
Bachelor’s Thesis

Information Technology

Embedded Systems

2016

Timo Jääskeläinen

CROSS-PLATFORM MOBILE
APPLICATION DEVELOPMENT
WITH XAMARIN.FORMS

OPINNÄYTETYÖ AMK | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Sulautetut Järjestelmät

2016 | 44

Ohjaaja: Yliopettaja TkL Jari-Pekka Paalassalo

Timo Jääskeläinen

ALUSTARIIPPUMATON
PUHELINSOVELLUSKEHITYS XAMARIN.FORMS-
ALUSTALLA
Tämän opinnäytetyön tavoitteena oli tutkia ja esittää tapoja kehittää alustariippumattomia
puhelinsovelluksia käyttäen Xamarin.Forms-alustaa. Tämä teknologia oli valittuna koska Xamarin
antaa sovelluskehittäjille mahdollisuuden luoda natiivisovelluksia Windows Phone-, iOS- ja
Android-mobiilialustoille nopeammin kuin koskaan.

Tässä opinnäytetyössä esitettiin Xamarin.Forms-alustan tarjoamia ratkaisuja kehittämällä
esimerkkisovelluksen Android-, iOS- ja Windows Phone-mobiilialustoille.

Yhteenvedossa todetaan Xamarin.Forms-alustan antavan sovelluskehittäjille hyvät
mahdollisuudet koodin uudelleenkäyttämiselle eri mobiilialustojen välillä. Työssä luotu
esimerkkisovellus todistaa tämän väitteen.

ASIASANAT:

mobiilisovelluskehitys, alustariippumaton kehitys, Xamarin, ohjelmistokehitys

BACHELOR´S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Embedded Systems

2016 | 44

Instructor: Principal Lecturer Jari-Pekka Paalassalo Lic.Tech.

Timo Jääskeläinen

CROSS-PLATFORM MOBILE APPLICATION
DEVELOPMENT WITH XAMARIN.FORMS
The objective of this thesis was to cover ways of building cross-platform mobile applications using
Xamarin.Forms platform. This technology was chosen as a topic because Xamarin gives
developers the possibility to create native applications for Windows Phone, iOS and Android
mobile platforms faster than ever before.

The goals of this thesis were to make an analysis of Xamarin.Forms framework and prove its
capabilities by creating a prototype for Android, iOS and Windows Phone.

As a conclusion, it is stated that Xamarin.Forms has the power to provide developers with the
advantage of increasing the amount of code-reuse between platforms. The prototype created
proves this concept.

KEYWORDS:

mobile development, cross-platform, Xamarin, software development

CONTENT

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 7

2 MOBILE PLATFORM 9

3 PROBLEM 10

4 CROSS-PLATFORM DEVELOPMENT 11
4.1 Cross-platform development complications 11

4.1.1 Different user interface paradigms 11
4.1.2 Different development environments 12
4.1.3 Different programming interfaces 12
4.1.4 Different programming languages 12

4.2 Xamarin platform 13
4.3 Sharing code 13

4.3.1 Xamarin.Forms 14
4.3.2 Comparison to other cross-platform development solutions 15
4.3.2.1 PhoneGap 15
4.3.2.2 Appcelerator and ReactNative 16
4.3.2.3 Xamarin with Xamarin.Forms 16

5 BUILDING CROSS-PLATFORM APPLICATION WITH XAMARIN.FORMS 18
5.1 Creating a new solution 18
5.2 Xamarin.Forms solution structure 19
5.3 Creating a basic UI 19
5.4 Testing the application 22
5.5 Creating an About Page 24
5.6 Testing the About Page 25
5.7 Creating a Stopwatch Timer Page 26
5.8 Cross-Platform Presistent Storage 27
5.9 Adding the application logo 28
5.10 100% Shared Code 28

6 CONCLUSION 30

REFERENCES 31

APPENDICES

Appendix 1. StopwatchPage.cs source code
Appendix 2. HistoryPage.cs source code
Appendix 3. AboutPage.cs source code
Appendix 4. StopwatchViewModel.cs source code
Appendix 5. App.cs source code

PICTURES

Picture 1. Xamarin based solution architecture 14
Picture 2. Xamarin.Forms based solution architecture 14
Picture 3. New project dialog 18
Picture 4. Newly created Xamarin.Forms project 19
Picture 5. New class dialog 20
Picture 6. Initial StopwatchPage code 20
Picture 7. Initial HistoryPage code 21
Picture 8. Initial AboutPage code 21
Picture 9. Initial App class code 22
Picture 10. Build configuration manager 23
Picture 11. Stopwatch page rendered on three different platforms 24
Picture 12. Finished AboutPage code 25
Picture 13. AboutPage rendered on three different platforms 26
Picture 14. Binding time property to time label 27
Picture 15. The entire app rendered on iOS 28
Picture 16. The entire app rendered on Android 29
Picture 17. The entire app rendered on Windows Phone 29

LIST OF ABBREVIATIONS

API Application programming interface

CSS Cascading style sheets

GUI Graphical user interface

HTML Hyper text markup language

IDE Integrated development environment

IL Intermediate language

JIT Just-in-time

MVVM Model-view-viewmodel

NFC Near field communication

UI User interface

UX User experience

XAML Extensible application markup language

7

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

1 INTRODUCTION

The objective of this thesis is to cover ways of building cross-platform mobile applications

using Xamarin Forms. Over the years, developers have tried different approaches to

create mobile applications. Modern web technologies such as HTML5 and JavaScript

used to be popular because the apps ran within a native browser, thus implicitly providing

cross-platform support. However, it turned out that HTML5 did not offer the smooth user

experience that mobile app users were expecting. Other web based technologies ap-

peared afterwards (Apache Cordova, Sencha Touch), but the expectations of high per-

formance and good user experience were still unmet.

Xamarin is a framework that allows developers to create mobile applications for Android,

iOS and Windows Phone using C#.

When building the user interface, the developers have the possibility to use native con-

trols of each mobile platform. That makes it easier to customize the UI's look and feel for

individual mobile platforms and to provide a native experience for the end user.

Xamarin enables developers to create mobile app prototypes rapidly and effortlessly.

That's because Xamarin Forms applications are native and can benefit from other APIs

and features of the underlying mobile platform. For example, an application made with

Xamarin Forms can make use of PassKit, Storekit, CoreMotion and other similar features

on iOS. The apps can also utilize Tiles on Windows Phone or Google Play Services and

NFC on Android.

Furthermore, user interfaces can be created in two specific ways with Xamarin Forms.

Firstly, programmers can make use of the API provided by the framework to build user

interface views with a source code. Secondly, user interfaces can be created using Ex-

tensible Application Markup Language (XAML). XAML is a declarative markup language

that is used in Xamarin to define the visual contents of a user interface. XAML is espe-

cially appropriate for use with the popular MVVM (Model-View-ViewModel) application

architecture: XAML defines the View that is linked to ViewModel code through XAML-

based data bindings.

With Xamarin Forms, developers can create applications with several pages. Pages can

be considered as the application's screens. Depending on the mobile platform, a page

can be a View Controller in iOS, an activity in Android, or a Page in Windows Phone.

8

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

The UI can be customized by using types of pages like content page, navigation page,

tabbed page, carousel page, or master detail page.

Another advantage is using Xamarin Forms is the variety of layouts. A layout can be

used as a container for both views and other containers. Types of layout include stack,

absolute, relative, or grid layout.

Among the user interface elements that developers can use, Xamarin.Forms has over

40 views as elements. Developers can use the following controls for different interac-

tions: Entry as a single-line form element to receive user input, Button to initiate a user

command, Image to display images to the user, and ListView to display information in

cells.

Overall, mobile app developers can create cross-platform applications easily and rapidly

using Xamarin.Forms. More aspects of this platform will be presented in the next chap-

ters of this thesis.

9

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

2 MOBILE PLATFORM

Mobile application development business is growing bigger and bigger every year. More

and more, users are resorting to smaller devices for personal computing, which makes

it necessary to have applications that provide a great user experience and high perfor-

mance. People use smaller devices nowadays to do most of personal computing: for

quick information, media consumption and social networking.

10

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

3 PROBLEM

The main problem that occurs due to a high usage of mobile devices is that applications

need to work well on all mobile platforms. For programmers, it is very time consuming to

take a working program and rewrite it in an entirely different programming language or

port it to another operating system with a different application programming interface

(API).

If programmers work on two separate platforms (for example iOS and Android), the ap-

plications tend to drift apart from each other. For each platform, programmers need to

use a different language, different architecture and different conventions. That leads to

further complications in the future when new features are added to the applications. How-

ever, if programmers use Xamarin, they can do all the future maintenance work, all the

revisions and enhancements just once rather than twice.

11

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

4 CROSS-PLATFORM DEVELOPMENT

Cross-platform development refers to the development of mobile applications that can

be used on multiple platforms. These include:

• The Apple family of iPhones and iPads, all of which run the iOS operating system

• The Android operating system, developed by Google based on the Linux kernel,

which runs on a variety of phones and tablets.

• Microsoft’s Windows Phone.

Among these, Android and iOS are the most popular for users. Windows Phone is less

used, but it is still quite popular in Finland. The ideal strategy for developers to tackle

functionality issues with their apps is to target more than just one of these platforms.

There are several inconveniences with cross-platform development. (Net Applications

2016)

4.1 Cross-platform development complications

4.1.1 Different user interface paradigms

The first obstacle that developers deal with when creating an application is that there are

different standards for each mobile platform. To begin with, navigation around applica-

tions and pages works differently. Then, the presentation of data is made following dif-

ferent sets of conventions. There are different ways to invoke and display menus and

different approaches to touch.

Developers need to make sure that the applications have the same kind of functionality

on all platforms in order to satisfy the end users. Once a user is accustomed to interacting

with applications on a certain platform, he will expect the applications to work in the same

way on other platforms.

12

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

4.1.2 Different development environments

Another issue that comes to surface when doing cross-platform development is the fact

that IDEs are different for all three mobile platforms. An IDE is a sophisticated integrated

development environment. An integrated development environment (IDE) is a program-

ming environment that has been packaged as an application program, which usually

consists of a code editor, a compiler, a debugger, and a graphical user interface (GUI)

builder. The IDE may be a standalone application or may be included as part of one or

more existing and compatible applications.

There are different IDEs for every mobile platform:

• iOS: Xcode

• Android: Android Studio

• Windows Phone: Visual Studio

4.1.3 Different programming interfaces

A third obstacle for developers is the existence of different APIs for every platform. There

might be similar types of user-interface objects on all three platforms, but they have dif-

ferent names.

As an example, every platform has different names for a component that allows display-

ing text in the user interface:

• iOS: UILabel

• Android: TextView

• Windows Phone: TextBlock

4.1.4 Different programming languages

The forth important issue is the differences between programming language. Each plat-

form is associated with a specific language:

• iOS: Objective-C or Swift

13

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

• Android: Java

• Windows Phone: C#

This issue means that companies need to find resources to hire specialized developers

for each platform. Xamarin.Forms comes as a solution to this problem.

4.2 Xamarin platform

There are various Xamarin libraries developers can use to ease their work. For example:

• Xamarin.Mac for developing Mac applications.

• Xamarin.iOS for developing iOS applications.

• Xamarin.Android for developing Android applications.

These libraries make up the Xamarin platform. They consist of .NET versions of the na-

tive Mac, iOS, and Android APIs. To target the native APIs of these platforms, developers

can write applications in C# while also having access to the .NET Framework class li-

brary. (Xamarin 2016)

Another useful tool is Xamarin Studio, an IDE that runs on both the Mac and PC. It allows

you to develop Phone and Android applications on the Mac and Android applications on

the PC

Visual Studio can be used with Xamarin libraries to develop Mac, iPhone, Android, as

well as Windows and Windows Phone applications. Still, Mac and iPhone development

also requires a Mac with Xcode and Xamarin Studio installed and connected through a

local network with the PC.

4.3 Sharing code

Xamarin allows developers to share code among the applications.

Shared business logic
Application

iOS specific code Android specific code WinPhone specific code

Xamarin iOS Xamarin Android
System

iOS native API Android native API WinPhone native API

14

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 1. Xamarin based solution architecture

When the iPhone app is built, the Xamarin C# compiler makes use of the Apple compiler

on the Mac to generate native iPhone machine code just like the Objective-C compiler.

The advantage here is that the calls from the app to the iPhone APIs are the same as if

the application had been written in Objective-C.

Regarding the Android app, the Xamarin C# compiler generates IL, which runs on a

version of Mono on the device alongside the Java engine, but the API calls from the app

are the same as though the app were written in Java. (Xamarin 2016)

4.3.1 Xamarin.Forms

Xamarin.Forms was introduced on May 28, 2014 as part of a collection of improvement

to the Xamarin platform dubbed Xamarin 3. With Xamarin.Forms, developers can write

UI code that can be compiled for all three mobile platforms: iPhone, Android, and Win-

dows Phone.

Shared business logic and UI
Application

iOS specific code Android specific code WinPhone specific code

Xamarin Forms framework

System Xamarin iOS Xamarin Android

iOS native API Android native API WinPhone native API

Picture 2. Xamarin.Forms based solution architecture

As Charles Petzold mentions in his book Creating Mobile Apps with Xamarin.Forms,

"Xamarin.Forms is an API that virtualizes the user-interface paradigms on each platform.

Button, Switch, and Slider all have different appearances on the three phones because

they are all rendered with the object specific to each platform". (Petzold 2016, 10)

Xamarin.Forms API contains a lot of functionality, which is expanded by third party

plugins. Things such as persistent storage, location services, localization, telephony ser-

vices can all be managed via a cross-platform API. However, some platform specific

functionality must be managed separately for each platform. In this case, Xamarin Forms

API provides a possibility to do it using DependencyService, where user defines cross-

15

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

platform interface for a given feature and then implements this interface separately for

each platform in their respective platform specific projects.

Xamarin.Forms UI controls are customizable to some extent, but for deeper customiza-

tion user can create platform specific custom renderers, which allow native level UI cus-

tomization.

Applications that rely on heavily custom graphical user interface and complex touch in-

teractions should not use Xamarin Forms.

Developers use Xamarin.Forms for quick prototyping, but having in mind that they can

continue using the Xamarin.Forms features to build the whole application.

4.3.2 Comparison to other cross-platform development solutions

For the comparison four of the currently most popular cross-platform mobile development

solutions are chosen: PhoneGap, Appcelerator, ReactNative and Xamarin. Each solution

has its own strengths and weaknesses and there is no tool that is best in for every type

of project. The platform should be chosen depending on app performance requirements,

UX/UI experience and the programming language of choice.

4.3.2.1 PhoneGap

PhoneGap allows developing mobile applications using JavaScript, HTML and CSS. The

web based application is packed inside a native application shell, that uses embedded

web browser instance to display the web content inside of the application. PhoneGap

provides a bridge between JavaScript API and the native API, so the JavaScript code is

able to use platform native functionality.

The advantage of PhoneGap is that it supports very wide variety of mobile platforms.

This is due to the fact that most smartphone platforms nowadays support running

browser instance inside of an application, which allows running web applications inside

of a native application shell.

There are certain disadvantages in using PhoneGap based approach. One of them is

HTML rendering performance on mobile devices. Another one is the fact that native UI

components often have certain behaviors that are difficult to replicate precisely in web

16

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

applications. Many users tend to notice these slight differences and might perceive them

as a bug or bad application design. (Optimus Information 2015)

4.3.2.2 Appcelerator and ReactNative

Both Appcelerator and ReactNative allow writing cross-platform applications using Ja-

vaScript, while using native UI components for rendering at runtime. These applications

come with an embedded JavaScript engine that interprets the JavaScript code at runtime

and framework bridges the JavaScript code with the native API’s of the platform that it is

running on.

The fact that Appcelerator and ReactNative based solutions use native UI components

gives it a certain advantage compared to PhoneGap based solutions. There’s no longer

need to render complex web application using HTML and CSS, so rendering perfor-

mance is improved. Also since Appcelerator and ReactNative apps use native UI com-

ponents, the user experience is potentially more familiar compared to UI components

which are built with web technologies.

Having a JavaScript engine run inside of a native application shell on a mobile device,

interpreting a complex JavaScript based application doesn’t come without challenges.

Launch time of the application becomes longer due to the need of starting up JavaScript

engine and the underlying bridging frameworks. In addition, potential memory manage-

ment issues tend to me a lot more difficult to debug than using native approach. (Optimus

Information 2015)

4.3.2.3 Xamarin with Xamarin.Forms

When using Xamarin, the applications are normally written using C# or F# programming

languages. The code is then compiled to each platforms native code either at compile

time for iOS and Windows Phone, or using JIT compilation for Android. The Xamarin

platform provides access to all native functionality and the user interface is rendered

using native components.

Xamarin based solutions have performance that is equivalent to the native code, while

allowing developers to share a significant portion of their codebase between different

platforms. Main drawback of using Xamarin is that it’s a software layer built on top of the

17

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

native frameworks, which means that developers might have to deal with the potential

bugs in Xamarin framework in addition to bugs in their own software and in the native

frameworks.

18

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

5 BUILDING CROSS-PLATFORM APPLICATION WITH
XAMARIN.FORMS

This chapter introduces a sample project that includes several parts of a typical Xama-

rin.Froms mobile application:

• A multi-page user interface with tab/pivot navigation

• Various user interface components, such as text, buttons, lists and images

• Persistent storage

• Event handling

• Data binding

5.1 Creating a new solution

To create a new cross-platform mobile application using Xamarin Forms, start Visual

Studio and select File -> New -> Project. From the project templates select Visual C# ->

Mobile Apps -> Blank App (Xamarin.Forms Portable), type a name for the project and

click OK.

Picture 3. New project dialog

19

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

5.2 Xamarin.Forms solution structure

Visual Studio creates the basic Xamarin Forms solution structure that includes iOS, An-

droid, Windows Phone as well as a Portable Class Library projects. The Portable Class

Library project contains all the cross-platform code for the application, which includes

application business logic and the user interface. Platform specific project (iOS, Android

and Windows Phone) should contain only the platform specific could that could not oth-

erwise be made using cross-platform API. Therefore, DependencyService implementa-

tions as well as custom renderers go into platform specific project. DependencyService

and custom renderers are outside of the scope of this thesis.

Picture 4. Newly created Xamarin.Forms project

5.3 Creating a basic UI

In the portable project, create new folder named Pages. In the new folder, create three

classes named StopwatchPage, HistoryPage and AboutPage.

20

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 5. New class dialog

Picture 6. Initial StopwatchPage code

21

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 7. Initial HistoryPage code

Picture 8. Initial AboutPage code

22

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 9. Initial App class code

Adding iOS tab bar icons: in the CrossPlatformStopwatch.iOS, right click on Resources

folder and select Add —> Existing Item…

Add files tab_bar_stopwatch@2x.png, tab_bar_history@2x.png and

tab_bar_about@2x.png

[or equivalent files of size approximately 50x50 pixels]

5.4 Testing the application

Set the appropriate build configuration for CrossPlatformStopwatch solution. Build —>

Configuration Manager…

Check the Build checkbox next to every project in the solution.

23

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 10. Build configuration manager

To run the application on a given platform, first you have to set the platform as a startup

project. For example, to test on Windows Phone, right click on CrossPlat-

formTimer.WinPhone project and select Set as StartUp Project. Now you can run the

application by selecting Debug —> Start Debugging.

24

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 11. Stopwatch page rendered on three different platforms

The user interface looks completely different on each platform, even though it was pro-

duced from exactly the same code. This is because Xamarin.Forms uses different native

implementations for each platform and is the strength of the Xamarin platform. Writing

the user interface code only once, Xamarin gives up three user interface implementations

that look familiar to the users and look according to the design trends of each platform.

5.5 Creating an About Page

The About page is going to contain the title of the application, application logo as well as

the version number of the application. Xamarin.Forms’ Label control is going to be used

to display the application title and version, and Image control to display the application

logo. A StackLayout container control is going to be used to position these controls on

the page, stacked vertically, one after another.

Change the Content of the AboutPage from Label to StackLayout containing two Labels

controls and one Image control.

25

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 12. Finished AboutPage code

5.6 Testing the About Page

The About page can now be tested by running the application on each platform
and navigating to the About tab.

26

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 13. AboutPage rendered on three different platforms

5.7 Creating a Stopwatch Timer Page

The stopwatch can be started, stopped and reset by user. The user will be able

to see the time that has passed since the stopwatch was started. Therefore, the

Stopwatch page is going to host a passed time value (Label) as well as Start/Stop

and Reset buttons (Button). The stopwatch logic will be separated from the user

interface into its own class StopwatchViewModel and it will implement INotify-

PropertyChanged to allow data binding. Data binding will be used to update the

passed time value. The interface of StopwatchViewModel will be as follows:

Events:

 - TimerRunningChanged(bool isRunning)

Properties:

 - (TimeSpan) Time

Methods:

 - (void) StartStop()

27

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 - (void) Reset()

The full code listing of StopwatchViewModel is shown in appendix 4.

The Time property of the StopwatchViewModel contain the passed time of the
stopwatch and will be displayed on the StopwatchPage using data binding:

Picture 14. Binding time property to time label

The full code listing of StopwatchPage is shown in appendix 1.

5.8 Cross-Platform Presistent Storage

Portable Class Library does not have support for many platform specific features,

such as geolocation, persistent storage, accelerometer, etc. Normally these parts

of the application would have to be coded separately for each platform. However,

there are a lot of community built plugins for Xamarin, that help to avoid writing a

lot of device specific code separately for each platform. One of the websites con-

taining such plugins is James Montemagno Xamarin.Plugins repository on

GitHub (https://github.com/jamesmontemagno/Xamarin.Plugins). One of the

plugins that it provides is called a Settings plugin, which basically provides access

to device’s local storage directly from the portable class library, without having to

write a single line of platform specific code. Installation of the plugin is straight-
forward:

• In Visual Studio, select Tools —> NuGet Package Manager —> Package Man-
ager Console

• In the console make sure that default project is set to “CrossPlatformStop-
watch”

• Install the Storage plugin by typing “Install-Package Xam.Plugins.Settings” and

28

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

pressing Enter key

• Repeat the last step for each project in the solution

5.9 Adding the application logo

Add Stopwatch application logo about_page_logo.png to each project by right clicking

the appropriate folder in each platform and selecting Add —> Existing Item. On iOS add

the image to the Resources folder. On Android, the Resources —> drawable folder, or

the appropriate folder for your test device’s resolution. On Windows Phone add the im-

age directly to the project root folder.

5.10 100% Shared Code

In CrossPlatformStopwatch there was no need to write any platform specific code – all

of the application code was shared. This is the ultimate goal of using cross-platform

frameworks like Xamarin.Forms. However, in most consumer grade highly polished ap-

plications writing some platform-specific code is almost always necessary. Often the user

interface needs to be tweaked for each platform separately to provide a desired look.

Picture 15. The entire app rendered on iOS

29

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

Picture 16. The entire app rendered on Android

Picture 17. The entire app rendered on Windows Phone

30

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

6 CONCLUSION

Nowadays people are using their mobile phones for most of their personal computing.

The expected user behavior is that the application they are using will work in the same

way on any mobile platform. This brings a great challenge to developers who are trying

to build apps with a great user experience, look & feel on all three platforms: iOS, Android

and Windows Phone.

To tackle this problem, the developers can now use Xamarin.Forms. Xamarin Forms is

a framework from Xamarin that allows developers to reduce the amount of platform spe-

cific UI code required when creating cross platform mobile applications.

The main idea behind Forms is to provide developers with the advantage of increasing

the amount of code-reuse between platforms.

The purpose of this thesis was to show that Xamarin.Forms can be a great way to build

beautiful, performant native apps for iOS, Android, and Windows.

31

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

REFERENCES

Eberhardt, C. 2015. Retrospective On Developing An Application With React Native. Consulted
10.1.2016 http://blog.scottlogic.com/2015/03/26/react-native-retrospective.html

Eisenman, B. 2016. Learning React Native: Building Native Mobile Apps with JavaScript. USA:
O'Reilly Media

Hermes, D. 2015. Xamarin Mobile Application Development: Cross-Platform C# and Xama-
rin.Forms Fundamentals. USA: Apress

Johnson, P. 2015. Cross-platform UI Development with Xamarin.Forms. UK: Packt Publishing

Net Applications 2016. Mobile/Tablet Operating System Market Share. Consulted 5.1.2016
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1

Optimus Information 2015. Cross-Platform Framework Comparison: Xamarin vs Titanium vs
PhoneGap. Consulted 10.1.2016 http://www.optimusinfo.com/blog/cross-platform-framework-
comparison-xamarin-vs-titanium-vs-phonegap/

Petzold, C. 2016. Creating Mobile Apps with Xamarin.Forms. USA: Microsoft Press

Ramanujam, P. 2015. PhoneGap: Beginner's Guide, Third Edition. UK: Packt Publishing

Snider, E. 2016. Mastering Xamarin.Forms. UK: Packt Publishing

Xamarin 2016. Part 1 – Understanding the Xamarin Mobile Platform. Consulted 5.1.2016
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/build-
ing_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/

Appendix 1

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

StopwatchPage.cs source code

using Xamarin.Forms;

namespace CrossPlatformStopwatch.Pages	

{	

 class StopwatchPage : ContentPage	

 {	

 public StopwatchPage()	

 {	

 Title = "Stopwatch";	

 Icon = "tab_bar_stopwatch.png";	

 Padding = new Thickness(0, 60, 0, 0);	

 var timeLabel = new Label	

 {	

 XAlign = TextAlignment.Center,	

 FontSize = 60,	

 Text = "00:00.00"	

 };	

 var startStopButton = new Button	

 {	

 Text = "Start"	

Appendix 1

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 };	

 var resetButton = new Button	

 {	

 Text = "Reset"	

 };	

 Content = new StackLayout	

 {	

 Spacing = 20,	

 Children =	

 {	

 timeLabel,	

 startStopButton,	

 resetButton	

 }	

 };	

 var stopwatch = new StopwatchViewModel();	

 BindingContext = stopwatch;	

 timeLabel.SetBinding(Label.TextProperty, new Bind-

ing("Time", BindingMode.Default, null, null,

"{0:mm\\:ss\\.ff}"));	

 stopwatch.TimerRunningChanged += (isRunning) =>

startStopButton.Text = isRunning ? "Stop" : "Start";	

Appendix 1

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 startStopButton.Clicked += (sender, e) => stop-

watch.StartStop();	

 resetButton.Clicked += (sender, e) => stopwatch.Re-

set();	

 }	

 }

}

Appendix 2

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

HistoryPage.cs source code

using Xamarin.Forms;

namespace CrossPlatformStopwatch.Pages	

{	

 public class HistoryPage : ContentPage	

 {	

 private ListView list;	

 public HistoryPage()	

 {	

 Title = "History";	

 Icon = "tab_bar_history.png";	

 Padding = new Thickness(0, 40, 0, 0);	

 list = new ListView();	

 var clearButton = new Button	

 {	

 Text = "Clear"	

 };	

 Content = new StackLayout	

 {	

 Spacing = 20,	

Appendix 2

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 Children =	

 {	

 list,	

 clearButton	

 }	

 };	

 clearButton.Clicked += (sender, e) => ChearHis-

tory();	

 }	

 protected override void OnAppearing()	

 {	

 base.OnAppearing();	

 list.ItemsSource = LocalStorage.PreviousTimes;	

 }

 private void ChearHistory()	

 {	

 LocalStorage.PreviousTimes = new ObservableCollec-

tion<TimeSpan>();	

 list.ItemsSource = LocalStorage.PreviousTimes;	

 }	

 }	

}

Appendix 3

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

AboutPage.cs source code

using Xamarin.Forms;

namespace CrossPlatformStopwatch.Pages	

{	

 class AboutPage : ContentPage	

 {	

 public AboutPage()	

 {	

 Title = "About";	

 Icon = "tab_bar_about.png";	

 Padding = new Thickness(25, 40, 25, 0);	

 Content = new Label	

 {	

 Text = "This is an About page"	

 };	

 }	

 }	

}

Appendix 4

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

StopwatchViewModel.cs source code

using System;	

using System.ComponentModel;	

using System.Diagnostics;	

using System.Runtime.CompilerServices;	

using System.Threading.Tasks;	

using Xamarin.Forms;	

namespace CrossPlatformStopwatch {	

 public class StopwatchViewModel: INotifyPropertyChanged	

 {	

 public event TimerRunningChangedEventHandler TimerRun-

ningChanged;	

 public delegate void TimerRunningChangedEv-

entHandler(bool isRunning);	

 private TimeSpan time;	

 public TimeSpan Time	

 {	

 get { return time; }	

 set	

Appendix 4

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 {	

 time = value;	

 OnPropertyChanged();	

 }	

 }	

 private bool timerRunning;	

 public StopwatchViewModel()	

 {	

 Time = LocalStorage.LastTimeValue;	

 MessagingCenter.Subscribe<App>(this, Constants.Mes-

sagingCenterAppOnSleepKey, (s) => SaveTimerValue());	

 }	

 public void StartStop()	

 {	

 timerRunning = !timerRunning;	

 if (timerRunning)	

 {	

 RunTimerLoop();	

Appendix 4

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 }	

 }	

 public void Reset()	

 {	

 var previousTimes = LocalStorage.PreviousTimes;	

 previousTimes.Insert(0, Time);	

 LocalStorage.PreviousTimes = previousTimes;	

 timerRunning = false;	

 Time = TimeSpan.Zero;	

 }	

 private async void RunTimerLoop()	

 {	

 var previousTime = Time;	

 var stopwatch = new Stopwatch();	

 stopwatch.Start();	

 while (timerRunning)	

 {	

 await Task.Delay(1);	

 Time = stopwatch.Elapsed + previousTime;	

Appendix 4

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 }	

 stopwatch.Stop();	

 }	

 private void OnTimerRunningChanged(bool isRunning)	

 {	

 if (TimerRunningChanged != null)	

 {	

 TimerRunningChanged(isRunning);	

 }	

 }	

 private void SaveTimerValue()	

 {	

 LocalStorage.LastTimeValue = Time;	

 }	

 #region INotifyPropertyChanged implementation	

 public event PropertyChangedEventHandler Property-

Changed;	

Appendix 4

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 protected virtual void OnPropertyChanged([CallerMember-

Name] string propertyName = null)	

 {	

 if (PropertyChanged != null)	

 {	

 PropertyChanged(this, new PropertyChangedEven-

tArgs(propertyName));	

 }	

 }	

 #endregion	

 }	

}

Appendix 5

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

App.cs source code

using CrossPlatformStopwatch.Pages;	

using Xamarin.Forms;	

	

namespace CrossPlatformStopwatch {	

 public class App : Application	

 {	

 public App()	

 {	

 MainPage = new TabbedPage	

 {	

 Children =	

 {	

 new StopwatchPage(),	

 new HistoryPage(),	

 new AboutPage()	

 }	

 };	

 }	

	

 protected override void OnSleep()	

Appendix 5

TURUN AMK:N OPINNÄYTETYÖ | Etunimi Sukunimi

 {	

 // TODO: Save application state before going to

sleep	

 }	

 }

