Laura Honkola

TUOTANNON VIRTAUSTEHOKKUUDEN KEHITTÄMINEN

Kohti Lean-tuotantoa

Opinnäytetyö
CENTRIA-AMMATTIKORKEAKOULU
Tuotantotalouden koulutusohjelma
Toukokuu 2016
TUVISTTELMA OPINNÄYTETYÖSTÄ

<table>
<thead>
<tr>
<th>Yksikkö</th>
<th>Aika</th>
<th>Tekijä/tekijät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ylivieska</td>
<td>Toukokuu 2016</td>
<td>Laura Honkola</td>
</tr>
</tbody>
</table>

Koulutusohjelma
Tuotantotalous

Työn nimi
TUOTANNON VIRTAUSTEHOKKUUDEN KEHITTÄMINEN. Kohti Lean-tuotantoa

<table>
<thead>
<tr>
<th>Työn ohjaaja</th>
<th>Sivumäärä</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jari Kaarela, Sakari Pieskä</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Työelämäohjaaja</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teemu Lehtohalme</td>
<td></td>
</tr>
</tbody>
</table>

Tuotannossa tehty työmittaus paljasti useita hukan lähteitä, joiden poistoon on annettu kehitysideoi- ta. Ovituotannon vaiheikojen vaihtelu oli suurin virtausta estävä tekijä, ja sen syyksi paljastui odotetusti tuotevariaatio. Havaintojen ja työmittausten pohjalta kehitetystä layout-ehdotuksessa pyritään hallitsemaan vaihteluja jakamalla työvaiheet mahdollisimman tasaisesti työpisteiden kesken, siirtämällä pitkät ja vaihtelevän pituiset työvaiheet nakkais- tai lisätyöpisteelle, ja sekoittamalla valmistusjärjestyksessä tuotevariaatioihin vaiheiksi huomioon ottaen.

Opinnäytetyön tästä versiosta on poistettu yritykselle tärkeitä tietoja.

Asiasanat
Lean, tasapainotus, työmittaus, vaihtelu, virtaustehokkuus
The objective of this thesis was to generate ideas for improving the flow of door production of the target company while following Lean production principles. In the theory part of the thesis we took a look at the concept of Lean production as well as the methods of work measurement. The empirical part was based on a work measurement study made in the door production of the target company during which all data handling was aimed to be portrayed as accurately as possible. A depiction of the current status of production was created from the results of the work measurement study to act as a base for the following Lean development work. The thesis process continued with the composition of improvement suggestions for upgrading the production flow. A layout proposition was made.

Work measurement study done in production uncovered several sources of waste, and ideas for the elimination of said problem areas have been given. The variation in the times of different phases in door production was the leading factor disturbing the flow, the cause of which was, as expected, revealed to be product variation. Layout proposition based on observations and work measurement study aims to control variation by dividing different phases of work as evenly as possible amongst the workstations. This is done by moving phases that are long and variant in length to subordinate workstations, as well as by mixing the manufacturing order with the phase time of product variations in mind.

Important company information has been removed from this version of the thesis.

Key words
Lean, production stabilization, work measurement study, variation, flow
<table>
<thead>
<tr>
<th>KÄSITTEIDEN MÄÄRITTELY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5S</td>
</tr>
<tr>
<td>Kaizen</td>
</tr>
<tr>
<td>KET</td>
</tr>
<tr>
<td>Layout</td>
</tr>
<tr>
<td>Lean</td>
</tr>
<tr>
<td>Tasapainotus</td>
</tr>
</tbody>
</table>
TIIVISTELMÄ
ABSTRACT
KÄSITTEIDEN MÄÄRITTELY
SISÄLLYS

1 JOHDANTO ..1
 1.1 Työn tausta ...1
 1.2 Kehitystehtävän kuvaus ...1
 1.3 Tavoite ..2

2 LEAN ..3
 2.1 Arvon määrittys ...4
 2.2 Kaizen - jatkuva parantaminen ...5
 2.3 Työn vakiinnuttaminen ...6
 2.4 Työkaluja virtautuksen ja imuohjauksen toteuttamiseen6
 2.4.1 SS ..7
 2.4.2 Tuotannon layout ja balansointi ...8
 2.4.3 Laadunvarmistus ...8
 2.4.4 Kanban – imuohjauksen toteuttaminen ...9

3 TYÖNMITTAUS ..10
 3.1 Aikalajit ..10
 3.2 Tulosten normalisointi ..11
 3.3 Työmittaustekniikat ..11

4 TYÖNMITTAUKSEN TOTEUTUS JA DATAN KÄSITTELY ..13
 4.1 Kellotustapahtuma ..13
 4.2 Häiriöaika ..17
 4.3 Keskeneräinen tuotanto ...18

5 KOHDEYRITYKSEN OVITUOTANNON NYKYTILA ..19
 5.1 Ovituotteet ...19
 5.2 Layout ...20
 5.3 Tuotannon hukat ..20
 5.3.1 Laatuvirheet ..20
 5.3.2 Odottelu ja viivästykset ...21
 5.3.3 Tarpeet liike työskentelyssä ..21
 5.3.4 Tarpeettomat varastot ...21
 5.3.5 Tarpeeton kuljettaminen ..22
 5.4 Vaiheaikojen vaihtelu ..22

6 KEHITYSIDEAT ..23
 6.1 Työn vakiinnuttaminen ...23
 6.2 Laadunvarmistus ..23
 6.3 Mittari- ja häiriötiedon keräys ..24
 6.4 Työnkierto ..24
 6.5 Materiaalinjakelu ..25
 6.6 SS ..25
6.7 Tuotannon tasapainotus ... 26
6.8 Layout-ehdotus .. 27
6.9 Layout-vertailu ... 27

7 YHTEENVETO JA POHDINTA ... 29
 7.1 Työn tulosten arviointi ... 29
 7.2 Toimintaohjeet tilaajalle .. 30
 7.3 Jatkokehityskohteet .. 31

LÄHTEET .. 32
LIITTEET

KUVAT
KUVA 1. Kellotustapahtuman näkymä Excel-ohjelmassa .. 15
KUVA 2. Kirjauspohja keskiarvoille ... 16
KUVA 3. Keskeneräisen tuotannon havainnointipohja ... 19

TAULUKOT
TAULUKKO 1. Työvaiheen häiriöaikojen keräyspohja ... 17
TAULUKKO 2. Yhteenvetotaulukko työvaiheen häiriöajoista ... 17
TAULUKKO 3. Layout-taulukkovertailun pohja ... 28
1 JOHDANTO

1.1 Työn tausta

Toytan tuotantofilosofiasta alkunsaa sanat virtaustehokkuutta korostava Lean-toimintastrategia alkoi
kiinnittää huomiota 1980-luvulla, jonka jälkeen Leanista on muodostunut maailmanlaajuiseksi teollis-
uuden parhaana käytäntönä pidetty toimintastrategia. Lean-tuotannon vaikutusta tuotannolliseen toi-
mintaan pidetään huikeana, ja se on edelleen ajankohtainen neljännennen teollisen vallankumouksen,
eli seuraavan kahden vuosikymmenen aikana odottavasti tapahtuvan tuotantojärjestelmien digitalisaatio-
on tuomien muutosten kynnyksellä. Teollisuus 4.0:n odotetaan itse asiassa korostavan Lean-
toimintastrategialla saavutettuja etuja entisestään teollisen internetin mahdollistaessa asiakasvaatimu-
ten laajemman ymmärtämisen ja tiedon jakaman monimutkaisten tilaukset-moottoriketjujen ja verkosto-
jen sisällä.

Opinnäytetyön toimeksiantajana on alumiini- ja lasirakentamiseen erikoistunut yritys, jonka tuotevali-
koimaan kuuluvat muun muassa ovet, ikkunat ja lasisäikeet. Yrityksen asiakaskunta koostuu rakennus-
liikkeistä, ja tuotteet päätyvät esimerkiksi kerrostaloihin, julkisiin rakennuksiin, ostoskeskuksiin ja
teollisuusrakennuksiin.

1.2 Kehitystehtävän kuvaus

Kohdeyrityksen ovisolussa valmistetaan sisä-, ulko- ja palo-ovia. Palo-ovien palonsuojaominaisuuden
luomiseksi tarvittava varustelutaso eroaa merkittävästi muiden ovijärjestelmien varustelutason, joka
näkyy myös ajallisesti palo-ovien varustelun kestävän huomattavasti muita ovia pidempään. Tämä
aiheuttaa pullonkulan ovien varustelun estäen tuotannon sujuvan virtauksen.

Yrityksen tuotteet ovat räätälöityjä ja tuotteiden kehykseen on panostettu merkittävästi, ja nyt on
avautunut mahdollisuus panostaa myös tuotantotekniikkaan. Arvoa on päätetty lähteä hakamaan paran-
tamalla yrityksen virtaustehokkuutta Lean-toimintastrategian avulla. Tuotannosta tiedetään löytyvän
hukkaa, joka on tunnistettava ja johon on puututtava virtauksen parantamiseksi.
1.3 Tavoite

Tämän opinnäytetyn tavoitteena on luoda kehitysideoita kohdeyrityksen ovituotannon virtaustehokkuuden parantamiseksi Lean-periaatteiden mukaisesti. Varustelusta aiheutuva tuotannon pullonkaula pyritään poistamaan tasoittamalla ovituotanto kiinnittäen samalla huomiota hukkaan ja sen syihin. Tuotannosta saatujen aikatietojen analysoinnilla luodaan nykytilakuvaus jatkuvaan Lean-kehitystyötä varten, ja aikatiedot jalostetaan myös myynnin tueksi, jolloin yrityksen räätälöidyille tuotteille pystytään tulevaisuudessa määrättämään tuotannon läpimenoaika mahdollisimman tarkasti myyntivaiheessa. Tiedonkäsittely dokumentoidaan niin, että se on toistettavissa.
2 LEAN

Seuraavissa kahdessa pääluvussa esitellään kohdeyrityksessä suoritetun työntutkimuksen ja tulosten analyysin suorittamiseksi ja ymmärtämiseksi tarvittava teoria.

riippuu toimintaympäristöstä. Lean onkin nimenomaan keino, ei tavoite, eikä Leaniin kuuluvaksi mielellytijen työkalujen tai menetelmien käyttöä saa muodostua itsetarkoitukseksi. (Modig & Åhlström 2013, 93–94.)

2.1 Arvon määrittely

Tuotteen tai palvelun arvo määritellään aina asiakkaan näkökulmasta. Ottamalla selvää asiakkaan tarpeista ja haluista, voidaan määrittää millaisia asioita asiakkaiden tyydyttämiseksi olisi tehtävä, miten ne on tehtävää, tai kannattaa niitä tehdä ollenkaan. Jokainen yrityksen prosessi on joko asiakkaalle arvoa tuottava tai arvoa tuottamaton. Tämän tunnistaminen on tärkeää, jotta voidaan pyrkiä eroon arvoa tuottamattomasta, virtausta turhaa hidastavasta toiminnasta. Arvoa lisäävän toiminnan on täytettävä kaikki seuraavat kriteerit: asiakas on valmis maksamaan siitä, prosessi muuttaa tuotetta tai palvelua jollain lailla ja prosessi suoritetaan heti ensimmäisellä kerralla oikein. Arvovirralla tai arvoketjulla tarkoitetaan sitä toimintojen kokonaisuutta jossa materiaali ja informaatio virtaavat, ja jotka yhdessä tuottavat valmiin tuotteen tai palvelun. (Sayer & Williams 2012, 115–117, 133.)
Arvoa tuottamatonta toimintaa on kaikki, mikä ei täytä arvoa tuottavan toiminnan kriteerejä. Arvoa tuottamattomalla toiminnalla on kolme esiintymismuotoa; muda, mura ja muri. Muda on toimintaa joka käyttää resurseja tuottamatta arvoa asiakkaalle, eli hukkaa. (Sayer & Williams 2012, 118–119.) Hukka voidaan jakaa seitsemään luokkaan, jotka ovat yltuotanto, odottelu ja viivästykset, tarpeeton kuljettaminen, laatuvirheet, tarpeettomat varastot, ylikäsittely sekä tarpeeton liike työskentelyssä (Kouri 2010, 10–11). Mura on vaihtelun aiheuttamaa hukkaa, ja se koostuu kaikista ennustamattomuudesta johtuneesta materiaalihukasta, kuten palautuksista, ylijäämästä ja suunnittelemattomista asiakaskäynteistä. Muri taas on ihmisten, koneiden tai systeemien ylikuormittamista. (Sayer & Williams 2012, 119.)

2.2 Kaizen - jatkuva parantaminen

2.3 Työn vakiinnuttaminen

2.4 Työkaluja virtautuksen ja imuhojauksen toteuttamiseen

Leanin perusperiaatteisiin kuuluu virtautehokkuuden ja imuhojauksen konseptit. Virtauttamisen tavoitteena on yhden kappaleen eräkoko, jolloin varastojen tarvetta ei ole ja keskeneräistä tuotantoa ei synny vaan tuotteet virtaavat tuotannossa pysähtyen vain arvoa tuottavan työn suorittamisen ajaksi. Läpimenoaika kuvaa sitä aikaa, joka kuluu tuotteen valmistamisen aloittamisesta siihan kun tuote on

2.4.1 5S

Lean-toiminnan lähtökohtana on, että tuottavan ja laadukkaan työn tekeminen on mahdollista ainoastaan siistissä ympäristössä, jossa työvälineet ovat tarkoituksenmukaisesti organisoitu eikä niitä tarvitse etsiä. 5S on siisteyden, järjestysten ja systemaattisen toiminnan kehittämiseen ja ylläpitoon tarkoitettu työkalu. Viisi s-kirjainta tulevat japanihoeisista sanoista Seiri (lajittele), Seiton (järjestä), Seiso (puhdista ja huolla), Seiketsu (vakiinnuta toimenpiteet) ja Shitsuke (ylläpidä). 5S toteutetaan siis viidessä vaiheessa, joihin jokainen työntekijä osallistuu. (Kouri 2010, 26–27.) 5S:n avulla voidaan eliminoida muria eli ylikuormittamista esimerkiksi sijoittamalla työvälineet niin, ettei työn tekeminen vaadi ergonomisesti haitallisia tai turhia liikkeitä.

Kun työpiste on järjestetty ja puhdistettu, luodaan rutiiinit sen ylläpitoon. Tämä tarkoittaa osana työn-tekkoa tehtävää järjestelyä ja siivousta, jotta työpisteen järjestys säilyy juuri samanlaisena kuin se on ensimmäisenä päivänä 5S-työkalun kolmannen vaiheen jälkeen. Viides vaihe, eli ylläpito, tarkoittaa
käytäntöjen viemistä organisaatiokulttuuriin. Uusien käytäntöjen luominen on hidasta ja vaatii jatkuvaa vahvistamista ennen kuin niistä tulee rutiinomaisia. (Sayer & Williams 2012, 218.) Vaiheita 1-3 toteutetaan jatkuvasti ja 5S-taso auditoidaan systemaattisesti (Kouri 2010, 27).

2.4.2 Tuotannon layout ja balansointi

2.4.3 Laadunvarmistus

Virheiden synty pyritään estämään niiden lähteissä, sillä laatua ei voida lisätä tuotteeseen jälkikäteen. Tähän tarkoituukseen on syntynyt jidoka, eli ihmisavusteen automaatio. Automaation avulla kone tai laite pystyy tunnistamaan virheet ja pysäyttämään tuotannon kunnes virhe korjataan. Sen lisäksi jidokaan kuuluu ajatus siitä, että työvaiheessa työskentelevä henkilö on vastuussa työnsä laadusta ja mah-
dollisten ongelmien korjaamisesta. Jos työvaiheessa työskentelevä henkilö ei kykene korjaamaan ongelmia, hänen vastuullaan on tuotannon pysäyttäminen virheen arvovirrassa etenemisen estämiseksi. Jidokaan kuuluvia työkaluja ovat muun muassa 5 kertaa miksi (5 whys) ja poka-yoke. (Sayer & Williams 2012, 37, 370.)

2.4.4 Kanban – imuohjauksen toteuttaminen

Edellä kuvatut työkalut kattavat oppinäytetyöni rajauksen kannalta keskeisimmät Lean työkalut, mutta ei suinkaan kaikkia Lean-toimintaan liitettyjä työkaluja. Lean-työkalupakkioon kuuluu lisäksi muun muassa lisää visuaalisia työkaluja, erilaisia tilastollisia laatutyökaluja sekä johdon käyttöön tarkoitettuja strategia- ja hallintotyökaluja. Teollisuus 4.0 tulleen käyttämään vähemmän konkreettisia apuvälineitä, kuten fyysisiä kanban-kortteja, teollisen internetin mahdollistaman reaalialaisen tiedonjakon ja reagoinnin myötä. Lean-työkalujen ja menetelmien käytöstä ei siis tulisi muodostua itsetarkoitusta, vaan on ymmärrettävä niiden rooli vain keinona vähentää hukkaa ja parantaa virtausta, eli saavuttaa perimmäinen tavoite.
3 TYÖNMITTAUS

Työmittaus tarkoittaa työhön kuluvan ajan selvittämistä tiettyä menetelmää käyttäen. Käytetty menetelmä tulee kuvata riittävällä tarkkuudella, sillä työmenetelmällä on merkittävä vaikutus työhön tarvittavaan aikaan. Tärkeimpiä tuotantoon liittyviä selvitettyä aikoja ovat toimitusaika, läpimenoaika ja työvaiheaika. Toimitusaika on aika tilauksesta tuotteen vastaanottamiseen, mikä on usein ainut asiakasta kiinnostava aika. Läpimenoaika on aika valmistuksen aloittamisesta siihen, kun valmis tuote on valmis toimitukseen. Työvaiheaika taas on tietyt työvaiheen tekemiseen kuluvaa aika. (EK-SAK tuottavuustyöryhmä 2011, 6-7.)

3.1 Aikalajit

Apuaikaan kuuluvat sellaiset työtehtävät, jotka eivät välittömästi edistää työn valmistumista, mutta jotka on suoritettava jotta työn varsinaisen suorittaminen voi jatkua. Apuaikaan kuuluvia vaiheita ei pystytä suoraan kohdistamaan millekään tuotteelle tai valmistuserälle. Apuaikaa on esimerkiksi työpaikan kunnostaminen ja siivoaminen, koneen huolto, tuntikortin käyttäminen, suunnitellut taot ja mahdollinen erityisen kuormittavan työn vaatima muu elpymisaika. (EK-SAK tuottavuustyöryhmä 2011, 11–12.)

Häiriöaikaa ovat esimerkiksi odottamattomat keskeytykset, konerikot, aputyöt ja työkalujen etsiminen. Myös turha työ, kuten laatuvirheiden korjaaminen, on häiriöaikaa. Työntutkimusta suoritettaessa häiriökojen syy ja kesto on kirjattava ylös, jotta häiriöitä voidaan tulevaisuudessa vähentää ja poistaa. (EK-SAK tuottavuustyöryhmä 2011, 12.)

3.2 Tulosten normalisoointi

3.3 Työmittaustekniikat

Työmittauksessa käytettävän tapa riippuu aina käyttökohteesta. Mahdollisia käytettäviä tekniikoita ovat havainnointutkimus, normaalialkatutkimus, ajankäyttötutkimus, liikeaikakutkimus ja aikalaskelmat sekä näiden perusteella tehtävät standardiaikajärjestelmät. Aikatiedot voidaan määrittää myös esimerkiksi toiminnanohjausjärjestelmästä saatavan tiedon perusteella, jos se tarjoaa riittävän tarkkuuston käyttötarkoituksia varten. (EK-SAK tuottavuustyöryhmä 2011, 24.)

Liikeaikatutkimuksessa työtä analysoidaan hyvin yksityiskohtaisesti erittelemällä työ niin pieniin osiin, että niihin kulua aika on vakio. Mittausmenetelmän käyttö edellyttää hyvin koulutettua henkilöstöä, ja sitä käytetään lähinnä työmenetelmien kehittämiseen. (EK-SAK tuottavuustyöryhmä 2011, 25.)

Tässä opinnäytetyössä työnmittausmenetelmäksi valikoitui normaaliaikatutkimus. Jotta saataisiin ai-kaan myös myynnin tarpeisiin riittävän tarkka standardiaikajärjestelmä, työvaiheissa tehtävää työ osiotel- tiin pieniin osavaiheisiin, mikä käytännössä tarkoitti jokaisen mahdollisen komponentin asentamiseen kuluvan ajan kellottamista erikseen.
4 TYÖNMITTAUKSEN TOTEUTUS JA DATAN KÄSITTELÝ

Lean-tuotannon neljäksi keskeisesti strategiaksi voidaan siis määrittää:

1. Tuotantokapasiteetin sovittaminen asiakastarpeeseen
2. Tuotannon tasapainotus
3. Virtauksen luominen
4. Imuohjauksen luominen

4.1 Kellotustapahtuma

1. Suunnittelu
2. Hankinta
3. Keräily
4. Materiaalipuute
5. Edellinen työvähe
6. Muu syy
7. Työntekijä

Kellotustapahtumia voidaan hakea ovityyppin mukaan klikkaamalla sarakkeen otsikon viereistä nuolta ja määrittelemällä hakuehdot. Haku voidaan tehdä myös oven varustelun mukaan samalla periaatteella, tai kellotustapahtumat voidaan lajitella aikalajien mukaan suuruusjärjestykseen.

16

KUVA 2. Kirjauspohja keskiarvoille

Perusoven vaiheikoja havainnollistettiin Excel-tiedostossa palkkikaavion avulla. Työvaiheiden läpimenoajan vaihteluvälillä on havainnollistettu merkkaamalla keskiarvoja kuvastaville palkkikaavioille virhemarginaaleilla työnmittauksen aikana toteutunut vaihteluväli.
4.2 Häiriöaika

Työntutkimuksen aikana esiintyneet häiriöajaksi luokitellut toiminnot kerättiin työvaiheittain ja koottiin kunkin syykoodin taakse luokiteltujen häiriöajojen kesto. Näiden lisäksi luotiin yhteenvetotaulukko kaikista neljästä työvaiheesta tuotannon merkittävimpien häiriöiden lähteiden tunnistamiseksi. Taulukossa 1 on häiriöajaksi luokiteltujen toimintojen keräämispohja. Kunkin häiriön kesto ja syykoodi on merkitty, joiden perusteella luotiin taulukossa 2 esitettä saman työvaiheen yhteenvetotaulukko.

TAULUKKO 1. Työvaiheen häiriöajojen kerääispohja

<table>
<thead>
<tr>
<th>Sijainti</th>
<th>Kesto [min]</th>
<th>Syykoodi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häiriö 1</td>
<td>6 Muu syy</td>
<td>1 Suunnittelu</td>
</tr>
<tr>
<td>Häiriö 2</td>
<td>5 Edellinen työvaihe</td>
<td>2 Hankinta</td>
</tr>
<tr>
<td>Häiriö 3</td>
<td>5 Edellinen työvaihe</td>
<td>3 Keräily</td>
</tr>
<tr>
<td>Häiriö 4</td>
<td>6 Muu syy</td>
<td>4 Materiaalipuute</td>
</tr>
<tr>
<td>Häiriö 5</td>
<td>6 Muu syy</td>
<td>5 Edellinen työvaihe</td>
</tr>
<tr>
<td>Häiriö 6</td>
<td>5 Edellinen työvaihe</td>
<td>6 Muu syy</td>
</tr>
<tr>
<td>Häiriö 7</td>
<td>5 Edellinen työvaihe</td>
<td>7 Työntekijä</td>
</tr>
<tr>
<td>Häiriö 8</td>
<td>2 Hankinta</td>
<td>1 Suunnittelu</td>
</tr>
<tr>
<td>Häiriö 9</td>
<td>5 Edellinen työvaihe</td>
<td></td>
</tr>
<tr>
<td>Häiriö 10</td>
<td>5 Edellinen työvaihe</td>
<td></td>
</tr>
<tr>
<td>Häiriö 11</td>
<td>5 Edellinen työvaihe</td>
<td></td>
</tr>
<tr>
<td>Häiriö 12</td>
<td>5 Edellinen työvaihe</td>
<td></td>
</tr>
<tr>
<td>Häiriö 13</td>
<td>6 Muu syy</td>
<td></td>
</tr>
<tr>
<td>Häiriö 14</td>
<td>6 Muu syy</td>
<td></td>
</tr>
<tr>
<td>Häiriö 15</td>
<td>6 Muu syy</td>
<td></td>
</tr>
<tr>
<td>Häiriö 16</td>
<td>6 Muu syy</td>
<td></td>
</tr>
<tr>
<td>Häiriö 17</td>
<td>5 Edellinen työvaihe</td>
<td></td>
</tr>
<tr>
<td>Häiriö 18</td>
<td>7 Työntekijä</td>
<td></td>
</tr>
<tr>
<td>Häiriö 19</td>
<td>1 Suunnittelu</td>
<td></td>
</tr>
</tbody>
</table>

TAULUKKO 2. Yhteenvetotaulukko työvaiheen häiriöajoista

<table>
<thead>
<tr>
<th>Työvaihe</th>
<th>Aika</th>
<th>% kokonaisajasta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Suunnittelu</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>2 Hankinta</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>3 Keräily</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>4 Materiaalipuute</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>5 Edellinen työvaihe</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>6 Muu syy</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>7 Työntekijä</td>
<td>0,0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Häiriöaika yhteensä</td>
<td>0,00</td>
<td>0,0 %</td>
</tr>
</tbody>
</table>
Työvaihekohtaisista häiriöäikästä kuvaavissa Excel-taulukoissa sarakkeessa nimeltä ”% kokonaisajasta” on kyseisen häiriötyyppin osuus koko työvaiheessa kellotetusta ajasta ja koko tuotannon häiriöäikää kuvaavassa taulukossa koko tuotannossa kellotetusta ajasta.

4.3 Keskeneräinen tuotanto

Työntutkimuksen aikana havainnottiin myös työvaiheiden välisissä välivarastoissa olevan keskeneräisen tuotannon määrää. Määrää seurattiin yhtenätoista satunnaisena päivänä. Kuvassa 3 on esitetty keskeneräisen tuotannon määrän havainnointipohja, johon kerättiin keskeneräisen tuotannon määrä, sekä laskettiin välivaraston keskimääräinen ovien määrä ja sen perusteella tavaroiden seisomisaika päivinä kuvassa näkyvän Littlen lain avulla.

<table>
<thead>
<tr>
<th>KET määrä</th>
<th>välivarasto1</th>
<th>välivarasto2</th>
<th>välivarasto3</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KUVA 3. Keskeneräisen tuotannon havainnointipohja
5 KOHDERYTYSKEN OVITUOTANNON NYKYTILA

Työntutkimuksen tulosten perusteella pystyttiin koostaa kohdekyynyksen ovituotannon nykytilan kuvaus, joka esitellään tässä luvussa pääpiirteittäin. Myös ovisolussa valmistettavia opinnäytetyön rajaukseen kuuluvia ovituotteita on kuvattu lyhyesti.

5.1 Ovituotteet

Kohdekyynyksen ovituotteisiin kuuluvat 50 mm paksusta sisäovijärjestelmästä valmistettavat sisäovet, 74 -ovijärjestelmästä ja eristäväämästä 86 -ovijärjestelmästä valmistettavat ulko-ovet, sekä palo-ovet. Tuotannossa ovituotteiden valmistus eroaa erityisesti niiden vaatimien eristeiden suhteen. Palonsuojaominaisuuden takia palo-ovien varustelu eroaa tavallisesta ulko- tai sisäovesta merkittävästi, mikä näkyy myös ajallisesti.

Oli kyseessä sisä-, ulko- tai palo-ovi, ovi voi olla joko yksi- tai kaksilehtinen. Yksilehtinen ovi koostuu vain käyntiovesta, kun taas kaksilehtinen ovi, eli pariovi, koostuu käyntiovesta ja penikkaovesta. Penikkaovi on usein käyntioven kapeampi, mutta se voi olla myös käyntioven kokoinen tai sitä suurempi.

5.2 Layout

5.3 Tuotannon hukat

5.3.1 Laatuvirheet

Vakiintuneiden työtapojen puuttuminen näkyi työnmittauksen aikana esiin tulleissa häiriöajoissa työntekijöiden unohtusten ja virheiden muodossa sekä työmenetelmien pohtimisessa ja kyselyssä. Edellisestä työvaiheesta aiheutuvat häiriöajat liittyivät edellisen työvaiheen työntekijän unohtukseen tai virheeseen esimerkiksi oven varusteiden paikoitukseessa, jotka täytyy tällöin korjata myöhemmässä työvaiheessa. Jos työntekijä itse huomasi työn lomassa tekemäänsä virheen tai unohtuksen, häiriöaika sai syykoodin ”Työntekijä”. Tällöin virhe tai unohdu korjattiin heti huomattessa. Työntekijästä johtuville syihin kuuluvat myös ylimääräiset tauot.

Niin keräyslistojen virheistä kuin myös itse kerääjistä johtuvista syistä etukäteen kerättynä ei aina ole oikea komponentti, jolloin työvaiheen työntekijä joutuu itse hakamaan varastosta tarvitsemansa komponentin. Tämä lisää turhuttaa tuotannon keskeytyksen työntekijän joutuessa poistumaan työpisteeltään.

Työmaalle keräilyssä osa tavaroista on kerättävä itse, mikä tarkoittaa käytännössä jo kerättyjen tavaroiden tarkistusta ja keräämättömiä hakua. Jo kerran kerättyjen tavaroiden tarkistusta on turhotta arvoa tuottamatonta työtä, mikä taas puolestaan lisää liikkettä tuotannossa.
5.3.2 Odottelu ja viivästykset

Koska työmenetelmiä ei ole standardisoitu, työmenetelmissä ja työvälineiden suoritusjärjestyksessä on eroavaisuuksia paitsi työntekijöiden, mutta myös saman työntekijän eri suorituskertojen välillä. Tämä aiheuttaa seuraavan luonnollisen toiminnon ja menetelmän pohtimista, eikä työ ole sujuvaa.

Viivästyksiä aiheuttivat myös suunnittelusta johtuva häiriöaika. Häiriöaikaa aiheuttivat epäselvyydet ja ristiriidat kuvissa sekä erilaiset mitoitusväyttä. Kuvia liittyvät mahdolliset epäselvyydet tulevat esiin varustelussa, ja asian selvittely tukkeuttaa entisestään tätä tuotannon pullonkaulakohtaa. Tuotanto kärissä myös suunnittelun myöhäisestä valmistumisesta materiaalipuutteen vuoksi, sillä hankinnalla on vaikeuksia hankkia kaikkia komponentteja valmiiksi ennen kuin projektin on jo tuotannossa.

5.3.3 Tarpeeton liike työskentelyssä

Syykoodi ”Muu syy” sisältää paitsi aiemmin mainitun työmenetelmiä pohdinnan ja neuvon kysymisen tai antamisen lisäksi työvälineiden ja komponenttien etsintää tai muista työpisteistä hakua. Yrityksessä on sovellettu 5S-menetelmää ja työvälineille on merkitty omat paikat. Osa välineistä on kuitenkin yhteisessä käytössä tai vaihtelee muuten paikkaansa, jolloin aikaa kuluu tavaroiden etsintään ja hakuun. Uusien ovijäteelmiä myötä varusteiden määrä on kasvanut, ja osa varusteista on liikuteltavaa kärryissä, sillä ne eivät ole mahtuneet työpisteelle. Myös komponenttien vakeille asettelussa saatettiin poiketa sovistusta käytännössä, jolloin oikeaa profiilia tai listaa joudutaan etsimään vakitulta perustella.

5.3.4 Tarpeettomat varastot

Keskeneräisen tuotannon välivarastot työpisteiden välissä aiheuttavat pidempiä läpimenoaikeja. Keskeneräisen tuotannon suuri määrä kertoo tuotannon epäasapainosta, joten tuotannon virtauuttamiseksi välivarastoista on päästävä eroon.
5.3.5 Tarpeeton kuljettaminen

Keskeneräisen tuotannon kerääntyessä liikuteltavien vakkien määrä kasvaa ahtauttaen työpisteitä ja aiheuttaen ylimääräistä kuljettamista. Keskeneräisen tuotannon kuljettelua on myös kasattujen saranoiden ja umpiosan peltien kuljettelu.

5.4 Vaiheaikeiden vaihtelu

Työntutkimuksen perusteella palo-ovien vaiheikka eroaa muista ovityypeistä merkittävästi varustelun aiheuttaman työn suhteen, kun taas kasukseen kuluvassa ajassa ovityyppien aiheuttama vaihtelua on pienempää.

6 KEHITYSIDEAT

Tässä luvussa on esitetty tuotannossa tehtyihin huomioihin perustuvia kehitysideoita tuotannon virtauksen parantamiseksi ja layout-ehdotuksen pääperiaatteita tuotannon tasapainottamiseksi.

6.1 Työn vakiinnuttaminen

Kehitystyön jatkamiseksi on määriteltävä standardi toimintatapa, jolloin työvaihe on toistettavissa ja mitattavissa ja lopputulokseen vaikuttavien tekijöiden määrittely on mahdollista. Vakiinnuttamista varten on laadittava työn vaiheet sekä niissä käytettävät materiaalit ja työkäyttö sisältävät työohjeet. Työtapojen vakiinnuttaminen tulee poistamaan unohtuksista johtuvia virheitä ja työmenetelmiin liittyvää pohdintaan ja kyselyyn kuluvaa aikaa. Eri työvaiheet ja tietyn varusteen asentamiseen käytettyjen materiaalien määrittely poistaa keräilyssä tapahtuvat määrelliset virheet ja turhan tarkastuksen.

6.2 Laadunvarmistus

Työvaiheiden laadunvalvonta tulee paranemaan työmenetelmien vakiinnuttamisen myötä, kun työvaiheessa tehtävät vaiheet ovat paremmin selvillä. Virheellisten tuotteiden etenemenen estetään jidokaperiaatteen mukaisesti; työntekijöiden vastuulla on pitää huolta siitä, ettei virheellinen tuote pääse etenemään tuotannossa (Wilson 2015, 47). Virhe- ja häiriötietoa on alettava kerätä systemaattisesti ja
analysoida ja ratkaista sen juurisyy käyttämällä esimerkiksi 5 kertaa miksi -menetelmää, eli progressiivista ”Miksi?” -kysymyksen esittämistä kunnes juurisyy on selvinnyt. Virhetiedon reaaliaikaisen kerääksen mahdollistaisivat esimerkiksi syykoodilla varustetut painonapit työpisteillä (Jokinen 2016).

6.3 Mittari- ja häiriötiedon keräys

Häiriötiedon keräys yhdistetään virtaukseen keräämällä samalla mitteritietoa prosessin tehokkuudesta. Mittaritietoa on kerättävä usein, esimerkiksi kahden tunnin välein tai mahdollisuuksien mukaan jopa reaaliaikaisesti, mikä mahdollistaisi nopean reagoinnin mahdollisiin ongelmiiin.

Työntekijöiden määrän ollessa vuorossa vakio, voisi kohdeyrityksen mittari olla esimerkiksi ovia/h, joka kertoi virtauksen tehokkuudesta. Kun tämä yhdistetään häiriöiden keräykseen, saadaan esiin myös syy-seuraussuhteet.

6.4 Työnkierto

Työntoiko olisi mietittävä niin, että mahdollisimman monella solun työpisteellä olisi asiakastarpeen tyydyttämiseksi tarvittavan läpimenoajan verran töitä, ja lopuilla työpisteillä tehdään näihin ajallisesti mahtumattomat tehtävät. Tämän jälkeen voidaan keskittyä prosessin ja työtehtävien edelleen kehittämiseen, jolloin lopuilla pienemmän vaiheajan omaavissa työpisteissä tehtävää työ voidaan osoittaa muiden työntekijöiden tehtäväksi. Tällöin solua pystytään operoimaan vähemmällä työntekijämaärällä. (Nicholas 2011, 403.)

6.5 Materiaalinkulku

Nykyisessä tilanteessa työntekijät täydentävät työpisteen materiaaleja työn lomassa niiden loputtua, mikä aiheuttaa tuotannon keskeytyksen päälinjaan. Työpisteiden materiaalitarpeiden hoito ja työmaalle keräily voitaisiin osoittaa hoidettavaksi esimerkiksi erilliselle materiaalivastaavalle, jolloin tuotantotolinjan vaiheajat eivät venä materiaalinpuuutteen vuoksi.

Keräilyä käytä lisää solun tuottavuutta ja mahdollistaa työntekijän keskittymisen työhön. Jotta oikeita osia pystytään keräämään oikea määrä oikeaan paikkaan, keräily edellyttää työn dokumentointia esimerkiksi työnkuvausten muodossa, josta ilmenee tuotteiden spesifikaatiot ja osaluettelot. (Ruohomäki ym. 2011, 71.)

6.6 5S

Uusien ovijärjestelmien myötä 5S:n kaikkien viiden vaiheen uudelleen toteuttaminen on ajankohtaisia, jotta jokaisen ovijärjestelmän komponentit ovat helposti saatavilla työpisteissä. Työtapojen standardisointi mahdollistaa työkalujen järjestämisen käyttöjärjestykseen, jolloin niitä ei tarvitse etsiä ja jokainen työvaihe tulee tehtävä. Jokaiselle työpisteelle hankitaan omat työkalut, eikä työvälineitä enää kuljeteta etsimässä toisista työvaiheista.

Työmaalle keräilyä aiheuttaa tällä hetkellä runsaasti ylimäääräistä liikettä kerättävien tavaroiden ollessa eri paikoissa. Myös tätä tuotannon työvaihetta varten voisi olla oma työpiste, joka on järjestetty 5S-menetelmän mukaan.
6.7 Tuotannon tasapainotus

6.8 Layout-ehdotus

työvaiheeseen, jossa toiminto suoritetaan. Samaan työvaiheeseen kuuluvien toimintojen aikojen perusteella määriteltiin koko työvaiheen minimi- ja maksimiajat, sekä näiden välinen prosentuaalinen ero.

TAULUKKO 3. Layout-taulukkovertailun pohja

<table>
<thead>
<tr>
<th>Työvaihe nro.</th>
<th>Toiminto</th>
<th>Toiminnon aika min</th>
<th>Toiminnon aika maks</th>
<th>Työvaiheen aika min</th>
<th>Työvaiheen aika maks</th>
<th>Layout-ehdotus 1 y työntekijää</th>
</tr>
</thead>
</table>

Työvaihen ajan laskussa työvaihetta oletetaan suorittavan yksi työntekijä. %-sarakeessa on esitetty minimi- ja maksimiarvojen prosentuaalinen ero, eli se kuvaavat työvaiheen keston vaihtelua. Nykytilanteessa viimeisessä työvaiheessa työskentelevä työntekijä hoitaa myös lavan teon, työmaalle keräilyn, pakkauksen ja lavan ulos viennin. Näille on kuitenkin laskettu oma työvaiheen aikansa myös nykytilan layoutia kuvaamaan, sillä toiminnot toistuvat vain kerran lähetystä kohden.

Eri layout-vaihtoehtoja vertaillemalla nähtiin, että layout-ehdotus pienentäisi työvaiheiden sisäisten vaihekojen vaihteluväliä. Työvaiheiden keskinäisten vaihekojen tasoitus tehdään määrityllä valmistusjärjestysellä ja resurssien liikuttelulla layout-ehdotuksen mukaisesti.
7 YHTEENVETO JA POHDINTA

7.1 Työn tulosten arviointi

Tutkimusmenetelmänä normaaliaikatutkimus sopi työhön hyvin, ja antoi paljon aikataitoa eri ovityyppien ja varustelutason vaikutuksista tuotannon eri työpisteissä, mistä myynti tulee hyötymään. Työntutkimusta kuitenkin vaikeutti työntekijöiden ja tekijöiden tekojärjestysten mielivaltaisuus ja vakioimattomat työmenetelmät. Tämän takia myös tuotannon tasoitus ja layout-vaihtoehdoten luominen oli haastavaa, koska kaikkien työntekijöiden ja kaikkien työntekijöiden välillä odotettiin olisi pystynyt arvioida.

7.2 Toimintaohjeet tilaajalle

Luvussa 6 on esitetty kehitysehdotuksia tuotannon virtauksen parantamiseksi tuotannossa tehdyyn työnmittauksen, havainnoinnin ja teorian pohjalta. Layout-ehdotuksen pääpiirteitä ovat:

1. Työntekijöiden jakaminen mahdollisimman tasaisesti työpisteiden kesken
2. Pitkien tai vaihtelevan pituisen työntekijän teko annettaville tai lisätyöpisteille
3. Valmistusjärjestysteen sekoittaminen niin, että aikaa vievien ovien yhteydessä valmistettaisin helppoja ovia, jolloin näiden vapaaksi jättämä kapasiteetti kattaisi aikaa vievien ovien vaatiman ylimääräisen työn

Layout-ehdotus on esimerkki siitä, miten oivutotanto voitaisiin järjestää edellä mainitut pääpiirteet mielessä pitäen, ja miten se työntamissuunnissa kerätyn aikataitojen perusteella olisi mahdollista. Todellinen tuotannossa sovelletava layout voi kuitenkin olla saanut vain vaikutteita tässä opinnäytetyössä esitettyistä ehdotuksista. Perustellun parhaan layoutin määrittämiseksi työ olisi vakiinnutettava to-
dellisten syy-seuraussuhteiden selvittämiseksi ja työnsisältöjen pilkkomiseksi pienemmiksi kokonaisuksiksi suurempien kapasiteettiyötyjen saavuttamiseksi.

Strategian suunnittelussa ja implementoinnissa on tärkeää vuorovaikutus organisaation jäsenten kesken koko strategiaprosessin ajan niin esimiesten ja alaisten välillä kuin eri toimintojen ja yksilöidenkin välillä. Erityisen tärkeää vuorovaikutuksesta tekee tuotannon työntekijöiden suuri rooli strategiaprosessissa. Strategian lanseeraukseen osallistuvat henkilöt ja heidän roolinsa sekä käytettävät viestintäkana-vat on määriteltävä etukäteen. (Salminen 2008, 84, 95, 159.)

7.3 Jatkokehityskohteet

LÄHTEET

EK-SAK tuottavuustyöryhmä. 2011. Työntutkimuksen käsitteitä, menettelytapoja ja käyttökohteita. Teknologiateauollisuus ry. Saatavissa:

