernmental Panel on Climate Change is a UN, body consisting of 

World Meteorological Organization (WHO) and United Nations Environmental Program 

(UNEP) staff, but functioning independently with elected leadership. IPCC is responsible 

for developing scientific consensus on climate change research. The organization pub-

lishes assessment reports (AR) summarizing the estimates and defining methodological 

criteria. (IPCC 2013) 

In order to be recognized by the IPCC, research or models built on environmental da-

tasets must be peer reviewed and conform to certain standards. Models recognized by 

                                                

4 Suggested research: Objective based rule curves for cascade hydropower  
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the IPCC are considered reliable estimates of future climate, to such an extent that mod-

eling has become an integral component of the strategic framework government and 

business use to plan for the future.  

The General Circulation Model (GCM) accounts for meteorological and ocean behavior 

over time. Complex material and energy flows are approximated by mathematical func-

tions. The experimentalist feeds the model historical data and the model extrapolates 

system behavior into the future. The general circulation model provides a poor resolution 

picture of future climate. (IPCC 2013) 

Downscaled CC data 

This study tests the effect of CC on the rate of sedimentation with specific attention to 

hydropower capacity.  The projected temperature and precipitation is downscaled from 

a global circulatory model (GCM) based on regional weather patterns. The choice of 

GCM is made based on how well the downscaling fits historical meteorology. 

Downscaling data from GCM is beyond the scope here, however downscaled data sets 

have been provided which have been used in The USAID Mekong ARCC Climate 

Change Impact and Adaptation Study for the Lower Mekong Basin. That project evalu-

ated climate change with 7 accepted downscaling models, and found 2, CGCM3.1 and 

ECHAM5 most representative of the region. (Cai et al. (2009) and Eastham et al. (2008)). 

(ICEM 2013) 

The data is based on RCP 4.5 and 6.0 which correlate with the B1 and A1B storyline 

detailed in IPCC AR4. It represents radiant atmospheric forcing 4.5 and 6 times greater 

than 1750 levels. IPCC AR4 defines radiant forcing: 

Radiative forcing is a measure of the influence a factor has in altering the balance of 
incoming and outgoing energy in the Earth-atmosphere system and is an index of the 
importance of the factor as a potential climate change mechanism. In this report ra-
diative forcing values are for changes relative to preindustrial conditions defined at 
1750 and are expressed in Watts per square meter (W/m2). (IPCC 2013) 

A1B scenario assumes gradual declines in greenhouse gas emissions, stabilization around 

2100 followed by decreasing concentrations. Industrialized nations remain wealthy and as 

population growth continues there is a movement to renewable energy and nuclear power.  

Poor nations continue to rely on fossil fuel resulting in environmental decline and social eco-

nomic hardship and increased war and famine.  

B1 storyline is more optimistic, considered the low -emissions scenario where concentrations 

of greenhouse gasses stabilize mid-century followed by gradual declines. Global outreach 
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programs share technology and wealth between rich and poor countries. Population stabi-

lizes, democracy spreads peacefully around the world and everybody eats closer to the earth. 

In downscaling, the GCM trends are converted to weighting factors which are then applied 

to local meteorological data. This statistical method is well developed and discussed in depth 

in the USAID Mekong ARCC Climate Change Impact and Adaptation Study for the Lower 

Mekong Basin methodology section.  

For the purpose of this study 11 meteorological monitoring stations have been chosen to 

represent the differing elevation and geology of the region. Records at some stations go back 

to 1970, but the period 1998 to 2008 was well represented at all 11 sites.  

IWRM Software has a built-in tool to apply statistical scaling. GCM weights are applied to the 

existing monitoring station data to represent the climate scenario 50 years in the future. This 

is a useful method of experimentation because the underlying weather dynamics remain the 

same in each scenario. The changes in the results are due strictly to the changes in climate 

assumptions.   

2.3.3 Land use  

The land-use change assumptions are informed by two global trends. Urbanization and 

population growth. Public records on the Lao PDR governmental statistics hub indicate 

that they are taking place within the region. The scenario applied to modeling is not based 

on specific information. 

UNN has two active urban regions. In the scenario, urban areas have expanded into the 

most viable grid squares based on land slope and road access. Dense populations in 

urban areas draw more fruit and fiber from the surrounding countryside. The agricultural 

areas surrounding the cities have increased to account for the increased demand.  

(WREA, Sector Assessment 2011)   

Under Land-use change assumptions, Urban space is doubled and the agricultural land 

in the proximity of the urban space is doubled. This corresponds to urban area change 

from 1 ‰ (per mille) to 3 ‰ of the total area, and agricultural land area changing from 

3.4 % to 17.12 % 
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3 Analysis 

3.1 Excluding Cascade 

Modeling makes it possible to evaluate the Upper Nam Ngum under conditions which 

are not possible in reality. This section focuses on various metrics under the fictitious 

assumption that there are no impoundments in place. The results are illustrative of nat-

ural cycles and the magnitude of the impact owing to climate change and land use as-

sumptions.  

Model calibration remains the same throughout all experiments, this ‘no-dam’ set estab-

lishes an index for comparison. Table 5 presents deviation in hydrological or meteoro-

logical metrics according to their correlation with the baseline. This set of experiments 

are performed as a precaution against the extraneous variability which may confound 

the results if there are nonlinear relationships between the factors. Maintaining a single 

model calibration is a further precaution to eliminate hidden variables from having an 

effect. 

 

𝐶𝑜𝑟𝑟(𝑥, 𝑦) =
𝛴 (

𝑥𝑖−µ𝑥

ơ𝑥
) ∗ (

𝑦𝑖− µ𝑦

ơ𝑦
)

𝑛
 

(2) 

  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 =
𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑋𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

(3) 

The correlation coefficient measures how the time-series compares to the baseline. The 

scale goes from 1 to -1 with a score of 1 indicating perfect correlation and -1 being a 

perfect negative correlation. A score of 0 indicates no discernable relationship between 

the sets. It is of importance to note that due to the formulation of the correlation coeffi-

cient, linear combinations are identical, so magnitude is not under evaluation.  
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The coefficients are a normalized measurement of squared residuals from the baseline 

values for the given series. This is not a measurement of magnitude and one may not 

make claims based on correlation that one scenario has greater or less of the metric 

under consideration, only the dynamic similarity of the time series. 

Standard error is an estimate of the measurement variability based on a sample of rep-

licate measurements. It assumes normal distribution about an actual mean and random 

variation in measurements so its usage here is perhaps unconventional. It is reported  in 

Table 5 but it is applied later in the development of an approximation.  

 
Table 5 IWRM UNN, various metrics 

 Land-use 
Change 

CC A CC B 

Precipitation 
Change, mag. 

Change, SD  

1 
No Change 
No Change 

0.9360816  
192.6 % 
115.7 % 

0.9489351 
188.5 % 
109.2 % 

Sediment (L) 
Change, mag. 

Change, SD 

0.9982455 
148.1 % 

163 % 

0.2939813 
201 % 

188.6 % 

0.3226479 
240 % 

145.6 % 
Sediment (C) 
Change, mag. 

Change, SD  

0.9994237 
145.4 % 
141.7 % 

0.181533 
130.5 % 

-3.3 % 

0.1962763 
136.9 % 

-1.3 % 
Sand (L) 

Change, mag. 
Change, SD  

0.8708172 
126.1 % 
128.8 % 

0.0018696 
237.5 % 
378.3 % 

0.0021253 
213.7 % 
269.1 % 

Sand (C) 
Change, mag. 

Change, SD  

0.8485008 
122.5 % 
121.4 % 

-0.16448 
196.3 % 

275.27 % 

-0.016634 
156.6 % 
171.9 % 

Silt (L) 
Change, mag. 

Change, SD  

0.9639823 
152% 

152.1 % 

0.930052 
227.4 % 
214.2 % 

0.9270859 
271.4 % 
246.1 % 

Silt (C) 
Change, mag. 

Change, SD  

0.9893805  
149.1 % 
148.8 % 

0.8455846 
142.9 % 
121.6 % 

0.8350649 
150.8 % 
127.2 % 

Clay (L) 
Change, mag. 

Change, SD  

0.961302 
128.6 % 
133.3 % 

0.1399992 
-24.3 % 
-78.6 % 

0.1485882 
-9.3 % 

-74.9 % 
Clay(C) 

Change, mag. 
Change, SD  

0.9862962 
125.8 % 
126.7 % 

0.1227096 
-39.8 % 
-88.1 % 

0.1274395 
-36.6 % 
-87.2 % 

Flow 
Change, mag. 

Change, SD  

0.9767002  
-1.0% 
102% 

0.9541175  
174.3% 
165.1% 

0.9544023  
194.9% 
186.9% 
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3.1.1 General discussion of metrics 

Abnormally high sediment values in the wet season of 2005 – 2008 found under Baseline 

and Land-use change but not climate change assumptions may be relics from input data. 

They correlate with high precipitation events at a single weather measurement station. 

The climate change scenarios are produced with statistical scaling. It would seem that 

the high precipitation events are not robust enough to translate into the scaled climate 

change weather sets which explains why the events are not evident in ether climate 

change scenario. With these events excluded, the scenario responses are more in line 

with the other observations and therefore used for the following discussion. This exclu-

sion is tantamount to removing obvious outliers or errors from a training set.  

Precipitation in the model is based on historical records from measurement stations 

throughout the region.  At no point did the temperature drop below 0 Celsius; there was 

no snow or sleet measurements in any model results. Precipitation in the land-use sce-

nario is identical to baseline.  

The correlation coefficients comparing climate change to baseline are 93 and 94 indicat-

ing a broad similarity though this is to be expected when considering the methodology 

used in generating climate change meteorology.  Indeed, period and duration remain 

mostly unchanged in both cases.   

The scenarios deviate from baseline in magnitude and in variability as depicted in Figure 

8. Overall volume of precipitation under climate change assumptions nearly doubles, and 

standard deviation in mm of daily rainfall changes from 13 to 30 and 29. Although more 

rain fell in both climate change scenarios, there was 16 fewer rainy days per year.   
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Figure 9 presents precipitation and river discharge, measured at the location of Nam 

Ngum 1 outlet. There is an annual increase of 78 % and 98 % over baseline flow in 

climate change A and B. In the land-use scenario there is a 1 % reduction of annual flow. 

This is perplexing because the land-use scenario supposes urban expansion in which 

increased water flow is expected due to the low permeability of paved and built up 

spaces. In addition, the land-use scenario supposes agricultural land expansion; this 

would increase subsurface recharge to the fluvial system. (Kaluarachch 2013) 

Figure 8 IWRM UNN, Proportional Metrics 
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Figure 9 IWRM UNN, Nodam Precipitiaton and Flow 



Main  

36 (65) 

 

 

3.1.2 Tracking sediment mobility 

Sediment load described in this section is the average daily sediment mass discharged 

from UNN. It is expressed in dry weight units, tons per day. The sediment load under 

land use change assumptions correlate well with the baseline while those incorporating 

climate change assumptions correlate poorly. In fact, the climate change seems to have 

an impact which affects some fractions to greater extent than others. Under the baseline 

assumption, the annual average sediment load is 436 tons per day. Under land-use 

change assumption, it increases to 646 tons and in the climate change A and B assump-

tions it increases further to 877 and 1048 tons per day.  

Sediment concentration is a combination metric which accounts for sediment load and 

river flow. It is measured in mass per volume of water. There are important conse-

quences in ecology and agriculture when changes to sediment concentration take place. 

Land-use change assumptions have the strongest impact on the sediment concentra-

tions. There are 45% increases in annual concentration and 42% greater variability in 

day to day concentration. The CC A scenario has a 30 % greater average concentration, 

but the variability is reduced by 3%. The CC B scenario has 36% greater average con-

centration with only 1 % greater variability.  

The changes to sediment concentration, owing to its formulation as a two component 

metric, may be due to changes in sediment mass or water volume. Under land use as-

sumptions, the meteorological conditions are identical and the river flow is very nearly 

the same, so the change must be due to agricultural land erosion. Climate change as-

sumptions result in increased precipitation and decreased regularity. Runoff laden with 

sediment from the more intense rainfall is delivered to water channels and, compounding 

the problem, fluctuating discharge within the channels preventing an equilibrium from 

being formed with respect to erosion.  

The climate change assumptions have a dynamic impact on wet season sediment load 

It enters rivers mostly from saturated surface runoff, or flood. As the ground becomes 

saturated, surface, rill and gully erosion contribute to greater extent. The sediment load 

in wet season climate change scenario is over two times the baseline wet season and 

this represents a drastic departure from the preexisting sediment balance. 

Sediment fractions originate from the same sources, but are found in different propor-

tions under climate change assumptions. The fractional concentrations can be described 
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by the same two characteristics which affect total concentration. The fractional changes 

are due to different erosion forces and differing flow conditions in the channel.  

Figure 10 presents sediment figures from the region with no hydropower cascade. The 

changes to sediment fractions show how dynamic and unpredictable the effects of cli-

mate change can be. Silt-fraction wet-season concentration are 400% of baseline while 

dry season only have a 30% increase.  

 
Figure 10 IWRM UNN, Sediment figures 
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Clay fraction wet season concentration decreases 13.8% and 5% from baseline while 

dry season has increases of 58% and 56% (CC A,B). Sand fraction wet season concen-

trations are 500% and 900% of base line while in dry season there are only increases of 

22% and 14% (CC A, B).  

 

The magnitude of the change is a striking result. Average wet season load is 125 % of 

baseline under climate change A and 137 % under climate change B. Average sediment 

load in baseline is 436 tons per day. In the land-use change assumptions, it increases to 

580 tons. Under climate change assumptions, it increases to 1010 and 1060 tons per 

day. In scenarios incorporating both land use and climate change assumptions, the rates 

of sediment load climb to 1450 and 1520 tons per day. 

These results, striking as they may be, are self-consistent. Each component of the 

change can be traced back to a specific assumption and that assumption results in a 

characteristic specific change.    

3.1.3 Tracking sediment volume 

The river flow and sediment load monthly values under baseline and climate change 

assumption are depicted in Figure 11. This series is measured at the single point outlet 

of UNN region where the Nam Ngum release would be if the modeled space included 

dams.  Most notable is the dramatic increase overall in both metrics under climate 

change assumptions. Seasonality, seen in the prominent peak in Fall and the deep valley 

in Spring, is preserved but distinctly different than baseline.  

Increased precipitation due to climate change has a strong effect on sediment load. 

There is evidence of 3 erosion phenomena which helps to explain the effects. The rain 

is more intense and less frequent. Interception is dependent on drop size and density, 

as the precipitation increases there is greater erosion and more surface runoff entering 

the channel. Silt fraction load is disproportionately high in both climate change assump-

tions. Silt size material accumulates in the absence of rain and is mobilized rapidly upon 

wetting. Channel erosion, bed load and carrying capacity are proportional to water ve-

locity, and the modeled velocity must rise to account for the added volume.  

 



Main  

39 (65) 

 

 

Table 6 has sediment load extended to one year and to the lifetime. Volume is estimated 

assuming a sediment specific density of 2.65 ton/m3. (Morris 1998) The last two columns 

give perspective to the volume of sediment expressed in 50-year lifetime. Football field 

meters is the depth of a football field sized area that would have an equal volume to the 

sediment estimated in the scenario. NN1 gross volume units is the ratio of sediment from 

the scenario estimate and the gross volume of Nam Ngum 1 reservoir.  

Table 6 IWRM UNN, Summary Volume and Mass Illustration 

 Baseline Land-use CC A CC B 

Ton per day 450  600    950    1 000    
Volume per day (m3) 170    220    350    400    

Ton per year 165 300   211 400    353 600    371 000    
Volume per year (m3) 62 400    79 770    133 500    140 000    

Ton over 50 y (m3) 8 266 300    10 569 600    17 682 500    18 549 200    
Volume over 50 y (m3) 3 119 350    3 988 500    6 672 600    6 999 600    
Football-field meters 300    400    600 650    
NN1 gross vol. units 0.00044    0.00057    0.00095    .001    

     

3.1.4 Summary of Sediment Observations  

One puzzling finding concerning accuracy has arisen in the course of analysis. Over a 

modeled period of eight years, only 0.044% of Nam Ngum 1’s volume of sediment 

passed through UNN. Extrapolating from this, the reservoir could trap all the sediment 

Figure 11 IWRM UNN, Sediment Load and River Discharge, various assumptions 
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and still have a useful lifetime of 2200 years. This author’s suspicion is that the source 

and the solution of the questionable sediment numbers is in calibration. Unfortunately, 

there are scarce few sediment observations in the region to choose from.    

Land-use and climate change have self-consistent, quantifiable effect to sediment gen-

eration and transport. These experiments, made excluding the cascade give an impres-

sion of the individual impact owing to each assumption. The characteristic change can 

be generalized as properties associated to each assumption.  

Land use change has a property associated to sediment load concentration and varia-

bility.  They increased by about half the levels found in the baseline. The change is a 

result of 2 ‰ increase to the urban space and 3.74% increase to agricultural area repre-

senting a sum 3,75% change to the region. Sense the land use change assumption is 

otherwise identical to the baseline, the changes to sediment must be entirely due to the 

change to the region.  

If we assume that the land-use behaves linearly between these two states, we can make 

an approximation from these results. Two qualifying conditions must be met; that the 

proportional change in land-use conforms to the given assumptions and that the change 

takes place in similar proximity to the reservoir. Satisfying these criteria, every percent 

change to land use, will have a 13% increase to the sediment Load.  

The primary climate change related effect is increased precipitation; magnitude and var-

iability. These changes can be handled as measurement error to derive a similar rule-of-

thumb to that made with land-use.  The average change in precipitation is 62 %. The 

corresponding average increase in sediment load is 120% with a 45% increase in sd err. 

Making the linear assumption and simplifying, for every 2 percent increase in precipita-

tion there will be 4 percent greater sediment load and 3 percent greater fluctuation day 

to day.   

3.2 Incorporation of Cascade 

This discussion focuses specifically on the impact of dams to the routing of sediment 

through the modeled Nam Ngum river. The same metrics are monitored under precisely 

the same conditions except for the implementation of the 4-reservoir cascade. 
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3.2.1 General discussion of metrics 

Climate and Land-use change increase sediment generation and the subsequent sedi-

ment load, as seen in the previous analysis. Later, Table 7 and Figure 12 indicate that 

impoundment has a mixed effect, reducing the apparent load carried alluvially and 

changing the proportions. But despite the lower concentrations, strong evidence indi-

cates that more sediment is mobilized under the impoundment conditions. 

Impoundments decrease the sediment load by retaining and selectively releasing pure 

water. Sediment load is approximately a third of pre-impound levels regardless of as-

sumptions. The fine and ultrafine fractions show greater reductions.  

This, and the observations of increased erosion indicates two significant threats to the 

sediment balance. Impoundment results in lower load observed leaving the region. The 

correction factor is sediment deposition; the difference must remain in the impound-

ments. Secondly, the cascade selectively captures fine fractions changing the water 

quality downstream. 

3.2.2 Sediment Density 

The sediment density estimated from data recovered from reservoir sediment volume 

and load. Sediment volume is available as a time series variable in IWRM. The difference 

between the cumulative load up and down stream of a dam assigns a mass in tons for 

the sediment volume. Taking the average of the ratios of these values gives an estimate 

of density. Figures are presented in Table 7 from a three-year model of the baseline 

scenario.  

The figures in Table 8 are derived similarly to those in Table 7 except the mass is refined 

into fractions and regression coefficients corresponding to the fractional specific volume, 

the inverse of which is the specific density.  Note that kilo-tons/Ml is the same ratio as 

tons/m3. Excluding Nam Ngum 2 which presents a negative capture mass, the average 

sediment density is 2.04 tons per cubic meter which correlates well with literature values, 

but fraction analysis reveals a significant inconsistency. 
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Figure 12  IWRM  UNN, Sediment figures  
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 𝜌𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 =
𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

𝑉_𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡
 (4) 

Table 7 IWRM UNN, Specific Density Calculation 

 

 

 𝑉𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡  =  𝜗𝑐𝑙𝑎𝑦 ∗ 𝑚𝑎𝑠𝑠𝑐𝑙𝑎𝑦 + 𝜗𝑠𝑖𝑙𝑡 ∗ 𝑚𝑠𝑖𝑙𝑡 + 𝜗𝑠𝑎𝑛𝑑 ∗ 𝑚𝑠𝑎𝑛𝑑 (5) 

 

Table 8 IWRM UNN, Fractional Specific Density Calculation 

 

Surprisingly, some of the sediment load fractions downstream are higher than the load 

in the reservoir. It may not be possible to derive an independent sediment density with 

this method using the existing computational resolution. Each grid cell is 25 ha and the 

time-series output represents the whole grid cell. Water properties such as sediment 

concentration or discharge have a single value based on what enters the cell. The res-

ervoir discharge is no longer representative of the reservoir when it is measured from 

the grid cell adjacent the discharge location.  

The coincidence of finding a sediment density that correlates with literary values is prob-

ably influenced by many unidentified factors.  In an actual hydropower discharge tailrace, 

it is likely that the pure water would become saturated rapid before it leaves the cell, 

shifting the average and confounding the result. In order to salvage some information, 

the negative values have been excluded from the regression analysis. Regardless, the 

solution is nonsensical, with a negative coefficient (specific volume) for sand.  

Sed.Vol.  

(Ml) 

Sed. Load 

(kt) 

Sed. Load_d_s 

(kt) 

Captured 

(kt) 

Ƴ-1  

(m3t-1) 

Ρ  

(tm-1) 

NN_1 94 205 15.3 190 .50 2 

NN_2 136 281 395 -113 NA NA 

NN_3 138 496 181 314 .53 2.2 

NN_5 19 51 14 36 .48 1.9 

 CLAY (KT) SILT (KT) SAND (KT) VOLUME (ML) 

NN1 22 499 0.004 94 

NN2 17 NA NA 136 

NN3 29 832 0.05 138 

NN5 2.5 96 NA 19 

TOTAL  51 1332 0.054 23 
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3.2.3 Sediment mobilization through impounds 

Implementation of hydropower infrastructure on the Nam Ngum river dramaticly reduces 

sediment load measured downstream from each node and results in unnatural sediment 

profiles. Table 9 Table 9shows loads and fractional loads due to assumption and 

changes due to impoundment.  

 

A logical assumption would be that this proportional change represents a capture rate 

and that the sediment load reductions are equal to the sediment captured. The extension 

of this assumption would be that any additional sediment would have to represent addi-

tional sediment generation between nodes within the cascade. Note that this is not the 

same as the density analysis, the scores are not extracted from downstream, they are 

from parallel model runs. 

Ultra-fine, clay fraction sediment shows the greatest proportional change. This indicates 

that clay would be the primary sediment fraction captured within the cascade. This is 

truer in larger reservoirs with larger recharge rates.    

 

  

Table 9 Fractional Sediment Analysis Worksheet, Iwrm 

SEDIMENT LOAD 

CLIMATE ASSUMPTION 
FRACTION 

No  
Impounds 

Cascade  
Impoundment 

Change due to 
 Impoundment 

BASELINE TOTAL 
SAND  

SILT  
CLAY 

510 (t/d) 
2.4 (kg/d) 
457 (t/d) 
54 (t/d) 

335.3 (t/d) 
2.1 (kg/d) 
318 (t/d) 

16.4 (t/d) 

- 34 % 
- 14 % 
- 30 % 
- 69 % 

CC A TOTAL 
SAND  

SILT  
CLAY 

 
1232 (t/d) 
5.4 (kg/d) 
1154 (t/d) 
77 (t/d) 

 
869.0 (t/d) 
5.9 (kg/d) 
826 (t/d) 
42 (t/d) 

 
- 29 % 
 - 10 % 
- 28 % 
- 45 % 

CC B TOTAL 
SAND  

SILT  
CLAY 

 
1288 (t/d) 
6.9 (kg/d) 
1207 (t/d) 
81 (t/d) 

 
837.9 (t/d) 
4.7 (kg/d) 
797 (t/d) 
41 (t/d) 

 
- 35 % 
- 33 % 
- 34 % 
- 50 % 
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Table 10 IWRM UNN Sedimentation figures 

Sediment Volume at 8th year 

Node (Ml) Calculated Volume 

NN_1 381  Baseline,no-dam 452 t/d 

NN_2 879  Baseline, dam 579 t/d 

NN_3 779  Difference 126 t/d 

NN_5 62  8th year 368528 t 

Total 2102  Volume 180 Ml 

Fine, silt fraction sediment shows the greatest change in terms of mass, and subse-

quently volume. It is the most mobile of the fractions, and the most effected by erosion. 

It has a particularly negative effect on dam capacity because it precipitates rapidly in 

quiescent reservoir conditions. 

Coarse, sand fraction sediment halts at the headwater of reservoirs and forms the delta 

deposit. As such the reservoir completely stops the transport of bed load beyond each 

dam. The sand load measured downstream actually represents additional sand fraction 

generation immediately after the tailrace. Downstream from impoundments, the distribu-

tion of fractions has changed. Sand represents a larger component relative to silt and 

clay. 

 In terms of mass, downstream sediment load is about one third of upstream. The differ-

ence is retained in the reservoir. At this capture rate, over eight years 368 528 tons of 

sediment would be stored in the reservoir. At a specific density (derived in the previous 

section) of 2.04 t/m3 this would occupy 180 million liters of space. 

Table 10 presents cumulative sediment volume from an eight-year period under baseline 

assumptions in each node of the cascade is a reported by IWRM to be 2102 Ml. This 

indicates that eleven times the volume of sediment has deposited than can be explained 

by proportional reductions alone. The most likely explanation is that channel erosion from 

the regulated, pure flow from reservoirs is compensating for the discrepancy 
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3.2.4 A case for sediment weir mitigation 

Figure 13 shows modeled annual sand fraction load values, up and down stream Nam 

Ngum 1 for a ten-year period. The first observation of note is that the sand load is not 

steady year to year. This indicates that some factor (river velocity, erosion, etc.) is affect-

ing the sand load differentially in separate years. The second and more important obser-

vation is that the downstream load is an order of magnitude lower than the upstream 

observation. Dams typically do not release coarse fraction sediment  so the coarse frac-

tion recovers 10 % of its mass immediately after leaving the dam.   

 

This observation, downstream from the dam is illustrative of Brune curve sediment mo-

bilization. Regulated flow from the powerhouse in the model is more steady throughout 

the year than the natural flow. The average discharge is about the same, but fluctuations 

are evened out and velocity is normalized. Coarse fraction sediment is mobilized as bed 

load proportional to water velocity above a threshold. Bed load (sand fraction) would 

increase significantly should the threshold water velocity necessary to mobilize it be sur-

passed. This has implications in the design of outlet infrastructure; if the water velocity 

is controlled, the sand fraction mobilization could be tuned.  

The observation may be further generalized. Sediment deposition and composition are 

characteristic to the properties of the water medium. By designing infrastructure within 

the waterway to specifically affect the properties of the water, the sediment balance could 

be maintained and the lifetime of hydropower assets could be extended.   

Figure 13 IWRM UNN.vmp +++ 
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The river may be able to deliver even more benefits by installing specific trap infrastruc-

ture. (Morris 1998) Trap infrastructure could provide a sediment bypass, or a convenient 

dredge location. The sorted sediment has value in construction and agriculture. An anal-

ysis of specific deposition, logistics and economics would be very useful in this respect.5  

3.2.5 A case for compound metrics 

A sampling of sediment volume and cumulative sediment load representing a range of 

assumptions are plotted in Figure 15 and Figure 15. The shapes of the plots are similar 

suggesting that a fixed part of the sediment is becoming trapped.  

Examining  Figure 17, differentiated sedimentation vs sediment load, referred to hence-

forth as deposition ratio, one can see a stabilization taking place as the ratio assumes a 

near constant. In numerical examination one finds that the value is in fact gradually de-

creasing. The ratio shows promise as a convenient measurement reservoir senescence. 

It allows an indirect estimation of volume based on simple, inexpensive measurements 

                                                

5 Suggested further research: Deposition characterization under 3d modeling to identify natural 
sediment weirs 

Figure 15. IWRM UNN, Cumulative Sediment Volume 

Figure 15. IWRM UNN, Cumulative Sediment load 
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of sediment abundance in the water. Figure 17 indicates the inverse relationship with 

data from Nam Ngum 1 reservoir under baseline meteorological assumptions. 

The deposition ratio is representative of the assumptions. Converted to liters per ton load 

per day, the rate is 205 l to 446 l and 428 l in baseline, land-use and climate change. 

This indicates that there will be twice as much deposition per unit of sediment load in the 

water in ether change assumption.  

The deposition ratio from Nam Ngum 1 under baseline assumptions shows more dynam-

ics than the other nodes.  This phenomenon is absent in climate change scenarios where 

there is greater water volume and greater sediment load. The second phase of life for an 

impoundment according to Morris ends with dead pool sedimentation and flood plain 

conditions. Flood plains flush sediment periodically, in flood season. It is possible that 

Nam Ngum 1, being the oldest and shallowest of the reservoirs in the cascade is exhib-

iting some of these flood plain characteristics.  

This phenomenon may also be evidence of proper utilization of dam capacity. The rule 

curve is built to conform to baseline meteorological conditions. Climate change increases 

precipitation and water levels are higher throughout the year. Sense there is less flushing 

in dry season to mobilize sediment into the dead pool and less turbulence suspending 

Figure 17. IWRM UNN, Climate change deposition ratio 

Figure 17.IWRM UNN, Baseline Deposition Ratio 
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fine fractions in the epilimnion the depositon would be more uniform.  A stable ratio of 

deposition may be evidence of young or underutilized reservoirs.   

This theory is attractive, but, there is evidence that flushing is not actively mediating 

deposition ratio from two sources. First, the sediment volume plot never decreases in 

the model. Second, the deposition ratio is never negative. In Figure 17 for example, the 

ratio resolves to a constant of 445 liters per ton of sediment load in 1 year despite drastic 

annual fluctuation in water level.  

A related ratio can be derived from the data, which offers additional insight. Termed dep-

osition rate, it is the daily increase in volume calculated by subtracting each step of the 

sediment volume time series from the previous entry divided by the daily load. Table 11 

presents a sample of deposition rate and ratio as well as two measures of hydrological 

size, length to width ratio and capacity to flow ratio for the cascade.   

The deposition rate would be be a very useful metric if it could be squared with the dep-

osition ratio because of its simple reliance on historical data of sediment load. It esti-

mates sedimentation in real time and can be adjusted periodically with bathymetric sur-

vey results. Reservoir senescence can be determined by examining the mean value over 

time and the quality of variability.  It can be adjusted to correspond to climate change 

and land use or inversely be used as a metric to measure those changes. 

It is clear that something unusual is taking place in the Nam Ngum 3, and to a lesser 

extent in Nam Ngum 5. Sediment ratio is lower than the other reservoirs, but the rate 

(from the whole time-series) is an order higher than Nam Ngum 5 and two orders higher 

than Nam Ngum 1 and Nam Ngum 2. Close examination of the ratio graph reveals that 

in fact the constant makes three dramatic fluctuations in 2005, 2006 and 2007. These 

correlate with the extreme weather events which excluded those years from the analysis 

in the previous section.  Removing these cuts the rate by a factor of 6 and places it in 

Table 11 IWRM UNN, Reservoir Sedimentation Statistics Initial Phase Scenario +-- 

 NN1 NN2 NN3 NN5 

C:I 0.467 0.00103513 0.00060087 0.013365 

L:W 34 69 46 73 

Dep ratio 445 ld/t 468  ld/t 255  ld/t 370  ld/t 

Dep rate 872±705 ld/t 744 ±385 ld/t 8E3 ± 1E4 ld/t 4E3 ± 5E3 ld/t 
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the same order as Nam Ngum 5 but it remains the most dynamic reservoir in the cas-

cade.  

 

The blue lines in Figure 18 graph the deposition rate. Note, this is the change to sediment 

volume divided by the sediment load per period and has the units dam3 days / ton. The 

graph presents a fluctuating rate with a minimum distributed about the deposition ratio, 

which is the cumulative sediment volume divided by the cumulative sediment load. The 

graph stops abruptly above 0, and deposition is always positive, indicating that there is 

no deposited sediment remobilized and fixing the age of the reservoir to operational 

phase. 

The magnitude of the fluctuation is large in both mountainous reservoirs. Both mountain 

reservoirs have fluctuation, measured as standard deviation, 20% higher than the aver-

age deposition rate. This indicates that, ether the daily deposition in these reservoirs is 

particularly high when the sediment load is low or that the sediment deposition is expo-

nentially related to sediment load. Regardless of the underlying mechanism, the deposi-

tion variability seens to be exceptionally high in mountainous terrain.     

Figure 18 IWRM Deposition Rate and Ratio 
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It becomes difficult to calculate the deposition ratio over a longer timeframe because 

IWRM resets the sediment load each iteration, but deposition rate can still be calculated. 

Table 11 shows the rate sampled from various scenarios. Nam Ngum 3 is an outlier 

again in this analysis. There is simply more sediment entering and becoming trapped in 

this reservoir.  

The average values from Table 12 are solid and represent sedimentation within the cas-

cade based on daily sediment load observations. Now, combining the systemic behavior 

found in section 3.1, it is possible to predict the deposition rate based on the extent of 

climate change, and perhaps the climate change based on sediment deposition. The list 

summarizes the systemic responses: 

  For every percent change to land use, there will be a 13% in-

crease to the sediment Load 

 For every 2 percent increase in precipitation there will be 4 

percent greater sediment load and 3 percent greater fluctua-

tion day to day 

 The average sediment density is 2.04 tons per cubic meter 

 

 

Table 12 Sediment rate 40-50 year selected scenarios 

     AVERAGES 

 NN_1 NN_2  NN_3  NN_5  Vol per day Mass per day 

++- 848 770 12146 3764 4382  

+++ 958 737 4813 5976 3121  

++0 935 759 3629 5341 2666  

     3389,67 7118,31 

 

3.2.6 Connecting the dots 

Two points from the analysis may be consolidated at this point. First, that baseline, pre-

sent day sediment deposition within the cascade, on whole is 3389 liters, or 7116 kg per 

day per ton of sediment load found in the river. Second, that sediment load in the reser-

voir behaves characteristically with increased precipitation. Combining these nuggets, 

we can develop a general relationship between sediment deposition and climate change.   
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Sediment deposition within the cascade will be 13% higher for every percent change to 

qualified land use change. This translates to 440 liters or 925 kg more sedimentation per 

day.  The makeup of the deposit will be predominantly silt, because of the natural abun-

dance of this fraction. Though clay fraction shows the greatest proportional change, sand 

fraction is completely disrupted. The sediment balance is changed along the river. Sed-

iment is selectively trapped within nodes and additional sediment is generated to account 

for the discrepancy.  

Sediment deposition within the cascade will be 2% higher for every percent change to 

precipitation. This translates to 68 liters or 142 kg of sedimentation per day. It is unclear 

what effect the variability will have on sedimentation. The mathematical definition of the 

deposition-rate has a weakness which can be seen in flood periods. This is due to the 

dramatic increase in sediment load (denominator). The sediment load becomes large 

relative to the daily change (numerator). It is not that there is less deposition, only that 

there is so much more load that the rate becomes numerically small. 

3.2.7 Comparison to more traditional metrics 

Reservoir lifetime, in terms of sediment volume has an exponential character. Initially, 

the deposition is constant and proportionally small relative to the overall volume. It is 

fixed to the physical properties of the water. The physical properties of the water are 

fixed to the geometry of the basin. As sedimentation displaces free space, the geometry 

changes and the sedimentation rate changes accordingly. Life stages can be defined in 

terms of sediment deposition (continuous, deposition and scour, sediment balance) of or 

in terms of morphology (riverine, transitional and flood plain).  

 According to Morris, the transitional riverine phase of reservoir life is characterized by 

constant deposition. Sediment volume from the model is essentially the same the results 

of a bathymetric survey. It is shown in Table 13 (offset) that each node exhibits constant 

deposition, therefore at 50 years those reservoirs remain in transitional riverine or oper-

ational phase.   

TABLE 13 IWRM UNN, NODE SPECIFIC ANNUAL DEPOSITION AS % OF VOLUME 

 Node  10-y 

(Ml) 

50-y 

(Ml) 

Offset 

(Ml) 

Y-1 

(mm3) 

Volume 

(Bm3) 

% y-1  Life-

time 

NN_1 
+++ 

+-+ 

1860 

1242 

9301 

6212 

7441 

4969 

1.86 

1.24 

7.03 Gross 

2.33 Dead 

0.022 

0.79 

3779 

1250 
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The annual average deposition at 10 years is an accurate estimator of the deposition at 

50 years. Annual deposition is as a percentage of reservoir dead storage is a common 

metric used to describe reservoirs. Typical values fall between 0.5% and 2 % with larger 

values being commonly associated with smaller reservoirs. 

Sedimentation as a percentage of volume are within normal values, but lifetime estimates 

range from 281 to 1250 years.  This seems to be justification for neglecting sediment 

mitigation.  

3.2.8 Infrastructure Senescence  

According to the results of 50 years simulated dam operation under various scenarios, 

none of the reservoirs in the Nam Ngum cascade are nearing the sediment balance 

phase. In fact, even sedimentation as a percentage of dead pool volume is remarkably 

small. At the present rate, Nam Ngum 1 will take over a thousand years to transition to 

sediment balance.  

Dam lifetime, based on the annual sedimentation in Table 13 ranges from hundreds to 

thousands of years. These predictions seem abnormally large. Fortunately, the object of 

this paper is not to make concrete predictions, only to test trends. 

At any rate the software has realistically simulated the transition from riverine phase to 

operational phase. There is a divergence in Nam Ngum 1 under land use change, but 

strangely not in any other reservoir. Perhaps the trapping is due to the smaller length to 

width ratio, but most likely it is due to the urban and agricultural modification taking place 

along the Eastern reach.  It seems that the location of the land use change relative to 

the reservoir has important implications for sediment mobility.  

This last point regarding the proximity to reservoirs and land use change impact bodes 

well for the region. The Nam Ngum river carves a path through rugged mountains where 

there are few native inhabitants. The trend in Laos has been rural consolidation and 

NN_2 
+++ 

+-+ 

2393 

2391 

11847 

11841 

9473 

9468 

2.37 

2.37 

4,2 Gross 

1.95 Dead 

0.06 

1.21 

1770 

823 

NN_3 
+++ 

+-+ 

2552 

2540 

13281 

13220 

10650 

10601 

2.66 

2.66 

1.316 Gross 

0.337 Dead 

0.20 

.788 

4950 

1270 

NN_5 
+++ 

+-+ 

345 

348 

1725 

1743 

1380 

1394 

3.45 

3.45 

4.48 Gross 

0.097 Dead 

0.08 

0.04 

1300 

281 
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migration into cities where there are greater opportunities. It is unlikely that this trend will 

reverse, thus the inhospitable land through which the river passes will not experience 

urbanization. Accessing the land is difficult with poor roads, and the land is not conducive 

to agricultural development, so there are significant obstacles to farmers contributing 

additional land use sediment. The plateau has potential for urbanization as well as agri-

cultural development, but it is separated from the main course of the river by hundreds 

of kilometers of mountain peaks and deep valleys. Development on the plateau will prob-

ably not contribute significantly to sedimentation within the cascade.  

3.2.9 Summary of sediment observations considering infrastructure 

Dams placed on the Nam Ngum river will have a dramatic impact on sediment balance. 

One third of the sediment load present in the water from the former analysis is unac-

counted for when implementing the cascade. Surely it is captured within the impound-

ments. Yet the volume of sediment within the reservoirs is 15 times greater than this 

discrepancy. The only robust explanation for this is that sediment generation has in-

creased. 

Sediment deposition with respect to sediment load, derived here and coined deposition 

rate is an indirect metric of sedimentation and senescence using primarily turbidity. When 

paired with the characteristic responses of land use and climate change, it can be used 

to make predictions of sedimentation in various climactic or developmental scenarios. 

Once established at a particular reservoir, changes to the deposition rate will indicate 

measurable changes to sedimentation. In addition, trends to the change in deposition 

rate has potential as a novel new climate change metric.   

Implementation of infrastructure specifically designed to consolidate sediment upstream 

of the reservoir presents several benefits. Sediment weirs would make cost effective 

dredging possible, reducing the risk of sediment entering the turbine intake, extending 

the lifetime and making the sorted sediment available for use in construction or agricul-

ture. It would be an ideal source for riverine bypasses to mitigate ecological concerns 

and help to stabilize the sediment balance.  

The effect of fluctuating water levels in reservoirs appears to positively impact active pool 

volume by flushing sediment to the dead storage. Therefore, operation has an impact on 

sediment distribution. Over the lifetime dead pool sediment will undergo greater consol-

idation, and thus occupy less volume. The rule curve is sensitive to precipitation, and it 
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is not optimized for the climate change set. The true effects of flushing are therefore not 

effectively being expressed in the model.  

The geography of the region, with impassable mountains and flood washed valleys dis-

courages agricultural and urban development along the bulk of the Nam Ngum above 

Nam Ngum 1. Land use change impact to sedimentation has been shown to be depend-

ent on proximity to the reservoir. Indeed, the proximity may be used as a weighting factor, 

though this is unproven. As a consequence, the effect of land use change and population 

growth will be mitigated by the very nature of the region.  

3.3 Hydropower 

Figure 19  indicates the power potential available at each node of the cascade. Figure 

21 presents samples of potential available under various assumptions. 

 

IWRM reservoir module maintains a water level time series, and a turbine release time 

series. This makes it possible to approximate the hydropower potential for each day of 

the simulation. The ratings described here are constrained by three points. There are no 

efficiency reductions being made so the values represent an upper limit or ideal value.  

The rule curve is not optimized, so there may be significant gains to be made by simply 

adjusting the flow. The release elevation (h) is evaluated based on the water level as 

Figure 19 IWRM UNN Cascade Node Energy Capacity 
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compared to the river immediately downstream. There is no setting to account for a re-

mote powerhouse at a lower elevation as is the case with Nam Ngum 2 and Nam Ngum 

3 

3.3.1 Sorting the mess 

Figure 21 showed the annualized cascade production collectively and sorted into specific 

nodes presenting a sampling from different scenarios to compare the impact of the as-

sumptions. Climate change impacts are most visible in the mountain nodes, with Nam 

Ngum 5 doubling the potential. This may be due to less than optimal rule curves, because 

the trend is reversed in Nam Ngum 2 and only just visible in Nam Ngum 1.   

Figure 21 IWRM UNN Node-Specific Cascade Production 

Figure 210 IWRM Annualized Cascade Production 
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Under climate change assumptions seasonality has shifted subtly and average precipi-

tation has increased. As a result, mountain nodes maintain a larger storage, as visible 

from the water elevation plot in Figure 22.  This allows for a larger ruled release and 

greater power production. Indeed, there is greater potential available under climate 

change.   

Sedimentation continues at a constant rate as is expected in the operational phase of 

reservoir life cycle. This will generally continue as the reservoir dead pool becomes filled 

with sediment. The exception will be in the delta deposit which will consume primarily 

active pool volume. Unfortunately, this is not visible in the model due to the lack of dep-

osition resolution, a sacrifice made to allow the software to run on low resource compu-

tational platforms.   

The comparison of monthly production capacity is presented in Figure 23. Nam Ngum 2, 

fall and early winter production presents more evidence of the poor rule curve. The ruled 

Figure 22 IWRM UUN Selected Water Level Graphs 
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release in these periods is conservative to allow for regular release throughout the dry 

season. In dry years, the rule doesn’t allow any flow for week-long stretches during these 

months.  

 

Figure 23 IWRM UNN  Monthly Nodal Production at 10 and 50 Year Timeframe 
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3.3.2 Another look at Senescence  

Figure 23 is a series a bar graphs depicting monthly electric capacity averaged from ten 

years as derived in Equation 6. The blue columns represent the initial period, year 1 

through 10 and the orange columns represent the advanced period, year 40 through 50. 

Both periods are ruled by the same curve so sedimentation over the period is the only 

assumption under examination. The graph is produced from the scenario incorporating 

land use change and climate change (A), but lower bound references are taken from the 

baseline.    

Climate change presents additional precipitation which correlates to a greater average 

flow of water. The increase is on order of 40 %. Hydropower potential is simplistically 

presented in Equation 6. The potential is directly proportional to flow so 40 % increased 

flow would result in 40% greater potential.  

 𝐸𝑝 = 𝜌𝑝𝑞𝑝ℎ𝑝𝑔 (6) 

Nam Ngum 1 and Nam Ngum 5 electric production are essentially unchanged after 50 

years. According to the sediment volume, these reservoirs will range from 0.01% to 0.4% 

and 0.02 to 1.8% respectively of dead pool volume. They are still young reservoirs with 

hundreds of fruitful years ahead.  

Nam Ngum 2 is producing at a slightly higher capacity in the advanced series wet sea-

son. This increase is due to the minor accumulation of excess water volume over each 

annual period gradually shifting the ruled release to higher categories.  

The conservative rule curve certainly stabilizes dry period volume in Nam Ngum 1. Day 

to day fluctuations of hundreds of cubic meters per second water imply that river flow is 

not stable. It ranges from 0,1 to 2500 m3 /s in most years. The water velocity is remark-

ably stable speed ranging from around 2 m/s minimum to 5 m/s maximum. Even at the 

lower velocity, Brune curve predicts unconsolidated sediment would be mobilized. 

Nam Ngum 3 presents a more complicated situation where the advanced time frame dry 

season production has increased but the wet season has decreased. This node has the 

greatest sediment deposition rate. The rule curve remains the same, with flow specified 

per season depending on water elevation. Sedimentation displaces water storage ca-

pacity. In the advanced time frame, a smaller volume of water would result in a greater 
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elevation. Dry season production would increase because of the additional height; wet 

season would decrease due to the reduced volume.  

Figure 24 shows a 10-year sample of water volume under climate change assumptions, 

with the present land use assumptions at initial and 50-year timeframes.  There is clearly 

decreased volume in the 50-year sample, and that must be due to sediment accumula-

tion. In fact, the difference in average volume from the two samples is very nearly the 

same as the average sediment volume from the 50-year series. 

 

The 10000 Ml of sediment correlates to about 40 meters of sediment deposited in the 

dead pool covering 0.7 km2.   This only accounts for 0.06% of the reservoir volume and 

1.3 m of water height at the crest. Certainly the added elevation would result in additional 

energy production, but 1.3 meters is fairly insignificant. There must be some other phe-

nomena playing a role in the dry season power production in Nam Ngum 3 in the ad-

vanced time frame.   

Little more can be extrapolated from the hydroelectric analysis of upper Nam Ngum cas-

cade without undergoing thorough optimization of rule curves. This would be a very pro-

ductive exercise, and would result in a much more holistic impression of sedimentations 

Figure 24 IWRM UUN, +-0 NN3 Water Volume 
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effect to hydro power. Also the cost and benefits of mitigation could be compared to 

make an argument as to the wisdom of neglecting this in the planning.  

4 Conclusions 

According to the analysis of scenarios representing land use and climate change cali-

brated to correlate with Vattenfall’s 2008 data, there is no risk of sedimentation interfering 

with dam operation or profitability in the foreseeable future. This finding is in line with 

lifetimes of other comparable dams. Hoover dam, in the United states, for example is 

expected to continue operating for 10000 years. Despite this, it is very likely that the 

limited calibration simplifies erosion and sediment transport in the differing terrains found 

in Upper Nam Ngum.   

Climate and land use change have been found to have characteristic effects to the sed-

iment balance in the region. Qualified land use changes result in 13% higher load per 

1% increase in agriculture and urban space. Climate induced precipitation change were 

found to affect a 2% gain in load for every 1% of added precipitation. These provisional 

findings warrant further study. If a systemic relationship between these phenomena in-

deed exist, it would be a powerful tool for decision makers and the natural sciences.  

The application of this systematic relationship in combination with the deposition rate 

metric shows the utility of the findings. The metric is simple; it describes the specific 

sedimentation as a proportion of sediment load, resolved over a representative period of 

time. Sense sedimentation is predicted from sediment load or concentration; it is bound 

by the systematic relationship found to exist with respect to climate change and land use 

change.  

Consequently, the inverse should also be true, trends in deposition rate should indicate 

climate and land use change. In combination with public records, meteorological moni-

toring and local calibration this may be an elegant climate change metric with relevance 

on the regional scale.    

The deposition rate metric, provides a context through which sedimentation could be 

estimated based primarily on turbidity. Impoundment lifecycle is measured in terms of 

lost capacity so this enables an indirect measurement of senescence. It provides eco-

nomic benefits, in reduced reliance on bathymetric surveys in lue of inexpensive turbidity 
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monitors. Furthermore, it would be affected by certain pollutants so environmental mon-

itoring may incorporate it as a metric for tracking water pollution from industry upstream.  

In terms of hydropower, there seems to be a host of benefits from climate change. Power 

production is proportional to flow and climate change estimates range from 28 to 42% 

above present day levels. The great majority of this potential could be captured for elec-

tric production by optimizing the ruled release.  The stabilization of dry season flow 

through the cascade maintains higher water levels in the low-land reservoirs, thus allow-

ing more production throughout the year.  

Land use had no impact on hydropower in this analysis, incorporation of agricultural 

commitments to the rule curve was not practical within the model. Agricultural and urban 

water abductions would have been minimal and subsurface migration and changes to 

evapotranspiration would have counteracted the effects, but the impact to sedimentation 

is significant.  This impact seems to have a linear relationship with proximity to the water 

body. This makes sense; the further sediment has to go, the less likely it will make it.   

Sedimentation did not interfere with normal operation in the economic lifetime of the cas-

cade, and it is predicted to have minimal effect on the functional life time.  The composi-

tion of the sediment load, and therefore sedimentation is clearly different when the im-

poundments are in place, but making specific deposition predictions is beyond the capa-

bilities of the model and beyond the scope of the project. 

Empirically, complex systems bare many striking resemblances. Some aspects of this 

topic have been reminiscent of other activities or processes. Taking an unconventional 

perspective can sometimes help to fully understand a subject. For example, rule curve 

optimization has a parallel in the tax system or economic policy with release schedules 

analogues to progressive rates and categories or prime rate and representative GDP. 

Sediment deposition has a parallel with lifetime having clearly defined phase and with 

sedimentation being analogous with heart disease and the agglomeration of plaques. 

Working through the analysis and connecting points is very much like putting a large 

puzzle together and scenario building has a parallel in creative writing, where imagination 

is as important as technical skill.  

Exploration of the system using alternative mechanisms which are implied by the empir-

ical similarity would be a very productive exercise. It may be that some unrelated subject 

has the proper tools to analyze hydrological systems already developed. Alternately, the 
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study of hydrological systems may be applicable in other fields, for example weight man-

agement or traffic light timing.      

This analysis is brief and lightly touches on many topics, but from the results, no clear 

economic justification for sediment mitigation can be made. This statement is based 

solely on lifetime and power production. The social and ecological benefits of sediment 

weirs and riverine bypasses are clear in terms of fish migration, sediment transport and 

the value of the dredged material.  

No attempt is made to quantify the cost of inaction but at a glance it seems substantial. 

Without a fish ladder or riverine bypass, it is expected that two endangered fish species 

will die off. Without a sediment bypass, nutrients transported by the river will be trapped 

in reservoirs and erosion will destroy agriculture along the riverside. Without sediment 

weirs the whole sand fraction will deposit as delta in the impound, consuming active 

storage and causing aggradation upstream. By addressing these problems now, the en-

vironmental harm could be mitigated, lifetime could be extended and the benefits of the 

improvements could be more evenly distributed.   

The calibration of the model is a source of concern. Though the predicted lifetimes seem 

realistic, model parameters are fit to a single terrain. Furthermore, the sedimentation is 

estimated empirically from Brune and Churchill equations and is uncalibrated.  

The reservoir module is limited due to computational restraints. At 500-meter resolution 

a great deal of nuance is averaged away, but at 50 meter the computation is beyond the 

resources of a desktop computer. Hydraulic intake and outlet geometry cannot be spec-

ified and environmental flow is expressed as a linear component of river inflow. The sed-

iment discharge seems unrealistic or overly generalized and there is no obvious way to 

check the accuracy. Specific deposition is not considered and aggradation or erosion of 

riverbeds is not accounted for.  

Power predictions from the various scenarios is fixed according to the release curve, so 

they are not representative of the assumptions. It seems that as much as 42% greater 

potential might be available under the most extreme climate change assumption, but this 

would be accompanied with a halving of the expected lifetime. The benefit is in favour of 

the climate change because lifetime would still be counted in hundreds of years. 
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5 Research suggestions 

The following listed research suggestions are footnotes within the paper. Certainly, the 

takeaways from the project should be independently reproduced in order to provide le-

gitimacy to the findings. In particular, I suggest the estimated lifetime be collaborated 

across modelling platforms and the sediment rate metric be evaluated against real world 

observations to confirm the practicality and applicability referred to herein.    

 Deposition characterization under 3d modeling to identify natural sediment 
weirs 

 Objective based rule curves for cascade hydropower 

 Development of rule curves accounting for social considerations 

 Application of seasonal flush strategy to remove sediment deposits 
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