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1 INTRODUCTION 

The objective of this thesis is to cover ways of building cross-platform mobile applications 

using Xamarin Forms. Over the years, developers have tried different approaches to 

create mobile applications. Modern web technologies such as HTML5 and JavaScript 

used to be popular because the apps ran within a native browser, thus implicitly providing 

cross-platform support. However, it turned out that HTML5 did not offer the smooth user 

experience that mobile app users were expecting. Other web based technologies ap-

peared afterwards (Apache Cordova, Sencha Touch), but the expectations of high per-

formance and good user experience were still unmet.     

Xamarin is a framework that allows developers to create mobile applications for Android, 

iOS and Windows Phone using C#.  

When building the user interface, the developers have the possibility to use native con-

trols of each mobile platform. That makes it easier to customize the UI's look and feel for 

individual mobile platforms and to provide a native experience for the end user.   

Xamarin enables developers to create mobile app prototypes rapidly and effortlessly. 

That's because Xamarin Forms applications are native and can benefit from other APIs 

and features of the underlying mobile platform. For example, an application made with 

Xamarin Forms can make use of PassKit, Storekit, CoreMotion and other similar features 

on iOS. The apps can also utilize Tiles on Windows Phone or Google Play Services and 

NFC on Android.   

Furthermore, user interfaces can be created in two specific ways with Xamarin Forms. 

Firstly, programmers can make use of the API provided by the framework to build user 

interface views with a source code. Secondly, user interfaces can be created using Ex-

tensible Application Markup Language (XAML). XAML is a declarative markup language 

that is used in Xamarin to define the visual contents of a user interface.  XAML is espe-

cially appropriate for use with the popular MVVM (Model-View-ViewModel) application 

architecture: XAML defines the View that is linked to ViewModel code through XAML-

based data bindings. 

With Xamarin Forms, developers can create applications with several pages. Pages can 

be considered as the application's screens. Depending on the mobile platform, a page 

can be a View Controller in iOS, an activity in Android, or a Page in Windows Phone. 
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The UI can be customized by using types of pages like content page, navigation page, 

tabbed page, carousel page, or master detail page. 

Another advantage is using Xamarin Forms is the variety of layouts. A layout can be 

used as a container for both views and other containers. Types of layout include stack, 

absolute, relative, or grid layout. 

Among the user interface elements that developers can use, Xamarin.Forms has over 

40 views as elements. Developers can use the following controls for different interac-

tions: Entry as a single-line form element to receive user input, Button to initiate a user 

command, Image to display images to the user, and ListView to display information in 

cells. 

Overall, mobile app developers can create cross-platform applications easily and rapidly 

using Xamarin.Forms. More aspects of this platform will be presented in the next chap-

ters of this thesis. 
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2 MOBILE PLATFORM 

Mobile application development business is growing bigger and bigger every year. More 

and more, users are resorting to smaller devices for personal computing, which makes 

it necessary to have applications that provide a great user experience and high perfor-

mance. People use smaller devices nowadays to do most of personal computing: for 

quick information, media consumption and social networking. 
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3 PROBLEM 

The main problem that occurs due to a high usage of mobile devices is that applications 

need to work well on all mobile platforms. For programmers, it is very time consuming to 

take a working program and rewrite it in an entirely different programming language or 

port it to another operating system with a different application programming interface 

(API).  

If programmers work on two separate platforms (for example iOS and Android), the ap-

plications tend to drift apart from each other. For each platform, programmers need to 

use a different language, different architecture and different conventions. That leads to 

further complications in the future when new features are added to the applications. How-

ever, if programmers use Xamarin, they can do all the future maintenance work, all the 

revisions and enhancements just once rather than twice. 
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4 CROSS-PLATFORM DEVELOPMENT 

Cross-platform development refers to the development of mobile applications that can 

be used on multiple platforms. These include:  

• The Apple family of iPhones and iPads, all of which run the iOS operating system 

• The Android operating system, developed by Google based on the Linux kernel, 

which runs on a variety of phones and tablets.  

• Microsoft’s Windows Phone. 

Among these, Android and iOS are the most popular for users. Windows Phone is less 

used, but it is still quite popular in Finland. The ideal strategy for developers to tackle 

functionality issues with their apps is to target more than just one of these platforms. 

There are several inconveniences with cross-platform development. (Net Applications 

2016) 

4.1 Cross-platform development complications 

4.1.1 Different user interface paradigms 

The first obstacle that developers deal with when creating an application is that there are 

different standards for each mobile platform. To begin with, navigation around applica-

tions and pages works differently. Then, the presentation of data is made following dif-

ferent sets of conventions. There are different ways to invoke and display menus and 

different approaches to touch.  

Developers need to make sure that the applications have the same kind of functionality 

on all platforms in order to satisfy the end users. Once a user is accustomed to interacting 

with applications on a certain platform, he will expect the applications to work in the same 

way on other platforms. 
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4.1.2 Different development environments 

Another issue that comes to surface when doing cross-platform development is the fact 

that IDEs are different for all three mobile platforms. An IDE is a sophisticated integrated 

development environment. An integrated development environment (IDE) is a program-

ming environment that has been packaged as an application program, which usually 

consists of a code editor, a compiler, a debugger, and a graphical user interface (GUI) 

builder. The IDE may be a standalone application or may be included as part of one or 

more existing and compatible applications.  

There are different IDEs for every mobile platform:  

• iOS: Xcode 

• Android: Android Studio 

• Windows Phone: Visual Studio 

4.1.3 Different programming interfaces 

A third obstacle for developers is the existence of different APIs for every platform. There 

might be similar types of user-interface objects on all three platforms, but they have dif-

ferent names.  

As an example, every platform has different names for a component that allows display-

ing text in the user interface: 

• iOS: UILabel 

• Android: TextView 

• Windows Phone: TextBlock 

4.1.4 Different programming languages 

The forth important issue is the differences between programming language. Each plat-

form is associated with a specific language: 

• iOS: Objective-C or Swift 
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• Android: Java 

• Windows Phone: C# 

This issue means that companies need to find resources to hire specialized developers 

for each platform. Xamarin.Forms comes as a solution to this problem. 

4.2 Xamarin platform 

There are various Xamarin libraries developers can use to ease their work. For example: 

• Xamarin.Mac for developing Mac applications. 

• Xamarin.iOS for developing iOS applications. 

• Xamarin.Android for developing Android applications. 

These libraries make up the Xamarin platform. They consist of .NET versions of the na-

tive Mac, iOS, and Android APIs. To target the native APIs of these platforms, developers 

can write applications in C# while also having access to the .NET Framework class li-

brary. (Xamarin 2016) 

Another useful tool is Xamarin Studio, an IDE that runs on both the Mac and PC. It allows 

you to develop Phone and Android applications on the Mac and Android applications on 

the PC 

Visual Studio can be used with Xamarin libraries to develop Mac, iPhone, Android, as 

well as Windows and Windows Phone applications. Still, Mac and iPhone development 

also requires a Mac with Xcode and Xamarin Studio installed and connected through a 

local network with the PC. 

4.3 Sharing code 

Xamarin allows developers to share code among the applications. 

Shared business logic 
Application 

iOS specific code Android specific code WinPhone specific code 

Xamarin iOS Xamarin Android  
System 

iOS native API Android native API WinPhone native API 
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Picture 1. Xamarin based solution architecture 

When the iPhone app is built, the Xamarin C# compiler makes use of the Apple compiler 

on the Mac to generate native iPhone machine code just like the Objective-C compiler. 

The advantage here is that the calls from the app to the iPhone APIs are the same as if 

the application had been written in Objective-C.  

Regarding the Android app, the Xamarin C# compiler generates IL, which runs on a 

version of Mono on the device alongside the Java engine, but the API calls from the app 

are the same as though the app were written in Java. (Xamarin 2016) 

4.3.1 Xamarin.Forms 

Xamarin.Forms was introduced on May 28, 2014 as part of a collection of improvement 

to the Xamarin platform dubbed Xamarin 3. With Xamarin.Forms, developers can write 

UI code that can be compiled for all three mobile platforms: iPhone, Android, and Win-

dows Phone. 

Shared business logic and UI 
Application 

iOS specific code Android specific code WinPhone specific code 

Xamarin Forms framework 

System Xamarin iOS Xamarin Android  

iOS native API Android native API WinPhone native API 

Picture 2. Xamarin.Forms based solution architecture 

As Charles Petzold mentions in his book Creating Mobile Apps with Xamarin.Forms, 

"Xamarin.Forms is an API that virtualizes the user-interface paradigms on each platform. 

Button, Switch, and Slider all have different appearances on the three phones because 

they are all rendered with the object specific to each platform". (Petzold 2016, 10) 

Xamarin.Forms API contains a lot of functionality, which is expanded by third party 

plugins. Things such as persistent storage, location services, localization, telephony ser-

vices can all be managed via a cross-platform API. However, some platform specific 

functionality must be managed separately for each platform. In this case, Xamarin Forms 

API provides a possibility to do it using DependencyService, where user defines cross-
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platform interface for a given feature and then implements this interface separately for 

each platform in their respective platform specific projects. 

Xamarin.Forms UI controls are customizable to some extent, but for deeper customiza-

tion user can create platform specific custom renderers, which allow native level UI cus-

tomization. 

Applications that rely on heavily custom graphical user interface and complex touch in-

teractions should not use Xamarin Forms. 

Developers use Xamarin.Forms for quick prototyping, but having in mind that they can 

continue using the Xamarin.Forms features to build the whole application. 

4.3.2 Comparison to other cross-platform development solutions 

For the comparison four of the currently most popular cross-platform mobile development 

solutions are chosen: PhoneGap, Appcelerator, ReactNative and Xamarin. Each solution 

has its own strengths and weaknesses and there is no tool that is best in for every type 

of project. The platform should be chosen depending on app performance requirements, 

UX/UI experience and the programming language of choice. 

4.3.2.1 PhoneGap 

PhoneGap allows developing mobile applications using JavaScript, HTML and CSS. The 

web based application is packed inside a native application shell, that uses embedded 

web browser instance to display the web content inside of the application. PhoneGap 

provides a bridge between JavaScript API and the native API, so the JavaScript code is 

able to use platform native functionality. 

The advantage of PhoneGap is that it supports very wide variety of mobile platforms. 

This is due to the fact that most smartphone platforms nowadays support running 

browser instance inside of an application, which allows running web applications inside 

of a native application shell. 

There are certain disadvantages in using PhoneGap based approach. One of them is 

HTML rendering performance on mobile devices. Another one is the fact that native UI 

components often have certain behaviors that are difficult to replicate precisely in web 
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applications. Many users tend to notice these slight differences and might perceive them 

as a bug or bad application design. (Optimus Information 2015) 

4.3.2.2 Appcelerator and ReactNative 

Both Appcelerator and ReactNative allow writing cross-platform applications using Ja-

vaScript, while using native UI components for rendering at runtime. These applications 

come with an embedded JavaScript engine that interprets the JavaScript code at runtime 

and framework bridges the JavaScript code with the native API’s of the platform that it is 

running on. 

The fact that Appcelerator and ReactNative based solutions use native UI components 

gives it a certain advantage compared to PhoneGap based solutions. There’s no longer 

need to render complex web application using HTML and CSS, so rendering perfor-

mance is improved. Also since Appcelerator and ReactNative apps use native UI com-

ponents, the user experience is potentially more familiar compared to UI components 

which are built with web technologies. 

Having a JavaScript engine run inside of a native application shell on a mobile device, 

interpreting a complex JavaScript based application doesn’t come without challenges. 

Launch time of the application becomes longer due to the need of starting up JavaScript 

engine and the underlying bridging frameworks. In addition, potential memory manage-

ment issues tend to me a lot more difficult to debug than using native approach. (Optimus 

Information 2015) 

4.3.2.3 Xamarin with Xamarin.Forms 

When using Xamarin, the applications are normally written using C# or F# programming 

languages. The code is then compiled to each platforms native code either at compile 

time for iOS and Windows Phone, or using JIT compilation for Android. The Xamarin 

platform provides access to all native functionality and the user interface is rendered 

using native components. 

Xamarin based solutions have performance that is equivalent to the native code, while 

allowing developers to share a significant portion of their codebase between different 

platforms. Main drawback of using Xamarin is that it’s a software layer built on top of the 
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native frameworks, which means that developers might have to deal with the potential 

bugs in Xamarin framework in addition to bugs in their own software and in the native 

frameworks. 
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5 BUILDING CROSS-PLATFORM APPLICATION WITH 
XAMARIN.FORMS 

This chapter introduces a sample project that includes several parts of a typical Xama-

rin.Froms mobile application: 

• A multi-page user interface with tab/pivot navigation 

• Various user interface components, such as text, buttons, lists and images 

• Persistent storage 

• Event handling 

• Data binding 

5.1 Creating a new solution 

To create a new cross-platform mobile application using Xamarin Forms, start Visual 

Studio and select File -> New -> Project. From the project templates select Visual C# -> 

Mobile Apps -> Blank App (Xamarin.Forms Portable), type a name for the project and 

click OK. 

 

Picture 3. New project dialog 
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5.2 Xamarin.Forms solution structure 

Visual Studio creates the basic Xamarin Forms solution structure that includes iOS, An-

droid, Windows Phone as well as a Portable Class Library projects. The Portable Class 

Library project contains all the cross-platform code for the application, which includes 

application business logic and the user interface. Platform specific project (iOS, Android 

and Windows Phone) should contain only the platform specific could that could not oth-

erwise be made using cross-platform API. Therefore, DependencyService implementa-

tions as well as custom renderers go into platform specific project. DependencyService 

and custom renderers are outside of the scope of this thesis. 

 

Picture 4. Newly created Xamarin.Forms project 

5.3 Creating a basic UI 

In the portable project, create new folder named Pages. In the new folder, create three 

classes named StopwatchPage, HistoryPage and AboutPage. 
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Picture 5. New class dialog 

 

Picture 6. Initial StopwatchPage code 
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Picture 7. Initial HistoryPage code 

 

Picture 8. Initial AboutPage code 
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Picture 9. Initial App class code 

Adding iOS tab bar icons: in the CrossPlatformStopwatch.iOS, right click on Resources 

folder and select Add —> Existing Item… 

Add files tab_bar_stopwatch@2x.png, tab_bar_history@2x.png and 

tab_bar_about@2x.png 

[or equivalent files of size approximately 50x50 pixels] 

5.4 Testing the application 

Set the appropriate build configuration for CrossPlatformStopwatch solution. Build —> 

Configuration Manager… 

Check the Build checkbox next to every project in the solution. 
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Picture 10. Build configuration manager 

To run the application on a given platform, first you have to set the platform as a startup 

project. For example, to test on Windows Phone, right click on CrossPlat-

formTimer.WinPhone project and select Set as StartUp Project. Now you can run the 

application by selecting Debug —> Start Debugging. 
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Picture 11. Stopwatch page rendered on three different platforms 

The user interface looks completely different on each platform, even though it was pro-

duced from exactly the same code. This is because Xamarin.Forms uses different native 

implementations for each platform and is the strength of the Xamarin platform. Writing 

the user interface code only once, Xamarin gives up three user interface implementations 

that look familiar to the users and look according to the design trends of each platform. 

5.5 Creating an About Page 

The About page is going to contain the title of the application, application logo as well as 

the version number of the application. Xamarin.Forms’ Label control is going to be used 

to display the application title and version, and Image control to display the application 

logo. A StackLayout container control is going to be used to position these controls on 

the page, stacked vertically, one after another. 

Change the Content of the AboutPage from Label to StackLayout containing two Labels 

controls and one Image control. 
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Picture 12. Finished AboutPage code 

5.6 Testing the About Page 

The About page can now be tested by running the application on each platform 
and navigating to the About tab. 
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Picture 13. AboutPage rendered on three different platforms 

5.7 Creating a Stopwatch Timer Page 

The stopwatch can be started, stopped and reset by user. The user will be able 

to see the time that has passed since the stopwatch was started. Therefore, the 

Stopwatch page is going to host a passed time value (Label) as well as Start/Stop 

and Reset buttons (Button). The stopwatch logic will be separated from the user 

interface into its own class StopwatchViewModel and it will implement INotify-

PropertyChanged to allow data binding. Data binding will be used to update the 

passed time value. The interface of StopwatchViewModel will be as follows: 

Events: 

 - TimerRunningChanged(bool isRunning) 

Properties: 

 - (TimeSpan) Time 

Methods: 

 - (void) StartStop() 
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 - (void) Reset() 

The full code listing of StopwatchViewModel is shown in appendix 4. 

The Time property of the StopwatchViewModel contain the passed time of the 
stopwatch and will be displayed on the StopwatchPage using data binding: 

 

Picture 14. Binding time property to time label 

The full code listing of StopwatchPage is shown in appendix 1. 

5.8 Cross-Platform Presistent Storage 

Portable Class Library does not have support for many platform specific features, 

such as geolocation, persistent storage, accelerometer, etc. Normally these parts 

of the application would have to be coded separately for each platform. However, 

there are a lot of community built plugins for Xamarin, that help to avoid writing a 

lot of device specific code separately for each platform. One of the websites con-

taining such plugins is James Montemagno Xamarin.Plugins repository on 

GitHub (https://github.com/jamesmontemagno/Xamarin.Plugins). One of the 

plugins that it provides is called a Settings plugin, which basically provides access 

to device’s local storage directly from the portable class library, without having to 

write a single line of platform specific code. Installation of the plugin is straight-
forward: 

• In Visual Studio, select Tools —> NuGet Package Manager —> Package Man-
ager Console 

• In the console make sure that default project is set to “CrossPlatformStop-
watch” 

• Install the Storage plugin by typing “Install-Package Xam.Plugins.Settings” and 
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pressing Enter key 

• Repeat the last step for each project in the solution 

5.9 Adding the application logo 

Add Stopwatch application logo about_page_logo.png to each project by right clicking 

the appropriate folder in each platform and selecting Add —> Existing Item. On iOS add 

the image to the Resources folder. On Android, the Resources —> drawable folder, or 

the appropriate folder for your test device’s resolution. On Windows Phone add the im-

age directly to the project root folder. 

5.10 100% Shared Code 

In CrossPlatformStopwatch there was no need to write any platform specific code – all 

of the application code was shared. This is the ultimate goal of using cross-platform 

frameworks like Xamarin.Forms. However, in most consumer grade highly polished ap-

plications writing some platform-specific code is almost always necessary. Often the user 

interface needs to be tweaked for each platform separately to provide a desired look. 

 

Picture 15. The entire app rendered on iOS 
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Picture 16. The entire app rendered on Android 

 

Picture 17. The entire app rendered on Windows Phone 
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6 CONCLUSION 

Nowadays people are using their mobile phones for most of their personal computing. 

The expected user behavior is that the application they are using will work in the same 

way on any mobile platform. This brings a great challenge to developers who are trying 

to build apps with a great user experience, look & feel on all three platforms: iOS, Android 

and Windows Phone.   

To tackle this problem, the developers can now use Xamarin.Forms. Xamarin Forms is 

a framework from Xamarin that allows developers to reduce the amount of platform spe-

cific UI code required when creating cross platform mobile applications. 

The main idea behind Forms is to provide developers with the advantage of increasing 

the amount of code-reuse between platforms.  

The purpose of this thesis was to show that Xamarin.Forms can be a great way to build 

beautiful, performant native apps for iOS, Android, and Windows. 
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StopwatchPage.cs source code 

using Xamarin.Forms; 

 

namespace CrossPlatformStopwatch.Pages	

{	

    class StopwatchPage : ContentPage	

    {	

        public StopwatchPage()	

        {	

            Title = "Stopwatch";	

            Icon = "tab_bar_stopwatch.png";	

            Padding = new Thickness(0, 60, 0, 0);	

            var timeLabel = new Label	

                {	

                    XAlign = TextAlignment.Center,	

                    FontSize = 60,	

                    Text = "00:00.00"	

                };	

            var startStopButton = new Button	

                {	

                    Text = "Start"	
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                };	

            var resetButton = new Button	

                {	

                    Text = "Reset"	

                };	

            Content = new StackLayout	

                {	

                    Spacing = 20,	

                    Children =	

                        {	

                            timeLabel,	

                            startStopButton,	

                            resetButton	

                        }	

                    };	

            var stopwatch = new StopwatchViewModel();	

            BindingContext = stopwatch;	

            timeLabel.SetBinding(Label.TextProperty, new Bind-

ing("Time", BindingMode.Default, null, null, 

"{0:mm\\:ss\\.ff}"));	

            stopwatch.TimerRunningChanged += (isRunning) => 

startStopButton.Text = isRunning ? "Stop" : "Start";	
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            startStopButton.Clicked += (sender, e) => stop-

watch.StartStop();	

            resetButton.Clicked += (sender, e) => stopwatch.Re-

set();	

        }	

    } 

} 
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HistoryPage.cs source code 

using Xamarin.Forms; 

 

namespace CrossPlatformStopwatch.Pages	

{	

    public class HistoryPage : ContentPage	

    {	

        private ListView list;	

        public HistoryPage()	

        {	

            Title = "History";	

            Icon = "tab_bar_history.png";	

            Padding = new Thickness(0, 40, 0, 0);	

            list = new ListView();	

            var clearButton = new Button	

                {	

                    Text = "Clear"	

                };	

            Content = new StackLayout	

                {	

                    Spacing = 20,	
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                    Children =	

                        {	

                            list,	

                            clearButton	

                        }	

                    };	

            clearButton.Clicked += (sender, e) => ChearHis-

tory();	

        }	

        protected override void OnAppearing()	

        {	

            base.OnAppearing();	

            list.ItemsSource = LocalStorage.PreviousTimes;	

        } 

        private void ChearHistory()	

        {	

            LocalStorage.PreviousTimes = new ObservableCollec-

tion<TimeSpan>();	

            list.ItemsSource = LocalStorage.PreviousTimes;	

        }	

    }	

} 
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AboutPage.cs source code 

using Xamarin.Forms; 

 

namespace CrossPlatformStopwatch.Pages	

{	

    class AboutPage : ContentPage	

    {	

        public AboutPage()	

        {	

            Title = "About";	

            Icon = "tab_bar_about.png";	

            Padding = new Thickness(25, 40, 25, 0);	

            Content = new Label	

            {	

                Text = "This is an About page"	

            };	

        }	

    }	

} 
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StopwatchViewModel.cs source code 

using System;	

using System.ComponentModel;	

using System.Diagnostics;	

using System.Runtime.CompilerServices;	

using System.Threading.Tasks;	

using Xamarin.Forms;	

 

namespace CrossPlatformStopwatch {	

    public class StopwatchViewModel: INotifyPropertyChanged	

    {	

        public event TimerRunningChangedEventHandler TimerRun-

ningChanged;	

        public delegate void TimerRunningChangedEv-

entHandler(bool isRunning);	

 

        private TimeSpan time;	

        public TimeSpan Time	

        {	

            get { return time; }	

            set	
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            {	

                time = value;	

                OnPropertyChanged();	

            }	

        }	

 

        private bool timerRunning;	

 

        public StopwatchViewModel()	

        {	

            Time = LocalStorage.LastTimeValue;	

            MessagingCenter.Subscribe<App>(this, Constants.Mes-

sagingCenterAppOnSleepKey, (s) => SaveTimerValue());	

        }	

 

        public void StartStop()	

        {	

            timerRunning = !timerRunning;	

            if (timerRunning)	

            {	

                RunTimerLoop();	



Appendix 4 

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi 

            }	

        }	

 

        public void Reset()	

        {	

            var previousTimes = LocalStorage.PreviousTimes;	

            previousTimes.Insert(0, Time);	

            LocalStorage.PreviousTimes = previousTimes;	

            timerRunning = false;	

            Time = TimeSpan.Zero;	

        }	

 

        private async void RunTimerLoop()	

        {	

            var previousTime = Time;	

            var stopwatch = new Stopwatch();	

            stopwatch.Start();	

            while (timerRunning)	

            {	

                await Task.Delay(1);	

                Time = stopwatch.Elapsed + previousTime;	



Appendix 4 

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi 

            }	

            stopwatch.Stop();	

        }	

 

        private void OnTimerRunningChanged(bool isRunning)	

        {	

            if (TimerRunningChanged != null)	

            {	

                TimerRunningChanged(isRunning);	

            }	

        }	

 

        private void SaveTimerValue()	

        {	

            LocalStorage.LastTimeValue = Time;	

        }	

 

        #region INotifyPropertyChanged implementation	

 

        public event PropertyChangedEventHandler Property-

Changed;	
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        protected virtual void OnPropertyChanged([CallerMember-

Name] string propertyName = null)	

        {	

            if (PropertyChanged != null)	

            {	

                PropertyChanged(this, new PropertyChangedEven-

tArgs(propertyName));	

            }	

        }	

        #endregion	

    }	

} 
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App.cs source code 

using CrossPlatformStopwatch.Pages;	

using Xamarin.Forms;	

	

namespace CrossPlatformStopwatch {	

    public class App : Application	

    {	

        public App()	

        {	

            MainPage = new TabbedPage	

                {	

                    Children =	

                        {	

                            new StopwatchPage(),	

                            new HistoryPage(),	

                            new AboutPage()	

                        }	

                    };	

        }	

	

        protected override void OnSleep()	
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        {	

            // TODO: Save application state before going to 

sleep	

        }	

    } 


