Konstruktion av kebabstocklinje

Andreas Snellman

Examensarbete för ingenjörsexamen (YH)

Utbildningsprogrammet för maskin- och produktionsteknik

Vasa 2016
Abstrakt

Eftersom tillverkningen av de olika sorterna är helt olika så består linjen av moduler som lätt kan bytas ut. Modulerna har rörliga delar som styrs av pneumatiska cylindrar. Resultatet av examensarbetet är tillverkningsritningar för fyra moduler.

Språk: svenska Nyckelord: konstruktion, kebabstock, produktionslinje
OPINNÄYTETYÖ

Tekijä: Andreas Snellman

Koulutusohjelma ja paikkakunta: Kone- ja tuotantotekniikka, Vaasa

Suuntautumisvaihtoehto/Syventävät opinnot: Koneensuunnittelu

Ohjaajat: Andreas Gammelgård, Jimmy Snellman

Nimike: Kebabvarraslinjan suunnittelu

Päivämäärä 7.4.2016 Sivumäärä 37 Liitteet 14

Tiivistelmä

Koska erilasten vartaiden tuottaminen on täysin erilaista, tuotantolinja sisältää siirrettäviä moduuleja. Moduuleissa on liikkuvia osia, joita kontrolloidaan sylintereillä. Opinnäytetyön tuloksena on tuotantolinjan neljän moduulin piirustukset.

Kieli: ruotsi Avainsanat: suunnittelu, kebabvarras, tuotantolinja
Summary

This Bachelor’s Thesis was commissioned by Ole’s Fast Food. The line that produced kebab logs was to be renewed in connection with the construction of a new factory. Since there were not enough machines that make kebab logs on the market, a part of the production line was made as a thesis work. The aim of the thesis was to plan and construct modules to a production line that produces kebab logs efficiently and hygienically. The production line had to be ergonomic and safe to work on. The work started with determining the function and sketching of the production line. The production line had to be able to produce two different kinds of kebab logs, machine made and handmade.

Since the production of the different varieties is completely different, the production line consists of easily replaceable modules. The modules have moving parts that are controlled by pneumatic cylinders. The result of the thesis work is manufacturing drawings for four modules.

Language: swedish Key words: construction, kebab log, production line
Innehållsförteckning

1 Inledning .. 1
 1.1 Bakgrund .. 2
 1.2 Syfte och avgränsning ... 3
 1.3 Företagsbeskrivning .. 3
 1.4 Disposition ... 3

2 Befintliga linjen ... 4

3 Teori ... 6
 3.1 Livsmedelshygien ... 6
 3.2 Livsmedelskonstruktioner .. 7
 3.2.1 Standarder .. 7
 3.3 Material ... 12
 3.4 Rostfria stål ... 12
 3.4.1 De rostfria grupperna ... 14
 3.4.2 Mekaniska egenskaper .. 15
 3.5 Svetsning .. 16
 3.5.1 Svetsning av austenitiska stål .. 16
 3.5.2 TIG-svets ... 17
 3.5.3 Betning .. 18
 3.6 Pneumatik ... 19
 3.6.1 Tryckluft ... 19
 3.6.2 Pneumatiska komponenter .. 20

4 Metod ... 21
 4.1 Möten ... 21
 4.2 Siemens NX 10 ... 22
 4.3 Fluid-Sim .. 22
5 Resultat ..23
 5.1 Linjen ..23
 5.2 Kebabsprutan ..26
 5.3 Kebabkakmaskin ...26
 5.4 Maskinsprutning ..27
 5.5 Käppning ..29
 5.6 Handbakning ...31
 5.7 Bord ..34
 6 Diskussion ..35
 7 Källor ..36
<table>
<thead>
<tr>
<th>Bilaga</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sammanställningsritning för maskinsprutningsmodul</td>
</tr>
<tr>
<td>2</td>
<td>Sammanställningsritning för maskinsprutningsmodul</td>
</tr>
<tr>
<td>3</td>
<td>Tillverkningsritning för stommen till maskinsprutningsmodulen</td>
</tr>
<tr>
<td>4</td>
<td>Flödesschema för maskinsprutningsmodul</td>
</tr>
<tr>
<td>5</td>
<td>Sammanställningsritning för käppningsmodul</td>
</tr>
<tr>
<td>6</td>
<td>Sammanställningsritning för käppningsmodul</td>
</tr>
<tr>
<td>7</td>
<td>Tillverkningsritning för stommen till käppningsmodulen</td>
</tr>
<tr>
<td>8</td>
<td>Flödesschema för käppningsmodul</td>
</tr>
<tr>
<td>9</td>
<td>Sammanställningsritning för handbakningsmodul</td>
</tr>
<tr>
<td>10</td>
<td>Sammanställningsritning för handbakningsmodul</td>
</tr>
<tr>
<td>11</td>
<td>Tillverkningsritning för stommen till handbakningsmodulen</td>
</tr>
<tr>
<td>12</td>
<td>Flödesschema för handbakningsmodul</td>
</tr>
<tr>
<td>13</td>
<td>Sammanställningsritning för bord</td>
</tr>
<tr>
<td>14</td>
<td>Tillverkningsritning för stommen till bordet</td>
</tr>
</tbody>
</table>
1 Inledning

I detta examensarbete behandlas konstruktionen av fyra moduler till en kebabstocklinje åt Ole’s Fast Food i Jakobstad.

Hygienregler i en livsmedelsproduktion gör att konstruktionen skiljer sig på så vis från en vanlig konstruktion att den inte får ha ställen där bakterier kan samlas och gro. Detta ger vissa begränsningar i konstruktionen. Eftersom produktionsutrymmet tvättas efter varje produktionsdag så skall komponenter som kan ta skada av fukt skyddas.

Eftersom kebabstockar kan tillverkas på två olika sätt skall hela linjen bestå av olika moduler som lätt går att ändra om. Konstruktionen måste klara av vikten av lådorna och vara lätt för att underlätta förflyttningen av modulerna. Arbetsräkneren måste också tas i beaktande då det finns rörliga delar på linjen. Alla rörliga delar på modulerna skall styras av pneumatik.

På grund av att kebabstockarna är av olika höjder så måste en modul konstrueras så att arbetshöjden skall vara ställbar. De fyllda lådorna väger upp till 30 kg så för att göra det så lätt som möjligt för produktionsarbetarna så skall lådorna behöva kunna flyttas enkelt.

Längden och storleken av linjen skall också anpassas enligt produktionsplanen.
Idén till examensarbetet kom från att den fabrik som Ole´s Fast Food befann sig i hade blivit för liten och en ny fabrik behövdes. I samband med den nya fabriken skulle en del av produktionslinjerna också förnyas och effektiviseras. Linjen som producerade kebabstockar var ineffektiv, oergonomisk och föråldrad. Eftersom det inte finns tillräckligt utbud på marknaden av denna sort av produktionslinje bestämdes det att bästa sättet var att planera och konstruera en del av linjen som ett examensarbete. Planeringen av linjen påbörjades under sommaren 2015.
1.2 Syfte och avgränsning

Huvudsyftet med detta examensarbete är att planera och konstruera fyra moduler till en produktionslinje som producerar kebabstockar så effektivt, enkelt och säkert som möjligt, arbetet vid linjen skall också vara ergonomisk. Delsyften är att de färdiga kebabstockarna skall vara av hög kvalitet och linjen skall följa hygienstandarder.

Detta examensarbete avgränsas till produktionen vid Ole´s Fast Food.

1.3 Företagsbeskrivning

Ole´s Fast Food är ett modernt familjeägt livsmedelsföretag i Jakobstad som grundades år 2000. Företaget är känd som en pålitlig tillverkare och leverantör av rå-frysta köttprodukter. Företaget levererar sina hamburger biffar och kebabstockar till partihandeln, livsmedelsgrossister och direkt till samarbetspartners.

Verksamheten står under tillsyn av Evira och uppfyller alla gällande EU-direktiv. Idag anställer Ole’s Fast Food 12 personer och hade 2014 en omsättning på 4,5 miljoner euro. (Oles (u.å.))

1.4 Disposition

I dispositionen redogörs för vad de olika kapitlen av arbetet innehåller.

- Kapitel 1 innehåller bakgrunden, syftet, avgränsning och en beskrivning av företaget.
- Kapitel 2 beskriver den befintliga linjen
• Kapitel 3 innehåller teorin bakom arbetet, teorin innehåller bland annat hygienregler, konstruktionsmetoder som kommer att användas, och en del om pneumatiken.
• Kapitel 4 redogör för vilka metoder och tillvägagångssätt som används i arbetet.
• Kapitel 5 presenterar resultatet av arbetet.
• Kapitel 6 innehåller en diskussion om arbetet.

2 Befintliga linjen

Den befintliga linjen består av sprutan, käpparen och ett bord som används vid handbakning. Maskinsprutningen kräver mycket fysiskt arbete och tunga lyft för produktionspersonalen. Vid handbakningen formas kebabakorna för hand och bakas sedan i lådorna när dom står på en lastpall på golvet, detta gör arbetsställningen mycket oergonomisk och tidskrävande.

En färdigtillverkad kebabstock låda har också en ihålig paffpinne i centrum. Paffpinnen är där för att när kebabstocken blir grillad är den fastlagd så att kebabstocken vilar på en roterande skiva som har en metallpinne i centrum som skall gå inuti paffpinnen och fästas i övre delen av grillen. Vid tillverkning av kebabstocken trycks paffpinnen in i kebabmassan och detta gör att köttfibrerna böjs nedåt. När de färdiga kebabstockslådorna sedan frysas så rätar köttfibrerna ut sig och detta gör att paffpinnen lyfts upp ca 3cm och kebabmassan slipper under paffpinnen. Detta leder till problem för kunderna och måste därför åtgärdas.

Käpparen som används är föråldrad och hela produktionsutrymmet har blivit för litet vilket ger begränsningar vad gäller linjen storlek.

Tillverkningstiden för maskinsprutade 15 kg lådor är ca. 10 min/lastpall och för handbakade 20 kg lådor är tiden ca 20 min/lastpall. I båda fallen var det två personer som gjorde jobbet.
Figur 2 Befintliga linjen med sprutan (höger) och käpparen (vänster).

Figur 3 Bakning av kebaskakor.

Figur 4 Kebabkakorna bakas i lådorna.

Figur 5 Fyllda kebählådor utan centrum käpp.
3 Teori

Teoridelen i detta examensarbete handlar i stort sett om alla de saker som examensarbetet omfattar. Det som är genomgående i hela teorin är vilka hygienregler som överlag måste följas för en konstruktion i en livsmedelsproduktion. Orsaken till det är att jag märkte att det kan vara svårt att hitta information om vilka regler och standarder som egentligen måste följas, på detta vis kan andra ha nytta av att få all teori samlat på ett och samma ställe.

3.1 Livsmedelshygien

Livosmedelshygienen i Finland har på de senaste 30 åren blivit mycket strängare. De flesta livsmedelsproduktioner blir övervakade internt i företaget men också av livsmedelsäkerhetsverket Evira som ser till att det inte finns risker för att livsmedlet blir kontaminerat som i sin tur leder till matförgiftning.

Det finns regler från till exempel att produktionsarbetarna inte får ha smink eller smycken på sig till vilket material konstruktionerna skall vara gjorda av.

Strikt hygien standard måste uppehållas för att förhindra matförgiftning. Målet med dessa standarder är att:

- Att förhindra att livsmedel blir kontaminerade med matförgiftnings bakterier.
- Att förhindra att de bakterier som har sluppit in i livsmedlet sprider sig.
- Att förinta de bakterier som kan finnas i livsmedlet med ordentlig kokning.

Matförgiftningsbakterier kan komma i kontakt med livsmedlet i huvudsak från tre olika källor:

- **Livosmedels hanterare.** *Staphylococcus aureus, Salmonella* och *Clostridium perfringens* kan alla bli burna av produktionsarbetarna.
- **Produktionsutrymme.** Sporerna från *Clostridium perfringens* och *Bacillus cereus* kan finnas i damm i produktionsutrymmet.

- **Livsmedlet.** Livsmedlet i sig själv kan innehålla matförgiftningsbakterier när det tas in i produktionen.
 (Gaman och Sherrington, 1996, s.257)

3.2 Livsmedelskonstruktioner

Alla konstruktioner som blir använda i en livsmedelsproduktion måste vara positionerade och konstruerade så att de är lätt att rengöra. Livsmedelskonstruktioner skiljer sig från vanliga konstruktioner på så vis att de inte får ha ställen där bakterier inte kan tvättas bort utan lämnar där och kan gro. De måste också hållas i bra skick och får inte till exempel vara rostiga. De får inte vara gjorda av material som är absorberande eller som rostar.

Om det finns delar eller komponenter på konstruktionen som är av material som inte är anpassad till en livsmedelsproduktion måste de delar skyddas från att komma i kontakt med livsmedel, vatten och tvättmedel.

3.2.1 Standarder

Dränning av behållare

Hygienrisk

Acceptabelt

a) Icke-dränerbar design

b) Dränerbar design

Figur 6 Bra och dåliga exempel vad gäller dränning av behållare.
Konstruktion av transportband

<table>
<thead>
<tr>
<th>Hygienrisk</th>
<th>Acceptabelt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Död utrymme
2. Svets fogar
3. Axlar

Figur 7 Bra och dåliga exempel vad gäller konstruktion av transportband.

Intern vinklar och hörn

<table>
<thead>
<tr>
<th>Hygienrisk</th>
<th>Acceptabelt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 8 Bra och dåliga exempel vad gäller interna vinklar och hörn.
Svetsade fogar

Hygienrisk

Acceptabelt

Helsvetsad överlappsfog

Helsvetsad fog

Intermittent svetsad överlappsfog

Figur 9 Bra och dåliga exempel vad gäller svetsade fogar.
Utformning av fästelement

Hygien risk

Acceptabla

1 Metall mot metall-kontakt
2 Produktområde
3 Dödutrymme
4 Spalt
5 Springa
6 Välvt huvud
7 Metall
8 Elastisk
9 Välvt
10 Sexhörning
11 Sluttande
12 Cirkulär krage
13 Väl utformad mutter/ skruvhuvud
14 Baksidan av produktområde, svetsad tapp

Figur 10 Bra och dåliga exempel vad gäller utformningen av fästelement.
3.3 **Material**

En sak som hygienreglerna säger om materialet är att det inte får rosta på grund av att bakterier kan lätt samlas i ojämnheterna som uppkommer. Rost gör också stålet poröst och det finns en risk för att bitar av rost kan komma lös och komma i kontakt med livsmedlet. Därför används alltid rostfria stål i en livsmedelsproduktion.

3.4 **Rostfria stål**

Om ett kolstål utsätts för luftens inverkan kommer stålet att bilda ett oxidskikt på ytan och stålet blir då passivt, när stålet är passivt rostar det inte om man lägger ner det i rent vatten. Om oxidskiktet på stålets yta skadas så kommer stålet att rosta, stålet kan då heller inte repassiveras i vatten.

Rostfria stål innehåller en större mängd krom till exempel 15 % Cr. Detta gör att stålet kan repassiveras i vatten. Stålet klarar då också att re-passiveras i en svagt sur lösning eller i en utspädd koksaltslösning. Eftersom denna sort av stål inte rostar i vatten eller svaga kloridlösningar så brukar de därför kallas rostfria stål. De austenitiska kromnickelmolybdenstålen brukar kallas syra-härdiga eftersom de klarar av att förbli passiva i mera sura lösningar, alltså de är härdiga mot syror.

Man brukar dela upp de rostfria stålen i ferritiska, martenitiska och austenitiska stål samt mellangrupper. (Brennert, 1993, s. 221)
Konstruktionens utformning har också en betydelse i hur bra korrosions beständighet den har. Följande exempel visar dåliga och bra exempel på utformningen av en konstruktion med tanke på rostbeständighet.

Figur 11 Bra och dålig utformning med hänsyn till rostbeständighet (Stålbyggnadsinstitutet, 2006, s.31).
3.4.1 De rostfria grupperna

Beroende på deras mikrostruktur delas de rostfria stålen in i:

- Ferritiska stål
- Austenitiska stål
- Duplexa stål (ferri-austenitiska)
- Martenitiska stål
- Urskilningshärdade stål

Austenitiska, duplexa och ferritiska stål är de stålgrupper som egentligen alltid används.

3.4.1.1 Austeniter

Austenitiska stålen är den stålgrupp som används mest och då speciellt EN 1.4301 (304) och EN 1.4401 (316). Det som utmärker austeniter är att de har en god svetsbarhet och en mycket god formbarhet. I nästan alla miljöer så klarar austeniterna sig bra mot rost. De mest vanliga austeniter finns att få tag på i nästan alla produkt former eftersom de används ofta och inom så många områden. Austeniternas huvudsakliga användningsområden är t.ex. inom kemisk-, cellulosa-, byggnads- och livsmedelsindustrin eller där det finns krav på god korrosionsresistens. Austenitiska stål är inte magnetiska. (Andersson, 2009, s.1)

3.4.1.2 Duplexa

De ferri-austenitiska stålen eller duplexa stålen som de oftare kallas, har en blandning av två faser, vilket gör att hållfastheten är dubbelt högre för de duplexa än för de austenitiska stålen. Kromhalten är hög men nickelhalten är lägre för de duplexa stålen än de austenitiska stålen. Duplexa stål är magnetiska. (Andersson, 2009, s.1-2)
3.4.1.3 Ferriter

De ferritiska stålen finns att få tag på med olika korrosionshärdighet för olika användningsområden. Låglegerade ferritiska stål används i stor utsträckning t.ex. för avgassystem inom bilindustrin. I vissa fall används de också som konstruktionsmaterial istället för kolstål. De ferritiska rostfria stålsorterna har en begränsad svetsbarhet och finns därför endast att fås i tunnare dimensioner. Ferritiska stål är magnetiska. (Andersson, 2009, s.2)

3.4.2 Mekaniska egenskaper

Det som skiljer de rostfria stålen från vanligt stål ur hållfasthets synpunkt är att de rostfria stålen inte har någon tydlig sträckgräns och använder i stället Rp.0.2 vilket anger hållfastheten vid 0,2 % av kvarstående deformation. De vanligaste austenitiska stålen har normalt Rp.0.2=250-300 MPa med ett lägsta värde på ca 200 MPa. De austenitiska stålen har oftast en lägre Rp.0.2 än de ferritiska stålen och har dubbelt lägre Rp.0.2 än de duplexa stålen.

De austenitiska stålen kan sträckas mer än 40 % och sägs därför ha en mycket hög brottförängning. Stålen har god formbarhet eftersom duktaliteten är så hög. Duktaliteten är bara hälften så hög för ferriterna, och brottförängningen är ungefär samma som för kolstål. Duktaliteten för de duplexa stålen är däremot lägre än för austeniterna men högre än för ferriter och kolstål. (Andersson, 2009, s.2)
Tabell 1 Rp.0.2, Rm och A5 för de vanligaste rostfria stålen.

<table>
<thead>
<tr>
<th>EN</th>
<th>ASTM/UNS</th>
<th>Outokompu</th>
<th>Rp0.2 (MPa)</th>
<th>Rm (MPa)</th>
<th>A5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4162</td>
<td>S32101</td>
<td>LDX 2101</td>
<td>450</td>
<td>650</td>
<td>30</td>
</tr>
<tr>
<td>1.4362</td>
<td>S32304</td>
<td>2304</td>
<td>400</td>
<td>630</td>
<td>25</td>
</tr>
<tr>
<td>1.4462</td>
<td>S3220</td>
<td>2205</td>
<td>460</td>
<td>640</td>
<td>25</td>
</tr>
<tr>
<td>Austenit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4301</td>
<td>304</td>
<td>4301</td>
<td>210</td>
<td>520</td>
<td>45</td>
</tr>
<tr>
<td>1.4401</td>
<td>316</td>
<td>4401</td>
<td>220</td>
<td>530</td>
<td>40</td>
</tr>
<tr>
<td>Ferrit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4003</td>
<td>S40977</td>
<td>4003</td>
<td>280</td>
<td>450</td>
<td>18</td>
</tr>
<tr>
<td>1.4521</td>
<td>444</td>
<td>4521</td>
<td>300</td>
<td>420</td>
<td>20</td>
</tr>
<tr>
<td>1.4509</td>
<td>S43932</td>
<td>4509</td>
<td>250</td>
<td>430</td>
<td>18</td>
</tr>
</tbody>
</table>

(Stålbyggnadsinstitutet, 2009, s.2).

3.5 Svetsning

TIG-svetsning blir ofta bli använd vid svetsning av konstruktioner i livsmedelsproduktioner. Svetsfogarna blir bra och har inte stora ojämnheter där bakterier kan smalas. Orsaken att TIG-svetsning används vid svetsning av modulerna är för att materialet är nästan uteslutande rostfritt stål.

Vad jag vet är att det stålet som kommer att användas i modulerna är austenitisk rostfri stål eftersom stålet passar utmärkt i en livsmedelsproduktion, jag kommer att fokusera teorin om svetsning till TIG-svetsning i austenitisk rostfri stål.

3.5.1 Svetsning av austenitiska stål

Austenitiska stål har överlag en väldigt bra svetsbarhet om man jämför med de andra rostfria stålen. De austenitiska stålen har däremot ca 50 % större längetvisningskoefficient jämfört med de o-legerade stålen, medan värmeförmågan är ca 40 % lägre. Detta leder till at
svetsarnas krympning blir mycket större och man måste därför ta hänsyn till
defformationsrisken när man svetsar i austenitiska stål. För att lyckas med svetsningen räcker
det i allmänhet att ha låg värmetillförsel, genomtänkta svetsplaner och att genomföra
svetsningen så symmetriskt som möjligt. (Weman, 2010, s.216)

För att säkra att svetsen har en god korrosions motstånd så bör tillståndsmaterialet ha en låg
kolhalt (<0,03 % C). (Outokumpu Stainless, 2010, s. 83)

3.5.2 TIG-svets

TIG-svetsning används på områden där hårda krav ställ på svets kvalitet, rent svetsgods,
homogenitet och perfekt yt-finish.

Vid TIG-svetsning utnyttjar man en ljusbåge mellan en icke smältande elektrod av volfram
och arbetsstycket. En inert gas skyddar smältan och elektroden, gasen består oftast av argon,
vilken strömmar ut genom en gas käpa i vilken elektroden är placerad. (Weman, 2010, s. 77)

Figur 12 TIG-svetsningens funktion (esab.se).
TIG-svetsning kan användas vid alla svetsbara material förutom bly och zink, men det största användningsområdet är vid svetsning av rostfritt stål, aluminium, magnesiumlegeringar och koppar. TIG-svetsning kan användas till alla fog typer och svets lägen. Om materialet som skall svetsas är av tjockare dimension kan det vara bra att tänka på att TIG-svetsning passar bäst för tunnare material med en tjocklek på ca.0,5 mm till 3 mm. (Weman, 2010, s. 77)

3.5.3 Betning

Betning innebär att man använder lösningar av salpetersyra och fluorvätesyra för att avlägsna ett tunt lager ”metall” från det rostfria stålets yta. Vid svetsning av rostfritt stål bildas en svetsoxid där kromhalten har reducerats i stålets ytskikt, detta leder till att stålet kan rosta. För att ta bort svetsoxiden som bildats så använder man sig av betning. Vanligtvis så används en pasta eller gel som penslas ut på mindre ytor och speciellt intill svetsfogar. Vid större konstruktioner kan man också använda sig av doppning i bet-kar eller så kan man också använda sig av sprutbetning. (Crookes, 2004, s. 3-5)
3.6 Pneumatik

Alla rörliga delar på modulerna kommer att styras med pneumatik. Sammanlagt kommer det att finnas 5 pneumatiska cylindrar på linjen.

Ur en hygien synpunkt så är pneumatik ett bra alternativ till att styra modulerna med men det finns saker som man måste tänka på, t.ex. vissa pneumatiska komponenter får inte komma i kontakt med livsmedlet och om tryckluften kommer i direkt kontakt med livsmedlet måste den renas ordentligt enligt standard.

Produktionen tvättas efter varje produktionsdag därför måste de pneumatiska komponenter som kommer i direkt kontakt med vatten och tvättmedel vara menade att klara av detta och de komponenter som kan ta skada av direkt kontakt med vatten eller tvättmedel måste därför skyddas.

3.6.1 Tryckluft

Kvaliteten på tryckluften beror på om tryckluften kommer i direkt kontakt med livsmedlet eller inte. Luftkvaliteten delas in i 10 olika klasser enligt ISO 5873–1:2 010, där klass 1 är när tryckluften kommer i direkt kontakt med livsmedlet och i så fall måste luften renas ordentligt med hjälp av flera filter.

När tryckluften bara används till att styra ventiler och cylindrar räcker det att ren luften till den grad att pneumatiska komponenter skyddas mot rost och mot att större partiklar kommer in i komponenterna, vilket kan uppnås med en central kyltorkare med olja separator och ett grovt partikelfilter (40 µm). (Festo, 2013, s.26)
3.6.2 Pneumatiska komponenter

Hygienreglerna för pneumatiska komponenter är i huvudsak samma som för andra konstruktioner i en livsmedelsproduktion. Den Europeiska standarden EN 1672-2 definierar tre olika områden i en livsmedelsproduktion med tre olika hygienkrav.

Livsmedelszon (1)

Där komponenter kommer i direkt kontakt med livsmedel bör komponenterna vara:

- tvättbara
- möjliga att desinficera
- rost-resistenta
- ogiftiga
- ickle-absorberande
- släta, kontinuerliga eller förseglade
- användas med speciella smörjningsmedel för livsmedelsindustrin.

Skvättzon (2)

Alla komponenter som kommer i kontakt med livsmedel som inte returnerar till produktionen. Planering och konstruering skall följa samma kriterier som för livsmedels zon (1).

Icke-livsmedelszon (3)

Komponenter som inte kommer i kontakt med livsmedel. För att förhindra smittkällor bör komponenterna vara:

- rost-resistenta
- tvättbara och möjliga att desinficera.

(Festo, u.å)
4 Metod

Detta kapitel beskriver vilka metoder och tillvägagångssätt som har använts i arbetet.

4.1 Möten

Redan under sommaren 2015 så började jag i samarbete med handledaren och personalen i företaget att fundera på hur linjen skall fungera och till vilken grad linjen skall automatiseras. Från början stod det klart att linjen skall både kunna tillverka handbäckade och maskinsprutade kebabstockar. Vi kom fram till att bästa sättet är att linjen besätt av moduler som lätt kan bytas ut. Modulerna började skissas upp och vi höll möten med jämna mellanrum för att diskutera oss fram till resultat. Den modul som har lagts ner mest tid på är käpparen och hur man kan få puffpinnen att inte stiga upp när lådorna fryses.
4.2 Siemens NX 10

Det ritverktyg som använts ända från början när modulerna skissades, till dom slutliga
tillverknings ritningarna är Siemens NX 10. FEM-analyser har också gjorts i NX för delar där
spänningarna i materialet blir större, för att säkerställa att det håller.

Spänningarna på de kritiska ställen på bordet som hör till maskinsprutningsmodulen uppgår
till 145 N/mm² då bordet belastas med 500 N längst ut, d.v.s. ”worst-case scenario”.

![Resultatet av FEM-analysen.](image)

4.3 Fluid-Sim

I Fluid-SIM har flödesscheman över pneumatiken gjorts. Men också simulationer för att testa
att den pneumatik som har använts i modulerna säkert fungerar med dom planerade
komponenterna och att cylindrarna orkar lyfta den vikt som är tänkt.
5 Resultat

Resultatet av examensarbetet är 3D modeller och tillverkningsritningar för fyra moduler. Modulerna är planerade att ingå i linjen som består av ytterligare sprutan, transportband och en maskin som tillverkar kebabkakor.

Resultatet består också av flödesscheman över pneumatiken.

Kort information om sprutan och kebabkakmaskinen finns med i resultatstycket för att ge en bättre bild av hela linjen.

5.1 Linjen

Alla moduler har hjul som går att låsa, hjulen är gjorda av en mjukare sorts gummi för att det har visats sig att om hjulen är av skarpere material så kan dom lätt börja glida på golvet.
Figur 17 Modulerna som används vid handbakning.
Figur 18 Modulerna som används i maskinsprutning.
5.2 Kebabsprutan

Kebabsprutan som används är av modell Handtmann VF 628. Den sprutar noggrant portion storlekar och kan spruta upp till 700 portioner/min. Den har ett spruttryck på upp till 72 bar och portionsstorlekar kan vara från 5 till 100,000 g. (Handtmann (u.å)) Olika sprutprogram kan programmeras vilket kommer i användning när man byter kebabsort.

![Handtmann VF628](image)

Figur 19 Handtmann VF628. (Handtmann u.å.).

5.3 Kebabkakmaskin

Kebabkakmaskinen är av modell Kebab-Line KL6/260. Den kopplas till kebabsprutan och tillverkar kebabkakor som används till de handbakade kebabstockarna. Diametrarna på kakorna kan vara 100-300 mm och höjden 10-50mm, den kan tillverka upp till 28 portioner/min. Den har 6 fyllnadsstationer och man kan ha 2 till 4 arbetsstationer. Maskinen kräver ca.300 liter tryckluft/min och luften måste vara renad, vattenfri och oljad enligt DIN ISO 8573-1 klass 5. (Frey (u.å.))
5.4 Maskinsprutning

PLC:n och startknappen hör inte till examensarbetet utan de delarna beställs skilt av tillverkaren.
Röret som leder kebabmassan kallas mejerirör och består av tre olika delar. Delarna kopplas ihop av svetskopplingar (se figur 21). Röret består av delar eftersom dom skall kunna tvättas ordentligt. Hela röret blir fastlagt i modulen med klämmor (se figur).

Figur 21 Svetskopplingarna består av tre delar, mutter, svetsnippel och svetshylsa (collyflowtech u.å.).

Figur 22 Klämmorna som fäster röret är fastsvetsade i modulen (collyflowtech u.å.).

Figur 23 Maskinsprutningsmodul.

Figur 24 Maskinsprutningsmodul.
5.5 Käppning

Vid käpparen läggs färdigt fyllda lådor i lådhållaren, på samma vis som vid maskinsprutningen finns här också två storlekar på lådhållaren. En paffpinne läggs i höljet och käpparen startas med en startknapp som är ansluten till en PLC som styr två 5/2-ventiler som i sin tur styr två cylindrar.

Höljet är där för att köttfibrerna i slutet skall böjas uppåt, på detta vis löstes problemet med att paffpinnen lyftes upp på grund av att kött fibrerna böjdes neråt och rätade sedan på sig. Centrumtappen som trycker ner paffpinnen finns i tre olika längder som går att byta ut, detta p.g.a. att paffpinnarna finns i tre olika längder.

Luftförberedning och nödstopp finns också på käpparen och är samma modell som på maskinsprutaren.

Figur 26 Käppningsmodul.
5.6 Handbakning

Handbakningsmodulen består av två ställbara bord. Eftersom kebaben bakas med händerna så styrs borden med pedaler vilket gör det enklare och mera hygieniskt. Pedalerna är pneumatiska 3/2-ventiler som styr 5/3-ventilerna som i sin tur styr cylindrarna. Bordens höjd är 653 mm när borden är i övre läget, cylindrarnas slaglängd är 350 mm vilket gör att när borden är i nedre läge är höjden 303 mm. Eftersom cylindrarna styrs av 5/3-ventiler som i mittläget är stängda kan förstås borden stanna på vilken höjd som helst mellan översta och nedersta lägen. Höjden kan låta lågt men arbetshöjden är ju på översidan av lådan och lådorna kan vara 550 mm höga.

Luftförberedning finns också på handbakningsmodulen och är samma modell som på maskinsprutaren.
Figur 29 Handbaksningsmodul.
Figur 30 Handbaksningsmodul.

Figur 31 Handbaksningsmodul.
5.7 Bord

Bordet är med i linjen för att man skall kunna ladda upp med lådor på bordet och på så sätt inte behöva flytta sig mellan handbakningen och käpparen så ofta. Den ena av de två som handbakar skall också köra käpparen.

På bordet ryms totalt åtta lådor samtidigt.

Figur 32 Bord.
6 Diskussion

Examensarbetet har varit mycket lärorikt och intressant. Vi har inte haft något om konstruktioner i en livsmedelsproduktion i min utbildning vilket har gjort arbetet mera krävande. Mitt sommarbete sommaren 2015 var inom service på ett livsmedelsföretag och där fick jag lära mig de praktiska regler som måste följas vilka jag hade stor användning för i arbetet.

Att välja rätt komponenter har kanske varit det mest krävande med arbetet eftersom man måste ta reda på allt om de olika alternativen och försöka komma fram till vilken komponent som passar bäst. Eftersom jag har många olika komponenter på modulerna så har det gått väldigt mycket tid åt att ta fram information om dom och att ta read på vilka komponenter som t.ex. inte rostar, håller för det dom är menade och inte går för mycket upp i pris.

Jag kan inte ännu säga om examensarbets syften har uppfyllts eftersom modulerna ännu inte är tillverkade, men jag tror att linjen kommer att fungera som den har blivit planerad.

Saker jag skulle göra annorlunda i arbetet om jag gjorde det på nytt är att planera mera detaljerat innan jag började på med 3D-modellerna. Jag lämnade valet av vissa komponenter tills 3D-modellerna nästan var färdiga, vilket ledde till att jag var tvungen att rita om en del.

Saker som ännu kan utvecklas på linjen är hur den fungerar i slutet där de färdiga lådorna skall lyftas på en lastpall. Lådorna väger upp till 30 kg och det borde det finnas något sorts hjälpmedel för att lyfta lådorna. Det som också skulle kunna utvecklas är att göra käppningsmodulen hel-automatisk.

Jag vill slutligen tacka mina handledare Andreas Gammelgård och Jimmy Snellman för den hjälp jag har fått med arbetet. Jag vill också tacka Linus Sundqvist för de goda råd jag har fått vad gäller en konstruktion i en livsmedelsproduktion.
7 Källor

Collyflowtec, (u.å) [Online] http://www.collyflowtech.se/ [hämtat 01.03.2016]

ESAB, (u.å.). [Online] http://www.esab.se/se/se/education/blog/tig-svetsning.cfm [hämtat 01.03.2016]

Festo, (u.å). Basic and expert knowledge. [Online]
https://www.festo.com/cms/sv_se/14628_14653.htm#id_14788 [hämtat 15.10.2015]

Festo, 2013. Compressed air quality in the food and beverage industry. [Online]

Festo. (u.å). White paper: Cleaning is a must! [Online]

Oles, (u.å) [Online] http://www.oles.fi/ [hämtat 02.03.2016]

<table>
<thead>
<tr>
<th>Nr</th>
<th>St.</th>
<th>Benämning</th>
<th>Material</th>
<th>Rtn nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Stom</td>
<td>SS 304</td>
<td>02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Rost</td>
<td>SS 304</td>
<td>03</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Bordskruva</td>
<td>POM</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Bussning</td>
<td>POM</td>
<td>05</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Axel</td>
<td>SS 304</td>
<td>06</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Skyddspåf. bakside</td>
<td>SS 304</td>
<td>07</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Skyddspåf. framsida</td>
<td>SS 304</td>
<td>08</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Lådhällare 248mm</td>
<td>SS 304</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Lådhällare 250mm</td>
<td>SS 304</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Fast spurtplatta</td>
<td>SS 304</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Sprutfäste</td>
<td>SS 304</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Sprutplatta</td>
<td>POM</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Sprutröra 1</td>
<td>SS 304</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Sprutröra 2</td>
<td>SS 304</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Sprutröra 3</td>
<td>SS 304</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Mutter 304 G11-11-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Mounting bracket MS4-VPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>Maskinskr. M4x8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Nedstopp 03M42002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>Länkspår LPXA-PATH 75KD-F1-FK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>Fastspår BPSA-PATH 75KD-FK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Luft förberedning M384-1/4-FRC1-JSM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>Cylinder DSGC-40-650-PPYA-N3R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>Foot mounting GRHNC-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>Ventil LUVLS-L20-M52-MH-Q8-US-F7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>One-way flow control GRLA-1/4-QS-6-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>TC-KLAMMA 022-11-63S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Maskinskr. 2,5x6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>Sexkantskr. M10x22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Bricka M10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>Låsmutter M10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>Bricka M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>Sexkantskr. M8x16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>Maskinskr. M4x6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nr</td>
<td>st</td>
<td>Benämning</td>
<td>Material</td>
<td>Rtn nr.</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Storn</td>
<td>SS 304</td>
<td>02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Klapphöger</td>
<td>SS 304</td>
<td>03</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Centrumtapp 540mm</td>
<td>POM</td>
<td>04</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Centrumtapp 440mm</td>
<td>POM</td>
<td>05</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Centrumtapp 320mm</td>
<td>POM</td>
<td>06</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Ladhålare 240mm</td>
<td>SS 304</td>
<td>07</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Ladhålare 250mm</td>
<td>SS 304</td>
<td>08</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Bordekrive</td>
<td>POM</td>
<td>03</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Distansbipa</td>
<td>POM</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Skyddsplåt</td>
<td>SS 304</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Skyddsplåt botten</td>
<td>SS 304</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Nedskoppe 03042802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Lånskruv LPX-A-PATH 75KD-F1-FK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Fastljus LPX-A-PATH 75KD-FK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Luftleverans MB4-14-PRG1-J5M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Cylinder DDSB-C-32-550-PPVA-R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Cylinder DDSB-C32-600-PPVA-N3R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Ventil VUV6-L20-MS2-MH-Q8-U3-S7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>Foot mounting CRHC-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>Sockelskriv M6x22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>Låsmutter M6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>Bräcka M6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>Maskinskruv M4x8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>Maskinskruv M4x22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>Maskinskruv M4x6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>16</td>
<td>Sockelskriv M6x8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>Bräcka M6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>Mounting bracket M524-WPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nr</th>
<th>st</th>
<th>Benämning</th>
<th>Material</th>
<th>Rtn nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>4</td>
<td>One-way flow control GRLA-1/8-Q8-6-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Push-in L-fitting NPQH-L-G16-Q6-P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>Push-in L-fitting NPQH-L-G14-Q6-P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>Push-in Y-fitting NPQH-Y-Q6-L-P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>Sensor SME-8M-28-24K-K25-G1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>Stang PUN-6×1-BL Timmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nr</td>
<td>st</td>
<td>Benämning</td>
<td>Material</td>
<td>Rtn nr</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>--------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Slom</td>
<td>SS 304</td>
<td>02</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Bord</td>
<td>SS 304</td>
<td>03</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Beredningsstav</td>
<td>POM</td>
<td>04</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Bussning</td>
<td>POM</td>
<td>05</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Axel</td>
<td>SS 304</td>
<td>06</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Skyddsplatt</td>
<td>SS 304</td>
<td>07</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Cylindrar DSBC-40-360-PPVA-N3R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Foot mounting CRtINC-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>One-way flow control GRL-A-1/4-Q5-6-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Push-in fitting NPGH-L-G-14-Q6-P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Länkhjul LFXA-PATH 75KD-F1-FK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>Sekantskruv M10x22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>Bröka M10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Läsmutter M10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>Sekantskruv M6x8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Bröka M6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>Sekantskruv M8x16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>Bröken M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>Maskinskruv M2,5x8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>Maskinskruv M4x12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>Maskinskruv M4x6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Luftförberedning MSB4-1/4-FRC1:J5:4M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>5/3 Ventil VUWS-L20-P30C-M-C6-U3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>Push-in Y-connector NPGH-Y-Q6-E-P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>Pedal VALVE REV F3.PES WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>Multiple distributor QSO-Q-6-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Maskinskruv M4x6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slang PUN-4x0,75-BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slang PUN-6x1-BL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>