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ABSTRACT 

 

According to rumors, the soon-to-be released version of ASP.NET, which 
is vNext, will no longer suppor the commonly used ASP.NET Web Forms 
framework. On the other hand, the ASP.NET MVC, another ASP.NET 
framework, offers many more advantages compared to Web Forms. There 
has never been a greater urge to transfer existing ASP.NET Web-Form-
based web applications into a new environment where ASP.NET MVC 
dominates.  

The aim of this thesis was to create creating a detailed and straightforward 
guideline for the migration process from the old Web Forms framework to 
the new MVC one. 

As a result of this study, a new artefact was created by combining some 
already available solutions for the migration. The newly created artefact is 
supposed to be simpler and more transparent for ASP.NET developers of 
various competence levels. From the author’s perspective, the new 
artefact is applicable for both small to medium and large-scale projects. 
However, the migration method suggested by the author is more suitable 
for small- and medium-scale projects. For large-scale projects, the author 
will recommend another solution in the final parts of the thesis.  

Key word: ASP.NET Web Forms, ASP.NET MVC, ASP.NET Web API, 
Object-Relational Mapping, Migration. 

 

*Note to reader: The case company’s name has been changed to K 
company due to confidentiality required by the company 
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1 INTRODUCTION 

According to the daily updated report by w3techs.com about the top 10 

million websites in the popularity ranking presented by Alexa (an Amazon 

company) at the time this thesis is written, 15.9% of websites responing to 

the report.are using ASP.NET as their server side technology. 

ASP.NET is a web framework for building extraordinary sites and web 

applications utilizing HTML, CSS, and JavaScripts. With the availability of 

ASP.NET, it has never been easier to build dynamic and data-driven 

applications. Even better, such applications are compatible with various 

browsers without the need for developers to re-customize their 

applications according to each browser (Liberty & Hurwitz, 2003, p. 3). In 

addition, ASP.NET provides two frameworks for developers to start 

developing web applications: ASP.Net Web Forms and ASP.NET MVC. 

ASP.NET Web Forms is the oldest framework for creating ASP.NET web 

applications which was released on January 16, 2002. On the other hand, 

ASP.NET MVC is a younger framework which was first released on March 

13, 2009 with the ASP.NET MVC 1.0. By the time ASP.NET MVC is 

introduced, the MVC pattern has become one the most used design 

patterns for web development. Moreover, as the release day of the next 

ASP.NET version is getting closer, there are a lot of rumors that ASP.NET 

Web Forms will be abandoned in the next release. Hence, there is a 

bigger need for moving from ASP.NET Web Forms to ASP.NET MVC than 

ever.  

Migration to a new system is the progress that is highly time-consuming 

and extremely risky. Therefore, the planning phase is an essential 

requirement for the success of the migration process. A good planning 

phase should be able to reduce delays and minimize costs (Jacob, 1991, 

p. 37). Consequently, effective planning or guideline is a must before 

making any migration between the pair frameworks. 



 

 

Therefore, this study is conducted in order to give readers clear 

requirements and detailed guidelines for the migration from ASP.NET Web 

Forms to ASP.NET MVC. 



 

 

2 RESEARCH TASK 

2.1 Research problem 

Until now, the latest version of ASP.NET is 4.6 which was released on July 

20, 2015 and it is still supporting both ASP.NET MVC and ASP.NET Web 

Forms. As mentioned above, rumors have that Microsoft will cease to 

support Web Forms in the new ASP.NET which are destined to be 

introduced in the year 2016. Developers, though, can still continue to build 

Web Forms products in Visual Studio 2015 using .NET 4.6 framework. 

However, for sure, newly developed Web Forms applications will not be 

able to use the interesting new features of ASP.NET 5 (Walther, 2015). 

ASP.NET 5 stack employs MVC as the sole paradigm to develop HTML. 

Current Web Forms pages won't be available in the next ASP.NET vNext 

(Esposito, 2016). In addition, when the author of the thesis was trying to 

create a new web application in Visual Studio by using ASP.NET 5 

preview version, there was no option for starting a new ASP.NET Web 

Forms application. This means, up to the time this thesis is being written, 

there is a high probability that ASP.NET Web Forms will not be supported 

in the next released version. 

 

FIGURE 1: No ASP.NET Web Forms option in ASP.NET 5 Preview 

Templates 



 

 

Even though all the information about the next version of ASP.NET are still 

an illusive prediction since there is nothing official from Microsoft yet, 

considering the many advantages ASP.NET MVC brings, it is highly 

advisable by the thesis author to move from a legacy technology to a new 

and more powerful one. 

During the time of study as well as collaboration with a Startup company 

that uses ASP.NET as a server side technology, the thesis author has had 

the chance to work with both ASP.NET MVC and ASP.NET Web Forms. 

At the same time, the writer has perceived the weaknesses and strengths 

of the pair. From the writer’s point of view, there is a need for adapting 

ASP.NET MCV to a new project and moving legacy ASP.NET Web Forms 

project to ASP.NET MVC. 

Consequently, transferring to a new platform would result in the expense 

of considerable amount of effort and precise planning. However, the result, 

if satisfactory, would be worthy of the invested resources. 

2.2 Value and contribution of the study 

Since there is yet any official guideline for transferring between ASP.NET 

frameworks, the writer has a strong desire to study the progress of 

transferring frameworks, aiming at creating a general plan for the moving 

from ASP.NET Web Forms to ASP.NET MVC. 

With the primary goal is to provide a clear structure guideline for 

transferring progress and the requirements for that, this thesis will be a 

guideline for ASP.NET developers to refer to during the planning phase 

when aiming to perform a migration from ASP.NET Web Forms to 

ASP.NET MVC. 

2.3 Thesis objective and reaserch question 

Despite the importance and the complexity of the transferring between 

ASP.NET frameworks, there has not been a guideline as well as the 



 

 

acknowledgement for project managers and developers before starting the 

migration progress. In addition, the final aim of conducting research is to 

uncover answers for problems with the employment of scientific 

techniques and protocols (Kothari, 1990, p. 2). Therefore, the writer comes 

up with the following research question that will be answered by this 

thesis. 

Research question: How to transfer from ASP.NET Web Forms to 

ASP.NET MVC? 

Thus, the type of research question is descriptive question and in order to 

answer the research question, this thesis is following the descriptive study 

approach. According to Robson’s study, the descriptive approach portrays 

a complete and accurate profile of a certain person or situation, either of 

flexible or fixed design (Robson, 2002). 

2.4 Thesis structure 

In general, the thesis contains seven chapters. In chapter one, the thesis 

writer mentions the current situation of the pair frameworks and the 

purpose of the thesis. Chapter two focuses on the research design of the 

study, the chapter has seven sub-chapters which describe the research 

design in details. Next, chapter three provides the theory and information 

needed in this study. The third chapter includes theory about ASP.NET 

Web Forms, ASP.NET MVC, Object-Relational Mapping – Entity 

framework, ASP.NET Web API and solutions from previous studies.  

Chapter four provides information about the new artefact combined by the 

thesis writer first in a nutshell and then in details. In the chapter, each of 

the step of the new artefact will be described in detail and provided with 

example. Chapter five is about case study and artefact evolution from the 

author’s point of view. 

Chapter six will be the summary of the whole thesis and will answer the 

research question. Finally, in chapter seven the thesis writer will discuss 



 

 

the limitation, reliability and validity of the thesis. Also in chapter seven, 

information about further study can be found.  



 

 

 

FIGURE 2: Thesis structure 
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2.5 Research method 

Research methods can be understood as a series of protocols, planning 

and algorithms that serve the research purposes. By using research 

methods, researchers employ a clear course of actions for sample data 

acquisition and selection that should lead to acquiring a solution to our 

problem (Rajasekar, S., P.Philominathan & V.Chinnathambi, 2016). Hence 

choosing a suitable research method before starting a research is a very 

critical step. In addition, there are two research approaches: inductive and 

deductive. By following the inductive research approach, a researcher 

starts by selecting relevant data to his research, going from data to theory, 

from a specific view to a more general one. On the other hand, a 

researcher skilled in the inductive approach begins with a theory and tests 

that theory, moving from a general point of view to a more specific 

approach (Blackstone, 2012).  

With the nature of the research question, the writer can choose to follow 

either inductive or deductive approach. Nevertheless, within the limited 

time as well as knowledge, the writer is not interested in creating a new 

theory or solution to answer the research question. Instead, the writer will 

make a research based on already existing studies or solutions then apply 

it to a real case study in order to answer the research question. Therefore, 

this thesis will employ deductive as its research approach.

 

FIGURE 3: Deductive research  

Moreover, this thesis is controlled by using design science research 

method. The thesis writer chooses this method because it allows the writer 

to test, evaluate and also improve the artefact. According to “A Design 

Science Research Methodology for Information Systems Research“, the 



 

 

design science research is defined as followed: Design science… 

produces and evaluates IT artifacts in order to solve identified 

organizational problems. The study itself contains the rigorous process to 

design artifacts to tackle observed problems, to contribute to the research 

problem, to evaluate the designs, and to explain the outcome to targeted 

audience (Peffers, K., Tuunanen, T., A.Rothenberger, M. & Chatterjee, S., 

2008). 

2.6 Research framework   

Since this study is the Design Science research, the research framework 

in this study will follow Design Science research framework from Hevner, 

March, Park and Ram (Hevner, A. R., March, S. T., Park, J. & Ram, S., 

2004). The framework is visualized below. 

  

 

FIGURE 4: Design science research framework (Hevner, et al., 2004) 

According to Hevner A.R (Hevner, et al., 2004), in order to conduct the 

research, there will be a need for two components: Environment and 



 

 

Knowledge Base. Each of the components will be described in detail in the 

following parts of this chapter. 

2.6.1 Environment 

The environment element sets the range of problems where the 

phenomena of interest reside (Hevner, et al., 2004). In the environment, 

people, organization and technology are the three aspects that need to be 

concerned. Hence, the company (1) having an ASP.NET Web Forms web 

application and (2) aiming to make a migration to ASP.NET MVC as well 

as (3) having a full-time junior ASP.NET developer whose time allowance 

is enough to finish the migration would be the best business environment 

for this study. 

2.6.2 Knowledge Base 

The Knowledge Base element delivers information about which 

information needed and which method used in order to accomplish the 

research. In addition, a typical knowledge base contains: Foundations and 

Methodologies (Hevner, et al., 2004).  

Foundations are theories, abstractions and results from previous studies. 

On other hand, methodologies provide a guideline on how to 

justify/evaluate the study including how the data is collected, how to 

analyze data and which criteria need to be taken into account when 

performing data analysis. 

Consequently, in this thesis, the characteristics and the behaviours of both 

ASP.NET Web Forms and ASP.NET MVC will be studied as foundations. 

In addition, depending on the nature of the artefact, the foundations also 

require information about different components that will be used during the 

migration progress. Finally, each foundation also includes existing 

solutions for the research problem.  



 

 

Regarding the definition of methodologies, the data for this study will be 

collected from writer’s reflection during the time the writer applies the 

artefact into a case study. Moreover, in order to have an accurate data 

analysis result, the writer comes up with four different criteria that will be 

used during the analysis phase including: complexity, time cost, labor cost 

and performance which will be discussed later in this thesis 

2.6.3 Design science in this study 

The purpose of this study is researching on the current existing solutions 

then making an aggregation in order to come up with a detailed and 

straightforward guideline for the migration from ASP.NET Web Forms to 

ASP.NET MVC progress. In addition, the new artefact that will be created 

by the writer will be tested by applying the artefact to a real case study. 

Consequently, the design science research in this study is a mix of Design 

as an Artifact and Design Evaluation. 

2.7 Data collection and analysis method 

2.7.1 Data collection 

In this thesis, K-company will be the case company. The company has a 

promotion-email-sending platform which is built with ASP.NET Web Forms 

that anh which is in need of moving into the new ASP.NET framework. 

With the real case study, it is a great chance for the writer to apply and 

observe the artefact in real life progress. 

Furthermore, the data will be collected by using reflection collection 

methods. The unit of data of this study will be the writer’s daily working 

diary during the time performing the the migration task. For more details 

about what and how the data is collected, the below table is presented 

(tasks will be described in detail in chapter 4). 



 

 

Actors The thesis writer who acts as an ASP.NET developer 

Roles Making a migration from ASP.NET Web Forms to 

ASP.NET MVC. 

Settings The environment is in the case study’s company office with 

all the working facilities belonging to the company in order 

to assure the confidentialilty of the case study product. 

Processes The developer starts implementing the migration step by 

step based on the artefact description. Working time is 7.5 

hours a day which is the same as a normal working day. 

Activities Task 1: Review the migration plan. 

Task 2: Get familiar with the product structure and 

database. 

Task 3: Start implement Models according to the database 

structure. 

Task 4: Setting priority for all the .aspx files in the 

ASP.NET Web Forms project which will be migrated first. 

Task 5: Create an MVC Controller for the chosen .aspx file. 

Task 6: Create an API Controller and action methods 

returning JSON data which will be assigned into server 

side components in the next step. 

Task 7: Assign value to server-side components with the 

data obtained from JSON objects by using JavaScript as 

well as handle the interaction between users and server 

side components. 

Task 8: Create API Controller and action method which 

handles POST request from Views (.aspx files). 



 

 

Task 9: Test from the browser to make sure that the project 

works fully without any bugs or errors. 

Note: repeat from Task 5 to Task 9 until the project is fully 

migrated to new framework. 

 

As mentioned in part (2.6.2) above, with the purpose of evaluating the 

artefact, the writer comes up with four criteria: complexity, time cost, labor 

cost and performance.  

For the first criterium: complexity. There will be three questions involved 

while doing the data analysis: How hard it is for a junior developer to 

understand the artefact plan? How deep and wide knowledge the 

developer needs to have in order to start implementing the migration? How 

hard each step of the artefact when apply it to real case study is?   

Secondly, for the time cost, the two questions below will be concerned: 

How long it takes to migrate one .aspx file in average? How long in total to 

migrate the whole working project in case of small and medium project like 

case study project? 

Thirdly, the labor cost for fully transferring the case study will be calculated 

by using the formula: total amount of hours * average salary of junior 

developers in Finland * 1.5 for tax and extra costs. The second and third 

criteria will provide an approximate cost of the transferring progress. 

Last but not least, the performance of the system after migration will be 

considered as well. The aspects regarding to performance will be speed, 

security and the complexity of maintains progress. 

Failing to consider each of the four criteria precisely will result in excessive 

costs and lengthy delays in workflow. 



 

 

2.7.2 Analysis method 

During the applying artefact progress, the writer will note down carefully 

any difficulties, extra efforts and working hours in order to conduct 

accurate conclusion of the artefact.  

The data will be analysed after the author has finished the transferring 

progress. The writer will use code techniques to process the working diary 

and to point out the difficulties and find the answer for all the considered 

criteria mentioned in previous chapter. Additionally, few technical tests will 

also be performed after the transferring progress has been completed in 

order to evaluate the success level of each performance criterion. 

Finally, the writer will provide a conclusion of the artefact regarding four 

criteria mentioned. 



 

 

3 RESEARCH FRAMEWORK  

In this part, the writer will describe (1) the definition of ASP.NET Web 

Forms and (2) ASP.NET MVC, (3) ORM (Object Relation Mapping) 

Database & Entity Frameworks, (4) ASP.NET WEB API Controller and 

finally (5) previous studies. 

3.1 ASP.NET Web Forms 

ASP.NET (former name of ASP.NET Web Forms before ASP.NET MVC 

was released) is a data driven web application framework. ASP.NET 

comes with huge amounts of server side components. With ASP.NET, an 

accurate HTML code will be sent to each user’s circumstance or request. 

(Cox, 2008). 

For more details, at the point when there is a request from users, the 

request is compiled and executed on the server by the framework and 

afterward, the HTML markup structure is created by the framework which 

browsers can render. (Microsoft, 2016). 

In addition, developers can develop ASP.NET Web Forms web 

applications with Visual basic, C#, Managed C++, J# or JScript.Net 

programming language.

 

FIGURE 5: Web Forms model in action (Esposito, 2011) 



 

 

3.2 ASP.NET MVC 

ASP.NET MVC is one of the frameworks provided by ASP.NET that allows 

developers to build web applications in a rapid way. ASP.NET MVC was 

released in 2008 and has made a great impact on the way developers 

create ASP.NET web applications.Unlike the ASP.NET Web forms, 

ASP.NET MVC separates the user interface (HTML, CSS) from the 

business logic behind by following the MVC (Model – View – Control) 

design. 

 

FIGURE 6: MVC pattern (Perkins, 2012) 

 

Model: Model is a class which is used to communicate with the database 

and inclues various actions, for example: update or retrieve information 

from the database. 

View: View is the web application user interface created from pure HTML 

with data from Model. 

Controller: Controller controls which view will be displayed to the user 

with the correct Model data. In addition, Controller also handles the 

interaction between the end user and the web application. 

(Perkins, 2012) 



 

 

3.3 ORM (Object-Relational Mapping) and Entity Framworks 

The principle of ORM is to assign to third party libraries or frameworks the 

task of creating a correspondence between objects and tables. Classes 

and attributes will be mapped to relational databases with corresponding 

tables containing rows and columns. With the mapping technique, it gives 

developers a chance to communicate with the database via objects 

instead of pure SQL (Goncalves, 2013).  

With the development of ORM principle, many third-party libraries or 

frameworks have been released for different programming platforms. 

ASP.NET is not an exception, the Entity Framework which is an ORM 

framework for ASP.NET was first released in 2008. 

For more details, according to Rahul Rajat Singh, Entity Framework is an 

ORM (short for Object Relational Mapper) framework built on top of 

ADO.NET. Entity Framework and allows developers to write data access 

codes as models instead of as SQL queries. This characteristic makes 

producing data access layers much easier and less effort-consuming 

(Singh, 2015). 

3.4 ASP.NET Web API 

3.4.1 ASP.NET Web API 

ASP.NET Web API is a web framework provided by Microsoft which 

supports .NET 4 and above. ASP.NET Web API implements the HTTP 

specification and allows developers to build or use HTTP services and 

makes it extremely easy to build RESTful services. ASP.NET Web API is 

inspired by the ASP.NET MVC. Hence, developers who work with 

ASP.NET MVC will find themselves familiar with ASP.NET Web API. With 

ASP.NET API, a traditional ASP.NET project will turn into a powerful HTTP 

API (Ugurlu, Zeitler, Kheyrollahi, 2013). 



 

 

3.4.2 ASP.NET Web API Controller vs ASP.NET MVC Controller  

Since ASP.NET Web API is inspired by ASP.NET MVC, the framework 

itself contains some components that can be found in ASP.NET MVC, one 

of them is the Controller. Meanwhile, the artefact which will be evaluated in 

this study will contain both ASP.NET MVC Controller and ASP.NET Web 

API Controller, therefore having knowledge about differences between the 

pair Controllers is necessary in order to perceive the artefact. 

By default, The ASP.NET MVC Controller is usually used for reacting to 

users’ inputs or updating models with information from users. In brief, the 

Controller working with data coming in and transferring data to specific 

view (Galloway, Haack, Wilson, Allen, 2011). By contrast, ASP.NET Web 

API action methods will serialize the return values into the JSON with the 

help from popular Json.Net library (Block, Cibrano, Felix, Dierking, Miller, 

2014).  

Despite the differences of the default action behaviour, ASP.NET MVC 

Controllers and ASP.NET Web API Controllers can still generate the same 

result. However, extra effort is required for different scenarios. The figure 

below will show the differences of the syntax between the pair Controllers, 

when the requirement is to return a JSON object when there is an AJAX 

call hits the action method. 

 

FIGURE 7: Differences between the pair Controller syntax 



 

 

3.5 Solution from previous studies 

With the aim of conducting a guideline for migrating from ASP.NET Web 

Forms to ASP.NET MVC, the writer has done some research on current 

existing solutions. Unfortunately, there is no official guideline from 

Microsoft. However, there are still a few solutions which are created by 

developers and published in the form of blogs. Therefore, the writer picks 

the two most straightforward solutions into consideration. Each of the 

solutions has its own advantages and disadvantages. 

3.5.1 Integrate MVC into existing Web Forms  

In 2013, Rachel Appel provided a course: Migrating ASP.NET Web Forms 

to ASP.NET MVC (Appel, 2013) in WintellectNow platform. The course 

contained many useful information including: when the migration from 

ASP.NET Web Forms to ASP.NET MVC is needed, what can be kept from 

old ASP.NET Web Forms when doing the migration and introduction in 

detail about how to migrate from the old frameworks to the new one. 

Within the scope of the solution. The writer collects information on how to 

enable new friendly URL routes (which follow ASP.NET MVC route 

patterns), how to create Models with Entity frameworks, how to create 

Controllers and Views which follow the convention of configuration of 

ASP.NET MVC. 

According to Appel’s solution, old .aspx files will be reused as a View in 

the new ASP MVC web applications. This is understandable since reused 

.aspx files will save a lot of time and effort in re-designing user interfaces. 

However, this point reveals the flaw of this study. The solution only gives 

the suggestion to reuse the view, but does not mentione how to get rid of 

code behind in .aspx files which is a complicated process. 



 

 

3.5.2 Migrating ASP.NET Web Forms to the MVC Pattern with the 

ASP.NET Web API 

Peter Vogel who is a specialist in ASP.NET development has a blog in 

Microsoft magazine blog. The blog provides a solution for the migration 

from ASP.NET Web Forms to ASP.NET MVC which is Migrating ASP.NET 

Web Forms to the MVC Pattern with the ASP.NET Web API (Vogel, 2013). 

As can be seen from the name of the solution, if using this instruction, the 

new system will only follow the MVC pattern but will not work fully as an 

ASP.NET MVC web application. 

From this study, the writer gets an idea how to use ASP.NET Web API as 

a tool to get rid of the code behind in .aspx files. This solution, if applied 

successfully, will fix the flaw in the previous solution provided by Appel.  

During the time spent on the second solution, the writer has had a chance 

to learn how to work with ASP.NET Web API, especially in how to create 

Web API Controllers which return JSON objects or perform business 

logics depending on each specific case. In addition, the thesis writer has 

also acquired the knowledge of how to create AJAX requests with 

JavaScript thanks to this solution. 

As mentioned above, this solution only migrates the old ASP.NET Web 

Forms into MVC Pattern. Hence, the new system is not fully an ASP.NET 

MVC application especially in URL routing. 

 

 

 



 

 

4 ARTEFACT DESCRIPTION 

According to chapter 3.5, currently, there is no official guideline for making 

the migration between two frameworks. Therefore, the thesis author has 

made an aggregation of two existed solution mentioned in chapter 3.5 

previously. The new solution will solve the research problem and answer 

the research question. 

The basic concept for the artefact is: Integrate MVC into existing Web 

Forms code with the help from Web API. As the nature of the artefact, 

the progress starts with the existing Web Forms project, during the project, 

adding packages or refactor code is required in order to finish the 

transferring progress. Finally, during this chapter, the artefact will be 

described in detail. 

4.1 Artefact in nutshell  

Theoretically, in the ASP.NET Web Forms web application, the HTML and 

business logic are tightened within one .aspx file. The server side code 

does not only control the business logic but also govern the HTML code 

partly via server side components. By contrast, the ASP.NET MVC web 

application tends to separate the logic and HTML code. Hence, the Views 

and Controllers are created. Consequently, the main focus point when 

commencing the migration will be isolating the business logic code and 

HTML code in the old ASP.NET Web Forms web application into Views 

and Controllers. 

In order to achieve the main focus point, there is a need to get rid of all 

ASP.NET Web Forms server side components or at least, make them 

independent from the code behind. Notwithstanding, removing all the 

server side components will destroy the user interface of the web 

application and lead to the expense of unnecessary effort for re-writing 

pure HTML code. Hence, keeping the components and make them work 

independently from the code behind is an ideal solution. But since the 

HTML code is created dynamically in the server whenever there is a 



 

 

request to the route (to .aspx file in Web Forms) and in some cases the 

value of the component is also assigned by the data that come from the 

business logic, finding a way to create a components on the server side 

and assign the data (if needed) without interacting with the code behind 

inside the .aspx file is required. In this case, Web API Controller and AJAX 

techniques are the key. In order word, the server side components are 

only created in .aspx files (server side) but the value of the components to 

be attached when the HTML is loaded (client side) via AJAX calls. 

Let us now turn to more details about the artefact, as the result of moving 

to MVC design patterns, any request will not hit .aspx files anymore. 

Instead, the Controller with correct action methods will be triggered. After 

the Controllers and action methods are called, the view will be rendered, in 

order to keep the old HTML design, the old .aspx file will be used as a 

view.  

Notwithstanding, the old .aspx needs to be modified by adding AJAX 

technique which will send the request and receive data from the Web API 

Controller then assign the value to corresponding HTML components 

which have already been created on the server side. Still, rendering the 

view and displaying it on the user’s browser are not enough, there is also a 

need of knowing how to control the behaviour of server side components 

when there is an interaction between them and users. Since the purpose 

of the artefact is trying to get rid of code behind in the .aspx files, the 

server side components no longer post back to the target .aspx file but 

they will send the request to Web API Controllers as a substitute. Hence, 

in the Web API Controller, different actions could be performed, for 

example: business logic that update databases, getting more data or just 

redirecting to another controller (URL). The figure below will give a visual 

view of the artefact in brief. 



 

 

 

FIGURE 8: Artefact’s workflow 

4.2 Artefact in details  

In this part, the artefact will be described precisely along with examples. In 

general, the artefact has seven main steps, small unexpected steps might 

be needed. 



 

 

 

FIGURE 9: Artefact step by step 

4.2.1 Install library package. 

Even though ASP.NET MVC and ASP.NET Web Forms are both based on 

ASP.NET library provided by Microsoft. However, the characteristic of the 

pair is clearly different. This fact leads to the dependence on different third 

party libraries. In addition, the API Controller which is one segment of the 

artefact also requires other packages that haven’t been referenced yet in 

already existed ASP.NET Web Forms web application.Therefore, installing 

Install library package

Route Configure

Create Models

Create MVC Controller 
& View

Create API Controller
( GET action method)

Modify .aspx View

Create APIController 
( POST action method)



 

 

ASP.NET MVC and ASP.NET Web API is the initial step of the migration 

progress. Installing all the requirement packages and also manage all the 

configuration are quite a huge amount of workload. Luckily, inside Visual 

studio – Integrated development environment which is most used to 

develop ASP.NET web application, all the required packages can be 

installed only with one click within the NuGet package manager. From 

Visual Studio, click on Tools, select NuGet package management then 

search and install ASP.NET MVC and ASP.NET Web API packages  

 

FIGURE 10: Install packages via Nuget inside Microsoft Visual Studio 

After doing various steps required by NuGet, new packages are 

referenced and can be found under the References category of the 

solution. 

4.2.2 Route configuration 

Since the routings in ASP.NET Web Forms and ASP.NET MVC are totally 

different, configuring a new URL routing format is a next step in the 



 

 

migration progress. Firstly, the developer must create an App_Start folder 

in the solution, then the RouteConfig.cs file is created inside the App_Start 

folder. Within the newly created file, adding the noreturn function with the 

name RegisterRoutes which takes a RouteCollection object as a 

parameter. The RegisterRoutes function itself will enable the friendly user 

URL and declare a new routing route for the web application. 

 

FIGURE 11: How to enable user-friendly and declare the new rules of 

routing which include MVC Controller and API controller 

4.2.3 Create Models 

In ASP.NET Web Forms, usually, the interaction between the web 

application and database is managed by pure SQL language which might 

lead to the SQL injection security issues if the SQL parameters are not 

used. In contrast, in ASP.NET MVC, the communication with the database 

is handle by Entity framework which an ORM (Object-Relational Mapping). 

Thus, next step in the process is creates Models and setting up the 

connection between Entity Frameworks and Database. Before starting to 

create models, the folder Models is required to be created first. Models are 

normal C# classes. However, the number of Models classes is equal to the 

number of tables in the current existing database. Moreover, every 

property of the Model class represents one column in the database table. 



 

 

Thus, adequate knowledge about the Database structure and the 

preciseness in naming class property during creating Model class is highly 

recommended.  

 

FIGURE 12: Category Model Class 

After creating models based on tables in the database, in order for Entity 

framework to understand which one is C# model class and which one is 

just a normal one as well as setting up the connection with database, the 

DbContext class is required. The recently created class must inherit from 

the DbContext class and also inherit and override the constructor of 

DbContext class with the name of the connection string which specifies 

information about the database connection. In Entity framework, the DbSet 

type property corresponds with database tables, so the name of each 

DbSet type property needs to be the same with the corresponding table.  



 

 

 

FIGURE 13: Setting up DbContext 

Normally, the data in the existing database will be overridden when the 

web application resets. However, since the progress is migrated from 

existing working web applications, keeping and working with already 

existing data is a must. Hence, setting the data initializer to null is needed. 

The data initializer will be set inside the Global.asax file and inside the 

Application_Start method. 

 

FIGURE 14: Setting initial data 

4.2.4 Create MVC Controllers & Views 

The MVC Controller in the artefact does not manage the business logic 

itself (the ASP.NET Web API will handle this) but the Controller still 

manages which view will be shown when there is a user request. 

Therefore, next stage of the artefact is creating MVC Controllers.  

In order to fulfil the convention of configuration of ASP.NET MVC, the new 

folder Controllers will need to be created inside the current solution. 

Controllers will be stored within the newly created folder. 



 

 

 

FIGURE 15: Controller folder in the solution 

Creating Controllers based on existing .aspx files will require a precise 

plan, the suggestion here is that related aspx files can be grouped into one 

Controller, and MVC Controllers only handle GET requests which return 

the .aspx file as a view to users, any POST request will be handled by 

Web API Controller.  

After creating Controllers, there will the need for creating View files for 

each of the action methods inside Controllers. Since old .aspx files will be 

reused as Views for new Controllers. Nevertheless, the convention of 

configuration still needs to be fulfilled. The process requires that new 

Views folder be created in the solution. In addition, inside a Views folder, 

different folders need to be created and named after different Controllers. 

Views (old .aspx file) belong to specific Controllers will be stored in the 

corresponding folder. 



 

 

 

FIGURE 16: Views folder in the solution 

4.2.5 Create Web API Controller ( GET Action Method ) 

Web API Controllers play a vital role in the artefact. Within the artefact, 

ASP.NET MVC Controllers control the routing but ASP.NET Web API 

Controllers can be considered the brain of the whole system since they 

provide data for displaying purposes as well as updating the database. 

Like ASP.NET MVC Controllers, ASP.NET Web API Controllers are also 

stored inside the Controllers folders. In addition, API Controller must 

inherited from the ApiController class. 

Web API Controller action methods can be divide into two different type: 

action method handles GET request and action method handles POST 

request. 

For this stage of the artefact, action methods which handle GET request 

will be created. The Action Method which handles GET request will return 

data after performing different business logics based on user request. In 

some cases, the GET Actions Method might contain an optional parameter 

(mostly an Id) 



 

 

 

FIGURE 17:  Web API Controller with Action Method return a specific 

category with a Category Id as a parameter 

4.2.6 Modify .aspx View 

During this stage, an old .aspx file will be modified by adding an AJAX 

technique with JavaScript codes. Views (.aspx files) are stored in 

corresponding subfolders inside the Views folders created in previous 

stage. 

In .aspx files AJAX technique will be implemented for two purposes: 

assigning data to server side components and handling the interaction 

between user and server side components. The syntaxes for both of the 

purposes are quite similar. Yet, there are still some slightly differences. 

For assigning data purpose, the AJAX with GET request will be 

implemented. A GET request will be sent to specific Web API Controllers 

and Action Methods. The request, if success, will return a piece of data in 

JSON format. Finally, with the returned data, extra JavaScript is required 

to assign data to components dynamically. Usually, the GET request will 

be sent when the page is loaded.  



 

 

 

FIGURE 18: AJAX request which get the data from Web API and 

assign the value into server side components 

For handling the interaction between users and the server side 

components, the AJAX with POST request will be implemented. Before 

implement an AJAX request, the runat=”server” needs to be get rid of in 

the <form> tag, this action will make sure that the form will never post back 

the code behind in the .aspx file. Also, various JavaScript events will need 

to be added to the server side components, for example: onClick or 

onChange. After the mentioned modify, when there is an interaction 

between the user and the server side components, the components 

themselves will trigger the corresponding JavaScript function, instead of 

posting back to the code behind as does  the original behaviour. 

 



 

 

 

FIGURE 19: AJAX POST request in order to update the category 

4.2.7 Create Web API Controller ( POST Action Method) 

As mentioned above, beside the GET action method, the POST action 

method also needs to be created in order to complete the transferring 

progress. The POST action method will be triggered when there is an 

interaction between the user and the server side components in the old 

.aspx files. 

For POST request, the progress is little bit more problematic since the 

action method which handles POST request will need to accept a JSON 

object as its parameter. Fortunately, the Web API coding convention will 

do most of the heavy lift, what left to be done is only creating Data 

Transfer Object (DTO) classes to hold the value from .aspx files. The DTO 

class itself will contain properties with names which match the names 

associated with the server side components that hold the data needed to 

be posted to the Web API Controller. 



 

 

 

FIGURE 20: Category DTO class associate with .aspx server side 

components 

After defined DTO class to handle parameter, the business logic will be 

implemented inside action methods. The Action method will perform the 

action to update database as well as some extra actions after the 

database is updated successfully, for example: redirecting to specific 

ASP.NET MVC Controller or returning the HttpResponse. 

 

FIGURE 21: updateCategory action method which update database 

and redirect to ListCategory page 

 



 

 

5 THE STUDY 

5.1 Case study 

As an e-commerce company, K-company embraces marketing online in 

general and marketing via email in detail as a vital part in its business 

model. Therefore, developers in K-Company have come up with the idea 

of the 24Email application which allows the sale department to send 

promotion emails in the most efficient way and to the accurate customer 

targets. 

Email24 was created in 2011 with ASP.NET Web Forms. The web 

application itself could be considered a clone of Mailchimp when it was 

created.  

The main functions of the web application include: sending emails with 

pre-defined templates, sending text emails or HTML format emails, 

sending email within a group of receivers and also blacklisting receivers 

whom the emails are not meant for. 

After doing some investigations on the project, the thesis writer can give a 

brief summary of the web application structure.There are 22 .aspx files, 

the average number of lines of code in the code behind of the each .aspx 

file is fewer than 100 lines. For the database of the system, there are 18 

tables created with MySQL. Also, the system includes a class library for 

coordination between ASP.NET Web Forms and the database. The 

application could be considered a traditional web application with three 

layers: presentation (ASP.NET Web Forms), business logic (class library), 

and data access (same class library with business logic; MySQL) 

In summary, Email24 can be considered a medium scale web application 

with medium-level business logic behind. 



 

 

5.2 Data analysis 

5.2.1 Complexity 

Before starting to implement the migration, the writer has been working in 

the programming field for two years and can be considered a junior 

developer. In addition, the writer also has basic knowledge of both 

ASP.NET Web Forms and ASP.NET MVC. However, the knowledge about 

ASP.NET Web API is missing from the writer’s skill set. Consequently, the 

laid back costs the writer about two hours to learn a new knowledge about 

ASP.NET Web API and understand the artefact. 

The artefact itself is straightforward and easy to understand. Nevertheless, 

the writer faced the first problem in the fourth step when creating MVC 

Controllers and Views. In order to finish this step, the writer needs to 

spend extra time to get used to the flow and structure of the web 

application in order to create Controllers in a most immaculate and 

efficient way. 

Another bottleneck that prevents the writer from finishing the migration 

occurred in the sixth stage which involves modifing the Views (.aspx files). 

The HTML server side components which is created by .aspx files has an 

unpredicted HTML structure (especially the GridView component) which 

leads to unexpected extra effort and time cost to investigate on the HTML 

web page structure created by the server side. 

Beside the mentioned problems, the rest of the artefact, from the junior 

developer’s perspective is easy to follow and understand.  

5.2.2 Time cost 

The writer started implementing the migration on Wednesday 23th of 

March 2016 and partly finished the migration on Friday 1 of April. The 

migration progress costs the thesis writer eight working days which means 

sixty working hours. Additionally, it takes the thesis writer from one hour up 



 

 

to four hours to migrate one .aspx file, depending on the size and the 

complexity of the file. In different circumstances, the time cost may vary. 

5.2.3 Labor cost 

According to the Collective Agreement – IT Service Sector (1 November 

2013 to 31 October 2016) created by the federation of Finnish technology 

industries, federation of professional and managerial staff –YTN and 

association of IT sector employee, the minimum salary for level 1(junior) 

design/development job is 2166 euro/month (Collective Agreement – IT 

Service Sector, 2016) which means around 14.44 euro/ working hour.  

With the the formula:  

Labor cost = salary per hour * total working hour * 1.5 (for 

tax and extra costs ...) 

The labor cost for one junior developer to finish the migration for medium 

size project is around 1300 euro.  

5.2.4 Performance 

Despite the extra work, the result so far from the migration at the end is 

from twelve.aspx files, the new ASP.NET MVC application contains only 

four Controllers which is an idea project structure for future maintenance. 

On the other hand, the writer also implementes the speed test between 

the old ASP.NET Web Forms web application and the new ASP.NET MVC 

web application. The test is operated by using the service from 

webpagetest.org with the server located in Stockholm, Sweden with 

Google Chrome as a browser. 

The result from the speed test shows that, with the same page, it takes 1.7 

seconds for the ASP.NET Web Forms web application and 2.2 seconds for 

the new ASP.NET MVC to load the web page. Hence the new web 

application is 0.5 seconds slower compare to the old one. However, the 



 

 

time gap is acceptable and understandable since the new ASP.NET MVC 

web application needs to send an extra request Web API Controllers in 

order to display the web page on the browser. In addition, the thesis writer 

also conducts test on different browsers. The result is optimistic: the web 

application is combatible with most common browsers such as Firefox, 

Google Chrome and more. 



 

 

6 CONCLUSION 

The main purpose of this study is to create a detailed guideline for the 

migration progress from already existed ASP.NET Web Forms web 

applications to new ASP.NET MVC web applications. Therefore, a new 

artefact has been created by combining two already existed solutions with 

some modification. 

The artefact contains seven steps in general (some steps need to repeat 

until the project is fully migrated). Each of the step in the artefact is 

described in detail with example in chapter four. In addition, knowledges 

required to breakthrough the artefact are presented in chapter three of the 

thesis. 

Moreover, the artefact created in this thesis is also evaluated by the thesis 

writer by applying it into a real case study. With the result from the data 

collection and data analysis progress, the writer also provides some 

information for readers to consider before deciding to follow the artefact or 

not. The information can be found in chapter five. 

In summary, with the artefact “Integrate MVC into existing Web Forms 

code with the help from Web API”, this study has provided a new solution 

to answer the research question of the thesis. From the thesis writer’s 

perspective, with medium-level of complexity, acceptable time cost, labor 

cost and performance, it highly advisable to apply the migration to small 

and medium size projects. Notwithstanding, with some bottlenecks 

requiring extra effort, it could be too complicated, time-and-labor-

consuming to perform the artefact in projects of bigger scales. Hence, for 

future studies, the writer will suggest another solution that might fit better 

for large scale projects. 

 

 

 



 

 

7 DISCUSSION 

7.1 Limitations 

Firstly, since the artefact is combined by a junior level developer, there 

could be some high level aspects in the migration progress that are 

ignored by accident due to the limitation of skill and knowledge. 

Secondly, the artefact is only evaluated with the medium scale project and 

mid-level business logic. Therefore, there is no guarantee the artefact is 

the most efficient solution for big scale projects. 

Finally, with the rocket development of technology, new versions of 

frameworks are released frequently. Hence, there is a high potential that 

the artefact will not be compatible with later versions of ASP.NET or will 

require some extra steps not covered in this study. 

7.2 Reliability and validity 

Any study about web technologies can be outdated easily due to the fact 

that web technologies themselves change rapidly. New ASP.NET version 

vNext is currently being developed and will be released soon in 2016, 

therefore the material and information of this study will require a frequent 

update in order to maintain the reliability and validity of the study. 

7.3 Future study 

7.3.1 Secure Web API 

According to the artefact, a new component which is ASP.NET Web API 

will appear in the project after performing the migration. By default, anyone 

who knows the endpoint (URL) of methods in the API Controller can send 

a request and get the data. Consequently, there is a need of securing the 

Web API in order to prevent data leaking. The suggestion from the thesis 



 

 

writer is implementing the authorization mechanism for the Web API and 

data encrypted when responding to requests. 

7.3.2 Implement test driven development (TDD) 

Nowaday, with the popular of continuous software development, testing in 

general and unit testing in detail is a must in every IT project. With the new 

MVC pattern, it is now easier than ever to implement TDD in the ASP.NET 

web application. Therefore, there is a need to implement unit testing for all 

the functions in the project. 

7.3.3 Running ASP.NET MVC and ASP.NET Web Forms at the 

same time 

As mentioned above, there are still some bottlenecks in the artefact that 

could make it impossible to apply the artefact into big scale projects. 

Hence, another solution that could be taken into account is allowing the 

old code (build with ASP.NET Web Forms) to run at the same time with 

the new code (build with ASP.NET MVC). This solution can save time and 

labor cost since there is no need for a transferring progress. However, it 

requires a research on how to let two frameworks run at the same time, 

especially in the route configuration. 
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