

Tero Vääräniemi

Example Solutions of Visual Effects

in Fantasy Games

Bachelor of Business

Administration

 Spring 2016

TIIVISTELMÄ

Tekijä: Tero Vääräniemi

Työn nimi: Esimerkkitoteutuksia visuaalisista efekteistä fantasiapeleissä

Tutkintonimike: Tradenomi (AMK), Luonnontieteiden ala

Asiasanat: visuaalinen efekti, peligrafiikka, partikkeliefekti, vfx, fx, fantasiapelit

Tämän opinnäytetyön tavoitteena on antaa lukijalle käsitys miten visuaalisia efektejä on

mahdollista luoda peleihin, jotka sijouttuvat fantasiamaailmaan. Tämä toteutetaan käymällä läpi

asioita joita on hyvä noudattaa visuaalisia efektejä tehdessä sekä analysoimalla kahdeksaa eri

visuaalista efektiä, jotka luotiin tätä opinnäytetyötä varten. Efektit on tehty käyttäen Unreal Engine

4 –pelimoottoria, jonka eri työkaluja käydään myös läpi visuaalisten efektien kannalta.

Tekijän toiveena on että tästä opinnäytetyöstä voisi olla hyötyä pelialaa opiskeleville tai henkilöille,

joiden yleisen kiinnostuksen kohteena ovat visuaaliset efektit tai niiden toteutus videopeleissä.

Visuaalisten efektien luonti on kuitenkin taidetta, joten tämä opinnäytetyö kuvastaa vain tekijän

henkilökohtaisia töitä, työtapoja ja kokemuksia.

ABSTRACT

Author: Tero Vääräniemi

Title of the Publication: Example solutions of visual effects in fantasy games

Degree Title: Bachelor of Business Administration (UAS), Business Information Technology

Keywords: game graphics, visual effects, particle effects, game vfx, game fx, fantasy games

The goal of this thesis is to give the reader an insight into how visual effects can be implemented

in a fantasy style game. This will be mainly done through observing important factors to remember

whilst creating visual effects and by breaking down eight different visual effects created specifically

for this thesis. The effects are created using Unreal Engine 4 game engine, its tools will also be

explored and explained from the viewpoint of visual effects.

The author wishes that this thesis may be of some use to people studying game development or

whom are simply interested in visual effects and their implementation in video games. However,

creation of visual effects can be classed as art, thus this thesis merely depicts the authors personal

work, workflow and experience.

FOREWORD

In mid-December 2015, I was pretty bummed out that I did not get the internship

of my dreams that seemed so possible and real just a few weeks prior. In hindsight

it seems to me that it was probably for the best that my internship application was

declined, as it gave me this chance of really putting all the time I wanted into

learning visual effects, time which I had not really had until this point.

It has been a great learning experience and a great opportunity for me to

strengthen my core skills before trying to break out into the industry. I want to give

special thanks to my fellow students and team members on the Ancestory project,

who first gave me the chance to create visual effects for the game and a great

chance to learn. Without them or the project we all worked so hard for, I would not

be making this thesis.

Contents

1 INTRODUCTION ... 1

1.1 What are visual effects and why are they needed? 1

2 KEY THINGS TO CONSIDER IN VIDEO GAME VISUAL EFFECTS 3

2.1 Shape ... 3

2.2 Timing .. 3

2.3 Performance ... 5

3 MAGIC IN FANTASY GAMES ... 6

3.1 Division into elements .. 6

3.2 The challenges of implementing visual effects in a fantasy setting 7

4 TOOLS FOR VISUAL EFFECTS WITHIN UNREAL ENGINE 4 8

4.1 Cascade ... 8

4.1.1 CPU particles .. 10

4.1.2 GPU particles .. 10

4.1.3 Mesh particles ... 12

4.1.4 Ribbon particles .. 13

4.1.5 Beam particles .. 14

4.1.6 Animtrail particles .. 15

4.2 Materials and material editor .. 17

5 EXAMPLE MAGICAL EFFECTS AND BREAKDOWN 20

5.1 Ice spikes ... 20

5.2 Freezing spell ... 25

5.3 Meteorite .. 31

5.4 Lightning ... 33

5.5 Arcane explosion .. 42

5.6 Arcane beam .. 43

5.7 Magic portal .. 46

5.8 Holy shield .. 48

6 CONCLUSION .. 51

7 REFERENCES .. 52

LIST OF SYMBOLS

Bloom = an effect to make an object appear bright by extending the light from the

borders of bright areas

Depth of field = an effect mimicking the focus range of human eyes and cameras

Fresnel = an effect where light reflects at different intensities according to the

viewing angle, commonly used in video games to highlight silhouettes of objects

HLSL = High Level Shading Language, shading programming language

Juiciness = a loose term used in game development to describe how good the

gameplay feels when a game is played

Motion blur = apparent streaking of rapidly moving objects

Particle = most often a small image or a series of imaged projected on a plane,

though there are many types of different particles, such as mesh particles which

use 3d meshes

Particle emitter = object that emits particles

Skeletal mesh = animated mesh using hierarchical skeletal structures for

animation

Static mesh = a 3D model within Unreal Engine 4 which is not rigged

Subsurface = mimics the scattering of light inside materials such as wax, which

seem opaque but due to the light scattering inside some of the light from the

opposite side of the surface shows through

Topology = the layout of a 3d model, how vertices and edges are placed to create

the surface of a mesh

UV = projection of 2d images onto 3d surfaces

Vertex animation = animating a 3D model by storing a series of vertex positions

1

1 INTRODUCTION

Visual effects and artists that create them are in a quite unique position in game

development. They are in the middle ground between art and programming,

between creativity and technicality. Creating and implementing visual effects

requires skills, techniques and understanding from both of these areas. VFX artists

tend to gravitate toward being jack of all trades, as creating and implementing

visual effects requires skills from a wide base from 3D modelling to scripting or

programming. It may be daunting and challenging at times, but also very

rewarding. Effects artists get to work closely with other artists and programmers,

which stresses the importance of social aspect of game development and

teamwork.

1.1 What are visual effects and why are they needed?

Visual effects are often defined through the viewpoint of the film industry, as there

is very little literature dedicated wholly to video game visual effects. Which is

shame, hopefully as the game development industry matures the literature related

to different fields within the industry will mature as well.

From a game development perspective, a visual effect is a special effect, which is

used to give visual feedback to the player. This can range to great deal of different

things and purposes. Visual effects can be simply used to add to a scene or

something that the player expects to see when he or she does something.

Environmental effects such as wind blowing up dust on a desert or a muzzle flash

of a gun firing are good examples of these two different purposes. However, visual

effects can also be used to communicate gameplay and game mechanics. Say a

character swings a sword with nothing added to the actual swing of the sword.

Compared to that, a sword with a swing that has particle effect trailing the arc of

the swing (See figure 1) has a far greater sense of power to it. The effect can also

2

improve the overall graphical outlook of the sword swinging animation, as it gives

something clear for the player’s eyes to get attracted to. The effect improves the

“juiciness” of the animation and in general, visual effects tend to enhance the

overall responsiveness of games.

Figure 1. Sword swinging animation with trailing particle effect in World of Warcraft:

Legion. [1]

The term “visual effect” can be used quite broadly, as it includes not only things

like particle effects and such but also effects that mimic the behavior of a camera

or a human eye, such as bloom, depth of field and motion blur. When the term is

used within this thesis, the term will refer to visual effects which are used to provide

visual feedback in regards to gameplay, unless stated otherwise.

3

2 KEY THINGS TO CONSIDER IN VIDEO GAME VISUAL EFFECTS

2.1 Shape

Shape, along with timing, are the two most defining factors of a visual effect.

Without having the correct or expected shape, a visual effect will simply not be

convincing. A lightning bolt without the noisy, sharp turns and thin form simply

would not be recognizable as lightning. Fire, especially when attempting to create

realistic fire, is not credible without the internal motions of the shapes in fire, which

are caused by the complex and turbulent movements of hot and cold air colliding.

Symmetry should be something to be avoided especially when dealing with

something related to the forces of nature. An explosion does not expand smoothly

as a sphere but rather as something that can only be described as chaotic. Getting

the shape right is essential when creating visual effects. Studying reference

closely is a good starting point. According to Gilland, when creating effects,

whether it is for classical hand drawn animation on paper or digital art, it is

important to understand natural phenomena and physics at work in order to create

something convincing. [2]

2.2 Timing

The importance of good timing in visual effects cannot be stressed enough. Visual

effects and animation share some common ground through this, as timing is

essential in animation as well. Timing can be used in many different ways to

achieve the desired effect, as demonstrated by Gilland, for example a splash of

water will seem instantly more massive simply by making the splashes of water

travel slower through the air as they are shot up from a body of water. [3]

It might be easy to think that you cannot have particles appearing out of nowhere.

Most of the time this might be true, as particles suddenly appearing out without

4

any transition is not very pleasing to the eye. Though this does not hold true

always, as in the case of explosions. In the first few fractions of a second in a

typical explosion, the volume of the gasses increase extremely quickly. To

recreate this phenomenon as a visual effect some shortcuts must be taken, as in

games there are a limited number of frames to work with. The first frame of an

explosion can be huge and things can change very quickly during the first few

frames as the energy of the explosion pushes outwards. The first frame can also

be a flash with the main explosion event following a few frames later, this timing

difference can be used in an attempt to communicate the distance between the

camera and the explosion to the player.

Having clear “beats” tend to work well in visual effects. It improves the readability

of an effect. Imagine a magical visual effect of icicles appearing from the ground.

Having the icicles coming in distinct waves opposed to having a steady stream of

icicles can be generally more satisfying and more easily understood. From game

mechanics perspective, in most cases the wave approach should be preferable as

it is easier for the player to understand when the icicles cause their damage or

other gameplay effects. Having clear beats also makes it easier for the sound

effects to match the visuals, which improves the gameplay feel and

responsiveness of the visual effect as everything lines up neatly.

Anticipation is another interesting facet of timing, though in visual effects it can be

dictated by the game mechanics related to the effect. Having some sort of

anticipation is good as it gives a chance for the player to be prepared for something

to occur, though it is not always possible due to the requirements of gameplay. In

most cases the visuals would generally benefit from having anticipation but when

something has to happen as quickly as possible to retain the responsiveness of

the gameplay, the visual effects must cater to the needs of gameplay.

5

2.3 Performance

Performance is something to always keep in mind when creating visual effects for

games. As opposed to films, video games are rendered in real time. This means

the available rendering time for visual effects in games are measured in

milliseconds, whereas the rendering of visual effects in films can be measured in

minutes or even hours. Thus in game development, visual effects artists need to

achieve more with less. Keeping the effects visually appealing while maintaining

performance can be challenging. Mobile games have traditionally had quite limited

visual effects as mobile devices do not have the graphical processing power

compared to consoles and PCs. Though things are improving as mobile devices

become more and more powerful, which in turn enables game engine developers

to improve the graphical fidelity of mobile games by giving game developers

access to more powerful rendering tools.

Knowing how to profile the performance of a game is essential when attempting

to optimize the performance of visual effects. Most game engines have built in

profiling tools tailored to this task, usually these tools provide great analytical

methods to inspect the rendering and computing process of a given scene. The

most common performance issue with visual effects and especially particle effects

is overdraw. This is a situation where many translucent objects are stacked upon

another, which is bad for performance. Some overdraw is manageable as long as

the area with overdraw is relatively small in the overall screen space. Rendering

performance decreases massively when overdraw increases to larger and larger

sizes in the overall screen space.

6

3 MAGIC IN FANTASY GAMES

Magic is a key part of most fantasy worlds, including games. Fantasy as a genre

requires aspects that are beyond the real world in order to be considered fantasy.

Most often this is the existence of magic and people or beings whom are able to

use it [4]. In fantasy games, magic and how it is presented to the player and how

it is constructed within the game is an essential part of a fantasy game’s attempt

to build a credible world where the player can have his or her adventures in.

3.1 Division into elements

Most fantasy games, but not all, divide their magic into different elements. This

seems to be inspired by different classical elements as described by different

ancient philosophies. These classical elements of fire, earth, air, water and so on,

have inspired artists throughout history. Games are not an exception to this.

Though the classical elements have been proven to be incorrect explanations of

our physical world, they cater to the basic human need of putting things into a

context, putting labels onto things and organizing them into neat little boxes.

The elemental approach works well in regards to creating interesting game

mechanics. Different elements can be setup to have their strengths and

weaknesses, creating engaging gameplay when an element counters another. It’s

easy to imagine game mechanics with combination of different elements of magic,

which would augment the power of the magic. For example, it is easily understood

how combining the elements of water and lightning or fire and air would be more

powerful.

7

3.2 The challenges of implementing visual effects in a fantasy setting

The main challenge and also the most interesting part of creating visual effects for

a fantasy game is the variety of different elements and effects usually required for

a fantasy title. Compared to, for example, a modern military shooter game, which

would mainly require different kinds of fire, smoke and explosion effects, fantasy

titles usually have fire, lightning, ice and imaginative elements such as arcane or

holy. Creating these elements that do not exist in the real world while keeping the

effects easily recognizable can be challenging because of the lack of real world

references. Though this gives the artist a great creative opportunity and freedom

to do things as he or she wishes, due to the lack of constraints or expectations

from the real world.

8

4 TOOLS FOR VISUAL EFFECTS WITHIN UNREAL ENGINE 4

4.1 Cascade

Particles in Unreal Engine 4 are created with Cascade, which is a modular particle

effects editor that is fully integrated with the game engine. In the following figure

the default view of Cascade can be seen, featuring the preview window, a particle

emitter with its modules, curve editor, and selected module parameters (See

Figure 2).

Figure 2. Default view of Cascade

The main function of Cascade is to control the behavior of particle systems, while

the appearance of particles is controlled by materials used by the particles. The

9

material editor and Cascade are setup in a way that the two systems can talk to

each other. This is most often used to control different parameters of the materials

inside Cascade throughout the lifetime of particles.

The modular approach of Cascade allows the user of the particle editor to create

a great amount of different and unique particle behavior and movement. The

different modules are sorted into different types, as seen in the figure below (See

Figure 3), which affect a specific property of the particles in the emitter. By using

different modules and tweaking their parameter values the user of the particle

editor can achieve the desired particle behavior.

Figure 3. Different types of modules within Cascade

In addition to modules that affect particle behavior, there are five different type

data modules that change the emitter type. By changing the emitter type some

modules and other features exclusive to that emitter type will be available for use.

10

4.1.1 CPU particles

By default, particle emitters in Cascade are CPU emitters, meaning they are

controlled by the processor. A CPU emitter allows for several thousands of

particles in a frame. CPU particles are also quite flexible, as CPU particles have

access to various modules that change a given attribute over the lifetime of the

particle. One of these modules, which is called Dynamic Parameter, can be very

useful when the particle in question requires visual behavior which cannot be with

Cascade alone. By using Dynamic Parameter, material properties can be changed

as needed to achieve the desired visual appearance.

4.1.2 GPU particles

GPU particles do not have all the features available to the default CPU particles,

but they are far more efficient and also possess a few unique features. A GPU

emitter is able to simulate and render hundreds of thousands of particles efficiently

[5]. The most interesting feature of GPU particles, alongside their efficiency, is that

they can use Vector Field modules. Vector fields allow particles within the emitter

to be influenced by a uniform grid of vectors. These vector fields can also be

rotated and scaled. Very interesting particle behavior and motion can be achieved

by using them [6]. In the following figure and related video footage, one million

GPU particles are being influenced by a turbulent vector field, which is rotating

around its Z-axis (See figure 4).

11

Figure 4. One million GPU particles influenced by a rotating vector field. See video

here.

Vector fields can be generated through various means, the vector field used in the

particles above (See figure 4) was created in Autodesk’s Maya. Epic Games, the

creator of Unreal Engine, provides a Maya script which can be run to take a

snapshot of a single frame of Maya fluid simulation to generate a vector field that

can be utilized within Cascade [6]. Additionally, it is worth mentioning that there is

a script for Autodesk’s 3ds Max by Ruben Henares, which allows a user to

generate vector fields from spline shapes inside 3ds Max. In general, vector fields

created from splines are helpful when trying to achieve specific motion or shape

with the particles, whereas vector fields generated by Maya fluid simulations are

more suited in cases where complex or chaotic shapes are required.

http://streamable.com/31vf

12

4.1.3 Mesh particles

Mesh particle emitters are similar to CPU particles in terms of the different modules

that are available to them. As the name suggests, instead of emitting billboards a

mesh emitter emits instances of a static mesh, as seen in Figure 5.

Figure 5. Emitting mesh particles

Within Unreal Engine, one of the more interesting applications of mesh particles is

using a mesh that is animated through vertex animation. This greatly expands the

variety of effects that can be done by visual effects artists, as it allows having

animated meshes in particle systems. However, the vertex animation tool provided

by Epic Games does have some limitations. As stated by Unreal Engine’s

documentation, the tool works by storing the animation data into a 2D texture

according to the following formula:

Final texture resolution: X = number of vertex in the mesh, Y = Number of frames captured.

As DirectX 11 maximum texture size is 8192 pixels, this allows for a maximum of

8192 vertices in a mesh to be animated. This vertex limit is not a great issue for

13

visual effects work, as the meshes used in visual effects in games do not usually

possess that many vertices. [7]

4.1.4 Ribbon particles

Ribbon emitters are used to generate trails of particles by connecting particles

together to form ribbons. Another particle emitter within the particle system can be

selected as a source for the ribbon particles, meaning that the ribbon particles are

generated as the source particle moves. Ribbons can be applied in many ways

and in different kinds of effects. For example, they can add trails to shrapnel of an

explosion, or in more magical type of effects. In the following figure, a magical

effect is utilizing ribbon particles to form trails that surround a character. The

following effect was made in Ancestory for a spell that purifies a friendly target of

any negative status effects.

Figure 6. Ribbon particles in a magical effect

14

4.1.5 Beam particles

Beam emitter creates beams of particles by connecting a source point and a target

point with a stream of particles. Source and target points can be defined in different

ways: they can be fixed locations defined by 3-dimensional coordinates or they

can be parameters that can be changed in runtime. Beam emitters have access

to a noise module, which is especially useful when trying to simulate lightning or

electricity. The following image is from a particle video guide by Epic Games, the

creator of Unreal Engine. The beam in the image (See figure 7) is set between two

fixed points, the noise in the beam and the arc is achieved through the Noise

module in Cascade. [8]

Figure 7. Beam emitter in Cascade with Noise module [8]

15

The arc is achieved by giving the noise a tangent both at the source and target

locations, as shown below by Figure 8.

Figure 8. Illustration of creating an arc in a beam emitter through the use of noise

tangents. [8]

4.1.6 Animtrail particles

Animtrail particles are polygon sheets, which are emitted from sockets, also known

as bones, of a skeletal mesh. These particles fill a very specific need of creating

trailing particles according to the movement of an animated mesh. One of the more

common uses for these particles is to create trailing particles when a character

swings a weapon, as seen in the following image from Ancestory (See figure 9).

16

Figure 9. Animtrail particles being created as a character swings his weapon in

Ancestory. See video here. [9]

The trail is generated between two defined sockets during a specified time in the

animation of the character. The sockets do not have to be created as the model is

being animated, as sockets can be created on imported skeletal meshes within

Unreal Engine after the animation work is done. In the following figure the setup

of the example above can be seen in the game engine itself (See figure 10).

Figure 10. Setting up an animtrail inside Unreal Engine 4.

https://www.youtube.com/watch?v=QHW4r6OSqjA

17

4.2 Materials and material editor

Materials control the visual appearance of graphical assets in Unreal Engine 4.

According the game engine documentation, materials can be compared to paint

which is spread upon a surface, while also defining the surface properties. A

material defines the color, shininess, translucency, and other properties of the

object that the material is applied to. From a more technical perspective, materials

are used to calculate how light behaves when it interacts with a surface. The

calculations are done using image data (textures) as input and mathematical

expressions, while also being affected by various settings of the material [10].

Materials are created with a network of visual scripting nodes within the Material

Editor. Each node contains a piece of HLSL code, which is designed to perform a

specific task. [11]

To put it simply, most materials contain textures, some math and they have some

settings enabled or disabled according to what the material is going to be applied

to. One of the simpler and also quite useful particle materials used in visual effects

is the radial gradient, as seen in figure 11.

Figure 11. Radial gradient particle material nodes

18

This material produces the following particle, which is a simple white dot (See

figure 12).

Figure 12. Radial gradient particle.

The color and opacity of the particle can be controlled within Cascade because

the material contains the Particle Color node. The white dot texture is generated

by a material function by using some math expressions. Materials can be affected

through particles in Cascade by using a node called Dynamic Parameter within

the material. This is useful for visual effects in many ways, such as the example

seen in the following image (See figure 13). The figure contains a part of a fire

particle material, which is created mainly by multiplying three rotating and panning

textures together. To give the particles more variance, an offset is added to each

texture in order to change which part of the texture is used for each particle.

19

Figure 13. Dynamic Parameter node is used to randomize an UV offset

For an artist, the material editor is a priceless tool. It is fairly easy to get into thanks

to the node based structure and extensive documentation by Epic Games. From

a visual effects viewpoint, setting up materials represents the more technical side

of creating visual effects. Understanding of math, especially vector math is quite

beneficial when attempting to create and understand materials. Not much can be

said in detail about creating materials for visual effects, as the implementation of

materials is so heavily dependent on its intended use. At least personally, I find

myself creating a new material quite often to meet the needs of the effect I am

working on, instead of using a master material and creating material instances

from that.

20

5 EXAMPLE MAGICAL EFFECTS AND BREAKDOWN

5.1 Ice spikes

Figure 14. Ice spike magic effect. See video here.

When I started working on this effect I did not really have any specific reference in

mind directly. Looking back on it my subconscious mind may have been drawing

reference from a similar looking visual effect, as seen below, from Path of Exile,

created by Grinding Gear Games (See figure 15). It is always good to have some

reference as it gives an initial direction to follow when creating a visual effect.

https://youtu.be/qMLETOHRlqw

21

Figure 15. Ice crash spell in Path of Exile. Screenshot from Path of Exile.

Sadly, the file format of this thesis do not support moving images so these still

figures are the most I can provide within this document. Hyperlinks to video footage

will be included to each effect in the image descriptions, as moving image is the

only viable medium to communicate visual effects properly.

The key to make this effect come together was to create nice timing for the spikes

themselves. Quite a bit of iteration went into how the spikes should appear.

Through trying out different timings and spike orientations the end result of three

quick but distinct successive waves of spikes was achieved. The spikes that are

being spawned change their initial rotation of the mesh throughout the duration of

emitter. This is done by using the Initial Mesh Rotation module in the mesh emitter

that spawns the spikes. The distribution of the rotation values are set according to

a uniform curve, as seen in figure 16. Uniform curve simply means that the value

of the rotation is chosen between a minimum and maximum values of two curves.

22

Figure 16. Setting the initial mesh rotation according to a uniform curve.

As shown in the image above (See figure 16), at the beginning of the emission of

particles at time 0.0, the pitch of the particles is set to a value between 0.15 and

0.3. In this case, 0.0 pitch rotation means the particle is level with the ground and

0.25 rotation would have the particle pointing upwards at a 90 degree angle. Thus,

at first the particles are pointing upwards between angles of 54 and 108 degrees.

At time 0.5, which is when last of the particles have been spawned, the particles

being spawned are now pointing between 7.2 degrees and 54 degrees.

23

The spike itself is a simple curved spiky mesh, as seen in the following image,

which are used as mesh particles (See figure 16).

Figure 16. Ice spike mesh

The spikes icy appearance is achieved through a material that mainly utilizes

Fresnel and subsurface shading, as the following image demonstrates (See figure

17).

Figure 17. Subsurface shading shown on the ice spike material

When creating this effect I had in mind that the spell in question would be used by

the player himself, hence there is very little anticipation to the effect as a whole. In

the beginning of the effect there is a shockwave that adds to the punchiness of the

24

effect. The frost on the ground and snowflakes are there to give flavor and fitting

detail to the overall effect. They give the impression that the spell’s power pushes

out with great force as the snowflakes are flung outward from the center and the

cold powers at play as the ground freezes below. The frozen ground texture can

be seen in the following image (See figure 18).

Figure 18. Frozen ground texture.

The textures for this visual effect were mostly created with Adobe After Effects by

manipulating noise into different textures by using various effects within After

25

Effects. The snow flake texture was generated from a mesh created by a great

free 3ds Max plugin called Debrismaker2, created by Aaron Dabelow.

5.2 Freezing spell

Figure 19. Freezing spell. See video here.

I wanted to create this effect mainly because I had worked on a similar one in

Ancestory but I was not in charge of creating the ice block mesh in that one. I

wanted to use this opportunity to make my own, and maybe improve on the overall

effect as whole compared to the one I had created last year. I drew inspiration to

the look of the ice block itself from mainly from World of Warcraft (See figure 20)

to give me a starting direction how the ice block should look to make it appear to

be made out of ice. I wanted to keep the ice block fairly translucent, as the idea of

the effect and spell is that something gets frozen inside the ice block, while keeping

the frozen object easily recognizable

https://youtu.be/qMLETOHRlqw?t=7s

26

Figure 20. Ice block from World of Warcraft. [12]

The main challenge with this visual effect was to make the ice block look appealing

and convincing. The mesh itself is a good example on how to not create a 3D

model that is to be used in games (See figure 21). It is not optimized for use in

games as it has unnecessary polygons, which would cost more in terms of

performance. Having good topology and baking normal maps from a detailed high

poly version of the mesh to a low poly is preferred in 3D models used in video

games.

Figure 21. Ice block mesh

27

It took quite a bit of iteration with the ice material of the mesh but in the end the

result was achieved quite simply. To achieve the frosty, icy look for the ice block I

used the same ice texture as in the previous effect as base. The texture is

multiplied by up- and downscaled versions of itself in order to make it different from

the base texture, then simply multiplied with a pale blue color to make the ice block

appear icy and frosty on the surface. This alone was not enough though, as the

seams on the UVs on the mesh do not match with the texture. This was solved

simply by taking the UVs to Adobe Photoshop and covering up the seams (See

figure 22).

Figure 22. Covering the seams, the actual seams that need to be covered are

highlighted in green.

28

The edges that are more perpendicular to the camera viewing the ice block mesh

are highlighted by using the Fresnel module, as seen in the following image (See

figure 23).

Figure 23. Fresnel nodes used to highlight edges

As described by the documentation of Unreal Engine, Fresnel is a term used to

describe how light reflects at different intensities according to the viewing angle.

This can be seen in everyday life, for example with water in a lake. If you look

directly down while standing by a body of water, the water appears quite

translucent and not that many reflections can be seen. However, if you look further

away where the surface of the water becomes more parallel to your eye level,

more and more reflections will be visible and the water will not appear translucent

anymore. The following image demonstrates this effect (See figure 24). As the

camera in the image is pointing toward the sphere center, the camera is facing

directly at the surface normal. This is seen in the above image as the more grey

areas of the ice block. As the surface normal becomes more and more

perpendicular to the camera, the Fresnel effect increases in visibility. This can be

seen as in the more white areas of the ice block mesh (See figure 23). [13]

29

Figure 24. Demonstrating how Fresnel works [13]

The ice block needs to appear from somewhere, in this case it is simply scaled up

from nothing to its full size quickly, while being obstructed by other particles as

having an ice block growing seemingly from nothing is not great. The part of the

effect that obscures the ice block whilst it grows consist of stretched out spheres

with a fairly translucent material. The material uses a noise texture which has been

processed in After Effects to transform the noise into quite cloudy appearance, as

seen in the following image (See figure 25). I used the same snow flake particles

as in the previous effect to communicate the cold forces at work in the effect and

the same shockwave texture beneath the ice block to give the effect some

punchiness and show the point of origin of the magic.

30

Figure 25. Processed noise texture

31

5.3 Meteorite

Figure 26. Meteorite effect. See video here.

A similar effect was done in Ancestory. Like in the previous example, I wanted to

see how it be improved, since the time for extensive iteration was not simply there

when Ancestory was being developed.

The most important part of the effect is explosion that occurs when the meteor hits

the ground, but it is also important to get a nice trail for the meteor as it hurtles

through the air. A fire texture was generated in After Effects for the explosion

particles. In order to make the fire look more convincing, it requires internal motion

of some sort. This was achieved through a method that was presented by Julian

Love in his GDC 2013 presentation “Technical Artist Bootcamp: The VFX of

Diablo”. It works as follows, take textures at different scales and multiply them

together while panning them at different speeds (See figure 27). It is quite simple

https://youtu.be/qMLETOHRlqw?t=16s

32

but with this method one can generate surprisingly complex shapes and motion.

[14]

Figure 27. Fire texture multiplication and panning

The same fire is used both in the explosion and in the trail of the meteor. It should

be noted as the textures are being multiplied together the overall brightness

decreases. In order to compensate for this, the multiplied texture can be simply

multiplied with a scalar value to bring up the values to desired level. The meteor

mesh, as seen below (See figure 28), was generated using Debrismaker2 in 3ds

max. Normal maps were baked from a high poly version of the mesh to give the

low poly mesh some additional detail.

Figure 28. Meteor mesh, low poly on the right, high poly on the left

33

Figure 29. Meteor falling down

The meteor, while falling down as seen in the above image (See figure 29), is

glowing orange to make it seem like that a great amount heat is being produced

as the meteor cuts through the air. This is done in order to make the whole effect

seem more powerful. When it hits the ground the mesh is destroyed and the

explosion particle emitters are triggered. These emitters include the explosion,

rocks that are flung from the center of the explosion at great speed as shrapnel,

and the impact mark on the ground itself. The impact texture is again generated

from processed noise texture and further processed within the material editor of

Unreal Engine 4.

5.4 Lightning

Lightning effects can be tricky to create. Luckily I had some experience in creating

some lightning effects in Unreal Engine 4 from working on Ancestory. Looking at

reference is a great help when creating lightning, as it gives some clear ideas how

the effect should behave. The main characteristics of lightning are its short amount

time it’s visible, brightness and shape. The following examples of lightning were

created using the beam type data module within Cascade. The beam type data

module enables the emitter to have beam source and target location modules and

noise modules, as seen in the following image (See figure 30).

34

Figure 30. Beam emitter in Cascade

As the name suggests, beam emitters are used to create different kinds of beam

effects. They are very useful when creating lightning effects, as the noise module

can be used to produce the desired noise behavior and visual appearance.

The material used for the following lightning effects is quite simple, as seen in the

following image (See figure 31). The texture being used is generated with some

simple math inside the material editor, which is then plugged into the Particle Color

node to control the color and opacity of the particles.

35

Figure 31. Lightning beam particle material.

The sheer brightness of lightning and electricity is done by using the Scale

Color/Life module in Cascade. This module simply scales up existing color values

that have been set in the emitter over particle lifetime. For example, in the following

thunder bolt visual effect, the color values are being scaled as demonstrated by

the following image (See figure 32).

Figure 32. Using Scale Color / Life module to make the colors brighter

36

As seen in the image, as the lightning beam is spawned the color values are being

multiplied by a factor of 25. The color multiplication is reduced to a factor of one

linearly throughout the lifetime of the beam particles. This produces a clear flash

in the beam of lightning. The color scaling also creates some bloom in the vicinity

of the lightning beam, which fits the overall effect. This can be seen in the following

image (See figure 33).

Figure 33 Thunder Bolt. See video here.

When creating a large thunder bolt that strikes down from the skies, it is good to

have the noise of the beam locked in place in order to mimic behavior of real

thunder bolts. It gives the thunder bolt a real sense of power and improves the

readability of the effect as a whole. Secondary beam emitters are visible as they

https://youtu.be/qMLETOHRlqw?t=27s

37

strike down in the general vicinity of the main beam. These secondary beams add

a bit of flavor to the effect while mimicking the branching nature of thunder bolts.

As the thunder bolt hits the ground, a simple radial gradient particle is spawned

with lights to create the flash of the lightning bolt. Additionally, sparks are flung out

with great speed to demonstrate the force of the impact.

Figure 34. Sustained electrocution. See video here.

Smaller lightning works well with the noise not being completely locked. In this

case the noise is locked to 0.08 seconds, meaning the noise is recalculated every

0.08 seconds. This creates interesting movement in the beam while keeping it

under control, lower values would easily result in something that is too chaotic and

unstable. Again, radial gradient particles are spawned as the beam emitter are

destroyed to give the lightning its flash. Though in this case, the radial gradient

particles are being spawned by an Event Receiver module. This module works by

https://youtu.be/qMLETOHRlqw?t=30s

38

receiving events generated by an Event Generator module in the lightning beam

emitter. In this case, the Event Generator is set to generate an event each time a

lightning beam is killed, as the lifetime of the beam runs out. The Event Receiver

module receives the event of particle death and spawns one radial gradient

particle with the light module, as seen in the following image (See figure 35). This

produces a flash of light on the ground each time an arc of lightning hits it

Figure 35. Using Event Receiver module to spawn particles as the lightning hits

the ground.

In this effect I wanted to create the feel of more sustained electricity, making the

ground electrified as well as the electricity keeps hitting the ground. This is

achieved by spawning secondary arcs of lightning that target the surrounding area

of the main beam of lightning.

39

Figure 36. Lightning variation. See video here.

This effect is a variation on the previous effect, it has more lightning beams to give

the effect more power, and a defined ending. The ending is achieved by changing

the timing of the lightning and reducing the amount of beams being generated

drastically. This gives the impression of the source of the lightning running out of

power as it discharges the last few arcs of lightning.

https://youtu.be/qMLETOHRlqw?t=34s

40

Figure 37. Lightning targeting bones of an animated skeletal mesh. See video

here.

Another variation on lightning, this time the goal was to make the lightning target

points on a skeletal mesh. Inspiration was drawn from Star Wars and Sith

Lightning. It is fairly easy to create something similar using particle parameter

functionality within Unreal Engine 4 and simply passing the bone world space

transforms to the particles via a blueprint, as seen in the following image (See

figure 38). On each frame, a random bone is chosen from the character mesh used

in the effect. This mesh has 80 bones, and their identification numbers run from 0

to 79. The location of the randomly selected bone is retrieved using the Transform

from Bone Space node. This returns a 3-dimensional vector value, which is then

passed over to the particle vector parameter node. This node passes the vector

value to the Cascade module that has the particle parameter “TargetLocation”.

There are some secondary arcs of lightning spawned as each beam of lightning

hits its target. These secondary beams have their source and target location

handled by the last two nodes in the blueprint. The source location is the same as

https://youtu.be/qMLETOHRlqw?t=42s

41

the target location of the main beam of lightning, while the target location of the

secondary beams is randomized into a space 10x10x10 unit cube around the

source location.

Figure 38. Using a blueprint to pass over bone locations to beam emitter in

Cascade

42

5.5 Arcane explosion

Figure 39. Arcane explosion effect. See video here.

This particular effect was an exercise in anticipation. The goal in mind was to

create an effect that is easily anticipated in a game setting. The anticipation of the

effect is mainly achieved by animating the scale of the sphere of energy that the

whole effect is centered around. The scale of the sphere is animated according to

the following curve, as seen in the image below (See figure 40).

Figure 40. Curve inside Cascade used to scale the sphere mesh.

https://youtu.be/qMLETOHRlqw?t=46s

43

First it starts out small, drawing energy as shown by the stretched out radial

gradient particles, then expanding to its full size. The following increase in

brightness is key part of creating anticipation for the effect, as it is very clear that

something is about to happen. Afterwards the sphere simply collapses and the

whole thing explodes, triggering explosion particle, flash particle and shockwave

particle emitters.

Another important part that needed some iteration on this effect was how the small

particles behave as the sphere is being animated. It brings nice detail to the effect

as the small particles are simply slightly attracted to the sphere of energy at first

as it grows to its full size, then being sucked in to the center effect as the sphere

collapses, and then being flung out as the explosion occurs. This is achieved

simply through using separate emitters for each desired particle behavior and

timing when each emitter should be emitting particles and for how long.

5.6 Arcane beam

Figurine 41. Arcane beam. See video here.

This effect was directly inspired by Heroes of the Storm. After seeing the effect in

question I simply wanted to try and create something similar, as it is a great looking

effect, as seen below (See figure 42).

https://youtu.be/qMLETOHRlqw?t=52s

44

Figure 42. Disintegration beam from Heroes of the Storm. See video here. [15]

Creating the effect took quite a bit iteration and experimenting, especially how to

create the pulses in the beam. At first I tried to make the pulses part of the beam

itself but that solution did not behave as I wanted. Instead, simply creating

separate particles with a diamond gradient shape while stretching them along the

direction of the beam resulted in the desired pulses in the beam. These particles

that form the pulses can be seen in the image below (See figure 43).

Figure 43. Pulse particles used in the beam effect

By changing the draw order making the beam on top of the pulse particles it seems

like the pulses are actually a part of the beam itself while they are not. The motion

of the beam is simply generated by panning the textures that are being used. Draw

order of particles in Cascade is determined by the position of emitters in the

particle system. Draw order is sorted from bottom to top, as the emitters are

stacked on top of each other from left to right in Cascade. As seen in figure 44, the

beams are on the bottom of the draw order. This allows for the end and beginning

points to be occluded.

https://youtu.be/6SqmKqFUwnM?t=1m50s

45

Figure 44. Setting up draw order of the particle emitters within the particle system.

The ending and starting points of the beam must be occluded somehow, as it

would not look very appealing with the sharp edges of them beam clearly visible,

as seen below (See figure 45).

Figure 45. Occlusion is needed.

The starting point is occluded by creating a tear drop shape that tapers off along

the direction the beam. This shape is created by spawning radial gradient particles

and particles using the same material as pulse particles in the beam. These

particles add some spikiness to the otherwise smooth shape to give it some variety

as it is hard to see the movement of the overall shape from the smooth radial

gradient particles alone. This shape is placed on top of the beam in regards to

draw order in order to occlude the starting point.

For the ending point occlusion I wanted to create something closely resembling

the reference. Again, radial gradients and the same pulse particles were used to

create the necessary occlusion, the radial gradient define the general shape and

the pulse particles add to the details, definition and motion of the shape. The pulse

particles are simply scaled from zero to their full size, and back to zero as they are

destroyed to give them motion through the particles lifetime. Variation is achieved

46

by randomizing the rotation of the particles when they are spawned. To achieve

the same colors as in the reference using duplicate particle emitters with the

desired color was fairly successful. This took some iteration but through trial and

error the end result is fairly similar to the reference.

5.7 Magic portal

Figure 46. Magic portal. See video here.

This effect was created fairly quickly simply by using a noise texture that was

processed into the texture featured in the particle effect. Giving this texture color

as seen above and simply randomizing the initial rotation of the particle and

https://youtu.be/qMLETOHRlqw?t=57s

47

rotating the particles over time makes a fairly good looking portal. Adding some

additional particles with refraction behind these particles makes it appear as if the

portal is bending space itself, which is quite fitting to a magical portal. The effect

could be further improved by creating additional geometry or structure to support

the portal effect, though it works fine as shown (See figure 46).

Using different colors schemes with the portal is a great way to give an idea about

what kind of place it might lead to. Using neutral or positive colors such as blue or

green would appear not that threatening to the player. If colors like dark red or

such are used then it would be quite easy to understand that the place the portal

leads to could be quite dangerous (See figure 47).

Figure 47. Portal dark red color scheme

48

5.8 Holy shield

Figure 48. Holy shield magic effect. See video here.

There was no direct visual reference for this effect, though a game mechanic was

in mind. The purpose of this magic spell would be to protect allies from harm by

providing cover to them in a form of a defensive bubble. A holy warrior, like a

paladin, could call down this protective blessing from the heavens onto his friends.

In order to make the visuals match the game mechanics and setting of this spell,

there are a few things to consider. First, it makes sense that some visual element

actually comes from above considering the narrative background of the spell. It

also gives a chance to have anticipation with the overall effect. Secondly, the

shielding effect needs to be fairly translucent as the things being shielded should

be visible from the outside for obvious reasons. Thirdly, it should be fairly clear

https://youtu.be/qMLETOHRlqw?t=1m1s

49

that the gameplay effect that the spell provides is positive, this is achieved with the

colors and the rotating shields around the bubble itself.

The bubble mesh uses a panning processed noise texture to give the effect motion

and details, additional motion is achieved by simply rotating the bubble meshes

over their lifetime. The initial sweep from top to the bottom of the bubble is

achieved by controlling the panning of the textures in the material by using

dynamic parameters to control the values directly. This can be seen in the image

below (See figure 49). Using a curve inside Cascade to change the values of the

“PannerTime” parameter results in the top to bottom sweep as seen in the effect.

Figure 49. Controlling the time component of a Panner node using Dynamic

Parameters

A slight amount of refraction is used on the bubble to add small detail to it, it would

mainly be useful in a situation where the camera is close to the top of or sides of

the bubble, as in the screenshot below (See figure 50). The refraction would only

slightly distort any objects or characters if they were inside the shield.

50

Figure 50. Refraction brings subtle details to the protective bubble

51

6 CONCLUSION

The main goal and purpose of this thesis was to use it as an opportunity to learn.

Of course, there are still many things to learn about. Some things that I wanted to

try to create in this thesis, such as creating hand animated visual effects, had to

be dropped due to time. Though there’s still much to learn and I strongly feel that

I am still a mere novice at this, I would say this thesis has been a successful and

fulfilling project for me. I am pretty happy with most of the effects presented in this

thesis, some could use some more polish but overall the results are satisfying.

Having the basic skills of 3D modelling is essential when working with visual

effects. For me, making this thesis was a great opportunity to strengthen those

skills. I only had limited experience working with 3D modeling software prior to

working on this thesis, as I am coming from a sound design background. In terms

of acquiring skills, the next logical step for me would be to start learning how to

create animated visual effects and how to create more stylized textures.

I have been focusing on and working on visual effects for roughly a year now. I am

fairly sure at this point that the best way to learn how to create visual effects in

games is by doing. Which is probably part of the reason why there seems to be no

books written on video game visual effects, as the industry and its practices are

changing so quickly. Though the value of having a solid foundation of skills 3D

modelling, 2D graphics and animation cannot be stressed enough. Having skills in

scripting or math should not be disregarded either, though this is largely dependent

on the game engine that you happen to be using.

52

7 REFERENCES

Books

2 Gilland. Elemental Magic: The Art of Special Effects Animation. 2013th ed.

2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN: Focal Press;

2009.

3 Gilland J. Liquids. Elemental Magic: The Art of Special Effects Animation.

2013th ed. 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN: Focal

Press; 2009. p. 102-103.

Websites

1 [Legion] Unholy Death Knight Spell Animations. 2016; Available

at: https://www.youtube.com/watch?v=p04IdFnXgzw. Accessed 8.4.2016,

2016.

4 Kern M. The Limits of Magic. 2003; Available

at: http://www.victorianweb.org/courses/fiction/65/tolkien/kern14.html.

Accessed 2.4.2016, 2016.

5 Epic Games. GPUSprites Type Data. 2015; Available

at: https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSys

tems/Reference/TypeData/GPUSprites/index.html. Accessed April 17th,

2016.

6 Epic Games. Vector Fields. 2015; Available

at: https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSys

tems/VectorFields/index.html. Accessed 17.4, 2016.

https://www.youtube.com/watch?v=p04IdFnXgzw
http://www.victorianweb.org/courses/fiction/65/tolkien/kern14.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/Reference/TypeData/GPUSprites/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/Reference/TypeData/GPUSprites/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/VectorFields/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/VectorFields/index.html

53

7 Epic Games. Vertex Animation Tool. 2015; Available

at: https://docs.unrealengine.com/latest/INT/Engine/Animation/Tools/Verte

xAnimationTool/index.html. Accessed April 18th, 2016.

8 Epic Games. Creating a Beam Emitter. 2014; Available

at: https://www.youtube.com/watch?v=ywd3lFOuMV8. Accessed April

18th, 2016.

9 Kajak Games. Ancestory Launch Trailer. 2015; Available

at: https://www.youtube.com/watch?v=QHW4r6OSqjA. Accessed April

18th, 2016.

10 Epic Games. Materials. 2015; Available

at: https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/i

ndex.html. Accessed April 18th, 2016.

11 Epic Games. Essential Material Concepts. 2015; Available

at: https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/I

ntroductionToMaterials/index.html. Accessed April 18th, 2016.

12 Ice block visual effect in World of Warcraft. 2012; Available

at: http://wow.zamimg.com/uploads/screenshots/normal/319376-ice-

block.jpg. Accessed 5.8.2016, 2016.

13 Epic Games. Using Fresnel in your Materials. 2015; Available

at: https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/

HowTo/Fresnel/index.html. Accessed April 19th, 2016.

14 Love J. Technical Artist Bootcamp: The VFX of Diablo. 2013; Available

at: http://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-

VFX. Accessed 8.4.2016, 2016.

15 Blizzard Entertainment. Li-Ming Spotlight - Heroes of the Storm. 2016;

Available at: https://www.youtube.com/watch?v=6SqmKqFUwnM.

Accessed 1.3.2016, 2016.

https://docs.unrealengine.com/latest/INT/Engine/Animation/Tools/VertexAnimationTool/index.html
https://docs.unrealengine.com/latest/INT/Engine/Animation/Tools/VertexAnimationTool/index.html
https://www.youtube.com/watch?v=ywd3lFOuMV8
https://www.youtube.com/watch?v=QHW4r6OSqjA
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/IntroductionToMaterials/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/IntroductionToMaterials/index.html
http://wow.zamimg.com/uploads/screenshots/normal/319376-ice-block.jpg
http://wow.zamimg.com/uploads/screenshots/normal/319376-ice-block.jpg
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/HowTo/Fresnel/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/HowTo/Fresnel/index.html
http://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-VFX
http://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-VFX
https://www.youtube.com/watch?v=6SqmKqFUwnM

