

Rui Huang

Designing Embedded Software Analysis
System for Telecom Enterprise

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

Date 02-05-2016

 Abstract

Author(s)
Title

Number of Pages
Date

Rui Huang
Designing Embedded Software Analysis System for Telecom En-
terprise

49 pages + 1 appendices
2 May 2016

Degree Master of Engineering

Degree Programme Information Technology

Specialisation option Mobile Programming

Instructor(s) Kari Järvi, Principal Lecturer

In the recent mobile broadband world, the smart and powerful applications have been widely
developed for consumer. Obviously, the most convincible instances are Apple’s Mobile Op-
erating System (iOS) and Google’s Mobile Operating System (Android) applications. How-
ever, in the traditional industry, such as telecom industry, the mobile applications working
as a part of a software analysis system have not yet been widely involved. The emergence
of powerful mobile devices and cloud computing platforms has been driving the demand for
a new solution to solve the complex industry problem.

The object of the thesis is to design and implement a primary mobile application system for
supporting the maintenance work of analysing the embedded software status in telecom
industry equipment. The system is designed on Server-Client model that consists of three
functionality entities. The Mobile Client (MC) periodically calls the Cloud Platform API Pro-
vider (CPAP) and demonstrates the Device Under Test’s (DUT) embedded software status;
The CPAP is mainly implemented by Google App Engine (GAE); The DUT Server (DS) that
acts as a bridge between the DUT and CPAP, retrieves the DUT’s embedded software sta-
tus and pushes the data to the CPAP. The DUT in the real world is telecom industry equip-
ment.

In the present study, whole system architecture was designed, the CPAP and the MC were
partially implemented, whereas the unimplemented feature will be continued with in the fu-
ture.

Keywords Google App Engine, Android, Python, Java, HTTP, SSH

Contents

Abstract

Abbreviations

1 Introduction 1

1.1 Background 1

1.2 Technology Problem 2

1.3 Object and Outcome 3

1.4 Project Methodology 3

1.5 Scope and Structure 4

2 Theoretical and Technical Framework 5

2.1 Mobile Client 5

2.1.1 Android System Architecture 6

2.1.2 Android Versions 9

2.2 Cloud Platform API Provider 9

2.2.1 Google App Engine 10

2.3 DUT System 12

2.4 Communication Protocol 14

2.4.1 HTTP 14

2.4.2 SSH 16

2.5 Security 17

2.5.1 Oauth2.0 18

3 System Architecture 22

3.1 Mobile Client System Architecture 22

3.2 Cloud Platform API Provider Architecture 23

3.3 DUT Server Architecture 24

4 Implementation 26

4.1 Mobile Client 26

4.1.1 Initialization 27

4.1.2 Access Control 30

4.1.3 Data Management 33

4.1.4 Analytics 36

4.2 Cloud Platform API Provider 43

5 Discussion and Conclusions 46

References 48

Appendices

Appendix 1. DUT Sensors Table

Appendix 2. Credit

Abbreviations

API Application Programming Interface

Android Google’s Mobile Operating System

CPAP Cloud Platform API Provider

DUT Device Under Test

DS DUT Server

ESA Embedded Software Analysis

GAE Google App Engine

HAL Hardware Abstraction Layer

HTTP Hypertext Transfer Protocol

iOS Apple’s Mobile Operating System

IPC Inter-Process Communication

IPMB-L Intelligent Platform Management Bus Local

IP Internet Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

MC Mobile Client

OAuth Open Standard for Authorization

R&D Research & Design

SDK Software Development Kits

SFTP Secure File Transfer Protocol

SSH Secure Shell Protocol

TCP Transmission Control Protocol

UI User Interface

UART Universal Asynchronous Receiver / Transmitter

Windows Phone Microsoft’s Mobile Operating System

1

1 Introduction

The thesis concentrates on general system architecture design and implementation of

an Embedded Software Analysis (ESA) system for the telecom industry equipment that

has three major function entities: The Mobile Client (MC), the Application Programming

Interface (API) server that is named the Cloud Platform API Provider (CPAP), and the

server connected to Device Under Test (DUT) named DUT Server (DS). The MC peri-

odically retrieves the raw data from the CPAP and demonstrates all the statistics, it is a

light-weight application. The CPAP communicates with the DS in the background, it

maintains the accumulated DUT status information, including the hardware health infor-

mation and the running embedded software status, performs all the analysis efficiently.

The DS runs the Linux applications to get the DUT status via network services. Utilizing

the whole system, the efficiency of the Research & Design (R&D) maintenance work can

be heavily improved. The system is recommended to pilot in the sponsor company’s

R&D team widely in the future.

1.1 Background

In the recent telecom equipment industry, the R&D department still executes most of the

maintenance tasks in a traditional way: Once there is a system catastrophe, the engi-

neers have to access the equipment locally or remotely, collect all the massive symptom

logs as well as all possible data with some dedicated designed maintenance service

software. Normally, such software is complex and installed in a desktop or laptop envi-

ronment. The software performs analysis locally on the computer and usually demands

certain strict system requirements including hardware and software. For instance, it may

require powerful Central Processing Unit (CPU) calculation capability, massive memory

capacity, etc. In a word, such software is heavy-weight.

It is stated in Wikipedia that a mobile client application is a special computer program

designed to run on the mobile devices, such as smartphones and tablets. [1] Due to

emergence of higher capacity and much more powerful hardware performance, it is well

understood that an intelligent powerful software can also be innovated and developed

for the mobile devices, which is in the scope of mobile client application development.

2

According to an exclusive Automation World survey, applications handling specific in-

dustrial tasks are available for devices running Apple’s Mobile Operating System (iOS),

Google’s Mobile Operating System (Android) and Microsoft’s Mobile Operating System

(Windows Phone), as well as common browsers. [2] The mobile broadband connectivity

has been well developed, it makes sense and guarantees great performance in the area

where the network accessibility is needed. Taking the advantage of such mobility, the

R&D maintenance work can be triggered anywhere in real time, complies with the emer-

gency rule. That means, the engineers can quickly and easily utilize the mobile like ser-

vice solving the complex problem. In the telecom equipment industry, there is such de-

mand for R&D maintenance work.

1.2 Technology Problem

Although the recent silicon technology provides a feasible solution of allowing the mobile

devices running complex standalone tasks, from the end users’ view point, the mobile

client application should reach such a level as powerful as possible while light-weight.

Firstly, the mobile devices can only have the limit power capacity, the client application

must consume as little power as possible. Secondly, the mobile devices have the limit

memory and storage, so, the client application must occupy as little hardware resource

as possible.

Initially, the ESA system is specified to be a solo mobile client application, meaning the

original draft system architecture design has only single mobile client connect the DUT

directly, and it monitors the DUT’s hardware health as well as the running embedded

software status. Within this specification, the mobile client must get the massive data

and store it temporarily and locally in the mobile device. In the meanwhile, the mobile

client shall perform the complex analysis of the incoming data, updating the user inter-

face continuously. The secure access to the DUT is also important for the user. After the

feasibility study and group discussion within the participated Mobile Computing courses,

it comes to a common understanding that all of the requirements above make the project

technically challenging, and the mobile application is not able to achieve light-weight as

the specification designs. A new system architecture design must be created for the pro-

ject.

3

1.3 Object and Outcome

The object of the project is to design and implement an ESA system and its mobile client

application must be light-weight. To achieve the object, the cloud computing platform has

been taken into account, and also another dedicated server is utilized in the whole sys-

tem architecture. Moving all heavy tasks including data management and analysis to the

cloud computing platform makes the mobile client application more easily to develop to

be light-weight.

The purpose of the thesis project includes the following:

 Creating an ESA system architecture

 Partial implementation of the ESA system, including the basic functionality of

the CPAP and the light-weight MC application

 To see whether it is feasible and valuable to introduce and develop a mobile

concept to the telecom equipment enterprise

1.4 Project Methodology

Firstly, the system architecture was designed. There were several mature technologies

available for the project. Some of the technologies were evaluated and compared, and

the best solution was figured out. Secondly, the whole project process was executed in

software agile style, meaning the system requirement is flexible to modify according to

the better understanding of the system, the software implementation can be modified

and improved when the requirement is assessed and approved to modify. Thirdly, there

were practical implementations and verification activities planned for each phase, the

function unit test was performed when doing features implementation and system inte-

gration verification was planned when the whole system features are ready. Fourthly, the

outcome of the project was reviewed and studied, the pros and cons are covered at the

end of the study directing the project to reach a conclusion.

The project process steps are described here:

 The feasibility study for the project: for this step, the different technologies are

evaluated, and primary system architecture is designed and created.

 The system architecture design and implementation specification design: for

this step, the detailed system architecture is designed, and the implementation

4

specification covers the detail of each system entities, the specification is guide-

line for the following implementation activities.

 The system implementation: for this step, the main task is doing source coding

for both the MC and the CPAP.

 The system verification: for this step, the main task is performing the test activ-

ities as planned, once there is bug found, correct it and redo the test.

1.5 Scope and Structure

The project is scoped to high-level system architecture design and system software im-

plementation: the whole system architecture is fully designed, the system software is

partially implemented, and some open topic is left for the future.

The thesis consists of five sections. Section 1 provides a brief introduction about the

thesis project. Section 2 describes the theoretical and technical framework correspond-

ing to the thesis project. Section 3 describes the designed system architecture, including

the MC, the CPAP, the DS. Section 4 describes the practical implementation for the MC

and the CPAP, some source code structures are also described in this section. Section

5 discusses and concludes the achievements and limitations of the project.

5

2 Theoretical and Technical Framework

This chapter provides the description of the theoretical and technical details related to

the design and implementation of the ESA System. It also provides a technical introduc-

tion related to the DUT system. (Note: the DUT system is out of the scope of the system

design)

2.1 Mobile Client

The MC designed and implemented in the project provides a modern user interface and

demonstrates all the requested information retrieved from the CPAP in the real time.

Worldwide, the Android, iOS, and Windows Phone are still the three biggest giants dom-

inating the market share of the mobile smart devices operating system. Considering the

mobile smartphone operating system shipments in Q3 of 2015, the Android was the

strongest leader with 84.2% market share, while iOS and Windows came with the second

and third, having 13.5% and 1.7% respectively. [3]

In the project, the Android mobile operating system was chosen due to the following

reason: It offers a free, non-licensing and powerful development environment. In the pro-

ject, the Android Studio was applied, Figure 1 shows its main Integrated Development

Environment (IDE) window.

6

Figure 1. Android Studio window

Android Studio is the official IDE for Android application development. It is based on

IntelliJ IEDA. With IntelliJ’s powerful code editor and developer tools, Android Studio

provides several features such as flexible Gradle-based build system, build variants and

multiple APK file generation, code templates, rich layout editor, lint tools, code shrinking,

and built-in support for Google Cloud Platform. [4]

Also, the Android is open source operating system and there are plenty of open source

libraries that help develop high quality applications.

The introduction of the Android system architecture and the release history are described

in the following subsections.

2.1.1 Android System Architecture

According to Google’s official statement, the Android system architecture contains a va-

riety of software components, and has roughly seven sections and five layers as shown

in Figure 2:

7

Figure 2. Android system architecture [5]

The five layers are: Application Framework, Binder Inter-Process Communication (IPC)

Proxies, Android System Services, Hardware Abstraction Layer (HAL) and Linux Kernel.

8

Application Framework

The Application Framework layer provides the high-level services including the Activity

Manager, the Content Providers, the Resource Manager, the Notifications Manager and

the View System.

Binder IPC Proxies

When the Application Framework needs to cross the process boundaries, it must call the

Binder IPC mechanism. The IPC is transparent to the developer at the Application

Framework level.

Android System Services

The Android System Services are divided into two groups: the Media services and the

System services. It allows functionality to access the underlying hardware resources.

Hardware Abstraction Layer

The Hardware Abstraction Layer is essential for different hardware vendors to implement

hardware specific functionality for the Android system. Figure 3 shows an example of the

Hardware Abstraction Layer (HAL).

Figure 3. Android Hardware Abstraction Layer [5]

Linux Kernel

9

The Linux Kernel is at the bottom layer of the Android system architecture. It provides all

types of hardware essential drivers, for instance, camera driver, audio driver, display

drivers, etc.

In general, the Android system architecture is an end-to-end software architecture that

allows the mobile operating system working with the different hardware configurations

2.1.2 Android Versions

The release history of the Android began with the release of the Android alpha in No-

vember 2007, and the most recent major Android update is Android 6.0 Marshmallow.

[6] Figure 4 shows the global Android versions since December 2009.

Figure 4. Global Android versions since December 2009 [6]

In the project, Android 5.1.1 Lollipop was chosen and the client application was built on

it. The detail of the Android 5.1.1 Lollipop can be found in the following link: https://en.wik-

ipedia.org/wiki/Android_Lollipop. (accessed December 18, 2015)

2.2 Cloud Platform API Provider

The CPAP designed and implemented in the project behaves mainly as the core of the

whole system. The target DUT actively uploads or pushes back the predefined data to

the CPAP. With these uploaded data, the CPAP also performs the Embedded Software

https://en.wikipedia.org/wiki/Alpha_(software)
https://en.wikipedia.org/wiki/Android_Marshmallow

10

Status Analysis task according to the specified criteria. The CPAP provides the custom-

ized API for the MC to interact with. The project finally chose the Google App Engine

(GAE) based on the Google Cloud Platform to comply with the system requirement.

There are several reason for the decision: Firstly, the GAE provides all the features

needed for the project, as explained in the next section. Secondly, there are a handful of

open source references shared by the Google community and other organizations, they

can be the very good design reference for the project. Last but not the least, the Google

Cloud Platform provides a very friendly pricing policy and the Free Default Limit can fulfil

the academic project purpose.

2.2.1 Google App Engine

The GAE provides ability for the developers to build the scalable web applications and

the mobile backend. [7] The App Engine offers automatic scaling for web applications,

as the number of requests increases for an application, the App Engine automatically

allocates more resources for the web application to handle the additional demand. Ac-

cording to the cloud computing service definition, The GAE belongs to Platform-as-a-

Service model abbreviated as the PaaS. The GAE can support a variety of programming

languages including Java, Python, PHP and Go. [8] The developers can utilize its official

Software Development Kits (SDK) to build a simulated environment that can emulate all

the services on the local computer. With the deployment tools, developers can deploy

the different versions of the application and manage the version control easily. Figure 5

shows the GAE SDK environment.

11

Figure 5. GAE deployment

As Google officially states, the GAE includes the following features:

 Persistent storage with queries, sorting and transactions.

 Automatic scaling and load balancing.

 Asynchronous task queues for performing work outside the scope of a request.

 Scheduled tasks for triggering events at specified or regular intervals.

 Integration with other Google cloud services and APIs. [9]

In the project, the CPAP was designed and partially implemented by several key fea-

tures listed in Table 1.

12

Table 1. GAE features applied in the project cloud platform

App Identity
A framework that provides access to the application's identity, and the

ability to assert this identity using OAuth

Channel
Creates a persistent connection between application and JavaScript cli-

ents in order to send messages in real time without polling

Google Cloud End-

points

Generates APIs for Android, iOS, and web clients, making it easier to

create a web backend for application

OAuth

Uses the OAuth protocol to provide a way for app to authenticate a user

who is requesting access without asking for credentials (username and

password)

Users
Allows an application to send and receive chat messages to and from

any XMPP-compatible chat messaging service

With these key features, the CPAP meets the basic system requirements including data

management, real time communication and security.

2.3 DUT System

The DUT system interacting with the ESA System is a hardware platform running the

embedded Linux operating system. The DUT system provides the external interfaces so

that it can connect via network.

From the software function modules point of view, the DUT system can be understood

as three working modules, they are the Local Management Processor, the HW Manage-

ment Controller, and the HW Management Target. The system hierarchy is shown in

Figure 6.

13

MCU

IPMI

MCU FW MCU FW

MCU

Wind River Linux

PowerPC

BSP

HW MgmtNetwork Mgmt

HW Management
Controller

Local
Management

Controller

UART

Ethernet Interfaces

IPMI

HW Management
Target

Figure 6. DUT System overview

The modules are linked with the universal asynchronous receiver/transmitter (UART)

and Intelligent Platform Management Bus Local (IPMB-L) interfaces. The system mes-

sages can be communicated through these internal interfaces. Overall, the Local Man-

agement Controller is presenting to provide the necessary information for the ESA sys-

tem. The modules’ detailed responsibilities are described here:

 Local Management Controller

The Local Management Controller provides the system software services on the

basis of Wind River embedded Linux operating system. The applications run-

ning on the top of the operating system have the accessibility of the hardware

health status and running software status. Through the Ethernet interfaces, the

DUT can be connected from the outside network.

 Hardware Management Controller

The Hardware Management Controller provides the hardware management ser-

vices including on the local and remote sensors monitoring, the power payload

control, etc.

 Hardware Management Target

The Hardware Management Target is another entity mounted on the DUT sys-

tem. It consists of several add-in cards units. The hardware health status can

be read via IPMB-L interfaces.

14

The three modules are working together and generating the raw data required by the

CPAP. In this case, once there is communication problem among modules, the raw data

transmitted to the CPAP can be interrupted.

2.4 Communication Protocol

The CPAP designed for the project allows external entities uploading the data to the

cloud data storage directly, the communication protocol running between the CPAP and

external entities is the Hypertext Transfer Protocol (HTTP). The external entity involved

in the project is the DS that connects DUT via the Secure Shell (SSH) protocol. The DS

is actively retrieving the raw data from DUT, and the raw data will be pushed back to

CPAP for the further handling. The CPAP provides the customized API to the MC to

access its analysed data. The CPAP and the MC communicate via HTTP.

2.4.1 HTTP

The HTTP is an application protocol for distributed, collaborative, hypermedia infor-

mation systems. [10] The protocol is built of the Request and the Response, and it is

standard server-client model. Figure 7 illustrates the HTTP client and server communi-

cation.

Figure 7. HTTP Client and Server communication [11]

The HTTP session is always initiated from the client side by generating a request to

establish a Transmission Control Protocol (TCP) connection to a particular port on a

server, typically the port is port 80. From the HTTP server side, it listens on that port and

receives the client’s request message. When the server receives the request success-

fully, it replies a message to the client. [11]

https://en.wikipedia.org/wiki/Application_protocol

15

The HTTP generic message format contains the Start Line, the Message Headers, the

Empty Line Message Body and the Message Trailers. For the HTTP request and re-

sponse message, they are slightly different.

Table 2 shows the structural elements of an HTTP request and an example of the sorts

of headers a request might contain. [12]

Table 2. HTTP Request Message format

GET /index.html HTTP/1.1 Request Line

HTTP

Request

Date: Thu, 20 May 2004 21:12:55 GMT General

Headers Connection: close

Host: www.myfavoriteamazingsite.com

Request

Headers

From: joebloe@somewebsitesomewhere.com

Accept: text/html, text/plain

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows

NT 5.1)

 Entity Headers

 Message Body

Similar to the request message, the response message uses its own format as shown in

Table 3. [13]

Table 3. HTTP Response Message format

HTTP/1.1 200 OK Status Line

HTTP

Response

Date: Thu, 20 May 2004 21:12:58 GMT General

Headers Connection: close

Server: Apache/1.3.27 Response

Headers Accept-Ranges: bytes

Content-Type: text/html

Entity Headers Content-Length: 170

Last-Modified: Tue, 18 May 2014 10:14:49 GMT

<html>

Message Body

<head>

<title>Welcome to the Amazing Site!</title>

</head>

<body>

http://www.myfavoriteamazingsite.com/

16

<p>This site is under construction. Please come back later.

Sorry!</p>

</body>

</html>

The HTTP protocol provides the standardized method of network communication, it is

quite frequently applied in the area of server-client application.

2.4.2 SSH

The SSH is a cryptographic (encrypted) network protocol operating at layer 7 of

the Open System Interconnection model to allow the remote login and other network ser-

vices to operate securely over an unsecured network. [14]

The SSH provides three major capabilities according to reference [15]:

 Remote command line login and remote command execution secured with SSH,

known as Secure command shell

 File transfer using Secure File Transfer Protocol (SFTP)

 Port Forwarding.

In the project, the connection between the DS and DUT takes the File Transfer and Port

Forwarding as the main support for its functionality implementation. The detail about the

File Transfer and Port Forwarding is described here:

 File Transfer

The SFTP is defined as a separate protocol layered over the SSH to handle file

transfers. It encrypts both username/password and data being transferred. It

uses the same port as the SSH server has, this helps eliminating the necessity

of opening another port on the firewall or router. The Figure 8 shows an example

about using SFTP on the extranet machines effectively restricts access to au-

thorized users and encrypts usernames, passwords and files sent to or from the

SSH server. [15]

https://en.wikipedia.org/wiki/Network_protocol
https://en.wikipedia.org/wiki/Login

17

Figure 8. Single secure connection with multiple TCP/IP applications [15]

 Port Forwarding

Port Forwarding provides sufficient remote control with graphical method and

the encrypted tunnel over application is created. Figure 9 shows an example of

a cross platform Graphical User Interface remote control application based on

SSH Port Forwarding. [15]

Figure 9. Single secure connection with multiple TCP/IP applications [15]

With the SSH protocol service, the communication between the DS and DUT is reliable

and securable.

2.5 Security

The whole system connections are separated into three blocks: The MC and the CPAP

are connected with the HTTP protocol; The CPAP and the DS are connected with the

18

HTTP protocol; The DS and the DUT are connected with the SSH protocol. The main

security concern of the whole system for the project is the MC user access control to the

CPAP. The Oauth2.0 is chose to provide secure access control, due to following reason:

it is designed specifically to work with the HTTP. [15]

2.5.1 Oauth2.0

The Oauth2.0 is an open standard protocol that allows user authenticate the 3rd party

website or application to access the information provided by another service provider. It

doesn't require user to provide the user name and password to the 3rd party. [16] The

Oauth2.0 protocol involves four participants:

 The Resource Owner

It provides the authenticated right of accessing the resource.

 The Resource Server

It stores the resource and deals with the request to access the resource.

 The Client

It is the 3rd party application, when it is authenticated, it can access to the re-

source located in the Resource Server.

 The Authentication Server

It authenticates the identity of the Resource Owner, provides authentication pro-

cess for the Resource Owner, and delivers the access token.

In the Oauth2.0, the 3rd party client can be a website, or just a snip of Javascript code

running in the web browser, or even a software application installed locally in the ma-

chine. There are specific security essences for different types of the 3rd party client. For

the website application, it is isolated with the Resource Owner’s browser, it could save

the sensitive information inside the protocol by its own effort, and the security key can

be allowed secret to the Resource Owner. For the Javascript or local safe application,

they are running inside of the Resource Owner, so, the Resource Owner can access to

the sensitive client’s information inside the protocol.

The Oauth2.0 provides four different authentication type:

 Authorization Code Grant, it is applied to the application has its server backend

 Implicit Grant, it is applied to the pure Javascript client application

 Resource Owner Password Credentials Grant

19

 Client Credentials Grant.

Each authentication type is described in detail in the following part.

 Authentication Code Grant

The Authentication Code Grant is applied for the PC or mobile client that needs

communications with the 3rd party server, the process can be 2 steps, Step 1:

the client app needs to acquire the authentication code; Step 2: the client app

gets the access token by the authentication code. Figure 10 shows the detailed

Authorization Code flow.

Figure 10. Oauth2.0 Authorization Code Grant flow [17]

As Mohammad Amin Saghizadeh states, Oauth2.0 Authorization Code Grant flow can

be illustrated as five steps [17]:

(A) When the client id, requested scope, local state and redirection URI are

provided, the client triggers the flow to the Authorization Server. Whether

the access is granted or denied, the Authorization Server can send back

the received information.

(B) After the resource owner grants or denies the client’s access request,

the Resource Owner is verified by the Authorization server, in addition

the Authorization server establishes connection.

Resource Owner

User Agent

Client

Authorization

Server

(A) Client Identifier and

 Redirect URL

(B) User Authenticates

Authorization Code

Authorization Code

Redirect URL
Access Token

(w/ Optional Refresh Token)

(B)

(C)

(A) (C)

(D)

(E)

20

(C) When the Resource Owner grants access, the User Agent is sent back

by the Authorization Server to the Client through the redirection URI pro-

vided earlier.

(D) When the Client makes a request of an access token from the Authoriza-

tion Server’s token endpoint, it sends the authorization code obtained

from previous step. The Authorization Server and the Client verify this

process.

(E) The Authorization Server is in charge of the Client authentication, the

authorization code validation, and match between received redirection

URI and URI mentioned in step (C). The authorization Server feedback

an access token or a refresh token as option.

 Implicit Grant

The Implicit Grant is normally applied in the client application that does not have

server service. The client is the responsible entity to initiate the flow. For this

type of grant, there is no returned fresh token. Figure 11 shows the detailed

Implicit Grant flow.

Resource Owner

User Agent

Client

Authorization

Server

(A) Client Identifier and

 Redirect URL

(B) User Authenticates

Redirection URI

With Access Token

Redirection URI without

Fragement

Script

(B)

(C)

(A) (G)

(D)

(E)
Web Hosted

Client Resource

Access Token

(F)

21

Figure 11. Oauth2.0 Implicit Grant flow [17]

This flow, it contains seven steps as show in reference article [17]:

(A) When the client id, requested scope, local state and redirection URI

are provided, the client triggers the flow to the Authorization Server.

Whether the access is granted or denied, the Authorization Server

can send back the received information

(B) After the resource owner grants or denies the client’s access request,

the Resource Owner is verified by the Authorization server, in addi-

tion the Authorization server establishes connection.

(C) When the Resource Owner grants access, the User Agent is

changed back by the Authorization Server to the Client through the

redirection URI provided earlier.

(D) The User Agent makes a request to the web-hosted client resource

to follow the redirection instructions. User Agent retains the fragment

information locally.

(E) The Web Hosted Client Resource returns a web page, which is used

to access the full redirection URI. This URI contains the fragment

mentioned in step (D), and the access token (and other parameters)

contained in the fragment is extracted by this URI.

(F) The local web-hosted client resource provides execution script and

extracts the access token, and also the User Agent implements ex-

ecution script.

(G) At last, the User Agent delivers the access token to the Client.

The theoretical and technical parts of the MC, CPAP and DUT are described above and

two communication protocols, the HTTP and SSH are hereby explained. The Oauth2.0

is analysed for the purpose of security. In the next chapter, the detailed system architec-

ture design is shown.

22

3 System Architecture

This chapter describes the system architecture design for the whole project. The whole

system architecture is organized horizontally into three entities: the MC, the CPAP and

the DS. Figure 12 illustrates the ESA system architecture.

Cloud
Platform

API Provider

DUT

DUT
ServerMobile Client

Embedded Software Analysis System Architecture

Figure 12. ESA system architecture

The detail of the system architecture of is described in the following subsections.

3.1 Mobile Client System Architecture

The MC is booted with the Splash activity, it provides friendly information to the user for

the first time of usage. The control of the user access is mainly under the Signin activity

and Signup activity, the user needs to create new account for using the application. The

legal and approved user account information is stored both locally in the MC and re-

motely in the CPAP. The MC communicates with the CPAP via the HTTP protocol, by

sending the HTTP request, the MC receives the demanding data in the format of json.

The information is interpreted in a vertical hierarchy, all the details can be referred to in

Figure 13 below.

23

Open Source Lib

SigninActivity

DisplayBoxCpuAnd

SensorActivity

ConnectNetElementHubActivity

DisplayBoxMem

Activity

SignupActivity

ShowBoxStatsGroupActivity

ShowSelectedNetElementActivity

SQLite

DB

CircleProgressMPAndroidChart

DisplayBoxSyslog

Activity

DisplayBoxSel

Activity

DisplayBoxFastath

Activity

DisplayBoxCfg

Activity

ViewPagerIndicator

Cloud Platform
API Provider

SplashActivity Cloud Platform
API Provider

…

Figure 13. Mobile Client architecture

The MC application integrates several open source libraries to get the professional UI

implemented.

3.2 Cloud Platform API Provider Architecture

The CPAP integrates the GAE as the main content API provider, according to the

Google’s recommendation, the Cloud Endpoints are selected to simply make direct API

calls form the MC. [18] Figure 14 shows the abstract architecture for the CPAP.

24

Google App Engine

Cloud Platform
API Provider

Data Store HTTP
Cloud

Endpoints
HTTP

Mobile Client

Mobile Client DUT Server

Figure 14. Cloud Platform API Provider architecture

The CPAP communicates with the MC and DS through HTTP ports, it is mainly imple-

mented by the GAE. The GAE has two main units working, one is Cloud Endpoints that

interacts with the MC, the other is Data Store that stores the raw data from the DS.

3.3 DUT Server Architecture

The DS application is responsible of retrieving the raw data from the DUT, and pushing

the retrieved data to the Cloud Platform. The server application is built with the HTTP

client and SSH server that provide external interfaces for data communication. The DS

is a normal Linux operating system server that built with powerful personal computer or

professional server. Figure 15 shows the DS software architecture.

25

DUT Server DUT

SSHv2 Server

(sshd)

Server Application
DUT Hardware

Platform /

Embedded Linux

SSHv2 ClientSSHHTTP Client

Linux OS

Server Hardware Entity

HTTP
Cloud Platform

API Provider

Figure 14. The DUT Server architecture

The system architecture provides the guideline of the implementation of each entity.

Each entity performs a specific functionality, communicating and cooperating as a whole

system. The details of the implementation are described in the next chapter.

26

4 Implementation

This chapter describes the detailed implementation for both the MC and CPAP. For the

MC, the implementation follows the general operation flow chart, each operation is

mapped to the corresponding Android activities. For the CPAP, the implementation co-

vers the all steps about creating API engine in the Google Cloud Platform. An example

of the demonstration is also shown in this section.

4.1 Mobile Client

The MC application is implemented with Android Lollipop 5.1, it provides the end users

multiple interfaces to monitor the DUT’s statistics and understand the running status with

text and graphic information. The MC application consists of four main function units:

Initialization, Access Control, Data Management, and Analytics. The overall structure is

shown in Figure 16.

Figure 16. The Mobile Client function units overall structure

The real Android mobile device is utilized to run the MC application.

Access Control

AnalyticsData
Management

Initialization

27

4.1.1 Initialization

When the MC application is loaded up, the app starts the Splash screen so that it pro-

vides the user the first impression that the application is professional and fancy. The

Splash screen is created by the SplashActivity. A simple animation is implemented,

which is taken the open source library and customized. The general working flow is

shown in Figure 17.

Figure 17. Mobile Client Splash screen

With the Splash screen finishes, the user can start using the MC. The Splash screen is

handled by the SplashActivity, it is the first entry activity of the MC. The SplashActivity

imports open source libraries:

28

com.nineoldandroids:library:2.4.0

com.daimajia.easing:library:1.0.1@aar

com.daimajia.androidanimations:library:1.1.3@aar

com.github.ViksaaSkool:AwesomeSplash:v1.0.0

And, the class hierarchy is shown as:

public class SplashActivity extends AwesomeSplash

{

public void initSplash(ConfigSplash configSplash) {}

public void animationsFinished() {}

}

When the Splash screen finishes, the application jumps to the MainActivity for the next

step. It checks itself for the very first time started after the installation. There are two

scenarios:

 The scenario 1: the first time using the application

The MainActivity saves one software flag about the app has already been run

for more than once. Then, it demonstrates four pages of view to the user so as

some introduction about the app. In the last page, it provides the user an option

button to start the real functionality of the Mobile Client. The general working

flow is shown in Figure 18.

Figure 18. Mobile Client ViewPager screen

 The scenario 2: not the first time using the application

29

After finishing the SplashActivity, it goes directly to the SigninActivity. The gen-

eral working flow is shown in Figure 19.

Figure 19. Mobile Client goes to sign in screen

The MainActivity handles the page navigation as the scenario 1 shows and jumps to the

next step as the scenario 2 shows. The MainActivity imports open source library:

com.viewpagerindicator:library:2.4.1@aar

And, its class hierarchy is shown as:

public class MainActivity extends AppcompatActivity

{

protected void onCreate(Bundle savedInstsanceState) {}

protected void onPostResume() {}

public static class SectionsPagerAdapter extends FragmentPagerAdapter

{

public Fragment getItem(int position) {}

public int getCount() {}

}

public static class PlaceholderFragment extends Fragment

{

 public static PlaceholderFragment newInstance(int sectionNum) {}

 public PlaceholderFragment() {}

}

public View onCreateView(LayoutInflater) {}

}

Overall, in the initialization phase, the code flow is briefly shown in Figure 20 below.

30

Figure 20. Mobile Client initialization phase

With the initialization phase done, the MC is ready to interact with the users.

4.1.2 Access Control

The MC access control is implemented with the Google account availability and the

Google Play services via validating the application prior to allowing the OAuth2.0 access.

Therefore, to use the Mobile Client, the user has to firstly register the mobile device with

the available Google account in Google Play services. It can be achieved by signing the

Google account as shown in the example in Figure 21.

Launch splash screen

Is first time

used?

Launch view pager

Jump to sign in page

 Start

31

Figure 21. Mobile Client account service

Once the creating account is ready, from the sign in page, the user can click the “GET

GOOGLE ACCOUNT” button to retrieve the registered Google account for the device.

Once there is no Google account registered yet, an error pops up for a while. If the

Google account is retrieved, the user clicks sign in button to get signed in.

In the background, the OAuth2.0 authentication process is running. If network access is

available, the Mobile Client shall get the token as below, automatically, with the success-

ful token, the Mobile Client will jump to the next stage. The highlighted part in the follow-

ing figure is the token that the Mobile Client retrieves, see Figure 22.

Figure 22. Oauth2.0 token

Also, the user can create a new Google account here, by clicking the text link “No ac-

count yet? Create one”. It allows the user to call Google account service to create a new

account. Note, for this page, the creation of the Google account is not yet implemented.

See Figure 23.

32

Figure 23. Mobile Client Signin and Signup

In this part, there are two activities involved, they are SigninActivity and SignupActivity.

The SigninActivity imports open libraries:

group: ‘com.google.android.gms’, name: ‘play-services’, version: ‘3.2.25’

group: ‘com.google.guava’, name: ‘guava’, version: ’14.0.+’

group: ‘com.google.api-client’, name: ‘google-api-client-android’, version: ‘1.17.0-

rc’

And its class hierarchy shows as below:

public class SigninActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

protected void onDestroy() {}

protected void onActivityResult(int requestCode, int result code, intent data) {}

public void onBackPressed() {}

public void onLoginSucessful() {}

public void onLoginFailed() {}

public void getGoogleAccount() {}

public void startAuthCheck(String account) {}

public void signin() {}

33

private class AuthorizationCheckTask extends AsyncTask<String, Integer, Boolean>

{

protected Boolean doInBackground(String… accounts) {}

protected void onProgressUpdate(Integer… stringIds) {}

protected void onPreExecute() {}

protected void onPostExecute(Boolean aBoolean) {}

protected void onCancelled() {}

}

}

The SignupActivity class hierarchy is shown as below:

public class SignUpActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

public void signUp() {}

public void onSignupSuccessful() {}

public void onSignupFailed() {}

public Boolean validate() {}

}

The SigninActivity and SignupActivity provides a strict access control according to the

system requirement.

4.1.3 Data Management

The MC retrieves the needed information mainly through the HTTP protocol, by sending

the HTTP request to the CPAP. When the CPAP receives the request, it replies the MC

the information in the JavaScript Object Notation (JSON) format. The information request

is performed by the asynchronous task in the background. After the MC gets the JSON

object, it interprets the JSON object and converts it to the string format, for the later

usage. From the Android OS, the UI thread updates UI separately, in this case, the string

converted from the JSON object will be displayed in the UI. Figure 24 shows the example.

34

Figure 24. Mobile Client retrieves the site data

The user firstly gets an empty page by default. It is required to click the SCAN button to

retrieve site information. If the network connection to the CPAP is working, the site infor-

mation data will be retrieved and the MC updates the UI immediately. Otherwise, a failure

message shows up. Figure 25 shows the site JSON format data successfully.

Figure 25. Site data in JSON format

To go to the next step, the user clicks one of the list item. The MC navigates the user to

the corresponding section when the network connection is working normally. Figure 26

shows the example.

35

Figure 26. Mobile Client retrieves the element data

The data management is the essential part for the MC, there are the following activities

involved in this part: the ConnectNetElementHubActivity and the ShowSelectedNetEle-

mentActivity. The ConnectNetElementHubActivity implements FragmentNetElementList.

The ConnectNetElementHubActivity class hierarchy shows as below:

public class ConnectNetElementHubActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private void setupViewPager(ViewPager viewPager) {}

}

FragmentNetElementList class hierarchy shows as below:

public class FragmentNetElementList extends Fragment

{

public void onCreate(Bundle savedInstanceState) {}

public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle

savedInstanceState) {}

public void onViewCreated(View view, Bundle savedInstanceState) {}

public void onActivityCreated(Bundle savedInstanceState) {}

public void startRetrieveNetElementTask() {}

public void scan() {}

public boolean checkAvailability() {}

public void onScanNetElementSuccessful() {}

public void onScanNetElementFailed() {}

public void connectNetElement() {}

public void onConnectNetElementSuccessful() {}

public void onConnectNetElementFailed() {}

private class RetrieveNetElementsTask extends AsyncTask<Void, Void, String>

36

{

 protected String doInBackground(Void… urls) {}

 protected void onPostExecute(String s) {}

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveNetElementsTask() {}

}

The ShowSelectedNetElementActivity class hierarchy shows as below:

public class ShowSelectedNetElementActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private class retrieveBoxesTask extends AsyncTask<Void, Void, String>

{

 protected String doInBackground(Void… urls) {}

 protected void onPostExecute(String s) {}

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxesTask() {}

public void connectBox() {}

public void onConnectBoxSuccessful() {}

public void onConnectBoxFailed() {}

}

The next step is to select one target, the MC goes to the analysis part.

4.1.4 Analytics

The Analytics functionality unit gets the data analysis result and provides the user with a

graphic view of the running target status. It provides six analytic items: the CPU & Sen-

sors, the Memory, the System Log, the SEL, the Fastpath and the Configuration. All the

data and information shown in the UI are real time data. The MC handles the data in the

background thread and UI is updated by UI thread separately. There is one activity im-

plemented in this section, it is ShowBoxStatsGroupActivity, running as an Analytics man-

ager. There are six sub activities corresponding to the six analytic items: the DisplayBox-

CpuAndSensorActivity, the DisplayBoxMemActivity, the DisplayBoxSyslogActivity, the

DisplayBoxSelActivity, the DisplayBoxFastpathActivity, the DisplayBoxCfgActivity. See

Figure 27.

37

Figure 27. Mobile Client goes to analytics

The ShowBoxStatsGroupActivity class hierarchy shows as below:

Public class ShowBoxStatsGroupActivity extends AppCompatActivity

{

 protected void onCreate(Bundle savedInstanceState) {}

}

The DisplayBoxCpuAndSensorActivity imports the open source library:

com.github.lzyzsd:circleprogress:1.1.0@aar

And the class hierarchy shows as below:

Public class DisplayBoxCpuAndSensorActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private void setupViewPager(ViewPager viewPager) {}

private class RetrieveBoxCpuAndSensorTask extends AsyncTask<Void, Void, String>

{

 Protected String doInBackground(Void… urls) {}

 Protected void onPostExecute(String s) {}

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxCpuAndSensorTask() {}

}

The DisplayBoxCpuAndSensorActivity retrieves the data from Cloud Platform API pro-

vider, and updates the user interface as below (Figure 28):

38

Figure 28. Mobile Client shows CPU and Sensors statistics

The MC shows the running CPU loading and speed, also all the sensors reading are

shown in the list dynamic graphic charts. The MC performs the task in the background,

sends the data request to the CPAP. If network is working normally, the CPU and sen-

sors data are retrieved in the JSON format as shown in Figure 29 below.

Figure 29. CPU and Sensors data in JSON format

The DisplayBoxMemActivity imports the open source library:

com.github.PhilJay:MPAndroidChart:v2.1.6

And the class hierarchy shows as below:

public class DisplayBoxMemActivity extends AppCompatActivity implements OnChart-

ValueSelectedListener

{

protected void onCreate(Bundle savedInstanceState) {}

protected void onValueSelected(Entry e, int dataSetIndex, Highlight h) {}

protected void onNothingSelected() {}

private SpannableString generateCenterSpannableText() {}

private void setData(int count, float range) {}

private class RetrieveBoxMemTask extends AsyncTask<Void, Void, String>

{

 Protected String doInBackground(Void… urls) {}

 Protected void onPostExecute(String s) {}

}

39

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxMemTask() {}

}

The DisplayBoxMemActivity retrieves the memory data from the CPAP, and updates the

user interface as below (Figure 30):

Figure 30. Mobile Client shows Memory statistic

If the network is working normally, the memory data is retrieved in the JSON format as

shown in Figure 31 below.

Figure 31. Memory data in JSON format

The DisplayBoxSyslogActivity class hierarchy shows as below:

public class DisplayBoxSyslogActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private class RetrieveBoxSyslogTask extends AsyncTask<Void, Void, String>

{

 Protected String doInBackground(Void… urls) {}

 Protected void onPostExecute(String s) {}

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxSyslogTask() {}

40

private List<SyslogInfo> createList() {}

}

The DisplayBoxSyslogActivity retrieves the system log data from the CPAP, and updates

the user interface as below (Figure 32):

Figure 32. Mobile Client shows system log

If the network is working normally, the system log data is retrieved in the JSON format

as shown in Figure 33 below.

Figure 33. System log data in JSON format

The DisplayBoxSelActivity class hierarchy shows as below:

public class DisplayBoxSelActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private class RetrieveBoxSelsTask extends AsyncTask<Void, Void, String>

{

 Protected String doInBackground(Void… urls) {}

41

 Protected void onPostExecute(String s) {}

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxSelsTask() {}

private List<SelInfo> createList() {}

}

The DisplayBoxSelActivity retrieves the system event log data from the CPAP, and up-

dates the user interface as below (Figure 34):

Figure 34. Mobile Client shows system event log

If the network is working normally, the system event log data is retrieved in the JSON

format as shown in Figure 35 below.

Figure 35. System event log data in JSON format

The DisplayBoxFastpathActivity class hierarchy shows as below:

public class DisplayBoxFastpathActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private class RetrieveBoxFastpathTask extends AsyncTask<Void, Void, String>

42

{

 Protected String doInBackground(Void… urls) {}

 Protected void onPostExecute(String s) {}

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxFastpathTask() {}

private List<FastpathInfo> createList() {}

}

The DisplayBoxFastpathActivity retrieves the fastpath data from the CPAP, and updates

the user interface as below (Figure 36):

Figure 36. Mobile Client shows fastpath

If the network is working normally, the fastpath data is retrieved in the JSON format as

shown in Figure 37 below.

Figure 37. Fastpath data in JSON format

The DisplayBoxCfgActivity class hierarchy shows as below:

public class DisplayBoxCfgActivity extends AppCompatActivity

{

protected void onCreate(Bundle savedInstanceState) {}

private class RetrieveBoxCfgTask extends AsyncTask<Void, Void, String>

{

 Protected String doInBackground(Void… urls) {}

 Protected void onPostExecute(String s) {}

43

}

public static String HttpRequest(int way, String url) {}

public void startRetrieveBoxCfgTask() {}

private List<CfgInfo> createList() {}

}

The DisplayBoxCfgActivity retrieves the configuration data from the CPAP, and updates

the user interface as below (Figure 38):

Figure 38. Mobile Client shows configuration

If the network is working normally, the configuration data is retrieved in the JSON format

as shown in Figure 39 below.

Figure 39. Configuration data in JSON format

With the four main function units: Initialization, Access Control, Data Management, and

Analytics implemented, the MC meets the requirement of the system architecture on the

mobile client side. In the next section, the implementation of the CPAP will be described.

4.2 Cloud Platform API Provider

44

The CPAP implemented for this project is based on GAE. It has two main separate parts:

the service authenticator and the content provider. Both the service authenticator and

the content provider are written in the Python programming language.

For the service authenticator, it implements Oauth2.0 authentication server by using

Google Cloud Endpoints solution directly. After the service authenticator project deploy-

ment to the Google App Engine, it is required to register the Android Client that devel-

oped in this project so that it can access to the Google Cloud Endpoints. To make it

happen, these steps are followed in the Google Cloud Platform console:

 Navigate to the Google Cloud Console and go into API Manager section

 Select Credentials menu, and create the Client ID for Android application

 Fill in all must content

Get Android application debugging keystore fingerprint by “keytool -list -v -

keystore ~/.android/debug.keystore”

 Provide the Android Application package name

After these are completed, the Client ID is created. Figure 40 below shows the client ID

registration in the Google Cloud Platform.

Figure 40. Client ID registration in Google Cloud Platform

The registered Client ID for the authenticator allows the MC application get itself to be

authenticated, that means another Android application is not permitted to get the authen-

tication service.

45

For the content provider, it is webapp2 based application designed in the GAE. The main

feature of the content providers provide the needed raw data to the Android application

client when it receives the request.

46

5 Discussion and Conclusions

The project involves the practical work of designing and developing the mobile client

application and the cloud platform service. The work is dedicated for a traditional telecom

enterprise, in order to introduce the mobile concept for the daily R&D maintenance work.

The main technical challenge for the project was the complexity of the whole system

architecture design, it has both front-end application and back-end service. Hence, dif-

ferent technologies including mobile computing, cloud computing, web service are inte-

grated for the system. With several rounds of investigation of the most popular and pow-

erful mobile technology, the project fixes the system architecture eventually. The mobile

client as the front-end application is implemented based on Android platform, while the

cloud platform as the back-end service is implemented based on Google App Engine.

Considering the implementation work, there is a constraint when demanding real data

from the company’s secure network. It is forbidden to access the laboratory network

without the company’s IT grant. To solve the access issue, the project chose the solution

of simulating the real equipment data. The simulation is performed in the cloud platform.

It is assumed the simulated data can reflect the real data transmission between the DS

and the CPAP. The method of simulation is out of the project scope.

From the business challenge point of view, the project is to convince that the mobile

concept can be feasible and powerful for the future work in the telecom enterprise. Bind-

ing the traditional telecom equipment industry with new mobile concept needs appropri-

ate entry points. In the telecom enterprise, the efficiency of daily R&D maintenance work

usually determines an important Key Performance Indicator (KPI) performance. It is a

demanding to introduce the new way of maintenance work. The maintenance tool is the

most important factor. With common understanding from the company, the project took

the daily R&D maintenance work as the good entry point.

In the project, the ESA system architecture was designed, the ESA system implementa-

tion was partially completed, and there are two parts: the CPAP and light-weight MC.

The outcome of the project provides the evidence of the feasibility of applying the mobile

47

application in the telecom enterprise work. The ESA system prototype was developed

and delivered internally with some limitations listed here:

 The access control to the MC relies on the Google account, for the telecom

enterprise, it is not secure and safe

 There is no multi user support in the system

 On the CPAP side, the data source is not really generated by the DUT, to just

prove the concept, the data is simulated and generated locally in the CPAP

 There is no data persistence implementation on both the MC and CPAP side.

All data existing in the system are volatile.

 The heavy analytics part is not yet powerfully developed, hence, the analysis

result shown on the MC is not that smart as it is expected to be.

All above mentioned limitations or incompleteness will be continued to be worked on in

future. The plan as follows:

 The access control implemented in both MC and CPAP relies on the company’s

own authentication policy and intra-account

 Must support multiple users in the system. This is quite important to improve the

efficiency of the maintenance cooperation work

 Getting the access to the real equipment, and retrieve the real data

 Implementing data store in the CPAP

 Improving analytics feature in the CPAP.

Although there are limitations or incompleteness in the project, for the academic purpose,

the project provides the valuable practice of introducing the mobile concept to the con-

servative telecom industry, and in this direction, the mobile concept has a bright feature.

48

References

1. Wikipedia, Mobile app. [ONLINE]. Available: https://en.wikipedia.org/wiki/Mo-

bile_app. [Accessed December 12, 2015]

2. Renee Bassett, Industrial Mobile Apps: Who's Using Them and Why. August 29,

2014. [ONLINE]. Available: http://www.automationworld.com/mobility/industrial-mo-

bile-apps-whos-using-them-and-why. [Accessed December 12, 2015]

3. Tomi T Ahonen, Smartphone Wars: Q3 Scorecard - All market shares, Top 10

brands, OS platforms, Installed base. October 30, 2015. [ONLINE]. Available:

http://communities-dominate.blogs.com/brands/2015/10/smartphone-wars-q3-

scorecard-all-market-shares-top-10-brands-os-platforms-installed-base.html. [Ac-

cessed December 15, 2015]

4. Google, Android Studio Overview. [ONLINE]. Available: http://developer.an-

droid.com/tools/studio/index.html. [Accessed December 15, 2015]

5. Google, Android Interfaces and Architecture. [ONLINE]. Available:

https://source.android.com/devices/. [Accessed December 18, 2015]

6. Wikipedia, Android version history. [ONLINE]. Available: https://en.wikipe-

dia.org/wiki/Android_version_history. [Accessed December 26, 2015]

7. Google, App Engine. [ONLINE]. Available: https://cloud.google.com/appengine/.

[Accessed December 14, 2015]

8. Sanderson, Dan (2009). Programming Google App Engine: Build and Run Scala-

ble Web Apps on Google's Infrastructure. O'Reilly Media.ISBN 978-0-596-52272-8.

p1 - 3.

9. Google, Overview of App Engine Features. [ONLINE]. Available:

https://cloud.google.com/appengine/features/. [Accessed December 29, 2015]

10. Wikipedia, Hypertext Transfer Protocol. [ONLINE]. Available: https://en.wikipe-

dia.org/wiki/Hypertext_Transfer_Protocol. [Accessed January 4, 2016]

11. Charles M. Kozierok, HTTP Operational Model and Client /Server Communication.

September 20, 2005. [ONLINE]. Available:

http://www.tcpipguide.com/free/t_HTTPOperationalModelandClientServerCommu-

nication.htm. [Accessed January 4, 2016]

12. Charles M. Kozierok, HTTP Request Message Format. September 20, 2005.

[ONLINE]. Available: http://www.tcpipguide.com/free/t_HTTPRequestMessageFor-

mat.htm. [Accessed January 5, 2016]

https://en.wikipedia.org/wiki/O%27Reilly_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52272-8

49

13. Charles M. Kozierok, HTTP Response Message Format. September 20, 2005.

[ONLINE]. Available: http://www.tcpipguide.com/free/t_HTTPResponseMes-

sageFormat.htm. [Accessed January 6, 2016]

14. Wikipedia, Secure Shell. [ONLINE]. Available: https://en.wikipedia.org/wiki/Se-

cure_Shell. [Accessed January 10, 2016]

15. VanDyke Software, Inc, White Paper, An Overview of the Secure Shell (SSH). p3 -

6.

16. Wikipedia, Oauth. [ONLINE]. Available: https://en.wikipedia.org/wiki/OAuth. [Ac-

cessed January 20, 2016]

17. Mohammad Amin Saghizadeh, INTRODUCING OAUTH 2.0 PROTOCOL: SECU-

RITY AND PERFORMANCE. [ONLINE]. Available: http://www.myjittips.com/intro-

ducing-oauth-2-security-and-performance/. [Accessed January 21, 2016]

18. Google, Mobile App Backend Services. [ONLINE]. Available:

https://cloud.google.com/solutions/mobile/mobile-app-backend-on-cloud-platform.

[Accessed February 2, 2016]

http://www.myjittips.com/introducing-oauth-2-security-and-performance/
http://www.myjittips.com/introducing-oauth-2-security-and-performance/
https://cloud.google.com/solutions/mobile/mobile-app-backend-on-cloud-platform

Appendix 1

1 (1)

DUT Sensors Table

Appendix 2

1 (1)

Credit

All icons used in the mobile applications are made by Freepik from www.flati-

con.com:

<div>Icons made by Freepik from www.flaticon.com is licensed by <a

href="http://creativecommons.org/licenses/by/3.0/" title="Creative Commons BY 3.0" tar-

get="_blank">CC 3.0 BY</div>

http://www.freepik.com/
http://www.flaticon.com/
http://www.flaticon.com/

