

Mika Järvi

PORTING TEST ENVIRONMENT INTO PC SIMULATION

PORTING TEST ENVIRONMENT INTO PC SIMULATION

 Mika Järvi
 Bachelor’s Thesis
 Spring 2016
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Mika Järvi
Title of thesis: Porting Test Environment into Simulated Environment
Supervisor: Heikki Mattila
Term and year of completion: Spring 2016 Pages: 25

The aim of this Bachelor’s thesis was to enable testing of one individual part,
Layer2 application of base station software without a real target hardware. It
was commissioned by Nokia. In the beginning there were existing test suites
and a test environment, but to run tests one needed to queue up a test line
whose amount is very limited.

The Layer2 application and support libraries were compiled and linked as exe-
cutable for a traditional PC computer. The test material was modified to start the
Layer2 application and run the tests directly at the development environment.

There were no actual impediments on completing the task. As a result, nearly
80% of the shock test suite are passing also when ran without the base station.

Keywords: Testing, Simulated, LTE

 4

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tekniikan yksikkö, tietotekniikka

Tekijä: Mika Järvi
Opinnäytetyön nimi: Testijärjestelmän siirtäminen simuloituun ympäristöön
Työn ohjaaja: Heikki Mattila
Työn valmistumislukukausi ja –vuosi: kevät 2016 Sivumäärä: 25

Työn tavoitteena oli mahdollistaa tukiasemaohjelmiston Layer2 sovelluksen,
testaaminen ilman todellista tukiasemaa. Työn tilasi Nokia. Lähtötilanteessa
testit ja testiympäristö olivat valmiina mutta testien suorittamiseksi jonotettiin
testipaikka joiden määrä on rajallinen.

Layer2 ja sen tarvitsemat oheiskirjastot käännettiin sovellukseksi perinteiseen
PC tietokoneeseen. Testimateriaali muokattiin käynnistämään Layer2 sovellus
ja suorittamaan halutut testit suoraan kehitysympäristössä.

Varsinaisia esteitä työn valmistumiselle ei ollut. Lopputuloksena 80% ”iskutesti”
setistä voidaan suorittaa onnistuneesti myös ilman tukiasemaa.

Asiasanat: Testaus, Simulaatio, LTE

 5

PREFACE

This thesis work was carried out within the autumn of 2015 and spring

of 2016 in the Information Technology department at Oulu University of Applied

Sciences.

First of all, I want to thank Heikki Mattila for supervising and Riitta Rontu for

supporting me through all this time.

Also, I would like to thank Nokia for this task and making this all possible.

Thanks to Tero Manninen for the company side support and supervision.

Thanks to all colleagues in the LTE/Layer2 teams, and especially to Jari

Helaakoski who solved the trickiest problems and saved the day so many times.

Oulu, 24.5.2016

Mika Järvi

 6

TABLE OF CONTENTS

ABSTRACT 3

TIIVISTELMÄ 4

PREFACE 5

TABLE OF CONTENTS 6

GLOSSARY 7

1 INTRODUCTION 8

2 TESTING EMBEDDED SOFTWARE 9

2.1 Testing aspects 9

2.1.1 Design & Implement with unit tests 9

2.1.2 Testing the smaller functionalities alone 10

2.1.3 Visualize the big picture in the beginning 11

2.2 Off target, why, how, alternatives 11

2.2.1 Hardware simulation 11

2.2.2 Software API simulation (compile for the native) 12

3 THE BASE STATION 14

3.1 Nokia Evolved NodeB 14

3.2 Layer2 in action 15

3.3 System Component Tests 16

3.4 Test On Real Target – set up 18

4 MOVING FROM REAL TO SIMULATED 19

4.1 Test On Host – set up 19

4.2 Compilation and linking with native compiler 19

4.3 Replicating the deployment 20

4.4 Implementation tasks, the missing pieces 20

4.4.1 Python virtualenv 20

4.4.2 Runner script 21

4.4.3 Communication between tester and Layer2 application 21

4.4.4 Timers on non-real time environment 22

4.4.5 Overlapping memory areas 22

5 SUMMARY 24

REFERENCES 25

 7

GLOSSARY

BTS Base Transceiver Station

eNB Evolved NodeB, LTE Base station

EU Execution Unit

LTE Long Term Evolution to improve wireless broadband

RLC Radio Link Control protocol

SCT System Component Testing

SUT System Under Test

TDD Test Driven Development

TTI Transmit Time Interval, 1ms in LTE

UE User equipment, mobile device

VoIP Voice Over IP network

 8

1 INTRODUCTION

In software development a feedback cycle is one key to productivity. To main-

tain a source code repository of a large software project in a good shape, it re-

quires constant care, i.e. care in terms of renaming functions, rearranging vari-

ables, finding and eliminating duplication, restructuring the design - refactoring.

A unit test suite, which is fast and at least in as good shape as the code, is also

a necessity. Unit tests alone are not enough to give the confidence before the

commit.

When making a modification, a small change, which feels even a bit superfluous

because “That change does not Change anything”, one must be 100% sure that

it does not have any harmful effect which would spoil the whole good intention

and turn it into disaster. To be fully sure is not possible. The closest thing would

be to run all the possible tests that exist, but still the coverage typically has

holes and after running all the possible tests, usually a lot of time has passed

and the commit will involve rebasing, which in turn will water down the earlier

tests.

A suite of effective acceptance tests to cover most of the usual breakages can

offer a decent middle ground to reach enough confidence to make the commit

happen. Therefore the good intention and feeling of being able to make the

code better will overcome the slight uncertainty and occasional disasters.

Now, if running acceptance tests involves queuing a test line for several

minutes and then waiting for a software to update for another several minutes,

the suite is not fast enough. Moving from a real hardware to a simulated envi-

ronment could gain some speed-up here.

 9

2 TESTING EMBEDDED SOFTWARE

2.1 Testing aspects

Testing is an essential part of a software project. It often tends to require too

much time yet providing a very little pay back for the investment. This applies

especially when testing embedded software in a real target environment which

suffers from delays, hardware related limitations and a high cost per test envi-

ronment.

On the other hand, mistakes during the design and development are natural

and unavoidable. Therefore, the best thing to do is to minimize the delay from

introducing the error till it is found. It helps a developer to understand why the

test failed because the modification since the last successful run is not too big.

It also helps understanding how to make it right, and possibly saves a lot of un-

necessary work, which would have been based on a wrong assumption. [1] In

the book Test Driven Development for Embedded C, James Grenning writes

about this in the context of unit testing but the same applies also to other levels

of testing.

When testing larger entities, the amount of involved people typically increases.

One reason is that the testing and development is divided to different persons.

Another reason is that the testing is just so slow and testing resources are lim-

ited so that one test cycle must contain commits from several developers. This

communication will add a new level of wasted time on communication and figur-

ing out what was the cause of the failure. The more commits are involved in the

change set and the more time passes from introducing the actual bug, the

harder it will be to find out whose modification broke the test, what is wrong with

it and how to fix it.

2.1.1 Design & Implement with unit tests

It is a known fact that the code is written once but read, modified and main-

tained for many years. If this maintenance happens without constant refactoring

the code tends to grow ugly, simply because adding new lines of code without

 10

touching the existing ones might be possible but typically leads to a cascading

complexity. The fear of touching the existing parts of code tells about a fear of

breaking something, not being able to easily verify “Does the code still do what

it used to do”.

When a developer can test drive the implementation while working, the code

can start to grow naturally into a “good shape” because all the expected behav-

iors and assumptions are recorded as small tests. In the first place, Test Driven

Development moves the focus from implementing the function (solving the prob-

lem) on the interface and puts pressure on implementing testable and usable

interfaces. Also, writing a call to the function before it even exists usually helps

a developer to come up with a more descriptive name for the method itself and

the arguments it takes. Having then a failing unit test in place, can help to find

the simplest possible solution instead of over engineering something unneces-

sary complicated. It will also verify that new and modified code lines really do

what the developer intended them to do. In the end, these tests act as a safety

net for refactoring.

Unit tests are also important to fill in the gaps that higher tests cannot reach, for

example, a network, a memory or other error conditions, which are hard to pro-

duce. Or for example, timing related occasions which are controllable only with

fake collaborators.

2.1.2 Testing the smaller functionalities alone

In large and complicated systems, it is often reasonable to also test parts of the

system alone to verify that each component of the system acts as specified.

When tested on isolation, it is easier to understand the failure than when one

part of a larger construction is causing the whole system to fail.

These tests can have a significant role on driving the architecture and design of

the code towards clear and testable interfaces. When done right, these tests will

assure that the internal interfaces in between the components are used as they

are meant to be used and they do work as expected when used correctly. With-

 11

out these tests the amount of combinations to be tested in a higher level will

explode [2].

2.1.3 Visualize the big picture in the beginning

When moving on to a larger scale, the focus moves from small code lines to

deliverable features. At the same time, testing moves towards the interfaces of

the final product. From a software developer / a development team point of

view, the earlier these “customer facing tests” can be ran, the more input they

can get to their code design. In optimal situation the first few acceptance tests

are implemented and ran already before starting the implementation, first of all

to verify that the requested feature is not yet there. While implementing the fea-

ture, these tests serve as a feedback channel providing “what to do next” -ideas

for the developers. In the end they verify that the feature is ready.

These early implemented failing tests can also act as a communication channel

between developers and a customer to clearly state what the feature is about

and what the actions on successful and unsuccessful use cases are [3].

2.2 Off target, why, how, alternatives

There are roughly two alternatives to run an application or parts of it without the

real hardware, either to simulate the hardware or to simulate the Software API.

Both will decrease the startup time because there is no need to deploy the new

software into the real target hardware and then wait for the restart to complete.

On execution time it can be the opposite as the embedded real time processors

are usually relatively fast, at least when comparing to the simulated hardware.

2.2.1 Hardware simulation

A cross compiled application can be ran on a development host, for example

with a hardware simulator, which simulates the whole target processor, all used

hardware interfaces and middleware (Figure 1). It makes it possible to also veri-

fy cross compilation and linking steps to a hardware as early as possible, offer-

ing a transition to the real hardware, which might not even be available in the

beginning.

 12

FIGURE 1. Hardware simulation

Running on a simulated hardware offers lots of possibilities such as testing

easily with different hardware variants without physically really having all the

real hardware variants. It can also provide a mechanism to reproduce a deter-

ministic behavior on each test run as all the interrupts and task-switches will

happen in a same order each time. A simulated environment also offers good

possibilities for a measuring and profiling performance. From the debugging

point of view, simulation is easier to freeze inspect step by step. [4]

As a downside, implementing and maintaining an interpreter, which is able to

reliably simulate an instruction set of a target processor without any third party

libraries or applications, is invariably not an option. These environments usually

require engaging to some hardware vendor specific simulator or purchasing an

expensive simulation solution, and when in action, these environments tend to

eat lot of time, CPU processing power and memory.

2.2.2 Software API simulation (compile for the nati ve)

Another approach would be to run an application as a native application on the

development host (Figure 2). All the application sources must be built to an ex-

ecutable for the native host instruction set. This compilation involves an operat-

ing system and hardware API headers and declarations for services that are

really available only in the target environment. Missing interfaces have to be

implemented as “stubs”, “mocks” or “test doubles”, simple implementations of

 13

the real services just enough to satisfy the linker when building the executable.

Test doubles can contain triggers or observation mechanisms to serve different

testing purposes. In some cases test doubles can even contain larger verifica-

tions, which would not be possible on a real target.

FIGURE 2. Native application with simulated API

A native compiler is usually fast compared to cross compilers provided by

hardware vendors, like Texas Instruments, which often put a lot of time and ef-

fort in optimizing code for some specific hardware. Using generic and popular

environments will open a wide range of native tools, e.g. for debugging or de-

tecting runtime errors on memory access.

 14

3 THE BASE STATION

3.1 Nokia Evolved NodeB

3GPP defines a base station as follows:

A base station is a network element in radio access network
responsible for radio transmission and reception in one or more
cells to or from the user equipment. A base station can have an
integrated antenna or be connected to an antenna by feeder
cables. In UTRAN it terminates the Iub interface towards the RNC.
In GERAN it terminates the Abis interface towards the BSC. [5]

Now as being an Evolved 4G Base Station, it also contains parts of controlling

functionalities, which have traditionally been part of an RNC network element.

This makes the LTE network architecture simpler and its response times faster.

The LTE/Layer2 system component is a group of one of the design blocks in the

eNB architecture (Figure 3). It provides Medium Access Control (MAC), Radio

Link Control (RLC) and Packet Data Convergence Protocol (PDCP) functionali-

ties. [6]

FIGURE 3. eNB high level architecture [6]

 15

3.2 Layer2 in action

In practice LTE/Layer2 has two separated sides, sending a dataflow to the user

equipment and receiving from user equipment (Figure 4). Both of these imple-

ment one peer of PDCP, RLC and MAC protocols.

On down link, sending to UE, side, once per every 1ms Transmit Time Interval,

a small group of active users have been selected by the packet scheduler

based on their priority, quality of service and other parameters. For each of

those users a transport block will be created and filled with a given amount of

bytes from given radio bearers.

Closest to the IP packet data there is the PDCP protocol which takes care of

compressing an IP header which in turn is considerably large compared to, e.g.

a streaming VoIP data payload. This protocol also removes possible duplicated

packages and discards too old packages.

The next protocol is RLC, which then carries the PDCP Header and data based

on the bearer specific mode which can be:

• Transparent, no segmentation, no delivery guarantees.

• Unacknowledged, segmentation and reassembly, no delivery guarantees

• Acknowledged, segmentation and reassembly, reliable delivery

Finally, the MAC protocol takes this RLC header, PDCP header and IP data as

one of logical channels and multiplexes these logical channels into one

transport block.

The MAC layer also implements a hybrid automatic repeat request (HARQ),

which significantly improves the throughput on LTE. With this low level feature,

a peer is able to get retransmissions of erroneous received transport blocks

faster than with normal ARQ procedure that involves a more complicated RLC

protocol re-segmentation.

 16

A up link direction, receiving from the UE, works like a downlink but vice versa.

It receives a transport block from each transmitting user. Based on the included

header information, it then joins received pieces of data into a radio bearer

streams. It also reports reception failures and requests retransmissions of erro-

neous transport blocks of the user equipment peer.

FIGURE 4. Simplified Layer2 dataflow

3.3 System Component Tests

System Component Tests are the first tests in which Layer 2 works as one fully

integrated application. These test cases communicate with Layer2 via its public

interfaces, which Layer2 provides to surrounding system components. This

phase is to verify that a system component fulfills requirements in terms of func-

tionality and performance. It also verifies that the component has an adequate

maturity to be promoted a higher level of testing.

Layer2 SCT tests are written with the Robot Test Framework. It has a simple

plaintext keyword-driven testing approach and it is easily extended with Python

libraries. Robot tests and keywords are meant to be simple and straight forward

 17

readable English prose. When going deeper into a programming test logic, the

implementation fluently switches to the Python language. The Robot Framework

also offers a possibility to attach tags on tests and suites. These tags can be

used then further on to group tests with different topics, e.g. “shock” or “regres-

sion” –suites or to group feature related tests. Tags can also be used to identify

non-critical tests which are failing at the moment for a good reason. When the

test material is large, it is also useful to be able to tag the tests that are identi-

fied to be unstable. In this way an unstable test is still included in the test runs

and a possible stability problem is visible in the recorded test history, yet still

maintaining the test suite itself stabile.[7]

The Layer2 SCT environment contains several small in-house developed Py-

thon libraries to pull out a programming logic from the robot keywords. These

Python libraries offer simple interfaces on storing the eNB configuration during

the test, and various other utilities, which require a real programming language.

An open source network protocol testing library Rammbock is used to com-

municate between the test PC and eNB. It has a simple syntax on defining the

protocol and messages. From the tests the messages can be then sent and

received without distracting the test itself with messaging details. Also, when

expected messaging scenario is not happening, the Rammbock can raise a de-

scriptive exception about what went wrong [8]

From a system component test suite point of view, the system under test is ac-

cessed via the UDP and TCP communication. There are no dependencies on

what hardware the SUT is running on, as long as it has an IP address. Thus all

the existing SCT tests should be runnable also on a simulated target.

 18

3.4 Test On Real Target – set up

The current SCT set up with a real eNB device contains one eNB attached di-

rectly via a router to one dedicated test PC (Figure 5). This test PC is used to

run selected tests with the Robot Framework responsible for downloading a

new software to the eNB, running the tests and collecting test results and logs

and possible crash dumps from the target.

FIGURE 5. Layer2 SCT setup on real eNB hardware

These test lines are replicated to create pools of similar test line setups. Queu-

ing a test line from the reservation server is the first step when starting the test.

The test line reservation server takes care of balancing test line resources be-

tween different users (a continuous integration automation and developers) and

stores information about test line usage statistics.

 19

4 MOVING FROM REAL TO SIMULATED

4.1 Test On Host – set up

The Layer2 implementation is mainly pure control logic and it does not depend

on many hardware services. From this perspective, it is a natural decision to

compile and run the Layer2 application in the development host PC instead of

simulating the entire target processor chip (Figure 6).

FIGURE 6. Layer2 application running on the host PC environment.

4.2 Compilation and linking with native compiler

The first task was to perform a compilation with a native instead of cross –

compiler. This was actually simpler than expected. From various reasons the

sources of a embedded software tend to attract pre-compiler directives and

Layer2 is no exception. Most of the time in this task was spent on finding the

correct combination of pre-compiler flags to include important pieces of code

and exclude unwanted sources.

When linking on a simulated environment, all the function calls to an operating

system and hardware support libraries will need to be fake or dummy imple-

 20

mentations. For this purpose most of the OS service fakes were already availa-

ble from a similar host environment of another system component.

4.3 Replicating the deployment

On a real ENB, the Layer2 application is running distributed on a multiple cores

and multiple CPUs. Each of the EUs has their own start, stop and message re-

ception callback functions. For different eNB products, there is a possibility to

make several different target binaries of Layer2. One of the oldest and most

stable “four DSP processor deployment “was selected to be the first one. In the

end all the deployments should be replicated.

An existing middleware simulation for the host environment, which was adopted

for this project, provided a solution to start these EUs as a threads of a Linux

process. With a simple array definition, EUs address could be faked to be locat-

ed virtually on a different CPU core.

Problematic here was the Layer2 application SCT setup, which contains parts of

the same code compiled with different precompile flags. Thus in the end the test

environment starts three processes sharing some pieces of shared code and

these processes then contain threads replicating the real ENB execution units.

Communication in between these processes is done via a pair of connected

sockets.

4.4 Implementation tasks, the missing pieces

4.4.1 Python virtualenv

On a real hardware test line the test control PC must, have specific versions of

Python libraries and tools. This is easy to fulfill as the test control PC is an iso-

lated and dedicated device just for that single purpose. Instead, when running

on a development host environment, the test control PC functionality has to be

carried out on a server to which users cannot have admin rights. In the end dif-

ferent revisions of development history must be able to reproduce tests inde-

pendently parallel on the same physical machine.

 21

Versioned Python Virtualenv offers a solution for this problem. Virtualenv is a

framework which makes it possible to create an isolated Python environment

that contains exactly the requested revisions of Python packages. This envi-

ronment can be then activated from a shared network folder mounted on a

Linux system, and it will temporarily override installed system packages.

4.4.2 Runner script

On a real test line, a base station reboot in the beginning of a test session will

guarantee that there are no hanging processes from the previous session. On a

host environment it is likely that after a test run either the test runner or the test-

ed application is not terminated properly. To keep track started processes and

properly kill them at the exit, a new wrapper script was needed.

Afterwards this starter script was also utilized to introduce dynamically allocated

port numbers between the tested application and the test framework because in

the real environment everything, including TCP and UDP port numbers are ded-

icated just for one single test execution at a time. Now this is not the case when

running several test runs parallel on a crowded development server. To solve

this problem the whole test material needed to be modified to make it possible

to switch the TCP and UDP communication to dynamically allocated ports.

4.4.3 Communication between tester and Layer2 appli cation

One of the largest single tasks was to reverse engineer how the communication

between the Layer2 application and test framework works, i.e. how to make it

happen in between the test framework and a simulated target messaging

queue. ENB asynchronous messages have a simple, always big endian, mes-

sage header which in turn specifies the endianness of the message payload.

The confusing part was that the tester and the Layer2 application are able to

handle most of the messages despite the endianness. But for some of the mes-

sages it matters.

This problem caused a segmentation fault on the Python interpreter when re-

ceiving one specific message from SUT. This message contained a correct

length in the message header but the length property of a dynamic array was

 22

too big because of the wrong endianness. Because of that, Rammbock tried to

decode more array elements than actually was received.

4.4.4 Timers on non-real time environment

When running some of the tests on the host environment, it became obvious

that the development host PC is far from the dedicated real-time environment.

Other processes running on the same PC will slow down the Layer2 application

unpredictably, while test suites are still measuring all timeouts based on a real

clock. This will cause instability on some test suites. A solution will be to detach

Robot Framework timeouts from a real clock and patch a Python time service

with a module that interacts a time synchronization with the Layer2 application.

However, this was not doable in the scope of this thesis work.

4.4.5 Overlapping memory areas

Due to the architecture and deployment of Layer2 application in the embedded

environment, there are several processes on several CPU cores accessing

memory sections which are located either in the processor cached or in an ex-

ternal memory. When this delicate setup was moved to run on Linux processes,

each eNB process now running on its own Linux thread, it revealed a problem

with global variables.

On the target deployment those global structures are in the internal memory of

separated CPU cores. Now when running processes of the Layer2 application

as a threads of the same Linux process, all those global structures are shared

between the threads.

Luckily, a C++11 –standard introduced a ‘thread_local’ storage specifier, which

can be applied also on nontrivial data types. Most of the global data problem

was solved by appending this specifier, though some of global variables had

obviously no reason to be global and could be easily relocated inside of a C++

class instance.

 23

Another alternative would have been to run each EU on its own Linux process.

This alternative was discarded because it would have involved a lot of inter pro-

cess communication making it harder to debug.

 24

5 SUMMARY

The task was to enable running existing system component tests of the Layer2

application without the real base station hardware. The original assumption of

the scope was to have a general suite setup procedure successfully completed.

This setup procedure is a prerequisite for all the other tests and it is therefore

the place from which forwards it makes sense to join more people and scale up

the work effort on the host SCT ramp up. In reality, after a successful suite set-

up, most of the tests were still failing on one same problem at a time. In the end

there were not so many individual test specific problems. The scope of the work

had to give in and it took a bit longer than expected.

Not all new implementations were made with unit tests. A tight schedule pres-

sure and uncertainty on how big problems still lie ahead before reaching the

goal, makes it really hard to be pedantic and consume time on tidying up and

fiddling around with little details.

While working, some of the changes were done directly to the product trunk, but

wider and larger changes had to be done in isolation at each own branch be-

cause it simply was not possible to predict what could broke with one commit.

Merging between the trunk and this feature branch took a huge amount of time.

In the future constant maintenance will be required to adapt all changes of real

interfaces to simulated counterparts. If the solution becomes valuable, then the

maintenance shall not be a burden.

The work was considered to be done when most of the tests in the SCT shock

suite were passing. Because of instability caused by the “simulated vs real -time

timer” problem, 11 tests are still excluded. Some of the teams are already using

this new way of running system component tests. Even if it is not yet perfect, it

seems potential too for the daily workflow.

 25

REFERENCES

1. Grenning, James W. 2011. Test Driven Development for Embedded C,

Pragmatic Bookshelf

2. Rainsberger, Joe B. 2013. Video: Integrated Tests Are A Scam.

Date of retrieval 15.5.2016

https://vimeo.com/80533536

3. Adzic, Gojko 2011. Specification by Example, 1 edition, Manning Publica-

tions

4. Engblom, Jakob – Guillaume Girard – Werner Bengt 2006. Article: Testing

Embedded Software using Simulated Hardware. Date of retrieval 9.4.2016

https://www.researchgate.net/publication/250427239_Testing_Embedded_

Software_using_Simulated_Hardware

5. 3GPP TR 21.905 version 13.0.0. Digital cellular telecommunication sys-

tems (Phase 2+)(GSM) Universal Mobile Telecommunications System

(UMTS) LTE; Vocabulary for 3GPP Specifications

6. 3GPP TS 36.300 version 11.3.0. LTE Evolved Universal Terrestrial Radio

Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network

(E-UTRAN)

7. Robot Framework. Date of retrieval 23.5.2016

http://robotframework.org/

8. Rammbock protocol testing library. Date of retrieval 23.5.2016

http://robotframework.org/Rammbock/0.4.0/Rammbock.html

