

Migration from ASP.NET Web

Forms to ASP.NET MVC

Case study: K Company– Promotion Email Web

Application

LAHTI UNIVERSITY OF APPLIED

SCIENCES

Degree programme in Business

Information Technology

Bachelor’s Thesis

Spring 2016

Ngoc Duc Nguyen

Lahti University of Applied Sciences
Degree Programme in Business Information Technology

Nguyen, Ngoc Duc: Title: Migration from ASP.NET Web
Forms to ASP.NET MVC

Case study: K company– Promotion
Email Web Application

Bachelor’s Thesis in Business

Information technology 41 pages, 0 page of appendices

Spring 2016

ABSTRACT

According to rumors, the soon-to-be released version of ASP.NET, which
is vNext, will no longer suppor the commonly used ASP.NET Web Forms
framework. On the other hand, the ASP.NET MVC, another ASP.NET
framework, offers many more advantages compared to Web Forms. There
has never been a greater urge to transfer existing ASP.NET Web-Form-
based web applications into a new environment where ASP.NET MVC
dominates.

The aim of this thesis was to create creating a detailed and straightforward
guideline for the migration process from the old Web Forms framework to
the new MVC one.

As a result of this study, a new artefact was created by combining some
already available solutions for the migration. The newly created artefact is
supposed to be simpler and more transparent for ASP.NET developers of
various competence levels. From the author’s perspective, the new
artefact is applicable for both small to medium and large-scale projects.
However, the migration method suggested by the author is more suitable
for small- and medium-scale projects. For large-scale projects, the author
will recommend another solution in the final parts of the thesis.

Key word: ASP.NET Web Forms, ASP.NET MVC, ASP.NET Web API,
Object-Relational Mapping, Migration.

*Note to reader: The case company’s name has been changed to K
company due to confidentiality required by the company

CONTENTS

1 INTRODUCTION 1

2 RESEARCH TASK 3

2.1 Research problem 3

2.2 Value and contribution of the study 4

2.3 Thesis objective and reaserch question 4

2.4 Thesis structure 5

2.5 Research method 8

2.6 Research framework 9

2.6.1 Environment 10

2.6.2 Knowledge Base 10

2.6.3 Design science in this study 11

2.7 Data collection and analysis method 11

2.7.1 Data collection 11

2.7.2 Analysis method 14

3 RESEARCH FRAMEWORK 15

3.1 ASP.NET Web Forms 15

3.2 ASP.NET MVC 16

3.3 ORM (Object-Relational Mapping) and Entity
Framworks 17

3.4 ASP.NET Web API 17

3.4.1 ASP.NET Web API 17

3.4.2 ASP.NET Web API Controller vs ASP.NET MVC
Controller 18

3.5 Solution from previous studies 19

3.5.1 Intergrade MVC into existing Web Forms 19

3.5.2 Migrating ASP.NET Web Forms to the MVC Pattern
with the ASP.NET Web API 20

4 ARTEFACT DESCRIPTION 21

4.1 Artefact in nutshell 21

4.2 Artefact in detail 23

4.2.1 Install library package. 24

4.2.2 Route configuration 25

4.2.3 Create Models 26

4.2.4 Create MVC Controllers & Views 28

4.2.5 Create Web API Controller (GET Action Method) 30

4.2.6 Modify .aspx View 31

4.2.7 Create Web API Controller (POST Action Method) 33

5 THE STUDY 35

5.1 Case study 35

5.2 Data analysis 36

5.2.1 Complexity 36

5.2.2 Time cost 36

5.2.3 Labor cost 37

5.2.4 Performance 37

6 CONCLUSION 39

7 DISCUSSION 40

7.1 Limitations 40

7.2 Reliability and validity 40

7.3 Future study 40

7.3.1 Secure Web API 40

7.3.2 Implement test driven development (TDD) 41

7.3.3 Running ASP.NET MVC and ASP.NET Web Forms at
the same time 41

FIGURE 1: No ASP.NET Web Forms option in ASP.NET 5 Preview

Templates ... 3

FIGURE 2: Thesis structure ... 7

FIGURE 3: Deductive research progress ... 8

FIGURE 4: Design science research framework (Hevner, et al., 2004) 9

FIGURE 5: Web Forms model in action (Esposito, 2011) 15

FIGURE 6: MVC pattern (Perkins, 2012) .. 16

FIGURE 7: Differences between the pair Controller syntax 18

FIGURE 8: Artefact’s workflow ... 23

FIGURE 9: Artefact step by step .. 24

FIGURE 10: Install packages via Nuget inside Microsoft Visual Studio 25

FIGURE 11: How to enable user-friendly and declare the new rules of

routing which include MVC Controller and API controller 26

FIGURE 12: Category Model Class .. 27

FIGURE 13: setting up DbContext .. 28

FIGURE 14: Setting initial data ... 28

FIGURE 15: Controller folder in the solution .. 29

FIGURE 16: Views folder in the solution .. 30

FIGURE 17: Web API Controller with Action Method return a specific

category with a Category Id as a parameter ... 31

FIGURE 18: AJAX request which get the data from Web API and assign

the value into server side components ... 32

FIGURE 19: AJAX POST request in order to update the category 33

FIGURE 20: Category DTO class associate with .aspx server side

components .. 34

FIGURE 21: updateCategory action method which update database and

redirect to ListCategory page ... 34

1 INTRODUCTION

According to the daily updated report by w3techs.com about the top 10

million websites in the popularity ranking presented by Alexa (an Amazon

company) at the time this thesis is written, 15.9% of websites responing to

the report.are using ASP.NET as their server side technology.

ASP.NET is a web framework for building extraordinary sites and web

applications utilizing HTML, CSS, and JavaScripts. With the availability of

ASP.NET, it has never been easier to build dynamic and data-driven

applications. Even better, such applications are compatible with various

browsers without the need for developers to re-customize their

applications according to each browser (Liberty & Hurwitz, 2003, p. 3). In

addition, ASP.NET provides two frameworks for developers to start

developing web applications: ASP.Net Web Forms and ASP.NET MVC.

ASP.NET Web Forms is the oldest framework for creating ASP.NET web

applications which was released on January 16, 2002. On the other hand,

ASP.NET MVC is a younger framework which was first released on March

13, 2009 with the ASP.NET MVC 1.0. By the time ASP.NET MVC is

introduced, the MVC pattern has become one the most used design

patterns for web development. Moreover, as the release day of the next

ASP.NET version is getting closer, there are a lot of rumors that ASP.NET

Web Forms will be abandoned in the next release. Hence, there is a

bigger need for moving from ASP.NET Web Forms to ASP.NET MVC than

ever.

Migration to a new system is the progress that is highly time-consuming

and extremely risky. Therefore, the planning phase is an essential

requirement for the success of the migration process. A good planning

phase should be able to reduce delays and minimize costs (Jacob, 1991,

p. 37). Consequently, effective planning or guideline is a must before

making any migration between the pair frameworks.

Therefore, this study is conducted in order to give readers clear

requirements and detailed guidelines for the migration from ASP.NET Web

Forms to ASP.NET MVC.

2 RESEARCH TASK

2.1 Research problem

Until now, the latest version of ASP.NET is 4.6 which was released on July

20, 2015 and it is still supporting both ASP.NET MVC and ASP.NET Web

Forms. As mentioned above, rumors have that Microsoft will cease to

support Web Forms in the new ASP.NET which are destined to be

introduced in the year 2016. Developers, though, can still continue to build

Web Forms products in Visual Studio 2015 using .NET 4.6 framework.

However, for sure, newly developed Web Forms applications will not be

able to use the interesting new features of ASP.NET 5 (Walther, 2015).

ASP.NET 5 stack employs MVC as the sole paradigm to develop HTML.

Current Web Forms pages won't be available in the next ASP.NET vNext

(Esposito, 2016). In addition, when the author of the thesis was trying to

create a new web application in Visual Studio by using ASP.NET 5

preview version, there was no option for starting a new ASP.NET Web

Forms application. This means, up to the time this thesis is being written,

there is a high probability that ASP.NET Web Forms will not be supported

in the next released version.

FIGURE 1: No ASP.NET Web Forms option in ASP.NET 5 Preview

Templates

Even though all the information about the next version of ASP.NET are still

an illusive prediction since there is nothing official from Microsoft yet,

considering the many advantages ASP.NET MVC brings, it is highly

advisable by the thesis author to move from a legacy technology to a new

and more powerful one.

During the time of study as well as collaboration with a Startup company

that uses ASP.NET as a server side technology, the thesis author has had

the chance to work with both ASP.NET MVC and ASP.NET Web Forms.

At the same time, the writer has perceived the weaknesses and strengths

of the pair. From the writer’s point of view, there is a need for adapting

ASP.NET MCV to a new project and moving legacy ASP.NET Web Forms

project to ASP.NET MVC.

Consequently, transferring to a new platform would result in the expense

of considerable amount of effort and precise planning. However, the result,

if satisfactory, would be worthy of the invested resources.

2.2 Value and contribution of the study

Since there is yet any official guideline for transferring between ASP.NET

frameworks, the writer has a strong desire to study the progress of

transferring frameworks, aiming at creating a general plan for the moving

from ASP.NET Web Forms to ASP.NET MVC.

With the primary goal is to provide a clear structure guideline for

transferring progress and the requirements for that, this thesis will be a

guideline for ASP.NET developers to refer to during the planning phase

when aiming to perform a migration from ASP.NET Web Forms to

ASP.NET MVC.

2.3 Thesis objective and reaserch question

Despite the importance and the complexity of the transferring between

ASP.NET frameworks, there has not been a guideline as well as the

acknowledgement for project managers and developers before starting the

migration progress. In addition, the final aim of conducting research is to

uncover answers for problems with the employment of scientific

techniques and protocols (Kothari, 1990, p. 2). Therefore, the writer comes

up with the following research question that will be answered by this

thesis.

Research question: How to transfer from ASP.NET Web Forms to

ASP.NET MVC?

Thus, the type of research question is descriptive question and in order to

answer the research question, this thesis is following the descriptive study

approach. According to Robson’s study, the descriptive approach portrays

a complete and accurate profile of a certain person or situation, either of

flexible or fixed design (Robson, 2002).

2.4 Thesis structure

In general, the thesis contains seven chapters. In chapter one, the thesis

writer mentions the current situation of the pair frameworks and the

purpose of the thesis. Chapter two focuses on the research design of the

study, the chapter has seven sub-chapters which describe the research

design in details. Next, chapter three provides the theory and information

needed in this study. The third chapter includes theory about ASP.NET

Web Forms, ASP.NET MVC, Object-Relational Mapping – Entity

framework, ASP.NET Web API and solutions from previous studies.

Chapter four provides information about the new artefact combined by the

thesis writer first in a nutshell and then in details. In the chapter, each of

the step of the new artefact will be described in detail and provided with

example. Chapter five is about case study and artefact evolution from the

author’s point of view.

Chapter six will be the summary of the whole thesis and will answer the

research question. Finally, in chapter seven the thesis writer will discuss

the limitation, reliability and validity of the thesis. Also in chapter seven,

information about further study can be found.

FIGURE 2: Thesis structure

• Background information
Chapter 1

Introduction

• Research problem

• Value and contribution of the study

• Thesis objective and research question

• Thesis structure

• Research framework

• Data collection and analysis method

Chapter 2
Research task

• ASP.NET Web Forms

• ASP.NET MVC

• ORM (Object-relational mapping) and Entity

• ASP.NET Web API

• Solutions from previous studies

Chapter 3
Research

framework

• Artefact in nutshell

• Artefact in details

Chapter 4
Artefact

description

• Case study

• Data analysis

Chapter 5
The study

• Thesis Summary
Chapter 6

Conclusion

• Limitations

• Reliability and validity

• Future study

Chapte 7
Discussion

2.5 Research method

Research methods can be understood as a series of protocols, planning

and algorithms that serve the research purposes. By using research

methods, researchers employ a clear course of actions for sample data

acquisition and selection that should lead to acquiring a solution to our

problem (Rajasekar, S., P.Philominathan & V.Chinnathambi, 2016). Hence

choosing a suitable research method before starting a research is a very

critical step. In addition, there are two research approaches: inductive and

deductive. By following the inductive research approach, a researcher

starts by selecting relevant data to his research, going from data to theory,

from a specific view to a more general one. On the other hand, a

researcher skilled in the inductive approach begins with a theory and tests

that theory, moving from a general point of view to a more specific

approach (Blackstone, 2012).

With the nature of the research question, the writer can choose to follow

either inductive or deductive approach. Nevertheless, within the limited

time as well as knowledge, the writer is not interested in creating a new

theory or solution to answer the research question. Instead, the writer will

make a research based on already existing studies or solutions then apply

it to a real case study in order to answer the research question. Therefore,

this thesis will employ deductive as its research approach.

FIGURE 3: Deductive research

Moreover, this thesis is controlled by using design science research

method. The thesis writer chooses this method because it allows the writer

to test, evaluate and also improve the artefact. According to “A Design

Science Research Methodology for Information Systems Research“, the

design science research is defined as followed: Design science…

produces and evaluates IT artifacts in order to solve identified

organizational problems. The study itself contains the rigorous process to

design artifacts to tackle observed problems, to contribute to the research

problem, to evaluate the designs, and to explain the outcome to targeted

audience (Peffers, K., Tuunanen, T., A.Rothenberger, M. & Chatterjee, S.,

2008).

2.6 Research framework

Since this study is the Design Science research, the research framework

in this study will follow Design Science research framework from Hevner,

March, Park and Ram (Hevner, A. R., March, S. T., Park, J. & Ram, S.,

2004). The framework is visualized below.

FIGURE 4: Design science research framework (Hevner, et al., 2004)

According to Hevner A.R (Hevner, et al., 2004), in order to conduct the

research, there will be a need for two components: Environment and

Knowledge Base. Each of the components will be described in detail in the

following parts of this chapter.

2.6.1 Environment

The environment element sets the range of problems where the

phenomena of interest reside (Hevner, et al., 2004). In the environment,

people, organization and technology are the three aspects that need to be

concerned. Hence, the company (1) having an ASP.NET Web Forms web

application and (2) aiming to make a migration to ASP.NET MVC as well

as (3) having a full-time junior ASP.NET developer whose time allowance

is enough to finish the migration would be the best business environment

for this study.

2.6.2 Knowledge Base

The Knowledge Base element delivers information about which

information needed and which method used in order to accomplish the

research. In addition, a typical knowledge base contains: Foundations and

Methodologies (Hevner, et al., 2004).

Foundations are theories, abstractions and results from previous studies.

On other hand, methodologies provide a guideline on how to

justify/evaluate the study including how the data is collected, how to

analyze data and which criteria need to be taken into account when

performing data analysis.

Consequently, in this thesis, the characteristics and the behaviours of both

ASP.NET Web Forms and ASP.NET MVC will be studied as foundations.

In addition, depending on the nature of the artefact, the foundations also

require information about different components that will be used during the

migration progress. Finally, each foundation also includes existing

solutions for the research problem.

Regarding the definition of methodologies, the data for this study will be

collected from writer’s reflection during the time the writer applies the

artefact into a case study. Moreover, in order to have an accurate data

analysis result, the writer comes up with four different criteria that will be

used during the analysis phase including: complexity, time cost, labor cost

and performance which will be discussed later in this thesis

2.6.3 Design science in this study

The purpose of this study is researching on the current existing solutions

then making an aggregation in order to come up with a detailed and

straightforward guideline for the migration from ASP.NET Web Forms to

ASP.NET MVC progress. In addition, the new artefact that will be created

by the writer will be tested by applying the artefact to a real case study.

Consequently, the design science research in this study is a mix of Design

as an Artifact and Design Evaluation.

2.7 Data collection and analysis method

2.7.1 Data collection

In this thesis, K-company will be the case company. The company has a

promotion-email-sending platform which is built with ASP.NET Web Forms

that anh which is in need of moving into the new ASP.NET framework.

With the real case study, it is a great chance for the writer to apply and

observe the artefact in real life progress.

Furthermore, the data will be collected by using reflection collection

methods. The unit of data of this study will be the writer’s daily working

diary during the time performing the the migration task. For more details

about what and how the data is collected, the below table is presented

(tasks will be described in detail in chapter 4).

Actors The thesis writer who acts as an ASP.NET developer

Roles Making a migration from ASP.NET Web Forms to

ASP.NET MVC.

Settings The environment is in the case study’s company office with

all the working facilities belonging to the company in order

to assure the confidentialilty of the case study product.

Processes The developer starts implementing the migration step by

step based on the artefact description. Working time is 7.5

hours a day which is the same as a normal working day.

Activities Task 1: Review the migration plan.

Task 2: Get familiar with the product structure and

database.

Task 3: Start implement Models according to the database

structure.

Task 4: Setting priority for all the .aspx files in the

ASP.NET Web Forms project which will be migrated first.

Task 5: Create an MVC Controller for the chosen .aspx file.

Task 6: Create an API Controller and action methods

returning JSON data which will be assigned into server

side components in the next step.

Task 7: Assign value to server-side components with the

data obtained from JSON objects by using JavaScript as

well as handle the interaction between users and server

side components.

Task 8: Create API Controller and action method which

handles POST request from Views (.aspx files).

Task 9: Test from the browser to make sure that the project

works fully without any bugs or errors.

Note: repeat from Task 5 to Task 9 until the project is fully

migrated to new framework.

As mentioned in part (2.6.2) above, with the purpose of evaluating the

artefact, the writer comes up with four criteria: complexity, time cost, labor

cost and performance.

For the first criterium: complexity. There will be three questions involved

while doing the data analysis: How hard it is for a junior developer to

understand the artefact plan? How deep and wide knowledge the

developer needs to have in order to start implementing the migration? How

hard each step of the artefact when apply it to real case study is?

Secondly, for the time cost, the two questions below will be concerned:

How long it takes to migrate one .aspx file in average? How long in total to

migrate the whole working project in case of small and medium project like

case study project?

Thirdly, the labor cost for fully transferring the case study will be calculated

by using the formula: total amount of hours * average salary of junior

developers in Finland * 1.5 for tax and extra costs. The second and third

criteria will provide an approximate cost of the transferring progress.

Last but not least, the performance of the system after migration will be

considered as well. The aspects regarding to performance will be speed,

security and the complexity of maintains progress.

Failing to consider each of the four criteria precisely will result in excessive

costs and lengthy delays in workflow.

2.7.2 Analysis method

During the applying artefact progress, the writer will note down carefully

any difficulties, extra efforts and working hours in order to conduct

accurate conclusion of the artefact.

The data will be analysed after the author has finished the transferring

progress. The writer will use code techniques to process the working diary

and to point out the difficulties and find the answer for all the considered

criteria mentioned in previous chapter. Additionally, few technical tests will

also be performed after the transferring progress has been completed in

order to evaluate the success level of each performance criterion.

Finally, the writer will provide a conclusion of the artefact regarding four

criteria mentioned.

3 RESEARCH FRAMEWORK

In this part, the writer will describe (1) the definition of ASP.NET Web

Forms and (2) ASP.NET MVC, (3) ORM (Object Relation Mapping)

Database & Entity Frameworks, (4) ASP.NET WEB API Controller and

finally (5) previous studies.

3.1 ASP.NET Web Forms

ASP.NET (former name of ASP.NET Web Forms before ASP.NET MVC

was released) is a data driven web application framework. ASP.NET

comes with huge amounts of server side components. With ASP.NET, an

accurate HTML code will be sent to each user’s circumstance or request.

(Cox, 2008).

For more details, at the point when there is a request from users, the

request is compiled and executed on the server by the framework and

afterward, the HTML markup structure is created by the framework which

browsers can render. (Microsoft, 2016).

In addition, developers can develop ASP.NET Web Forms web

applications with Visual basic, C#, Managed C++, J# or JScript.Net

programming language.

FIGURE 5: Web Forms model in action (Esposito, 2011)

3.2 ASP.NET MVC

ASP.NET MVC is one of the frameworks provided by ASP.NET that allows

developers to build web applications in a rapid way. ASP.NET MVC was

released in 2008 and has made a great impact on the way developers

create ASP.NET web applications.Unlike the ASP.NET Web forms,

ASP.NET MVC separates the user interface (HTML, CSS) from the

business logic behind by following the MVC (Model – View – Control)

design.

FIGURE 6: MVC pattern (Perkins, 2012)

Model: Model is a class which is used to communicate with the database

and inclues various actions, for example: update or retrieve information

from the database.

View: View is the web application user interface created from pure HTML

with data from Model.

Controller: Controller controls which view will be displayed to the user

with the correct Model data. In addition, Controller also handles the

interaction between the end user and the web application.

(Perkins, 2012)

3.3 ORM (Object-Relational Mapping) and Entity Framworks

The principle of ORM is to assign to third party libraries or frameworks the

task of creating a correspondence between objects and tables. Classes

and attributes will be mapped to relational databases with corresponding

tables containing rows and columns. With the mapping technique, it gives

developers a chance to communicate with the database via objects

instead of pure SQL (Goncalves, 2013).

With the development of ORM principle, many third-party libraries or

frameworks have been released for different programming platforms.

ASP.NET is not an exception, the Entity Framework which is an ORM

framework for ASP.NET was first released in 2008.

For more details, according to Rahul Rajat Singh, Entity Framework is an

ORM (short for Object Relational Mapper) framework built on top of

ADO.NET. Entity Framework and allows developers to write data access

codes as models instead of as SQL queries. This characteristic makes

producing data access layers much easier and less effort-consuming

(Singh, 2015).

3.4 ASP.NET Web API

3.4.1 ASP.NET Web API

ASP.NET Web API is a web framework provided by Microsoft which

supports .NET 4 and above. ASP.NET Web API implements the HTTP

specification and allows developers to build or use HTTP services and

makes it extremely easy to build RESTful services. ASP.NET Web API is

inspired by the ASP.NET MVC. Hence, developers who work with

ASP.NET MVC will find themselves familiar with ASP.NET Web API. With

ASP.NET API, a traditional ASP.NET project will turn into a powerful HTTP

API (Ugurlu, Zeitler, Kheyrollahi, 2013).

3.4.2 ASP.NET Web API Controller vs ASP.NET MVC Controller

Since ASP.NET Web API is inspired by ASP.NET MVC, the framework

itself contains some components that can be found in ASP.NET MVC, one

of them is the Controller. Meanwhile, the artefact which will be evaluated in

this study will contain both ASP.NET MVC Controller and ASP.NET Web

API Controller, therefore having knowledge about differences between the

pair Controllers is necessary in order to perceive the artefact.

By default, The ASP.NET MVC Controller is usually used for reacting to

users’ inputs or updating models with information from users. In brief, the

Controller working with data coming in and transferring data to specific

view (Galloway, Haack, Wilson, Allen, 2011). By contrast, ASP.NET Web

API action methods will serialize the return values into the JSON with the

help from popular Json.Net library (Block, Cibrano, Felix, Dierking, Miller,

2014).

Despite the differences of the default action behaviour, ASP.NET MVC

Controllers and ASP.NET Web API Controllers can still generate the same

result. However, extra effort is required for different scenarios. The figure

below will show the differences of the syntax between the pair Controllers,

when the requirement is to return a JSON object when there is an AJAX

call hits the action method.

FIGURE 7: Differences between the pair Controller syntax

3.5 Solution from previous studies

With the aim of conducting a guideline for migrating from ASP.NET Web

Forms to ASP.NET MVC, the writer has done some research on current

existing solutions. Unfortunately, there is no official guideline from

Microsoft. However, there are still a few solutions which are created by

developers and published in the form of blogs. Therefore, the writer picks

the two most straightforward solutions into consideration. Each of the

solutions has its own advantages and disadvantages.

3.5.1 Integrate MVC into existing Web Forms

In 2013, Rachel Appel provided a course: Migrating ASP.NET Web Forms

to ASP.NET MVC (Appel, 2013) in WintellectNow platform. The course

contained many useful information including: when the migration from

ASP.NET Web Forms to ASP.NET MVC is needed, what can be kept from

old ASP.NET Web Forms when doing the migration and introduction in

detail about how to migrate from the old frameworks to the new one.

Within the scope of the solution. The writer collects information on how to

enable new friendly URL routes (which follow ASP.NET MVC route

patterns), how to create Models with Entity frameworks, how to create

Controllers and Views which follow the convention of configuration of

ASP.NET MVC.

According to Appel’s solution, old .aspx files will be reused as a View in

the new ASP MVC web applications. This is understandable since reused

.aspx files will save a lot of time and effort in re-designing user interfaces.

However, this point reveals the flaw of this study. The solution only gives

the suggestion to reuse the view, but does not mentione how to get rid of

code behind in .aspx files which is a complicated process.

3.5.2 Migrating ASP.NET Web Forms to the MVC Pattern with the

ASP.NET Web API

Peter Vogel who is a specialist in ASP.NET development has a blog in

Microsoft magazine blog. The blog provides a solution for the migration

from ASP.NET Web Forms to ASP.NET MVC which is Migrating ASP.NET

Web Forms to the MVC Pattern with the ASP.NET Web API (Vogel, 2013).

As can be seen from the name of the solution, if using this instruction, the

new system will only follow the MVC pattern but will not work fully as an

ASP.NET MVC web application.

From this study, the writer gets an idea how to use ASP.NET Web API as

a tool to get rid of the code behind in .aspx files. This solution, if applied

successfully, will fix the flaw in the previous solution provided by Appel.

During the time spent on the second solution, the writer has had a chance

to learn how to work with ASP.NET Web API, especially in how to create

Web API Controllers which return JSON objects or perform business

logics depending on each specific case. In addition, the thesis writer has

also acquired the knowledge of how to create AJAX requests with

JavaScript thanks to this solution.

As mentioned above, this solution only migrates the old ASP.NET Web

Forms into MVC Pattern. Hence, the new system is not fully an ASP.NET

MVC application especially in URL routing.

4 ARTEFACT DESCRIPTION

According to chapter 3.5, currently, there is no official guideline for making

the migration between two frameworks. Therefore, the thesis author has

made an aggregation of two existed solution mentioned in chapter 3.5

previously. The new solution will solve the research problem and answer

the research question.

The basic concept for the artefact is: Integrate MVC into existing Web

Forms code with the help from Web API. As the nature of the artefact,

the progress starts with the existing Web Forms project, during the project,

adding packages or refactor code is required in order to finish the

transferring progress. Finally, during this chapter, the artefact will be

described in detail.

4.1 Artefact in nutshell

Theoretically, in the ASP.NET Web Forms web application, the HTML and

business logic are tightened within one .aspx file. The server side code

does not only control the business logic but also govern the HTML code

partly via server side components. By contrast, the ASP.NET MVC web

application tends to separate the logic and HTML code. Hence, the Views

and Controllers are created. Consequently, the main focus point when

commencing the migration will be isolating the business logic code and

HTML code in the old ASP.NET Web Forms web application into Views

and Controllers.

In order to achieve the main focus point, there is a need to get rid of all

ASP.NET Web Forms server side components or at least, make them

independent from the code behind. Notwithstanding, removing all the

server side components will destroy the user interface of the web

application and lead to the expense of unnecessary effort for re-writing

pure HTML code. Hence, keeping the components and make them work

independently from the code behind is an ideal solution. But since the

HTML code is created dynamically in the server whenever there is a

request to the route (to .aspx file in Web Forms) and in some cases the

value of the component is also assigned by the data that come from the

business logic, finding a way to create a components on the server side

and assign the data (if needed) without interacting with the code behind

inside the .aspx file is required. In this case, Web API Controller and AJAX

techniques are the key. In order word, the server side components are

only created in .aspx files (server side) but the value of the components to

be attached when the HTML is loaded (client side) via AJAX calls.

Let us now turn to more details about the artefact, as the result of moving

to MVC design patterns, any request will not hit .aspx files anymore.

Instead, the Controller with correct action methods will be triggered. After

the Controllers and action methods are called, the view will be rendered, in

order to keep the old HTML design, the old .aspx file will be used as a

view.

Notwithstanding, the old .aspx needs to be modified by adding AJAX

technique which will send the request and receive data from the Web API

Controller then assign the value to corresponding HTML components

which have already been created on the server side. Still, rendering the

view and displaying it on the user’s browser are not enough, there is also a

need of knowing how to control the behaviour of server side components

when there is an interaction between them and users. Since the purpose

of the artefact is trying to get rid of code behind in the .aspx files, the

server side components no longer post back to the target .aspx file but

they will send the request to Web API Controllers as a substitute. Hence,

in the Web API Controller, different actions could be performed, for

example: business logic that update databases, getting more data or just

redirecting to another controller (URL). The figure below will give a visual

view of the artefact in brief.

FIGURE 8: Artefact’s workflow

4.2 Artefact in details

In this part, the artefact will be described precisely along with examples. In

general, the artefact has seven main steps, small unexpected steps might

be needed.

FIGURE 9: Artefact step by step

4.2.1 Install library package.

Even though ASP.NET MVC and ASP.NET Web Forms are both based on

ASP.NET library provided by Microsoft. However, the characteristic of the

pair is clearly different. This fact leads to the dependence on different third

party libraries. In addition, the API Controller which is one segment of the

artefact also requires other packages that haven’t been referenced yet in

already existed ASP.NET Web Forms web application.Therefore, installing

Install library package

Route Configure

Create Models

Create MVC Controller
& View

Create API Controller
(GET action method)

Modify .aspx View

Create APIController
(POST action method)

ASP.NET MVC and ASP.NET Web API is the initial step of the migration

progress. Installing all the requirement packages and also manage all the

configuration are quite a huge amount of workload. Luckily, inside Visual

studio – Integrated development environment which is most used to

develop ASP.NET web application, all the required packages can be

installed only with one click within the NuGet package manager. From

Visual Studio, click on Tools, select NuGet package management then

search and install ASP.NET MVC and ASP.NET Web API packages

FIGURE 10: Install packages via Nuget inside Microsoft Visual Studio

After doing various steps required by NuGet, new packages are

referenced and can be found under the References category of the

solution.

4.2.2 Route configuration

Since the routings in ASP.NET Web Forms and ASP.NET MVC are totally

different, configuring a new URL routing format is a next step in the

migration progress. Firstly, the developer must create an App_Start folder

in the solution, then the RouteConfig.cs file is created inside the App_Start

folder. Within the newly created file, adding the noreturn function with the

name RegisterRoutes which takes a RouteCollection object as a

parameter. The RegisterRoutes function itself will enable the friendly user

URL and declare a new routing route for the web application.

FIGURE 11: How to enable user-friendly and declare the new rules of

routing which include MVC Controller and API controller

4.2.3 Create Models

In ASP.NET Web Forms, usually, the interaction between the web

application and database is managed by pure SQL language which might

lead to the SQL injection security issues if the SQL parameters are not

used. In contrast, in ASP.NET MVC, the communication with the database

is handle by Entity framework which an ORM (Object-Relational Mapping).

Thus, next step in the process is creates Models and setting up the

connection between Entity Frameworks and Database. Before starting to

create models, the folder Models is required to be created first. Models are

normal C# classes. However, the number of Models classes is equal to the

number of tables in the current existing database. Moreover, every

property of the Model class represents one column in the database table.

Thus, adequate knowledge about the Database structure and the

preciseness in naming class property during creating Model class is highly

recommended.

FIGURE 12: Category Model Class

After creating models based on tables in the database, in order for Entity

framework to understand which one is C# model class and which one is

just a normal one as well as setting up the connection with database, the

DbContext class is required. The recently created class must inherit from

the DbContext class and also inherit and override the constructor of

DbContext class with the name of the connection string which specifies

information about the database connection. In Entity framework, the DbSet

type property corresponds with database tables, so the name of each

DbSet type property needs to be the same with the corresponding table.

FIGURE 13: Setting up DbContext

Normally, the data in the existing database will be overridden when the

web application resets. However, since the progress is migrated from

existing working web applications, keeping and working with already

existing data is a must. Hence, setting the data initializer to null is needed.

The data initializer will be set inside the Global.asax file and inside the

Application_Start method.

FIGURE 14: Setting initial data

4.2.4 Create MVC Controllers & Views

The MVC Controller in the artefact does not manage the business logic

itself (the ASP.NET Web API will handle this) but the Controller still

manages which view will be shown when there is a user request.

Therefore, next stage of the artefact is creating MVC Controllers.

In order to fulfil the convention of configuration of ASP.NET MVC, the new

folder Controllers will need to be created inside the current solution.

Controllers will be stored within the newly created folder.

FIGURE 15: Controller folder in the solution

Creating Controllers based on existing .aspx files will require a precise

plan, the suggestion here is that related aspx files can be grouped into one

Controller, and MVC Controllers only handle GET requests which return

the .aspx file as a view to users, any POST request will be handled by

Web API Controller.

After creating Controllers, there will the need for creating View files for

each of the action methods inside Controllers. Since old .aspx files will be

reused as Views for new Controllers. Nevertheless, the convention of

configuration still needs to be fulfilled. The process requires that new

Views folder be created in the solution. In addition, inside a Views folder,

different folders need to be created and named after different Controllers.

Views (old .aspx file) belong to specific Controllers will be stored in the

corresponding folder.

FIGURE 16: Views folder in the solution

4.2.5 Create Web API Controller (GET Action Method)

Web API Controllers play a vital role in the artefact. Within the artefact,

ASP.NET MVC Controllers control the routing but ASP.NET Web API

Controllers can be considered the brain of the whole system since they

provide data for displaying purposes as well as updating the database.

Like ASP.NET MVC Controllers, ASP.NET Web API Controllers are also

stored inside the Controllers folders. In addition, API Controller must

inherited from the ApiController class.

Web API Controller action methods can be divide into two different type:

action method handles GET request and action method handles POST

request.

For this stage of the artefact, action methods which handle GET request

will be created. The Action Method which handles GET request will return

data after performing different business logics based on user request. In

some cases, the GET Actions Method might contain an optional parameter

(mostly an Id)

FIGURE 17: Web API Controller with Action Method return a specific

category with a Category Id as a parameter

4.2.6 Modify .aspx View

During this stage, an old .aspx file will be modified by adding an AJAX

technique with JavaScript codes. Views (.aspx files) are stored in

corresponding subfolders inside the Views folders created in previous

stage.

In .aspx files AJAX technique will be implemented for two purposes:

assigning data to server side components and handling the interaction

between user and server side components. The syntaxes for both of the

purposes are quite similar. Yet, there are still some slightly differences.

For assigning data purpose, the AJAX with GET request will be

implemented. A GET request will be sent to specific Web API Controllers

and Action Methods. The request, if success, will return a piece of data in

JSON format. Finally, with the returned data, extra JavaScript is required

to assign data to components dynamically. Usually, the GET request will

be sent when the page is loaded.

FIGURE 18: AJAX request which get the data from Web API and

assign the value into server side components

For handling the interaction between users and the server side

components, the AJAX with POST request will be implemented. Before

implement an AJAX request, the runat=”server” needs to be get rid of in

the <form> tag, this action will make sure that the form will never post back

the code behind in the .aspx file. Also, various JavaScript events will need

to be added to the server side components, for example: onClick or

onChange. After the mentioned modify, when there is an interaction

between the user and the server side components, the components

themselves will trigger the corresponding JavaScript function, instead of

posting back to the code behind as does the original behaviour.

FIGURE 19: AJAX POST request in order to update the category

4.2.7 Create Web API Controller (POST Action Method)

As mentioned above, beside the GET action method, the POST action

method also needs to be created in order to complete the transferring

progress. The POST action method will be triggered when there is an

interaction between the user and the server side components in the old

.aspx files.

For POST request, the progress is little bit more problematic since the

action method which handles POST request will need to accept a JSON

object as its parameter. Fortunately, the Web API coding convention will

do most of the heavy lift, what left to be done is only creating Data

Transfer Object (DTO) classes to hold the value from .aspx files. The DTO

class itself will contain properties with names which match the names

associated with the server side components that hold the data needed to

be posted to the Web API Controller.

FIGURE 20: Category DTO class associate with .aspx server side

components

After defined DTO class to handle parameter, the business logic will be

implemented inside action methods. The Action method will perform the

action to update database as well as some extra actions after the

database is updated successfully, for example: redirecting to specific

ASP.NET MVC Controller or returning the HttpResponse.

FIGURE 21: updateCategory action method which update database

and redirect to ListCategory page

5 THE STUDY

5.1 Case study

As an e-commerce company, K-company embraces marketing online in

general and marketing via email in detail as a vital part in its business

model. Therefore, developers in K-Company have come up with the idea

of the 24Email application which allows the sale department to send

promotion emails in the most efficient way and to the accurate customer

targets.

Email24 was created in 2011 with ASP.NET Web Forms. The web

application itself could be considered a clone of Mailchimp when it was

created.

The main functions of the web application include: sending emails with

pre-defined templates, sending text emails or HTML format emails,

sending email within a group of receivers and also blacklisting receivers

whom the emails are not meant for.

After doing some investigations on the project, the thesis writer can give a

brief summary of the web application structure.There are 22 .aspx files,

the average number of lines of code in the code behind of the each .aspx

file is fewer than 100 lines. For the database of the system, there are 18

tables created with MySQL. Also, the system includes a class library for

coordination between ASP.NET Web Forms and the database. The

application could be considered a traditional web application with three

layers: presentation (ASP.NET Web Forms), business logic (class library),

and data access (same class library with business logic; MySQL)

In summary, Email24 can be considered a medium scale web application

with medium-level business logic behind.

5.2 Data analysis

5.2.1 Complexity

Before starting to implement the migration, the writer has been working in

the programming field for two years and can be considered a junior

developer. In addition, the writer also has basic knowledge of both

ASP.NET Web Forms and ASP.NET MVC. However, the knowledge about

ASP.NET Web API is missing from the writer’s skill set. Consequently, the

laid back costs the writer about two hours to learn a new knowledge about

ASP.NET Web API and understand the artefact.

The artefact itself is straightforward and easy to understand. Nevertheless,

the writer faced the first problem in the fourth step when creating MVC

Controllers and Views. In order to finish this step, the writer needs to

spend extra time to get used to the flow and structure of the web

application in order to create Controllers in a most immaculate and

efficient way.

Another bottleneck that prevents the writer from finishing the migration

occurred in the sixth stage which involves modifing the Views (.aspx files).

The HTML server side components which is created by .aspx files has an

unpredicted HTML structure (especially the GridView component) which

leads to unexpected extra effort and time cost to investigate on the HTML

web page structure created by the server side.

Beside the mentioned problems, the rest of the artefact, from the junior

developer’s perspective is easy to follow and understand.

5.2.2 Time cost

The writer started implementing the migration on Wednesday 23th of

March 2016 and partly finished the migration on Friday 1 of April. The

migration progress costs the thesis writer eight working days which means

sixty working hours. Additionally, it takes the thesis writer from one hour up

to four hours to migrate one .aspx file, depending on the size and the

complexity of the file. In different circumstances, the time cost may vary.

5.2.3 Labor cost

According to the Collective Agreement – IT Service Sector (1 November

2013 to 31 October 2016) created by the federation of Finnish technology

industries, federation of professional and managerial staff –YTN and

association of IT sector employee, the minimum salary for level 1(junior)

design/development job is 2166 euro/month (Collective Agreement – IT

Service Sector, 2016) which means around 14.44 euro/ working hour.

With the the formula:

Labor cost = salary per hour * total working hour * 1.5 (for

tax and extra costs ...)

The labor cost for one junior developer to finish the migration for medium

size project is around 1300 euro.

5.2.4 Performance

Despite the extra work, the result so far from the migration at the end is

from twelve.aspx files, the new ASP.NET MVC application contains only

four Controllers which is an idea project structure for future maintenance.

On the other hand, the writer also implementes the speed test between

the old ASP.NET Web Forms web application and the new ASP.NET MVC

web application. The test is operated by using the service from

webpagetest.org with the server located in Stockholm, Sweden with

Google Chrome as a browser.

The result from the speed test shows that, with the same page, it takes 1.7

seconds for the ASP.NET Web Forms web application and 2.2 seconds for

the new ASP.NET MVC to load the web page. Hence the new web

application is 0.5 seconds slower compare to the old one. However, the

time gap is acceptable and understandable since the new ASP.NET MVC

web application needs to send an extra request Web API Controllers in

order to display the web page on the browser. In addition, the thesis writer

also conducts test on different browsers. The result is optimistic: the web

application is combatible with most common browsers such as Firefox,

Google Chrome and more.

6 CONCLUSION

The main purpose of this study is to create a detailed guideline for the

migration progress from already existed ASP.NET Web Forms web

applications to new ASP.NET MVC web applications. Therefore, a new

artefact has been created by combining two already existed solutions with

some modification.

The artefact contains seven steps in general (some steps need to repeat

until the project is fully migrated). Each of the step in the artefact is

described in detail with example in chapter four. In addition, knowledges

required to breakthrough the artefact are presented in chapter three of the

thesis.

Moreover, the artefact created in this thesis is also evaluated by the thesis

writer by applying it into a real case study. With the result from the data

collection and data analysis progress, the writer also provides some

information for readers to consider before deciding to follow the artefact or

not. The information can be found in chapter five.

In summary, with the artefact “Integrate MVC into existing Web Forms

code with the help from Web API”, this study has provided a new solution

to answer the research question of the thesis. From the thesis writer’s

perspective, with medium-level of complexity, acceptable time cost, labor

cost and performance, it highly advisable to apply the migration to small

and medium size projects. Notwithstanding, with some bottlenecks

requiring extra effort, it could be too complicated, time-and-labor-

consuming to perform the artefact in projects of bigger scales. Hence, for

future studies, the writer will suggest another solution that might fit better

for large scale projects.

7 DISCUSSION

7.1 Limitations

Firstly, since the artefact is combined by a junior level developer, there

could be some high level aspects in the migration progress that are

ignored by accident due to the limitation of skill and knowledge.

Secondly, the artefact is only evaluated with the medium scale project and

mid-level business logic. Therefore, there is no guarantee the artefact is

the most efficient solution for big scale projects.

Finally, with the rocket development of technology, new versions of

frameworks are released frequently. Hence, there is a high potential that

the artefact will not be compatible with later versions of ASP.NET or will

require some extra steps not covered in this study.

7.2 Reliability and validity

Any study about web technologies can be outdated easily due to the fact

that web technologies themselves change rapidly. New ASP.NET version

vNext is currently being developed and will be released soon in 2016,

therefore the material and information of this study will require a frequent

update in order to maintain the reliability and validity of the study.

7.3 Future study

7.3.1 Secure Web API

According to the artefact, a new component which is ASP.NET Web API

will appear in the project after performing the migration. By default, anyone

who knows the endpoint (URL) of methods in the API Controller can send

a request and get the data. Consequently, there is a need of securing the

Web API in order to prevent data leaking. The suggestion from the thesis

writer is implementing the authorization mechanism for the Web API and

data encrypted when responding to requests.

7.3.2 Implement test driven development (TDD)

Nowaday, with the popular of continuous software development, testing in

general and unit testing in detail is a must in every IT project. With the new

MVC pattern, it is now easier than ever to implement TDD in the ASP.NET

web application. Therefore, there is a need to implement unit testing for all

the functions in the project.

7.3.3 Running ASP.NET MVC and ASP.NET Web Forms at the

same time

As mentioned above, there are still some bottlenecks in the artefact that

could make it impossible to apply the artefact into big scale projects.

Hence, another solution that could be taken into account is allowing the

old code (build with ASP.NET Web Forms) to run at the same time with

the new code (build with ASP.NET MVC). This solution can save time and

labor cost since there is no need for a transferring progress. However, it

requires a research on how to let two frameworks run at the same time,

especially in the route configuration.

8 REFERENCES

Appel, R., 2013. Migrating ASP.NET Web Forms to MVC (course).

[Online]

Available at:

https://www.wintellectnow.com/Videos/Watch?videoId=migrating-

aspdotnet-web-forms-to-mvc

[referred on 1 April 2016].

Blackstone, A., 2012. Sociological Inquiry Principles: Qualitative and

Quantitative Methods. Washington: Flat World Education, Inc.

Block, G. ym., 2014. Designing Evolvable Web APIs with ASP.NET.

s.l.:O'Reilly Media.

Cox, K., 2008. ASP.NET 3.5 For Dummies. Hoboken: For Dummies.

Esposito, D., 2011. Programming Microsoft ASP.NET 4. s.l.:Microsoft

Press.

Esposito, L., 2016. What ASP.NET 5 Means to a Technical Manager.

[Online]

Available at: http://www.codemag.com/article/1501071

[referred on 15 February 2016].

Federation of Finnish Technology Industries, Federation of Professional

and Managerial Staff –YTN , Association of IT Sector Employees, 2016.

TES_2013_en_web-version.pdf. [Online]

Available at: http://tietoala.fi/rauta/wp-

content/uploads/2015/11/TES_2013_en_web-version.pdf

Galloway, J., Haack, P., Wilson, B. & Allen, K., 2011. Professional

ASP.NET MVC 3. s.l.:Wrox.

Goncalves, A., 2013. Beginning Java EE 7. New York : Apress.

Hevner, A. R., March, S. T., Park, J. & Ram, S., 2004. Design Science in

Information Systems Research. s.l.:s.n.

Jacob, W., 1991. System Migration. Information Today, July, 8(7), p. 37.

Kothari, C. R., 1990. Research Methodology: Methods and Techniques (

Second Edition). 2nd toim. New Delhi: NEW AGE INTERNATIONAL (P)

LIMITED, PUBLISHERS.

Liberty, J. & Hurwitz, D., 2003. Programming ASP.NET. Teoksessa:

Programming ASP.NET. Sebastopol: O'Reilly, p. 3.

Microsoft, 2016. Introduction to ASP.NET Web Forms. [Online]

Available at: http://www.asp.net/web-forms/what-is-web-forms

[referred on 1 March 2016].

Peffers, K., Tuunanen, T., A.Rothenberger, M. & Chatterjee, S., 2008. A

Design Science Research Methodology for Information Systems

Research. Teoksessa: Journal of Management Information Systems .

Abingdon: M.E. Sharpe, Inc..

Perkins, B., 2012. Windows Azure and ASP.NET MVC Migration. s.l.:John

Wiley & Sons.

Rajasekar, S., P.Philominathan & V.Chinnathambi, 2013. Research

Methodology. [Online]

Available at: http://arxiv.org/pdf/physics/0601009.pdf

[referred on 20 February 2016].

Robson, C., 2002. Real World Research. 2nd toim. United Kingdom:

Blackwell Publising.

Singh, R. R., 2015. Mastering Entity Framework. s.l.:Packt Publishing Ltd.

Ugurlu, T., Zeitler, A. & Kheyrollahi, A., 2013. Pro ASP.NET Web API.

New York: Apress.

Walther, S., 2015. Top 10 Changes in ASP.NET 5 and MVC 6. [Online]

Available at: http://stephenwalther.com/archive/2015/02/24/top-10-

changes-in-asp-net-5-and-mvc-6

[referred on 15 February 2016].

Vogel, P., 2013. ASP.NET - Migrating ASP.NET Web Forms to the MVC

Pattern with the ASP.NET Web API. [Online]

Available at: https://msdn.microsoft.com/en-us/magazine/jj991978.aspx

[referred on 1 April 2016].

