

Cuong Le
 Design Patterns
Implementation in video game programming

Metropolia University of Applied Sciences
Bachelor of Engineering
Degree programme in Information Technology
Thesis
6 May 2016

 Abstract

Author(s) Title
Number of Pages Date

Cuong Le Design Patterns, Implementation in video game programming
37 6 May 2016

Degree Bachelor of Engineering

Degree Programme Degree Programme in Information Technology

Specialization option Software Engineering

Instructor(s) Antti Laiho, Senior Lecturer Toni Nylund, Vulpine Games CEO
 The goal of this thesis was to develop Last Planets, a social mobile game for iOS devices.
The game development theory and the design patterns are portrayed in the first part of this study. The second part presents how such theories are put into practice during the develop-
ment of Last Planets. The completion of the project resulted in the launch of Last Planets during spring 2016.
Multiple design patterns were chosen to be implemented within the code base. Patterns such as Observer, Strategy and Model-View-Controller create the foundation architecture
and convention for the code base. Meanwhile, various other support systems are imple-mented with the help of Singleton and Decorator pattern. However, the implementation pro-cess did not occur instantaneously nor at the beginning of the project but was rather a grad-
ual realizing and refactoring effort.
Applying these design patterns has helped ease up maintenance work as well as improved the readability of the source code. Additionally, these design patterns have also enabled
several major functionalities of both client and server sides. However, in a few cases of overusing design patterns, the game source code has actually become more complex and tangled.
 Since the materials of this thesis are limited, readers are highly recommended to study de-
sign patterns further. Careful consideration before applying design pattern is also vital for project success. Insightful decisions can both maximize the values of design patterns as well as avoiding the risk of abusing them.

Keywords programming, design pattern, Vulpine, Games, Last Planets

Contents

1 Introduction 1
2 Game Programming Overview 3

2.1 Definition of a Game 3
2.2 Game Elements 4
2.3 Programming Principles 7

3 Design Patterns 10
3.1 Strategy 10
3.2 Decorator and Abstract Factory 11
3.3 Observer and Chain of Responsibility 13
3.4 Singleton 15
3.5 Adapter 16
3.6 Model-View-Controller and Thin Component 17

4 Implementation of Last Planets 20
4.1 Project Overview 20
4.2 Design Pattern Application 24

5 Discussion 33
5.1 Findings 33
5.2 Suggestions for Future Study 33

6 Conclusion 36
References 37

1

1 Introduction

This thesis shows the principles of game programming and how design patterns affects
the development of a video game. The goal of this study is to lay the theoretical founda-
tion behind the Last Planets code architecture and provide useful patterns for other pro-
grammers to study or implement.

There are three main parts in this thesis. The first part portrays the overview of game
development. The second part shows fundamental concepts of design patterns and sev-
eral pragmatic well-known patterns. In the third part, multiple design pattern implemen-
tations are examined. At the end of this thesis, findings and results are concluded.

The first part - game programming theory - serves the purpose of getting background
knowledge for improving game architecture. At the beginning of Last Planets game de-
velopment, prototypes were created in order to test out game ideas and assess the risks
related. The codes created during this phase are often dirty and expendable. Therefore,
the programming principles are considerably important during the transition from proto-
types into actual production phase game development. Such principles should be applied
to improve both reusability and maintainability of the code base.

Design patterns illustrate clever reusability of the problem solving strategy in the second
part. With the rise of the computer and technology, hardware performance has been in-
creasing at an overwhelming pace. Numerous development tools and programming lan-
guages are being changed at a similar fast pace. Despite constant changes in the devel-
opment environment, similar problems are often encountered by programmers. This has
created the concept of assimilating those resembling problems and proven solutions into
design patterns. They are documented and read by programmers of each generation to
help quickly solve known problems.

After the theoretical parts are considered, Last Planets implementation of the theory are
described in the third part. This part includes considerable implementation techniques to
deal with the limitation of the Unity3D development environment. Examples are provided
to illustrate how maintainability and reusability are improved by applying design patterns.
Due to the lengthy nature of source code, only short snippets are included.

2

The scope of this thesis is to provide specific knowledge about game programming and
design patterns. Thus, a great number of related topics will not be discussed. Further
study concerning such topics is recommended by reading the literatures mentioned in
the references list.

Reading of the first and second parts does not require much technical background in
game programming. However, existing knowledge about programming will be consider-
ably helpful for understanding the implementations. Unity3D knowhow and object ori-
ented programming knowledge are also valuable for getting the most of this thesis.

Since the history of the video game is relatively short compared to many other industries,
there is an inherent lack of academic material related to this topic. Fortunately, the avail-
able materials related to programming in general are relatively bountiful. However, with
the current exponential improvement in the hardware technology, the relevance of these
materials might quickly become outdated.

3

2 Game Programming Overview

Since the advent of the video game with Pong in 1972, millions of computer games have
been released worldwide. Unlike traditional games where mostly physical mechanism is
involved, computer games rely heavily on the use of software technology to deliver en-
joyable experiences.

In this chapter, game definitions will be examined from the available literature in the first
subsection. Next, multiple game programming disciplines are introduced to help readers
get familiarized with game components. In the third subsection, well known programming
principles are explained. Lastly, the forth subsection gives out a summary about how
development methodology affects game programming practices.

2.1 Definition of a Game

Numerous articles have been written about games and game programming. There are a
galore of definitions voiced by numerous scholars. Despite such a quantity, there is still
no conclusion drawn on a universally acceptable definition of a game [1,24]. However,
by examining certain quantity of definitions, an understanding about game can be
reached on an academic level.

Early academics such as Elliot Avedon and Brian Sutton-Smith (1971) have given the
following definition: “Games are an exercise of voluntary control systems, in which there
is a con-test between powers, confined by rules in order to produce a disequilibrial out-
come.” [1,31]. Tracy Fullerton, Chris Swan and Steven Hoffman (2014) produced a
slightly different opinion: “A game is a closed, formal system, that engages players in
structured conflict, and resolves in an unequal outcome.” [1,43]. The author of the Art of
Game Design, a book of lens – Jesse Schell (2015), summarized these definitions into
a single condensed one: “A game is a problem-solving activity, approached with a playful
attitude.” [1,47].

Even though a universally acceptable definition is lacking, academic researchers have
agreed upon the elements of a game. These elements are discussed in the following
subsection.

4

2.2 Game Elements

A modern video game consists of many elements such as graphic, sounds, scripts, story,
AI. Most of them require a certain degree of programming. Thus there are many special-
ized groups of game programmers to cope with each element’s specific requirements.
This subsection introduces the most common elements and disciplines of programmers
that have specialized at each of them.

Engine

In June 1996, Doom was released by id Software on PC and immediately gained huge
popularity. The software components behind Doom were so well designed that id Soft-
ware has gained a sizable additional income from licensing them to other developers.
This advent has created the term “game engine” - software packages which allows the
creation of multiple games. [1,11.]

The key characteristic of a game engine lies in the “data-driven architecture” that it ap-
prehends to [2,11]. Through the process of generating game assets (art, sounds, etc.)
and combining them with the game engine, developers can create a wide variety of
games.

There exists however, a tradeoff between versatility and performance/optimization. The
more varied types of games an engine can create, the lower the optimization for the
games that were created. For example, an engine specifically designed for creating a
first person shooter game would not be able to produce a real time top down strategy
game. The problem in this case is the Level of Detail (LOD) techniques are very different
from one genre to another.

Different genres require different characteristics from a game engine. A modern FPS
game needs an efficient render system for a big 3D environment and sensitive control
mechanism. Third-person games on the other hand demand a sophisticated camera
handling system in order to not clip a player’s view. Supporting a great amount of game
entities is essential for real time strategy games.

Even though different genres of games have different requirements, the possibility of
cross-genre engine development is created by the constant increase in computing power

5

as well as steady breakthroughs in rendering algorithms and techniques [2,12]. There
are a number of real time strategy games that are made from a first person shooter
engine.

Artificial Intelligence

Game artificial intelligence traditionally constitutes a portion of software that gives an
appearance of rational decision making. This term however has been used much more
broadly to include most behavior generating codes. In some extreme cases, even move-
ment and collision solving logic have been encompassed. [3,4.] Often, game develop-
ment teams have to discuss and agree upon the scope of the term.

Various types of game genres require different types of artificial intelligence. Regardless,
there are five fundamental characteristics for game artificial intelligence:

 The game artificial intelligence should be smart but also deliberately dumb occa-
sionally.

 There should be no unintentional deficiency.
 The performance of the artificial intelligence should be within an acceptable

range.
 Game designers should be able to fine-tune the artificial intelligence.
 The development cost of an artificial intelligence should not put the game at risk.

[4,522.]

Overtime, game programmers have collected a number of frequently used techniques
for creating game artificial intelligence. Popular basic techniques include Finite-State Ma-
chines, Fuzzy-State Machines and Message-Based Systems. More advanced ones in-
volve using sophisticated methods such as Genetic Algorithms and Neural Networks.
Regardless, the choice of the technique being used is decided based on many factors
like the game genre, platform, responsiveness, development constraints and entertain-
ment values. [3,30.]

Audio

Audio has been an integral part of the game experience. The game audio source has
evolved from MIDI sounds in the 80s to full lossless soundtracks in modern AAA games.

6

Although the medium of sound delivery has changed dramatically, the primary goal for
an audio programmer remains the same: play sound at the correct time and in synchro-
nization with art and animation. [5,36-46.]

The primary goal of correct timing may sound simple, yet it poses numerous challenges
for programmers. Performance hiccups in other parts of the engine can cause audio and
animation desynchronization. For 3D games and certain 2D games, the audio source
might be behind a wall, thus multiple filtering techniques are used to simulate this ob-
struction [5,130]. Multiple sounds and music can play at the same time, creating a chaotic
experience for players if the sounds are not in harmony or the extra sounds are not
muffled by the engine [4,522].

User Interface

The game’s user interface adheres to the common user interface rules. A well-developed
user interface should perform exactly like the user thinks it should [6,8]. This point can
be elaborated into a number of essential factors such as intuitiveness and responsive-
ness.

In order to help improve those two qualities, game programmers are often bound to im-
plement plenty of input mechanisms and user interfaces. Such systems need to be able
to allow tweaking and fine-tuning by game designer. At the same time, they must also
have reasonable response time to user input.

Network

Most modern games incorporated some level of networking in their structures. There are
multiple models for networking in games. Two most common models are peer-to-peer
and client/server.

With the peer to peer network model, multiple clients connect to each other and there is
no centralized game state manager. Thus the biggest advantage of this model is that
there is no single point of failure. Any player can disconnect and the game will still be
running. [7,81.] However, this model imposes a limit on the number of concurrent players.
Due to the lack of centralized regulating power, the game is also prone to cheating and
other security risks.

7

The client/server model on the other hand provides much improved security features.
Since there are many clients connecting to servers, the number of clients can be scalable
as much as the infrastructure allows. Maintaining such hardware however can be a con-
siderable cost for running the game.

Development Tools

In order for the whole game development team to collaborate, some forms of develop-
ment tools are necessary. Usually, the development tools come together with the game
engine as a bundle. However, in most cases, the development team finds the need of
modifying the tool to include customized or specialized functionalities. Certain engines
(such as Unity3D) have taken the concept of re-using such modifications and packaged
them into plugins for distribution.

The purpose of game development tool is to help developers ease their workflow [8,13].
Thus the main functions involve automating tedious tasks such as asset management
and geometry handling. The tool for the programmer often uses some form of late binding
techniques in order to quickly reassemble and provide a quicker feedback loop.

2.3 Programming Principles

Since game programming is a subset of software programming, it shares the common
principles behind good software coding practices. The most common ones are code re-
usability, abstraction, single responsibility and loose coupling. This sub-section will ex-
plain each of them in detail.

Code Reusability

The purpose of code reusability is to repeat utilizing code assets in the course of devel-
opment. There are two basic modes of reuse. Compositional reuse constitutes of recy-
cling pre-used codes into developing new products. On the other hand, generative reuse
is defined by using a software generator to create new application from a high abstraction
state. [9.] In practice, the most common forms are software libraries, design patterns and
application frameworks.

8

There are numerous benefits derived from having high reusability in software. The main
biggest advantage is increase in productivity. Instead of having to develop the solution
from scratch, programmers will be able to reuse a considerable number of existing
codes, thus speeding up the development process tremendously. The process of chang-
ing or debugging would be also quicker because the centralized location of codes. An-
other sizable boon is that due to the repeat usage of software components, they will have
higher quality [9]. This will result in higher product quality and fewer defects or risks to
the development process.

Abstraction Principle

The concept of abstraction revolves around hiding implementation details and only ex-
poses certain high-level functionalities [10,165]. The purpose of this is to shield program-
mers away from implementation details and allow them to focus on a single level of per-
ception.

An example of an abstraction principle in normal daily life would be maps. Maps do not
show every single objects in an area nor do them in the ratio of 1:1. Often, maps will
rather show a drawing of roads, generalized blocks of buildings and the size of the area
is scaled one to thousands. This would allow map readers to focus on direction tracking
and route planning.

There are two types of abstraction mechanism: control abstraction and data abstraction
s [10,165]. The formal one helps concealing procedural processes. Examples for this
include functions and function parameters. Data abstraction on the other hand involves
hiding complex data structure implementation away from programmers. This is imple-
mented by the usage of classes, interfaces, abstract classes and many other methods.

Single Responsibility

The Single Responsibility Principle requires that there should be only a single reason to
modify a code module [11,138]. This means that each class or function in the software
should have only one purpose.

In practice however, this principle is often not followed. Programmers are bound by con-
straints of development time, thus they focus on getting the application to work rather

9

than cleaning up and organizing the code base. Over stages of development, this neglect
of reordering will lead to huge overly complex chunks of codes which in turn will slow
down the process of debugging and modifying. Thus, the result of adhering to a schedule
is actually increase in the cost of development time.

There are certain arguments against the single responsibility principle. One of the most
common critics is that separation of codes into multiple files and functions would disallow
programmers to grasp the big picture. This is wholly refuted by the fact that in order to
fully understand a complex system, the amount of code to be read is the same regardless
of refactoring. [11,149.] On the contrary, dividing responsibility reduce the amount of
complexity that needs to be understood in order to modify only a part of the code base.
Thus, a clear naming convention and single-responsibility classes would help under-
standing the code base enormously.

Loose Coupling

In software systems, the degree of how much specific software parts know of other parts
is referred to as coupling. Tight coupling refers to systems where implementations are
tied directly to implementations. On the contrary, loose coupling means that parts of the
code bases only connect through the use of abstract interfaces. Thus they have no im-
plementation knowledge of each other and can be swapped out easily on both compila-
tion and run-time.

The main advantage of loose coupling is its flexibility in responding to changes [11,150].
If a component is directly referenced in numerous places, changing its implementation
might cause domino-effect changes to other parts of the systems. On the other hand, if
a component is only referenced by using an interface, it can be changed into another
behavior entirely without disrupting any part.

10

3 Design Patterns

While obeying the principles mentioned in chapter 2, programmers have to write code
that satisfy the requirements of the client and at the same time adhere to a specific
schedule. With time, the development environment might change completely from one
platform to another or even a different programming language. Yet, the problem and
solution pair can be exactly the same in various project scenarios. Thus design patterns
are recorded for the sake of reusing a high-level solution to specific problems [12,1].

In 1994, one of the first books about design pattern, Design Patterns Elements of Reus-
able Object-Oriented Software, was published. The book has quickly become classic
literature about how design patterns are conveyed and also served as a standard cata-
logue. In this chapter, multiple design patterns based on that book will be discussed,
along with a number of useful patterns for game development.

A design pattern consists of four main elements. Firstly, a pattern needs a name. A good
name helps conveying the patterns will allow the discussion and improvement sugges-
tion among programmers. Secondly, a problem must be stated for each pattern. This
shows the contexts and states that should be recognized before applying the pattern.
Next, a solution for this problem must be stated. The solution need not convey specific
implementation but rather a generalized idea of how to solve the problem. Lastly, the
consequences of the pattern should be described. By comparing the consequences of
one pattern to another, a programmer can make an informed decision on which pattern
to choose. [12,3.]

3.1 Strategy

The Strategy pattern makes use of a group of algorithms. Each algorithm is encapsulated
within the group and made to be substitutable for another. Then in implementation, an
algorithm can be selected based on the environment at runtime. [12,315]. The structure
of this pattern can be seen from Figure 1 below.

11

Figure 1. Strategy pattern diagram

The pattern has a number of applicable situations. Firstly, when different classes have a
very similar structure except for certain behavior, such behavior can be encapsulated
within a Strategy class, thus reducing the number of total classes. In practice, this por-
trays the favor of using composition instead of inheritance [13,37]. Secondly, if algorithm
implementation needs to be abstracted and hidden from the main logic, the Strategy
design pattern can be used to avoid uncovering of potentially sophisticated data struc-
tures. In another situation, one class might have many branching behaviors that are de-
pendent on conditional switching. Such situation can be helped by using Strategy design
pattern to refactor permutable types of logic into their own class.

3.2 Decorator and Abstract Factory

The Decorator pattern allows assigning additional behavior to an object without modify-
ing its own implementation or inherits from its class [12,175]. The Decorator code should
only modify or add lightweight functionalities, thus making the core behavior of the object
still remaining the same to other components.

Usage of the Decorator pattern is recommended when there is a need to attach respon-
sibilities to objects without involving other components. Such responsibilities are usually
transparent enough to be disposable. In other cases, inheritance might be disallowed
either because of sealed class or a huge number of additional functionalities. The Dec-
orator pattern in those cases proves considerably desirable by encapsulating the addi-
tional functionalities within an extra class.

12

An example for the Decorator usage would be the case of adding visual effects to text
on a graphical user interface. In this example, the text needs to have either a border or
a shadow underneath, or both at the same time. The Decorator pattern in this case will
suggest two Decorator classes that have reference to the text and add or remove these
effects on runtime via the call of public functions. The abstracted implementation is pre-
sented in Listing 1 below.

static void Main() { Text text = new Text(); BorderDecorator borderDecorator = new BorderDecorator(text); ShadowDecorator shadowDecorator = new ShadowDecorator(text); // text with both border and shadow borderDecorator.Decorate(); shadowDecorator.Decorate(); } // ... public class BorderDecorator { private Text _text; public BorderDecorator(Text text) { _text = text; } public void Decorate() { /* Add border logic here */ } } public class ShadowDecorator { private Text _text; public ShadowDecorator(Text text) { _text = text; } public void Decorate() { /* Add shadow logic here */ } }
Listing 1. Example of the text Decorator implementation

Two major benefits of the Decorator pattern are its improved flexibility over subclassing
and avoidance of cumbersome classes. Decorator pattern allows adding or removing
functionality on run time unlike rigid inherited objects. An attribute can even be added
more than once. Complex, lengthy classes can be avoided by adding functionality via
the Decorator pattern along the progress of development.

Despite the strong benefits, Decorator pattern also has two major drawbacks. Firstly, the
Decorator object might be confused with the actual augmented object. Secondly there
might be a situation where numerous little decorators are created, making an overload
of complexity. Such situation can make it hard for programmers to understand and debug
the system. Furthermore, main purpose of the Decorator pattern is to modify slightly or

13

add minor functionalities. Heavier changes or extensive modification are recommended
to be done with the Strategy design pattern instead [12,179].

While the Decorator pattern provides a mean to implement small changes to objects, the
Abstract Factory pattern seeks to create a vast number of similar or interlinked objects
disregarding their specific implementation [12,87]. The true aim of the Abstract Factory
pattern is separation. It promotes decoupling concrete implementation from higher ab-
stract logic.

The Abstract Factory pattern is often used when the main logic is required be separated
from how concrete objects are generated and controlled. Another use would be when
multiple groups of similar objects are being maintained at the same time. Regardless,
the usage commands that the implementation must be hidden and the object only reveal
its interface.

By using Abstract Factory pattern, specific implementation is hidden from controlling
classes. This results in two advantages. Firstly, switching generation algorithm is easy
because of abstraction. Secondly, concrete factory classes have to adhere to the Ab-
stract Factory design, thus maintaining high cohesion among objects created. However,
there is one major drawback. New, totally different types of objects are hard to be imple-
mented with Abstract Factory. Changing the set of interface for the Abstract Factory
would require changes in all concrete factory implementation.

3.3 Observer and Chain of Responsibility

The Observer pattern provides mechanisms for one object to signal its changes to mul-
tiple other objects [12,293]. The object signaling would be called subject and the notified
objects are observers. The subject could be considered a publisher of information. The
observers therefore are subscribers to the information that the subject propagates. The
relationship between the subject and observers is one to many. The model of this pattern
is portrayed in Figure 2 below.

14

Figure 2. Observer pattern model

The Observer pattern is often used when change propagation among a number of ob-
jects is needed. Change happening to one object would cause change to others and the
number of affected objects is flexible. In another case, the Observer pattern is used for
the flexibility of subscribing. Observers can subscribe or unsubscribe on run time, thus
making the implementation highly versatile and loosely coupled.

The primary benefit of the Observer pattern is the high degree of abstraction it provides
between the subject and its observers. They each does not know of any implementation
detail of the other, thus allowing them to be of any layer of abstraction in the program
architecture. Another considerable advantage is the flexibility of subscribing. Observers
cannot only freely subscribe or unsubscribe during application runtime but also choose
to handle or neglect a change update. However, this allowance of freedom can lead to a
major pitfall within the application architecture. The observers often do not have any
knowledge of each other and the number of observers is also often unlimited. If the logic
of several observers conflicts with each other, disastrous consequences could be hard
to track down due to the sheer number of subscribers. In one example case, the observer
upon handling an update, would cause the original subject to change, resulting in a
never-ending loop.

Unlike the Observer pattern which broadcasts changes to multiple objects at same time,
the Chain of Responsibility pattern passes a request through a group of ordered objects
until one of them processes it [12,223]. In this pattern, the origin object which creates the

15

request is not aware of the handler of its request. This defines the request handlers as
an implicit receiver. The handlers have to implement an interface which allows calling of
the successor handler in case it decided not to process the request and pass it along the
chain.

The main situation where the Chain of Responsibility pattern would be used is when
observers of an object need to have priority or follow a certain order. Inherently, this
pattern still allows the same degree of flexibility as the Observer pattern when it comes
to dynamically subscribing or unsubscribing to object changes.

Due to its similarity to the Observer pattern, the Chain of Responsibility pattern shares
the primary attribute of high abstraction. The request senders and receivers have no
knowledge of each other, thus they can be of any layer of abstraction. The receivers can
also be detached or attached to the chain on run time, making the code base amply
versatile. Compared to the Observer pattern, the chain structure negates the disad-
vantage of scattering receiver. However, the Chain of Responsibility pattern suffers from
another weakness. Each request is only passing through objects in the chain until one
of them handles it. Therefore, the rest of chain will not be able to receive the request at
all. On the other hand, the request can pass through the whole chain without ever being
handled due to misconfigured chain management.

3.4 Singleton

The purpose of the Singleton pattern is to guarantee that one class has only one instance
and its access is available everywhere [12,127]. A global access point can be achieved
via using a static global variable. However, such implementation does not ensure that
there will be one and only one instance. The Singleton pattern will enforce this one in-
stance policy by having the class itself monitoring all instance accessing.

The Singleton pattern is often used when there is a need for a sole instance of a class
and a global access point of that instance. The pattern is also useful for situations where
the global class needs to be inherited from. Listing 2 below illustrates one example of a
usage case where the Singleton pattern is utilized to make database CRUD operation
(Create, Read, Update, Delete) available globally.

16

public class Database { private static Database _instance; public static Database Instance { get { if (_instance == null) _instance = new Database(); return _instance; } } private Database() { /* initialization logic */ } public void Create() { } public Entry Read(string id) { } public void Update(Entry entry) { } public void Delete(Entry entry) { } }
Listing 2. Database implementation using Singleton pattern

There are multiple benefits of using the Singleton pattern. Firstly, accessing to the single
instance is monitored. Controlling logic can be written to regulate the behavior of access-
ing the instance. Secondly, the name space would be less encumbered by bloating
amount of global variables. Thirdly, since the instance is instantiated from a class, it can
be a subclass and modified in the inherited class. This would allow substantial customi-
zability of the single instance behavior and increase reusability. However, the abused
usage of the Singleton pattern can cause a similar problem to the usage of the static
classes. Bloated and disorganized singletons can cause a heavy burden to code mainte-
nance.

3.5 Adapter

The Adapter pattern helps changing one interface to another by providing middle con-
version code [12,139]. This allows incompatible classes or frameworks to cooperate. The
adapter class usually provides additional required methods from one interface to another,
or encapsulate functionalities altogether. Figure 3 shows an example of how an adapter
bridges the connection between two incompatible interfaces.

17

Figure 3. Adapter bridging two incompatible interfaces

The main use case of the Adapter pattern is when a group of incompatible classes needs
to work together. A highly reusable class could also be created with this pattern for the
purpose of adapting to most future changes. In the case of rigid inheritances, the Adapter
pattern can help adapting multiple subclasses instead of changing the interface, which
can be much more expensive to implement.

There are two main ways of applying the Adapter pattern: class adapter and object
adapter. Depending on the implementation, each type can have different effects on the
code architecture. The class adapter is written to adapt one specific class. This hinders
the adapter from adapting subclasses but let the adapter override functionality of the
adapted class. The object adapter can be configured to adapt multiple objects from dif-
ferent classes at the same time. However, this behavior would only allow the adapter to
add functionality, not override existing ones.

3.6 Model-View-Controller and Thin Component

The Model-View-Controller (MVC) pattern refers to its three components. The model
component handles the data manipulation and core logic. The view provides a display
for the data in the model. Finally, the controller helps both the view and the model to
communicate with each other. [14,530.]

18

The MVC pattern is a compound pattern – a combination of various pattern into a single
pattern. The model’s relationship with the view and the controller is implemented with
the Observer pattern. Both the controller and the view subscribe to the changes pub-
lished by the model. The controller represents the Strategy pattern. It can be swapped
among a number of implementations to fit application details. Lastly, the composite pat-
tern defines the view. Different components containing each other can be handled at the
same time by the view. [14,532-533.]

User Interface implementation utilizes the MVC pattern heavily. The graphical presenta-
tion is handled with the view component. Numerous types of components like labels,
panels, text fields, etc. are handled by its own view as well as a composited view com-
bining them. The controller handles user input and interaction. Button clicks, input form
submission and various other interactions are processed and relayed by the controller to
the model. In the model, the core data of the application is manipulated by multiple logic
functions such as creating, storing, loading and updating. After every change, the model
would signal the view and the controller to update the graphical interface to the user.

Another common application of the MVC pattern is the network handling module. The
model often refers to data package being sent and received. The controller is the routing
service on server and the view is the final web content being displayed to users.

Since the influential inception of the MVC pattern from Smalltalk 80, a hefty amount of
inspired and related patterns has merged. Among the most popular ones are the Model
View Presenter used by IBM first in the 1990’s [15]. It introduces the presenter as a
replacement of the controller. The presenter can be considered a supervising controller
and the whole architecture revolves around its centralized authority. Another widely used
pattern is the Model View ViewModel which employs data binding robustly to handle
interactions.

In game development and specifically the Unity3D environment, the Thin Component
pattern derived from MVC to allow separation of a game object’s presentation from its
governing logic and data. It is developed by Alex Boyd and published to the public do-
main during Unite 2013. [16.]

19

Most classes in Unity3D are implemented by inheriting from the MonoBehaviour class,
where logic is written onto specific hook functions like Start or Update. This allows a
dynamic callback and runtime editing and tweaking in the editor. This feature is very
useful for all members of the development team to see the result of their tweaking im-
mediately and have a very short feedback loop. However, due to this imposing factor of
MonoBehaviour, the logic can quickly become cumbersome for large-scale projects.

In order to counter this limitation, the Thin Component pattern tries to abstract the game
logic from default functionalities of MonoBehaviour. This is achieved by writing the logic
within non-Monobehaviour classes. These classes represent the traditional model in the
MVC pattern. The next piece is the controller component, which inherits MonoBehaviour
but have links to the model class. The controller component acts as a bridge for relaying
the model’s data information towards other Unity3D components such as Animator,
SpriteRenderer and AudioSource. All these other components combined act as the view
from the MVC pattern.

Direct benefit of this design pattern is that the logic is separated between the controller
and the model. This in turn creates great flexibility within the code base. The standard
controller component can be substituted with a tester component which implement the
same interface. Such tester component will allow robust testing independently of model
implementation. The logic model can also be substituted with a simulated logic model.
This is useful in case of a client needing testing without a constant server connection.
On the other hand, because the controller is hidden from the model, the same model
logic can be run on both server and client without modification. The only changes will be
in the controller.

The separation of the controller component and the model in the Thin Component cre-
ates many more classes and lines of code than a normal MonoBehaviour does. Thus,
implementing this design pattern requires extra efforts at the beginning to design and
execute. However, it can be argued that such efforts pay for themselves as the code
base is much cleaner and easier to maintain and debug. Another disadvantage can be
that the runtime variable viewing is no longer possible. Tweaking at runtime requires
variables to be public in MonoBehaviour inherited class. Due to those logic variables
being encapsulated within the model, they are no longer exposed to MonoBehaviour
class, thus hiding them away from the editor. However, this limitation can be worked
around by separating data variables into separated serializable classes.

20

4 Implementation of Last Planets

This section describes how the Last Planets project is developed and how the design
patterns are applied to the source code of the project. There have been many compo-
nents implementing various design patterns in this project. However, this section only
discusses the most prominent ones.
4.1 Project Overview

Last Planets is a social mobile game developed by Vulpine Games studio from the be-
ginning of 2014. The game has the typical feature of a social base defense game. Play-
ers have to defend their planets (bases) and improve their facilities in order to progress.
They are also strongly encouraged to interact with other players in the same universe to
form alliance, start raid and participate in events together.

The game was originally developed for both Android and iOS operating system. However
due to development resource constraints as well as financial strategies, the team de-
cided to focus only on an iOS version. The Android version of the game will be released
later.

The game architecture revolves around a client-server connection. The need for a cen-
tralized server arises from the security need for the nature of social competitiveness of
the game. Each part of the game structure, client and server will be discussed in the
following sections. Figure 4 below displays a screenshot of the game.

Figure 4. Last Planets screenshot

21

Client

The client side of Last Planets is developed using Unity3D game engine. Unity3D is
chosen mainly due to its versatility in building for multiple platforms from the same code
base. Another advantage of using Unity3D is that the engine allows an instant feedback
loop, thus reducing game tweaking time. Lastly, the engine also features an asset store,
allowing the purchase and usage of 3rd party plugins. These plugins help speeding up
game development tremendously by reducing the need to write the same code from
scratch as well as maintaining them.

Last Planets client is structured in two scenes: the start scene and the main scene. The
start scene mainly focuses on initialization logic. Network connecting, logging player in,
configuration checking and game asset loading are among the most crucial tasks of the
start scene.

The responsibility of the main scene is to display all aspects of the game as well as
handling the interaction of the player. The main scene is further abstracted into a number
of states and has a dedicated system for switching among states to reduce the loading
time between switching.

Aside from these scenes, there are numerous systems that persist across scenes and
game states. These systems serve a number of global functionalities such as caching
data and event listening. Such systems are configured with scripts preventing them from
being destroyed when a scene loads or reloads.

Common

The common part of the project refers to the code base portion that is used by both the
client and server. Contained within are the data structures, common logic and utility clas-
ses. These are components are vital to the game because they allow the communication
between the client and server. They also reduce the amount of code by avoiding to write
the same logic twice. Figure 5 below describes the relationships among these three parts
of Last Planets’ code base.

22

Figure 5. Client, common and server relationships

In current repository practice, the common is contained within its own repository. The
client and the server repositories both include the common as a submodule within each.
This submodule is only tracked via a commit hash, thus allow changing the version of
common without knowing the exact details.

Server

The server side of Last Planets is organized into three major parts. The first part is the
controlling and routing logic. These are deployed onto a login server and a proxy server.
The goal of the login server is to handle simultaneously a huge number of concurrent
connections. The proxy server on the other hand is responsible for routing the incoming
transmission to the correct processing server.

The second part is the core game logic handling. This is separated into two servers: the
synchronous logic server and the asynchronous logic server. Each of these two servers
will handle the data and update the corresponding database. The asynchronous server
does not require up to date information, thus no information is stored on this server. The
synchronous server on the other hand requires real time processing of player events.
Hence, it is implemented with dedicated thread and holds states about the game.

The system supports and monitoring attributes to the third part of server architecture.
This includes the Chef server for deployment and configuration management and the
monitoring server for checking the database and performance of servers. All three parts
are presented in Figure 6 below.

23

Figure 6. Last Planets server architecture

All servers in the architecture are deployed onto Windows Server virtual machine running
in Azure Cloud. There are multiple Azure services to help with server maintenance such
as load balancing, automatic scaling, automated software update and security policy.
Furthermore, if any of the instanced virtual machines failed, it would be automatically
recovered and replaced by a fresh instance.

Photon Server is chosen as the communication middleware framework for handling net-
working transmission between the server and client. The framework has an extensive
set of features and documentation. It is also easy to implement and it supports all popular
mobile platforms including Android and iOS.

24

4.2 Design Pattern Application

This section presents how design patterns are applied into the code base of Last Planets.
In some cases, the design pattern is found right in the beginning, before writing down
the solution. However, in most cases, the design patter is found and applied later after a
makeshift solution has already been applied. Thus, refactoring is essential during the
course of development.

Unity3D Component

Unity3D’s Component is one of the base classes in the architecture of the game engine.
However, the Unity3D component pattern refers to how this Component-based architec-
ture allows adding, removing and modifying behavior on runtime and on editor.

Unity3D organizes the game into scenes. Each scene has multiple game objects which
can be modified by the editor. Each game object can attach multiple components or edit
on runtime. This is possible because components implement serialization, allowing dis-
playing properties on the editor. This also contributes to saving such properties to assets
for hard disk storage.

There are three main ways of communicating among game objects with the Unity3D
Component pattern. The first method is direct referencing using a public variable in a
MonoBehaviour class. With this method, another component can be dragged and
dropped to the specific slot on the referencing component. The target component can be
an attached component in the current scene or an existing prefab component stored in
assets. This referencing method is intuitive for a graphical user interface user. However,
it needs access to the editor interface, hence it cannot be done during the time when the
actual user plays the game.

The second way overcomes that limitation of play-time referencing. It utilizes Component
built-in methods such as GetComponent and FindObjectOfType in order to get the ref-
erenced component. It can be made to run during editing time by using “ExecuteInEdit-
Mode” tag. On the other side, this referencing scheme suffers from null reference han-
dling and performance drop when the scene has a huge number of objects.

25

Lastly, broadcasting messages is made possible using the default SendMessage and
SendMessageUpwards. These functions take a method name in the parameter to invoke
during runtime. This allows complete freedom of referencing because the sender does
not need to know where the receiver is. Despite that, because the method name is a
string, there is no guarantee that the receiver will actually call the method. Furthermore,
this broadcasting scheme can be susceptible to errors and poor performance if not im-
plemented properly.

Singleton

The Singleton pattern is used widely for the purpose of providing an access point to the
global systems in Last Planets. There are three main types of Singleton implemented in
the game: pure C# singleton, SingletonMonoBehaviour and SingletonMonoBehav-
iourAwake.

The pure C# singleton implementation adheres strictly to the requirements of the Single-
ton design pattern. It only allows a single instance at a time and provides one global
access point to it. In order to improve reusability, a Singleton class was created with the
type base approach for all pure C# singleton classes to inherits from. This reusability
mechanism is also applied to the other two methods.

The SingletonMonoBehaviour class is vastly similar to the pure C# singleton implemen-
tation. It also ensures one instance at a time and one global access point to it. However,
this class inherits MonoBehaviour, thus having all the member methods of it. Therefore,
the constructor of this class has to be different. Instead of a normal constructor, it has to
use the AddComponent method and reference the component gotten from it.

Lastly, the SingletonMonoBehaviour class is largely the same as SingletonMonoBehav-
iour. The only big difference is that the class no longer imposes the requirement of one
single instance only. As a result, multiple instances can exist at the same time. The in-
herited class use OnEnable method to register itself as the current active instance. This
behavior is particular useful in case of switching among game states. Different instances
of the same class can be manipulated with different states while not modifying the other.

26

public class GameStateManager : SingletonMonobehaviourAwake<GameStateManager> { public void SwitchState(GameState state) { /* switch state logic (enable objects, raise event etc.) */ } } public class GalaxyMapButton { void OnClick() { GameStateManager.Instance.SwitchState (GameState.GalaxyMap); } } public class DoDamageAllianceAttackErrorHandler : DefaultErrorHandler { protected override ErrorCode HandleOperationDenied (ErrorCode errorCode) { /* error logging logic */ GameStateManager.Instance.SwitchState (GameState.GalaxyMap); } }
Listing 3. Singleton pattern implementation in GameStateManager

In Listing 3 above, the usage of GameStateManager with the help of the Singleton pat-
tern is presented. The pattern permits a single instance of GameStateManager and call-
ing its SwitchState method from anywhere in the code base. In this example, two sepa-
rate classes of different functionalities and abstraction layers are calling this same
method.

Observer

In order to counter the heavy performance cost and unregulated nature of Unity3D’s
SendMessage, a comprehensive Event raising system is developed for Last Planets with
the Observer pattern in mind. The solution will allow registering to any event and raising
events from any layer of abstraction within the code base.

The core classes of this solution are the Events and GameEvent classes. The former
serves as the centralized API for raising, subscribing and unsubscribing to events, while
the other acts as the template for all other events to inherit from. Underneath, the Event

27

system utilizes dynamic invoking from the C# framework to raise the event handler based
on the class type signature.

public class BuildingManager { void CreateBuilding(BuildingType type) { Events.Fire(new CreateBuildingEvent(type)); } } public class BuildingManagementSubscriber { void Subscribe() { Events.AddListener<CreateBuildingEvent>(HandleEvent); } void HandleEvent(CreateBuildingEvent e) { /* handle creating new building logic */ } } public class MetricsSubscriber { void Subscribe() { Events.AddListener<CreateBuildingEvent>(HandleEvent); } void HandleEvent(CreateBuildingEvent e) { /* handle metric logging */ } }
Listing 4. Building creation event and subscribers

Listing 4 above illustrates one scenario in Last Planets where the Observer pattern is
utilized. There are two subscribers registering to the same event, yet handling entirely
different logics. BuildingManagementSubscriber is used in this case for submitting the
creation event to the server, while MetricsSubcriber logs the event down with the purpose
of aggregating these data later. This pattern allows limitless subscribers to hook to that
same event. Furthermore, these subscribers can be unhooked on runtime. For example,
the MetricsSubscriber can be disabled during the tutorial gameplay because no actual
building is created.

28

Adapter

There are several external 3rd party Software Development Kits (SDKs) being used within
the Last Planets code base. Each of them provides one or several functionalities and
helps tremendously in reducing the effort to code such functions from scratch. However,
they come with a risk of maintainability. The SDK can be outdated or discontinued by the
original author. Thus replacing the SDK with either another SDK or internal code is
needed. Additionally, the SDK might change its Application Program Interface (API) par-
tially or entirely after a version update. All these potential changes pose a surmounted
amount of risk to the project, especially the parts that are dependent on those SDKs.

In order to counter and mitigate these risks, the Adapter pattern is implemented to wrap
each of the SDKs. The implementation of the SDK is abstracted and hidden away from
functionality dependent classes. Thus, even if the SDK is changed or SDK’s API is al-
tered, the change will only happen at one place, which is within the adapter.

Figure 7. Metrics Wrapper Interaction.

The implementation of the MetricsWrapper class is done with the help of the Adapter
pattern and can be seen in Figure 7 above. The MetricsWrapper class isolates the con-
crete implementation of metric SDK vendors from the actual logging logic in the main
code base (Building Metrics, Player Metrics, etc.) During the project, multiple SDK
changes were carried out effortlessly by just replacing the API within the MetricsWrapper
class.

29

Decorator

Most Unity3D classes and components are packaged into binary files. Even though there
is no possibility to modify or add functionality to them directly with this kind of complied
library, the decorator pattern still allows adding extra behaviors indirectly. One example
case is modifying the sealed class Vector2 of Unity3D. Listing 5 below presents how
rotation behavior can be added to this class even though it is already compiled into bi-
nary.

public static class Vector2Extension { public static Vector2 Rotate(this Vector2 v, float degrees) { float sin = Mathf.Sin(degrees * Mathf.Deg2Rad); float cos = Mathf.Cos(degrees * Mathf.Deg2Rad); float tx = v.x; float ty = v.y; v.x = (cos * tx) - (sin * ty); v.y = (sin * tx) + (cos * ty); return v; } }
Listing 5. Vector2 extension method

C# extension methods are implemented with the decorator pattern in mind. For another
example, the extra method SetState in Last Planets allows the state toggling of Mono-
Behaviour and game objects with a null checking logic. These extension methods are
implemented with syntactical disguise as a member method in order to help readability.

Another benefited situation is when the pure client and pure server logic need to be sep-
arated. Both logics cannot be included in the common part because each does not need
to be known to the other and compiling these logics would require additional libraries.
The extension methods allow these logics remain purely either client or server and de-
pend solely on the corresponding repository.

Factory

The Factory pattern is used in a number of places in order to generate objects. Each
factory is managed in a factory class and a manager class. The factory class holds the

30

generation logic, which instantiates objects based on the referenced asset prefabs. The
manager class is a singleton that has a link to the factory class. It serves as a layer of
abstraction away from generation logic as well as a single point of access.

Pooling is also implemented for most factory classes. It allows recycling of unused ob-
jects and avoiding of calling the heavy Instantiate method again, thus reducing a consid-
erable amount of performance load. In most cases, factories use a generic implementa-
tion of the Pool class. However, in several special cases, a custom reset logic needs to
be applied.

Figure 8 Building Manager inspector view.

31

In Figure 8 above, the snapshot of Unity3D inspector view is taken for a BuildingManager
class. The class represents how Factory pattern is implemented. The building visual pre-
fab array contains blueprints objects for instantiating at runtime. Since the place of stor-
ing all these blueprints is centralized within one class, the actual generation logic can
confidently instantiate a new object by type instead of having direct reference to the
building of that type.

MVC

MVC is a particularly useful for solving user interface architecture. Last Planets’ user
interface system thus takes advantage of this design pattern heavily. The implementation
of MVC is done in two levels: panel and entry.

Most user interfaces in Last Planets are displayed in panels – the section container of a
whole functionality often takes the role of a menu or a popup. The panel presentation
often constitutes a title, a background and content including buttons, icons, labels, and
possible entries. The model in this case is often data common classes taken from Com-
mon portion of the code base. A separated controller is coded as a pure C# class to
handle storing and getting the common data fetched from the server or generated from
configuration classes. A MonoBehaviour class is attached to each panel prefab to act as
the view. It often accesses the data from the controller when OnEnable is called and
displays this data correspondingly.

On the other hand, the MVC on the entry level deals with the subcomponent of the user
interface. Each entry usually represents one small repeating part such as one column in
a list or one cell in a grid. Because entries usually do not exist separately, the controllers
in most cases are the also the views of the panels. These views when displaying data
pass those data either directly or wrapped within the container class – the model – to
each entry’s view. The view of each entry is a MonoBehaviour class that displays the
received data to each referenced user interface components.

Figure 9 below presents a typical view of one panel and multiple entries. This Daily Re-
ward panel consists of a title, a background frame, a grid of entries and a confirm button.
There is also a transparent collider in order to block out interaction with other user inter-
faces or game elements while this panel is active.

32

Figure 9 Daily Reward panel and entries.

Thin Component

The Thin Component pattern is implemented mainly in the combat system of Last Plan-
ets. The combat system utilizes this pattern by implementing two parts: the model and
the controller component. The model is created as a pure C# class. This model has
functions that define the behavior of certain objects. The controller component on the
other hand contains references to MonoBehaviour and other Unity3D components
(SpriteRenderer, Collider, etc.) It routes the command from the model to change specific
a view component accordingly. The two parts are linked together via interface referenc-
ing.

By using interfaces, the specific implementation of the controller component is not spec-
ified within the model class but referenced via the interface. It is only determined at ini-
tialization time by a manager script overseeing the whole combat on the client. Decou-
pling the controller from the model allows changing the controller implementation de-
pending on the situation or environment.

This implementation of the Thin Component pattern allows replicating a combat session
without dependence on a specific library. Thus, the server can validate the client’s replay
data without including the Unity3D library.

33

5 Discussion

Last Planets has been in development for over one year. During the development pro-
cess, one internal testing version was always available for internal testing. The interval
team meetings were held to discuss improvements for the project. Through such meet-
ings, the following findings and improvement suggestions were drawn and they will be
presented in the following subsections.

5.1 Findings

Unity3D relies on a Mono subset .Net framework, which is at the moment version 2.0.
However, this is different from the standard .Net framework used in the server architec-
ture, which is version 5.0. This difference caused several discrepancies between the
behavior of the same class in the client and server. In order to solve this problem, the
common part of the project was made to store also the essential logic. Furthermore,
wrappers were built to abstract out or replace changing framework modules.

An automated building and deployment system was created to facilitate a fast feedback
loop. The automated build automatically retrieves new changes to the project and builds
them into binaries. These binaries are uploaded to the corresponding HockeyApp distri-
bution channels for all team members to download and test.

The usage of interfaces proved to be tremendously helpful during the project. By ab-
stracting out concrete implementation, multiple classes could be used interchangeably.
The code base has become considerably more reusable and readable.

Design patterns were not applied from the initial phase of development, but rather imple-
mented as a gradual process. The usage of patterns was applied continuously during
the project as they were realized. In some cases, massive overhaul refactors were car-
ried out in order to implement the pattern as well as clean up the code base.

5.2 Suggestions for Future Study

As can be seen in Figure 10 below, the number of singletons existing in the project is
over 30. This number is too high and causes several troubles for maintaining the project

34

as they are referenced in numerous places across the code base. In addition, the clut-
tered logic also hampers efforts in understanding and debugging. One particular solution
to this might be the Inversion of Control principle. The usage of pattern such as Depend-
ency Injection may help reducing various scattered singleton references.

Figure 10. Singleton search result in Last Planets project

The event handling system has a number of duplications of logic. In order to load a cer-
tain scene, multiple server queries have to finish before the loading animation is dis-
pelled. The queries, however, are different from one scene to another. Therefore, a re-
peated pattern of waiting for queries is scattered among scene loader classes. The us-
age of the Template pattern might be valuable for this problem. Assembling loader on
runtime and registering only scene relevant queries can reduce this duplication consid-
erably.

35

This thesis has introduced only a very small number of design patterns. Readers are
strongly recommended to study design patterns to apply them in their own projects. The
materials listed in the reference list are all of high value.

36

6 Conclusion

Overall, the project succeeded in delivering Last Planets, the social mobile game into
the market. The design patterns were applied widely in the code base and improved
maintainability as well as readability substantially. However, the applying process was
not instantaneous but rather a constant change of refactoring and gradual pattern imple-
menting.

Various improvements were done with the help of design patterns. The Adapter pattern
allows separation of SDK and the dependent code logic. The Observer pattern proves
tremendously useful with event notifying and event handling. The user interface benefits
significantly from adapting the decoupling logic of MVC design pattern. The Thin Com-
ponent creates an extensive flexibility for the combat system and the possibility of vali-
dating it on the server side.

However, overuse or misuse of design patterns can be troublesome for the project. The
surplus use of the Singleton pattern has overcomplicated the code base. This case of
over-usage can be mitigated with another design pattern instead, such as dependency
injection. Furthermore, numerous classes in the project are still unorganized or using
ghetto implementation. Such classes can be cleaned up substantially by applying the
correct design pattern.

Since the introduction of design patterns to programming by the classic book Design
Patterns Elements of Reusable Object-Oriented Software, numerous patterns have ap-
peared and their applications have been well documented. This thesis only managed to
present a miniature amount of them, hence readers are well recommended to study more
design patterns and even create ones on their own.

37

References

1 Jesse Schell. The Art of Game Design: A Book of Lenses 2nd Edition. CRC Press Taylor & Francis Group; 2015.
2 Jason Gregory. Game Engine Architecture. Boca Raton CRC Press; 2014.
3 Brian Schwab. AI Game Engine Programming. Charles River Media; 2004.
4 Steve Rabin, Introduction to Game Development. Second Edition. Course Tech-nology PTR; 2009.
5 Steve Horowitz and Scott Looney. The essential guide to game audio: the theory and practice of sound for games. Focal Press; 2014.
6 Joel Spolsky. User interface design for programmers. Apress L.P; 2001.
7 Todd Barron. Multiplayer Game Programming. Course Technology; 2001.
8 Ardolino Alessandro, Alan Chaney, Marc Schèarer, Marc Schèarer. Game Devel-opment Tool Essentials. Apress; 2014.
9 Lombard Hill Group. What is Software Reuse? [online]. Lombard Hill Group. URL: http://lombardhill.com/what_reuse.htm. Accessed 13 April 2016.
10 Alen B. Tucker. Programming Languages Principles and Paradigms. McGraw-Hill Higher Education; 2007. 2nd ed.
11 Robert C. Martin. Clean Code A Handbook of Agile Software Craftmanship. Pren-tice Hall; 2008.
12 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns El-ements of Reusable Object-Oriented Software. Addison-Wesley; 1994.
13 Steve Holzner, PhD. Design Pattern for Dummies. Wiley Publishing; 2006.
14 Eric Freeman. Head First Design Patterns. O’Reilly; 2004.
15 Martin Fowler. GUI Architectures [online]. ThoughtWorks; 2006. URL: http://mar-tinfowler.com/eaaDev/uiArchs.html. Accessed 13 April 2016.
16 Alex Boyd. Thin Component Controller Pattern. Software Design Pattern for the separation of Model and Controller within Unity3d framework [online]. 2013. URL: https://docs.google.com/document/d/1BPDPe_9c1rx1Vvp7WHqmkn9QbgDy-

Koo91bN43CiofQo/edit. Accessed 13 April 2016.

