

Elvis Punnek

AUTOMATION FOR A BASE STATION STABILITY TESTING

AUTOMATION FOR A BASE STATION STABILITY TESTING

 Elvis Punnek
 Bachelor’s Thesis
 Spring 2016
 Information Technology
 Oulu University of Applied Sciences

 3

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Langattomat laitteet

Tekijä: Elvis Punnek
Opinnäytetyön nimi: Tukiaseman stabiliteettitestauksen automatisointi
Työn ohjaajat: Kari Jyrkkä, Antti Seppälä, Pete Pietilä
Työn valmistumislukukausi ja -vuosi: Kevät 2016, Sivumäärä 38 + 1 liitettä

Tämän opinnäytetyön tilasi Oy LM Ericsson AB Oulu. Työ tilattiin LTE tukiase-
man stabiiliuden testiautomaatioratkaisun tutkimisen ja toteuttamisen helpotta-
miseksi.

Työn päätavoite oli toteuttaa testiautomaatio etukäteen suunnitellulle testisarjal-
le. Tämä testiautomaatioratkaisu haluttiin toteuttaa tietylle ympäristölle ja lait-
teistolle. Työ sisälsi automaation toteutuksen testitapauksille sekä niiden integ-
roinnin päivittäiseen automaatio ajoon.

Työn tärkein osa-alue oli testisarjan toteutus, joka sisälsi useita testitapauksia.
Kaikkien testitapauksien automaatio oli tarpeellista, jotta manuaalista konfigu-
rointia ei tarvitsisi tehdä päivittäin. Nämä testitapaukset sisälsivät osia ympäris-
tön alustamisesta, testisarjojen toteuttamisesta sekä sen jälkeen, testitulosten
raportoinnista. Pääasiallinen testiautomaatioympäristö oli rakennettu Java -
pohjaisen ratkaisun päälle, joten tämän vuoksi suurin osa uudesta toiminnalli-
suudesta myös toteutettiin Java -ohjelmointikielellä.

Testiautomaatioratkaisu toteutettiin onnistuneesti ja laitettiin päivittäiseen testi-
automaatioajoon. Testiautomaatioon toteutettuja testitapauksia tullaan jatkoke-
hittämään tulevaisuudessa uusien ominaisuuksien tai korjaustarpeiden ilmaan-
tuessa. Testiautomaation testiraportointiosa raportoi kaiken tarvittavan infor-
maation testien ajon jälkeen ja tätä voidaan käyttää käytössä olevan ohjelmis-
ton tilan toteamiseen.

Testiautomaatioratkaisua käytetään päivittäin testiautomaatiolaitteissa ja se tar-
joaa paljon tietoa viimeisestä ohjelmistoversiosta. Ratkaisu myös vapauttaa
huomattavan määrän aikaa manuaalisesta testauksesta muihin tarpeellisiin asi-
oihin.

Asiasanat: LTE, Testiautomaatio, Java

 4

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Option of Wireless Devices

Author: Elvis Punnek
Title of the bachelor’s thesis: Automation for a base station stability testing
Supervisors: Kari Jyrkkä, Antti Seppälä, Pete Pietilä
Term and year of completion: Spring 2016, Pages: 38 + 1 appendices

This Batchelor’s thesis was commissioned by Oy LM Ericsson Ab Oulu. The
aim of it was to help to investigate and create a test automation solution for the
stability testing of the LTE base station.

The main objective was to create a test automation for a predefined test set.
This test automation solution had to be created for specific environments and
equipment. This work included creating the automation for the test cases and
putting them to daily test automation jobs.

The key factor was to create one test set which includes lots of test cases. All of
the test cases needed to be automated so there was no need for outside con-
figuration in daily basis. These test cases included steps for setting up the envi-
ronment, running test sequences and after that reporting test results. The main
test automation framework was built on Java and therefore, lots of other func-
tionality was also built with Java

This test automation solution was successfully created and put into daily test
automation jobs. The test cases created for the job will continue to be devel-
oped further whenever there is a need to add or fix any features. The test re-
porting part for the test job is reporting all needed information after tests and
therefore, this can be used to determinate the state of the software used.

The test automation solution will be used daily for test automation clusters and it
will provide lots of information of the current software. This will also free time
from the manual testing for other necessary things.

Keywords: LTE, Test automation, Java

 5

PREFACE

I would like to thank Oy LM Ericsson Ab Oulu for providing a possibility to do my

thesis work. The idea of the thesis work was customized to match my compe-

tences but also to provide useful information for the company. Therefore, my

work provided me experience and also something that the company can use. I

would like to thank Ericsson’s Test Manager Antti Seppälä and Continuous In-

tegration Guardian Pete Pietilä for coming up with this idea.

While working with the topic, I also got a lot of help from other members of the

company with various tasks. Especially, I thank Senior Services Engineer Kari

Honkasalo for support with LTE specific things and Developer Alberto Gonzalez

Escudero for support with various tasks. For the guidance I thank my lecturer

Kari Jyrkkä as he always gave me constructive feedback.

I would also like to thank my friend Solution Architect Heikki Laulajainen for all

the support he provided while I was doing my thesis.

Now, as I have finished this thesis, I feel that I learnt lots of new things and got

lots of good contacts from the business world. I also think that my work was

useful for the company.

Oulu, 23.3.2016

Elvis Punnek

 6

CONTENTS

TIIVISTELMÄ 3

ABSTRACT 4

PREFACE 5

CONTENTS 6

VOCABULARY 7

1 INTRODUCTION 9

2 BASIC STRUCTURE OF TEST ENVIRONMENT 10

2.1 General structure of LTE network 10

2.2 Equipment used for the automation 11

2.3 Structure of LTE stability cluster 12

2.4 Future changes of LTE stability test cluster 15

3 TEST AUTOMATION SOLUTION 17

3.1 Test automation needs for LTE stability testing 17

3.2 Parts of automation solution 17

4 IMPLEMENTATION OF THE AUTOMATION SOLUTION 20

4.1 Cluster changes for automation 20

4.2 Configurations 21

4.3 Test place initialization 21

4.4 SW upgrade for the eNodeBs 22

4.5 Traffic sequences for UEs 24

4.6 Fetching and reporting KPIs 26

4.6.1 KPI 26

4.6.2 Fetching the KPIs 27

4.6.3 Test reports 30

4.7 Temporary automation solution 31

5 FUTURE IMPROVEMENTS 33

6 CONCLUSION 35

REFERENCES 37

 7

VOCABULARY

API = Application Programming Interface

BSC = Base Station Controller

CA = Carrier Aggregation

CCN = Cellular Coaxial Network

CLI = Command-line Interface

E-UTRAN = Evolved Universal Mobile Telecommunications System Terrestrial

Access Network

eNodeB = Evolved Node B

EPC = Evolved Packet Core

FTP = File Transfer Protocol

GSM = Global System for Mobile Communications

GW = Gateway

JAR = Java Archive

KPI = Key Performance Indicator

LTE = Long-Term Evolution

MME = Moblility Management Entity

RF = Radio Frequency

RNC = Radio Network Controller

SSH = Secure Shell

SUT = System Under Test

 8

SW = Software

UE = User Equipment

UI = User Interface

USB = Universal Serial Bus

WCDMA = Wideband Code Division Multiple Access

 9

1 INTRODUCTION

This thesis work was done for OY L M Ericsson AB at Oulu site. Ericsson is an

old telecommunication company and it was founded in 1876. Its global head-

quarters are located in Stockholm, Sweden. It has over 110,000 employees

around the globe and in the end of year 2014, 25,700 of them were working in

R&D (Research and development) [1]. Oulu site was founded in early 2012 and

it got a small team for R&D, mainly focusing on LTE (4G) and WCDMA (3G)

radio access products.

The aim of the thesis was to create a test automation solution for the LTE stabil-

ity testing to test the basic stability cases whenever a new SW (software) pack-

age would be available. Before the automation implementation the basic stabil-

ity tests were already ran, but everything was executed manually. Lots of re-

sources were used for basic testing and automation could free lots of time from

testers to manual test execution and fault debugging.

For this thesis there was one daily test chain that needed to be created. This

chain included various things such as initializing test place, running stability

tests and reporting KPI’s (key performance indicator). There was already one

in-house automation solution for stability tests, but those tests had no easy way

to be started automatically after a new SW package. As there were also other

steps in this automation chain, the best way was to create new test steps to

complete the chain.

The test automation solution of this thesis was made with an in-house test au-

tomation framework built on Java. Test cases were made with this framework

and started with a test scheduler in a needed order. The test scheduler also

reported all calculated verdicts to a test database and from there it was easy to

see whenever a test was passed or failed.

 10

2 BASIC STRUCTURE OF TEST ENVIRONMENT

There are lots of terminology and test environment equipment that are regularly

mentioned in this thesis. Therefore, it is important to explain the basic function-

ality of LTE (Long-Term Evolution) network and the equipment used in this sta-

bility test automation solution.

2.1 General structure of LTE network

As the functionality of LTE network is not the most important part of this thesis,

this chapter will just describe the very basics of LTE network elements. Below is

the image of basic structure of the LTE network.

FIGURE 1. Basic structure of LTE network

 11

A general LTE network structure consists of EPC (Evolved Packet Core) and E-

UTRAN (Evolved UMTS (Universal Mobile Telecommunications System) Ter-

restrial Access Network). EPC and E-UTRAN are connected to each other with

the S1 interface which supports both user data and signalling. The most im-

portant basic components in LTE network are eNodeB (evolved Node B), MME

(Mobility Management Entity) and Serving GW (Gateway). [2]

Compared to the earlier radio access technologies such as GSM and WCDMA,

in LTE there is not any network controller like RNC (Radio Network Controller)

or BSC (Base Station Controller) and the functionality of those network ele-

ments is distributed between MME and eNodeB. This makes the network archi-

tecture simpler and allows a better performance. In LTE eNodeB takes, for ex-

ample a resource control and a handover decision from the network controller.

And on the other hand MME controls subscription and session data.

2.2 Equipment used for the automation

This part describes the equipment used in the stability test clusters solution

which was automated in the frame of this thesis. Hardware-wise these clusters

were already built and there was no need to do any major changes. The both

automated clusters are similar and have the same kind of equipment. The most

important equipment is the SUT (System Under Test). In this case it is an

eNodeB radio access product.

For test automation there is a need for many kinds of other equipment. First

there is a need for lots of UEs (User Equipment) and control PCs to control

these UEs. In this setup there is also a remote controlled power supply for USB

(Universal Serial Bus) and power sockets for this equipment. There is also a

CCN device (Cellular Coaxial Network) which is an air interface simulator. It

creates attenuation between eNodeBs and UEs to simulate a real environment.

This equipment will be specified below.

USB dongles are used for this setup to act as UEs which could be used by us-

ers in a real environment. These dongles can generate traffic and as there are

many of them, they can create a user load. The use of this kind of equipment is

 12

important as USB dongles are real UEs and therefore they can create a real

load towards eNodeBs. These dongles are connected to controlling PCs and

USB power switches.

As there is a need for a user base load, Cobham TM500 is used to simulate

multiple UEs. Cobham TM500 is a multi UE simulator and the UEs generated

with it can generate traffic as normal UEs. Cobham TM500 also needs its own

controlling PC and power switch for its power socket.

All control PCs are virtual machines and therefore do not need as much room

as multiple physical computers would need. There is controlling software and

needed scripts installed to these PCs and therefore connected equipment can

be controlled remotely.

Remote controlled power switches are used to reboot UEs and equipment if

there are any problems with them. This way even if the system is bugged or

stuck, it can be rebooted and it can retain functionality.

CCN is used to create a simulated network environment for tests. As CCN at-

tenuates signals between different UEs and cells, handovers will occur. With

CCN it is possible to simulate moving UEs without moving them in reality. This

makes the tests in a laboratory environment simulate the real environment and

be more versatile.

2.3 Structure of LTE stability cluster

This part will describe how this test equipment in clusters are connected to each

other and what kinds of configuration solutions are used before automation.

This part does not describe the test automation solution and only describes how

this kind of a setup is used manually.

When testing radio access products, it is important to create a test environment

as close to the real network as possible and not to simulate everything. It is also

important to choose stable and easily manageable test equipment.

The test clusters used are identical and include:

 13

• 4 eNodeBs

• 1 CCN

• 1 Cobham TM500

• 24 USB dongles (UE)

• 2 servers with 9 virtual PCs

• 2 remote controllable USB power switch

• 1 remote controllable socket power switch

FIGURE 2. Simplified UE connection setup of the stability test cluster

Figure 2 describes how UEs are connected to the lab network via eNodeBs for

the stability test cluster. The figure is simplified and does not show, for example

all UEs. The USB dongles are located in RF shielded boxes to reduce noise

from signals of other eNodeBs.

All UEs are connected with an RF (Radio Frequency) cabling to a CCN. Other

end of the CCN is connected to eNodeBs which are connected to the laboratory

network. TM500 is connected to its own eNodeB and therefore it is not part of

the CCN connection. The laboratory network has servers where UEs can con-

nect via eNodeBs to generate a real traffic. All connections between UEs and

 14

eNodeBs are done with a cabling to reduce noise. This kind of setup allows

CCN to generate attenuation to separate UEs and eNodeBs.

The laboratory network also includes several servers for eNodeBs to use.

These servers include configuration servers where eNodeBs can get its configu-

rations. Also other core elements like MME can be reached via the laboratory

network. From the laboratory network testers can connect to eNodeBs to

change the settings or get statistics from several different areas. For example,

KPI statistics can be received in this way. There is more information about how

these KPIs were collected with automation in chapter 3.4.

Other parts of the connections are connections between the test equipment and

controlling PCs and power connections of the test equipment. Below there is a

simplified picture of these connections.

FIGURE 3. Other connections of the test equipment in the cluster

Figure 3 shows how UEs and servers are connected to each other and to the

laboratory network. UEs are connected to servers via a USB power switch

 15

which can cut this connection between PCs and UEs by disabling the USB port.

These control PCs are connected to the laboratory network where they can be

reached and controlled.

TM500 is connected to the laboratory network which enables the connection

with the TM500 control PC. The main power of a TM500 comes from a remote

controlled power switch so it can be easily rebooted if it gets stuck. This is very

important for automation but it also makes the manual usage easier.

PCs have their own configuration for testing needs. UE PCs have software

which can command the UEs to connect to the servers and do various tasks.

This controlling software is also able to collect some information from UEs like

throughput measurements and successful tasks. There are also various scripts

made for starting test sequences so starting does not always need to be done

fully manually.

TM500 controlling PC also got its own controlling software and a FTP server,

from where the TM500 can fetch its configuration when started. TM500 also

needs its own scripts to make the starting of test sequences easier. Some of

these scripts are done with the controlling software of the TM500 and others are

done with batch files, which is the own commanding language of the Windows.

2.4 Future changes of LTE stability test cluster

There are incoming changes for the LTE stability test cluster. One of the stabil-

ity test clusters will be changed to use only 3 eNodeBs. For these eNodeBs

there will be 2 cells each. Therefore, connections of the equipment are going to

change, but this does not really affect the testing sequences. Figure 4 shows

these modifications for the RF connections. As other connections will remain

almost the same, there is no need to describe those changes.

 16

FIGURE 4. Future changes for UE connections of the cluster

In figure 4 circles around the eNodeBs describe cells. The most bottom eNodeB

has also two cells but they are used for CA (Carrier Aggregation). When a UE is

connected to a CA cell, it can use 2 bands simultaneously to double the

throughput. Therefore, there are now 4 different connection points for UEs and

one for the TM500. These changes are important because after they have been

done there is a possibility to test CA and dual cell properties of the eNodeBs.

 17

3 TEST AUTOMATION SOLUTION

The test automation solution of this thesis consists of multiple parts. This chap-

ter describes what kinds of parts were needed to be automated and why.

3.1 Test automation needs for LTE stability testing

The main reason to automate LTE stability test clusters was to get the earlier

results from the newest SW. When new SW packages come at night time and

testing is started in the morning, the test results can be received too late to

make changes to a new SW. When automating the tests to start after the new

SW package at night, test results can be received in the morning and there is

more time to make new changes to the SW.

There are also lots of parts in testing, which are frustrating to repeat every day.

Automating the whole daily sequence will give more time to test specific things

and configurations. There are lots of things that will be tested only once a while

and there is no idea to automate them. Well automated daily tests release time

to do these tests because then there is no need to fix automation sequences all

the time. When the automation is implemented properly, it is able to even fix its

own problems with a proper error management.

3.2 Parts of automation solution

The automation solution made in this thesis consists of multiple parts. This

chapter will describe these parts. The parts are:

• Initializing the test environment

o Rebooting PCs

o Checking that everything is alright

• Upgrading the newest SW to eNodeBs

• Starting traffic

o Traffic sequences for USB dongles

o Traffic sequences for TM500

• Fetching the needed statistics from eNodeB and logging them

 18

• Stopping traffic

• Fetching all KPIs and reporting them to the test database

First of all the parts of this automation solution are initializing the test environ-

ment which in this case is the whole stability test cluster. The main part reboots

all control PCs as controlling functions may get stuck. Rebooting environments

is the best way to ensure that the environment will work during of the complete

test. This part also includes all other checks that can be done in this part.

The SW upgrade is the next part as it is important that all features will be tested

with the newest SW package. This part may not fail as there is not any idea to

test the cluster with old software. If this part fails or if there is something wrong

with the new SW package, it will fail the whole test automation sequence.

When the test cluster is ready and the newest SW package has been installed,

it is time to start the traffic. Traffic will be started at the same time with all the

UEs including TM500s virtual UEs. It is important that all UEs are working so

the user load is as high as intended. This part was already implemented and

only needed functionality for execution and fault management to be added to it.

The traffic sequences used by the stability testing are similar all the time and

therefore this does not need changes between different executions.

When the traffic load is started for the SUT, there is a need for logging the sta-

tistics. There are several different statistics that are good to be logged when the

test is running. They can be used for debugging or be monitored while tests are

running. These statistics consist of the current functionality of eNodeBs and

they will be described further in chapter 4.5.1.

After the intended time has passed, traffic will be stopped from UEs. This part

was also already implemented and therefore needed only execution and fault

management functionality to be added to it.

The last part of this test automation solution is the test result reporting. This part

includes a collection of statistics from eNodeB and calculation KPIs from these

reports. There are multiple parameters that will be checked. This one sequence

can get results from all of them. For all of these parameters there will be a ver-

 19

dict check to define if the test has been failed or passed. These will be reported

to the test database to get long time information of test cases from both of the

stability test clusters.

 20

4 IMPLEMENTATION OF THE AUTOMATION SOLUTION

This chapter will describe how all the needed functions were automated and

what kinds of solutions were chosen and why. As the in-house test automation

framework used in this test automation solution was built on Java, other parts of

the automation were also built on Java.

4.1 Cluster changes for automation

When the existing stability test clusters were automated, some changes needed

to be done for the configurations of PCs and equipment. The biggest changes

were done for the control PCs. While this test automation solution is partly

made using the already built in-house test automation solution, there are some

configurations and scripts needed to make the clusters equipment compatible.

The most used script for all PCs was a reboot script. This script was added to

all PCs to a right folder. Some PCs already had this script, but it was in the

wrong folder. Also, when booting the Windows PC, it does not automatically log

in. Thus, the programs and scripts in the startup folder do not start automatical-

ly. This is not a problem when the PCs are used manually, but when automation

is used it is important that PCs log in and therefore start the needed programs.

This change was done to the Windows registry. The register changes were

done to:

HKEY_LOCAL_MACHINE/SOFTWARE/MICROSOFT/WINDOWS

NT/CurrentVersion/Winlogon

Changes done for register:

AutoAdminLogon=1

DefualtUserName=”username for logon”

DefaultPassword=”password for logon”

DefaultDomain=”domain for logon”

delete AutoLogonCount

 21

When the PC would reboot and logon automatically, the programs in the startup

folder would start. Therefore, the needed programs and scripts could be added

to the startup folder and they would also start automatically after the reboot

command. Some of the controlling software could not be added to the startup

on their own but needed to be started with the parameters. Therefore, there was

a need to create scripts to start these programs with parameters.

4.2 Configurations

All equipment needs parametrized configurations to be run with the test code.

These configurations ensure that the same code can be run with different test

places. When there is test code that takes configurations as an input, it can eas-

ily do same tasks for different test places. These configurations include for ex-

ample IPs and usernames. There will be more information about these configu-

rations in the chapters below if those configurations are viable to be described.

4.3 Test place initialization

Rebooting controlling PCs was an easy task as there were already rebooting

scripts made for the PCs. A reboot script built with a batch includes just one

simple command: “shutdown /r /f /t 0”. This command has 3 parameters, which

mean:

/r: Not just shutting down but also restarting PC.

/f: Forcing Windows to shut down and not to ask confirmations from

the user.

/t 0: Time till shutdown happens.

The reboot script was executed via a Telnet connection to the controlling PC.

To use the Telnet connection towards the Windows, there is a need to activate

the Telnet server on the Windows. This can be done easily from the Windows

control panel by just activating the Telnet from the Windows features. The

Telnet service was also configured to start automatically when the Windows

would start to ensure that the Telnet service would be always running.

 22

As there were multiple Windows PCs that needed to be rebooted, there was a

need to create configurations for every Windows PC. Major configurations in-

cluded an IP address, a username and a password. There were also some oth-

er minor configurations like a connection timeout but they are not so important

and could even be left as a default. For the Telnet connection, the in-house

framework connection functionality was used and therefore, there is no specifi-

cation for it.

After connecting to the Windows PCs, just a simple command needed to be

sent to the PC to start the restart script. After the execution of the scripts, there

was a need to ping the Windows PC to ensure it would reboot and start up

again. After rebooting all of the PCs and checking that everything is up and run-

ning again, this step could be determined to be successful.

4.4 SW upgrade for the eNodeBs

The SW upgrade for the single eNodeB can take even up to 20 minutes if there

happens to be some delay. As this test cluster included multiple eNodeBs, it

was wise to create SW upgrades to be running in threads. This would ensure

that every eNodeB would be upgrading at the same time and therefore it would

save some execution time. As the thread needs to return a value after the exe-

cution, there was a need to use the Callable thread [3].

The SW upgrade code was created to start as many threads as there were the

configurations for eNodeBs in the test place configuration. This would ensure

that the same code could be used for one or multiple eNodeBs and the code

would not depend on the amount of the eNodeBs. There are lots of different

reasons why the SW upgrade could fail. Therefore, the thread needed to return

not only just true or false but also the reason for failing.

Creating a new Java class to be returned from the thread was the best solution

to return as many properties as needed. Creating the new class also gives a

possibility to add more properties if needed in the future. This class included the

Boolean and the String value. The Boolean value would determinate if the SW

upgrade would be failing or succeeding. On the other hand, the String value

 23

would tell the reason for failing. This String value could also be used to tell other

things from the thread, e.g. if the eNodeB would already be using the newest

SW.

As there was already a built SW upgrade functionality for the test framework,

the contents of the thread did not need to be recreated but the old functionality

could be used. As there were some differences between testing the SW up-

grade and just upgrading the new SW, so the used SW upgrade functionality

needed some adjustments. These adjustments were mainly done to a post

check of the SW upgrade functionality.

The SW upgrades thread first checks the version of the newest SW and the SW

that eNodeB is using. Therefore, the thread can determine if the SW upgrade is

needed or not. If eNodeB is not on the newest, an SW upgrade sequence would

start. This sequence includes lots of commands sent to the eNodeB including

the information where the newest SW can be downloaded. These commands

are sent to eNodeB with the company’s internal operations and maintenance

CLI (command-line interface), which is not public. Therefore, this part cannot be

described more closely.

After the eNodeBs upgrade sequence is ready, the thread does the post check

of the upgrade. This includes checking that the newest SW is really installed on

the eNodeB. Other important parts are checking that the SW is working. This

can be done by checking if eNodeB’s cells are up and there are not any func-

tional alarms. After these checks, thread can return the result to the main func-

tion.

The main function will wait for threads and after every thread has been finished,

it will check the classes returned by the threads. If some of the threads has

failed, it will fail the whole SW upgrade case. In any case the last step of the

SW upgrade code is printing the results of every node. These results can be

used for debugging and it is easy to see which of the eNodeBs has failed its SW

upgrade. If all eNodeBs pass all post checks, this part of the automation solu-

tion will be determined to be successful.

 24

4.5 Traffic sequences for UEs

This is the first and only step where the traffic controller, which was the already

implemented in-house test automation traffic solution for stability, was used.

Therefore, this chapter will describe more about using this traffic controller than

describing the functionality of this solution. As the development of the traffic

controller was delayed, this part was not tested, instead a temporary solution

was created and it is described in chapter 3.4.6.

The traffic controller was built on the same test automation framework as the

test automation solution of this thesis. As it was built on the Java, it could be

packed in an executable JAR file [4]. This made it possible to use a prebuilt JAR

of a specific version of this new traffic controller. In this way it was easy to take

the specific version into use and build a controlling functionality to work with that

version.

As these traffic scenarios made in the traffic controller needed also configura-

tion files, there was a need to execute the JAR with parameters. Multiple execu-

tion solutions were considered but at the end the best solution seemed to be a

server where all of the needed configurations and the JAR files would be.

Therefore, it was easy to build configurations and the test code to execute these

traffic scenarios in the traffic controller.

As there were two stability test clusters, it was wise to build new configuration

interfaces and not to hard code these cluster configurations in the execution

code. These configurations just included names of the configuration files and

SSH connection information for connecting to the traffic controller server. Con-

figurations for the traffic controller were created on the server. Therefore, the

execution needed only names of the configuration files for executing the traffic

scenarios.

As the execution of the traffic controller was a new functionality, it needed its

own helper classes for the test automation framework. These helper classes

were built to control the traffic controller for different operations. These opera-

tions were for example starting or stopping the traffic for all configurations.

 25

As starting and stopping traffic scenarios had separate functions in the traffic

controller, it was easy to make own calling functions for them. These functions

were built to run in threads so that all of the UEs could be commanded to start

traffic scenarios at the same time. This class was easily used from the main

function to start or stop the traffic activities while needed. As the needed func-

tionality to control the traffic controller was quite simple, most of the work was

done to make as simple but flexible configurations as possible. While configura-

tions were built to be simple, it would be easy to add more UE PCs for traffic

scenarios in the future. This kind of setup also makes implementing the future

controlling features easier.

As the traffic controller was built on the same test automation framework, its

logging was similar to other test solutions built with the same framework. This

made it easy to determine from logs if the function of the traffic controller suc-

cessfully executed or not. In this way, if the traffic for specific UEs was not start-

ing properly, it could be easily determined and the traffic scenario could be tried

to start again.

When the traffic had been successfully started, a timestamp from that moment

was saved into file for a later use. This time was to be used for fetching the

KPIs. The use of this time is specified in chapter 3.4.5.

When the traffic had been started, there was a need to log some specific KPI

values to be available through the whole traffic sequence. These values could

be read by the testers while tests were running and therefore they would give

information if there are already some problems. These KPI values would also

tell if there were some bigger problems during the nightly runs for a specific

timespan.

These traffic scenarios would be running for a certain time. This time would be

over night for every day except for weekends. For weekends the traffic scenari-

os would last for the whole weekend to get longer stability test runs. This time

was easily calculated programmatically in the code from the current timestamp

and therefore, it could be determined in the test code.

 26

After this calculated time the traffic scenarios were stopped with the traffic con-

troller. This part works in a similar way as starting the traffic scenarios. As the

traffic controller gives logs also from this function, it was easy to determine if the

traffic scenarios were successfully stopped.

After all traffic scenarios were stopped, there was again a need to get a

timestamp from that moment. This timestamp would also be used for fetching

the KPIs. After that, this part of the test automation solution was ready. It would

not be so important to shut down traffic or other activities as there was a specif-

ic time taken into account when the testing was stopped.

4.6 Fetching and reporting KPIs

Fetching and reporting the KPIs is the most important part of the solution, as it

will determine the state of the latest SW. This test automation solution includes

various KPIs which give information on different things about tests. As these

KPIs conclude if tests are passing, it is important to know what these KPIs con-

sist of. This chapter describes what are the KPIs used in this thesis and how

they are collected to the test reports.

4.6.1 KPI

There are 6 main classes of the KPIs. These classes are accessibility, retaina-

bility, integrity, mobility, availability and system utilisation. These classes have

their own KPI values that are reported. When the KPIs of one class are good,

the class can be determined to be functioning. It is important to use KPIs so that

reporting of specific things stays similar and testers do not need to invent their

own ways to check if something is working.

Accessibility means that the service of the cell can be obtained. This service

needs to be obtained within specified tolerances and other given conditions. If

accessibility is good, it means that users do not have problems when connect-

ing to the cell.

Retainability means that the service continues to be available. This means that

when user is connected to the cell the connection will stay up. Retainability is

 27

good if the service is up for a requested duration in given conditions. For the

user this means that the connection to the cell will not cut randomly.

Integrity means that the connection to the cell has not any problems. The con-

nection needs to be provided without excessive impairments. This means for

the user that the connection can be used as it is supposed to be.

The mobility class includes KPIs for handovers. Handovers need to occur be-

tween cells without any problems. When mobility is good, it means that the user

can hop from one cell to another cell without any unexpected connection losses.

Availability means simply that the cell is available. This differs from accessibility

as it does not compare this connection with the user. If availability is good, the

cell is up for the requested percentage of the uptime.

System utilization includes various things such as the hardware usage and traf-

fic capacity. This class means that eNodeB is simply working as intended. It is

important that the cell capacity and throughputs are at the intended levels. Sys-

tem utilization also includes management properties and when all these are at

the intended levels, system utilization can be concluded to be good.

There are limits for all of the classes and these limits must be reached to be

sure that the eNodeB’s SW is good enough. These limits may change due to

different equipment and conditions because these may affect the results. If

there are some limits with the equipment for some testing, it is usually tested

again with the equipment capable to handle the test limits.

4.6.2 Fetching the KPIs

As the eNodeB does not return KPIs from itself, they need to be calculated from

various other values generated by eNodeB. This part describes how these KPIs

were fetched from the eNodeBs. There will also be information on how verdicts

were calculated and parsed from returned values.

As the internal CLI tool is used to gather this KPI information from eNodeBs, it

cannot be described in detail. The information on the basic functionality of the

 28

used commands can be described but mainly this part consists of the parts im-

plemented in Java.

As the KPIs cannot be fetched straight from the eNodeB, some calculation func-

tionality is built in the CLI tool. These functions calculate some KPIs from the

eNodeB but all of the KPIs cannot be fetched with these functions. Therefore,

there was a need to create some functionality to calculate these missing KPI

values from other values fetched from the eNodeB.

When a CLI command is sent to the eNodeB, it needs some parameters. The

most important parameters are a starting and ending time. These timestamps

were saved into the file as described in chapter 3.4.4. As the command gets a

starting and ending time, it can calculate these KPIs from that timeframe and

therefore KPIs can be stated to the testing timeframe. This makes sure that

there are not any invalid values from other times when there may not have even

been any UEs active.

There are also parameters to choose what kind of view is wanted to be returned

from the eNodeB. This ensures that it is an easier way to parse these values

from the returned string as the string is always within the same format. When it

is known, which KPI value is wanted at a certain time, it can be given as a pa-

rameter to print only that value from the list. This also makes parsing the value

out of the returning string a little bit easier.

For every KPI report test case, there are the configuration parameters. These

parameters include the name of the KPI and the wanted KPI values. As all KPIs

cannot be fetched in the same way, there is also a need for some separate test

codes to be able to fetch all KPIs.

The returning string consists of some debug print, timeframe and the values

wanted. Therefore, the only information needed is the values from the end of

the returned string. These values need to be parsed from the returned string.

Also, as there may be x number of cells for one eNodeB, this parsed value

needs to separate them. The end of the returned string looks like this:

NameOfTheKpiValue cell1value cell2value

 29

The values needed are numbers and therefore they need to be parsed from the

string to numbers. As the values are in a number format, a verdict check can be

done. As the name of the KPI is known, it is easier to build the parser to parse

these values from the string.

First, only the line needed will be parsed to one string so that it can be used to

parse the values. This was done with the Scanner class of the Java [5]. As the

Scanner can scan the string line by line, it is easy to save the line including the

KPI values to its own string. This makes it easy to scan KPI values from the

single line string.

As the lengths of the values are unknown, it is hard to parse values with known

indexes. Therefore the Pattern class was used to parse the values from the

string [6]. The Pattern uses a regular expression to parse values from the string.

The regular expression can be used in a very complex way and therefore, it can

parse various things out of the string. The regular expression used in this case

was:

(\d+(\.\d+)?)

As found from the Pattern class’ documentation, all symbols have their mean-

ings. For this case, values can have decimal fractions or not. Therefore, there is

a need for 2 groups where the second group presents the decimal part if it ex-

ists. As the second part has a question mark after the brackets, it means that it

may or may not be present. As the second group is in the first group, it includes

it, when looking a match for the first group.

When using this kind of regular expression, all the KPI values can be found and

stored to the array for a later use. This parsing part is done for all of the

eNodeBs that are configured for the test place. Therefore, all of the KPIs from

every cell of every eNodeB are stored in an array. These KPIs are converted to

a double value to be able to use in calculations.

From the array of the KPIs, the average KPI is calculated. Then the average

KPI is compared to the wanted value. If the average is better than the wanted

 30

KPI value, this KPI report test case will be determined as successful. Infor-

mation about the wanted KPI values is stored into configuration files.

As there are some other KPIs that cannot be fetched in this way and they need

to be calculated from multiple different values, there is need for separate test

codes to get these values. These test codes work pretty much in the same way

but they just fetch multiple values from eNodeB and calculate the needed KPI

from these values.

There is also a couple of KPIs that are calculated cumulatively, i.e. they need to

be divided by hours of running the traffic. As the time used to fetch the KPIs is

not the same as the timeframe, where the KPIs are calculated from, there is a

need to parse the timestamps from the KPI return string. These timestamps are

not the same, because eNodeB calculates these KPIs only for a couple of times

in an hour and therefore these KPI values are from specific timeframes.

These timestamps are parsed from the KPI return strings with the Pattern class

as was done with the KPIs. These parsed timestamps can then be transformed

into the Date class [7]. The Date class can recognize these timestamps as

dates and get the time between them. This time is converted into hours and it

can be used to divide the KPI with. Therefore, the KPI can be got for the right

timeframe.

4.6.3 Test reports

Test reports are generated from all KPI report test codes. Reporting these KPIs

is the only step that provides real stability information and it is therefore the

backbone of the test report. It is really important that all of the KPIs are reported

correctly. These test database reports only inform if the test case is successful

or not. When reporting KPIs, it is also important to keep note of the values. As

this system does not support reporting values to the database yet, these values

need to be reported separately. As all of the KPI report test codes also log KPIs

separately from every cell, testers may find more information on the KPIs from

them.

 31

When keeping note of the KPI values, it is important to save the old values to

the database. When there is a history of the values in the database, it is easy to

keep an eye on the changes of the KPI. In this way, while SW is still at the de-

velopment phase, developers can see if the SW is getting better or not. These

KPIs can also be used to draw a figure to show the evolution of the SW.

4.7 Temporary automation solution

As the development time of the traffic controller was longer than was estimated

earlier, a temporary solution needed to be done. Even if the code for controlling

the new traffic controller would be done, it could not be used in the automation.

The reason for this was the missing functionality of the traffic controller. This

chapter describes the temporary solution.

An old traffic controller was used in the earlier test automation solution, but it

was not very flexible. However, as this old traffic controller was used for the

manual testing, it was decided to make a simple automation to start the traffic

for this solution. This solution could be used as long as the development of the

new traffic controller would take.

There was not really a simple way to control this old traffic controller as it was

meant to be used manually. Its UI (User Interface) was built on the website and

the only way to control it was to press buttons on the website. This was hard for

the automation as the website might change when updated. The only way to

automate the usage of the website was to parse right sections from the html file.

As the html syntax stays the same, it can be managed with parsers.

There were some old automation shell scripts built to control this traffic control-

ler but they were not versatile enough. Therefore, there was a need to remake

these scripts and build them on Java. Some of the old working parts were called

from the traffic controller’s server with Java.

The functionality in Java was mainly timing and error management. Old scripts

called from the server managed the html files and parsed the needed parts from

them. These scripts included programs like wget, gerp and awk. Wget is used to

fetch the html page from the website and send commands to the website [8].

 32

Grep can parse the wanted strings from the output [9]. Awk works like a grep

but it is also able to do operations to the selected values [10].

To know what to press from the website, there was a need to create template

html files which included information on the pressed buttons and checked

checkboxes. These templates were prebuilt for both stability test clusters. The

parser could fetch the information from the templates and use that information

to do things on the traffic controller website.

Even if there is a new traffic controller incoming and some of its features were

already implemented, it was important to implement this solution so that the dai-

ly automation could be started. After this solution has been created, there will

be no need to hurry to use any versions of the new traffic controller as long as

the functionality of the new traffic controller will work properly.

 33

5 FUTURE IMPROVEMENTS

As the test automation for stability test clusters may often change and new fea-

tures will be implemented to them, test cases may need to be updated from

time to time. This chapter describes some updates that are predicted for the

future needs.

When a working version of the new traffic controller will be released, there will

be needs to it that and complete the controlling functionality of its controller.

This will be the most important part of the future implementations as the new

traffic controller will include some functionality which is not presented in the old

one.

When there are new features implemented to the eNodeBs, it may change any

part of this automation solution. These changes need up keeping for the test

automation solution. And as always, someone will investigate better ways to do

things. There may also be changes with the UEs used in the stability test clus-

ters so that the initializing part may need some new functionality depending on

what kinds of UEs are added.

Because the traffic controller is all the time getting better and it will get more

functionality, there is also need to update the test cases using it. When the

planned API has been done, it will be easier to control the traffic controller.

Therefore, it may be a good idea to switch the controlling functions of this test

automation solution to use traffic controllers API. In this way it makes using the

traffic controller more stable and updating the traffic controller will not break any

functionality.

The KPI reporting part is made very flexible. Adding new KPI reporting configu-

rations should be easy for new KPIs if needed. These configurations give ac-

cess to report KPIs that are not yet needed but may be needed in the future.

Therefore, the KPI reporting will support new features implemented for

eNodeBs.

 34

In addition to known updates, there are always some changes that are not in-

tended. Therefore, sometimes updates in the test automation are needed even

if there is not any new functionality. These updates may be very important if the

old test cases stop working and there is not any stable reporting happening.

 35

6 CONCLUSION

At the beginning of this thesis work there were lots of unclear parts. There was

a need for automation and sequences were pretty much known. But even if the

sequences were known, a lot of investigation and planning work had to bee

done to find out the best way to implement the automation. While the thesis

work continued, it became clearer how all the functionality could be implement-

ed.

As the new traffic controller was chosen to be used over the old one, a lot of

investigation needed to be done about the new system. This new system was

under development and therefore, there was not really any documentation

about how it could be used. This documentation was built at the phase of func-

tion development and therefore, only information about the completed parts was

available. Some information was also gathered straight from the developers of

the traffic controller. At the end all the needed information had been collected

and it helped the development of the automation solution of this thesis.

Other challenges with the traffic controller were the incomplete parts that could

not be tested. These parts were not finished before this thesis project had to be

completed. Therefore, lots of parts were untested and they need to be devel-

oped further in the near future. Getting the old traffic controller implemented into

the solution also took some extra time as it was not expected at the beginning

of the work.

The other parts of the automation solution were much more easily implemented

as there was a lot of background functionality that was available to be used. Of

course implementing a large amount of parsers took a lot of time. Also, lots of

configuration files and test database configurations needed to be done to get all

this working.

Even when there were easy parts, there was all the time something changing in

the stability test clusters. Due to these changes, some parts needed to be rec-

reated. As the time passed and it was clear that there will be changes, the test

 36

cases were built to be more flexible. The most of the flexibility was built into

configuration files and therefore the tests do not need to be changed.

At the end there was a complete automation solution that included all planned

parts, even if some of it was built on the old traffic controller. This automation

solution was taken into daily use and it could save a lot of time in the future. As

the tests can be changing in the future and there may be bugs, some up keep-

ing will be needed in the future. But now the testers are very satisfied with the

current solution as it saves a lot of time.

In the development process there were lots of new things to learn and investi-

gate. This made the development process of this automation solution interest-

ing. There were also lots of challenges to be solved. As the automation solution

was really needed and taken into use, I think this solution was successful. The

development will continue and at the end the new traffic controller will be taken

into use.

 37

REFERENCES

1. Ericsson. 2015. Facts & Figures. Date of retrieval 18.1.2016. Available:

http://www.ericsson.com/thecompany/company_facts/facts_figures

2. LTE Encyclopedia. LTE Network Infrastructure and Elements. Date of re-

trieval 8.2.2016. Available:

https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-

elements#TOC-2.-E-UTRAN-and-eNode-Bs

3. Oracle. 2016. Interface Callable. Date of retrieval 17.2.2016. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html

4. Oracle. 2016. Using JAR Files: The Basics. Date of retrieval 17.2.2016.

Available:

https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html

5. Oracle. 2016. Class Scanner. Date of retrieval 22.2.2016. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

6. Oracle. 2016. Class Pattern. Date of retrieval 22.2.2016. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

7. Oracle. 2016. Class Date. Date of retrieval 22.2.2016. Available:

https://docs.oracle.com/javase/7/docs/api/java/sql/Date.html

8. GNU Operating System. 2015 GNU Wget. Date of retrieval 22.3.2016.

Available: https://www.gnu.org/software/wget/

9. GNU Operating System. 2015 GNU Grep. Date of retrieval 22.3.2016. Avail-

able: https://www.gnu.org/software/grep/

10. The GNU Awk User’s Guide. 2015 Date of retrieval 22.3.2016. Available:

http://www.gnu.org/software/gawk/manual/gawk.html

http://www.ericsson.com/thecompany/company_facts/facts_figures
https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-elements#TOC-2.-E-UTRAN-and-eNode-Bs
https://sites.google.com/site/lteencyclopedia/lte-network-infrastructure-and-elements#TOC-2.-E-UTRAN-and-eNode-Bs
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/sql/Date.html
https://www.gnu.org/software/wget/
https://www.gnu.org/software/grep/
http://www.gnu.org/software/gawk/manual/gawk.html

 38

APPENDICES

Appendix 1 Memo of initial data (in Finnish)

LÄHTÖTIETOMUISTO APPENDIX 1

	1 INTRODUCTION
	2 BASIC STRUCTURE OF TEST ENVIRONMENT
	2.1 General structure of LTE network
	2.2 Equipment used for the automation
	2.3 Structure of LTE stability cluster
	2.4 Future changes of LTE stability test cluster

	3 TEST AUTOMATION SOLUTION
	3.1 Test automation needs for LTE stability testing
	3.2 Parts of automation solution

	4 IMPLEMENTATION OF THE AUTOMATION SOLUTION
	4.1 Cluster changes for automation
	4.2 Configurations
	4.3 Test place initialization
	4.4 SW upgrade for the eNodeBs
	4.5 Traffic sequences for UEs
	4.6 Fetching and reporting KPIs
	4.6.1 KPI
	4.6.2 Fetching the KPIs
	4.6.3 Test reports

	4.7 Temporary automation solution

	5 FUTURE IMPROVEMENTS
	6 CONCLUSION

