Projektering av produktions- och lagerhall

Elin Englund

Examensarbete för ingenjörs (YH)-examen
Utbildningsprogrammet för byggnadsteknik
Vasa 2016
EXAMENSARBETE

Författare: Elin Englund
Utbildningsprogram och ort: Byggnadsteknik, Vasa
Inriktningsalternativ: Byggnadskonstruktion
Handledare: Allan Andersson

Titel: Projektering av produktions- och lagerhall

Datum: 12.04.2016 Sidantal: 30 Bilagor: 4

Abstrakt

Detta examensarbete är utfört åt Ingenjörsbyrå Mathias Smeds. Syftet med arbetet var att projektera en hallbyggnad som skulle fungera som produktions- och lagerhall åt företaget i fråga och åt andra företag som köper delar i hallen. I arbetet ingår att uppgöra bygglovshandlingar, en byggsättsbeskrivning, en jämförelse mellan energikällor och enkel kostnadskalkyl.

Efter diskussioner och möten med beställaren blev resultatet en hall med limträstomme och med NR-takstolar som vindsjälklag. Ytterväggar och mellanväggar utförs av plåtsandwichelement. Hallen består av sex olika delar.

För beställaren innebär detta examensarbete att byggandet av produktions- och lagerhallen kan påbörjas så fort bygglovsritningarna blivit godkända av Vasa stad.

Språk: svenska Nyckelord: hall, planering, bygglovsritningar
Tiivistelmä

Tämä opinnäytetyö on suoritettu Mathias Smeds Oy Insinööritoimistolle. Työn tarkoitus oli tehdä hallirakennuksen suunnitelma. Halli toimisi tuotanto- ja varastohallin kyseiselle yritykselle sekä muille yrityksille, jotka ostavat hallista osia. Työhön sisältyivät rakennuslupien tekeminen, rakennustapojen kuvaaminen, energialähteiden vertaaminen ja yksinkertainen kustannuslaskelma.

Tilaajan kanssa käytänteiden ja kokouksien jälkeen, tulos oli liimapuuruunkohalli ja NR-kattotuolit yläpohjana. Ulkoseinät ja väliseinät on valmistettu pelti-sandwich elementeistä. Halli koostuu kuudesta eri osasta.

Tilaajalle tämä opinnäytetyö merkitsee, että tuotanto- ja varastohallin rakentaminen voidaan aloittaa heti kun Vaasan kaupunki hyväksyy rakennuslupapiirustukset.
Abstract
This thesis is executed for the engineering office Ingenjörsbyrå Mathias Smeds Ab. The objective of the work was to design a storage hall that could function as a production and storehouse building for the employer as well as for other companies, which buy shares of the building. A preparation of the building permit documents, a simplified construction specification, a comparison between different energy sources, and a basic cost calculation are included in this work.

The result of the discussions and meetings with the employer was a building with a load-bearing structure of laminated wood and the NR roof trusses as attic joist floor. Outside walls and partition walls are made of sheet sandwich elements. The building consists of six different parts.

The building permit drawings were made in AutoCad 2015 and the cost calculation was made in Excel 2011. The cost information for the calculations was gathered from the material manufacturers, the book Rakennusosien kustannuksia 2015 and the cost calculation programs of the employer.

For the employer, this thesis implies that the construction of the production and storage hall can be started as soon as the building permit drawings are approved by the city of Vaasa.
Innehållsförteckning

1 Inledning .. 1
1.1 Bakgrund .. 1
1.2 Målsättning .. 1
1.3 Uppdragsgivare ... 2
1.4 Behovet av byggnaden ... 2
1.5 Metoder och verktyg .. 2
1.6 Översikt över arbetet .. 2

2 Projektering ... 3
2.1 Tillvägagångssätt ... 3
2.2 Tomten .. 3
2.3 Hallens uppbyggnad .. 6
 2.3.1 Allmänt .. 6
 2.3.2 Sockel och grund ... 7
 2.3.3 Stomme och väggar ... 8
 2.3.4 Fasad .. 9
 2.3.5 Tak .. 9

3 Brandsäkerhet .. 11
3.1 Brandklasser ... 11
3.2 Brandfarlighetsklass ... 12
3.3 Skyddsgrad .. 13
3.4 Sektionering ... 14

4 Bygglovshandlingar ... 15
4.1 Bygglovshandlingar ... 15
4.2 Huvudritningar .. 15
 4.2.1 Situationsplan .. 16
 4.2.2 Fasadritningar .. 16
 4.2.3 Planritning ... 16
 4.2.4 Sektionsritningar ... 17

5 Olika uppvärmningssätt ... 17
5.1 Biobränsle ... 17
 5.1.1 Pellets ... 18
 5.1.2 Briketter .. 18
 5.1.3 Ved ... 18
5.2 Berg-, jord- och luftvärmepump ... 19
 5.2.1 Ytjordvärmepump ... 20
 5.2.2 Bergvärmepump ... 20
5.2.3 Luft-vattenvärmepump ... 21
5.2.4 Luft-luftvärmepump ... 21
5.2.5 Frånluftvärmepump ... 21
5.2.6 Sjövärmepump ... 21
5.2.7 Grundvattenvärmepump ... 22
5.3 Solvärme .. 22
5.4 Fjärrvärme .. 23
5.5 Gas .. 24
5.6 Flexibla system .. 24
6 Energicertifikat .. 25
7 Kostnadsberäkning .. 26
 7.1 Ekonomiska ramar .. 26
 7.2 Utförandet .. 26
 7.3 Resultat .. 26
8 Resultat .. 27
9 Diskussion .. 27
Källförteckning .. 29

Bilagor
Bilaga 1 Byggsättsbeskrivning
Bilaga 2 Kostnadskalkyl
Bilaga 3 Loftberäkning
Bilaga 4 Ritningar
1 Inledning

1.1 Bakgrund

Ingenjörsbyrå Mathias Smeds Ab mål var att de skulle få en ny fungerande hall som skulle användas som produktions- och lagerhall. Hallen skulle kunna indelas i sex delar.

Ingenjörsbyrån skulle använda sig av en halvdel och de fem återstående skulle säljas åt kunder. Planen med hallen var att hålla hallens temperatur på mellan +12 - +15 °C, och de delar som ville ha en högre temperatur skulle få styra det själva med element.

Uppdragsgivaren ville att hallens bärande konstruktioner skulle byggas med trästomme och med plåt-sandwichelement som yttervägg och mellanvägg på grund av ekonomiska orsaker. Enligt beställaren skulle storleken vara ungefär 1000 m².

1.2 Målsättning

Målet med examensarbetet var att projektera en hall åt Ingenjörsbyrå Mathias Smeds Ab och ansöka om bygglov med de bygglovsritningar som tagits fram. Kostnadskalkyl och jämförelse av olika uppvärmningssätt skulle även göras.
1.3 Uppdragsgivare

1.4 Behovet av byggnaden
Ingenjörsbyrå Mathias Smeds tidigare lagerhall har varit belägen på Brändö i Vasa. På grund av att ägaren som Ingenjörsbyrån hyrt hallen av ska flytta och riva tidigare hallen fanns behov av en ny hall. Ingenjörsbyrån hade även behov av en liten produktionshall för småhuselement.

1.5 Metoder och verktyg
Arbetet består av att ta fram olika lösningar och vidareutveckla dem tillsammans med beställaren. Planeringen styrs av olika myndighetskrav med hänsyn till funktion, säkerhet, energieffektivitet och hållbarhet. Dessutom har beställaren krav på ekonomi.

De viktigaste styrande dokumenten hittas i Finlands byggbestämmelsesamling. Planeringen utförs med AutoCad 2015 och kalkylen är gjord i Excel.

1.6 Översikt över arbetet
2 Projektering

I detta kapitel presenteras tillvägagångssätt vid projekteringen, tomten och hallens uppbyggnad. Bilder och klipp från ritningar används för att lättare få en förståelse för texten.

2.1 Tillvägagångssätt

Uppdragsgivaren funderar även på att bygga en till hall på samma tomt, men det är inte aktuellt i nuläget.

2.2 Tomten

Figur 1. Detaljplan över området, där tomten är markerad med röd inramning. Vaasan seudun toimitila- ja tonttirekisteri

Figur 2. Tredimensionell plan över området, där tomtens placering visas med en röd pil. Tomten betraktas från sydväst. Vaasan seudun toimitila- ja tonttirekisteri
I april 2016 har röjningsarbeten redan utförts på tomten.

Figur 3. Fotografi från tomten i april 2016

Figur 4. Fotografi från tomten i april 2016
2.3 Hallens uppbyggnad

I de följande underkapitlen presenteras hallens uppbyggnad med text och bilder.

2.3.1 Allmänt

När hallen började planeras beslutades det i ett tidigt skede att de bärande konstruktionerna skulle byggas i trä och att byggnaden skulle kläs in med plåt-sandwichelement. Paroc valdes som tillverkare för sandwichelementen på grund av ekonomiska orsaker. Nedan presenteras planritningen och en skärning för hallen som används vid ansökan om bygglov.

Figur 5. Planritning

Figur 6. Skärning av byggnaden
Grunden visade sig vara bärkraftig och normala grundläggningsmetoder kan användas för byggnaden.

Utdrag ur grundundersökningen:

"Grundundersökning

Tomten är högt belägen och stor del av hallens grund kommer att stå på berg. Under grundsulan avlägsnas lera och fyllnadsmaterial fram till berget eller moränen som sedan fylls med ca 400 mm kross 0-100.

Under platta på mark skall det fyllas minst 300 mm kapillärbrytande kross (8-16). Ovanpå berg eller stor sten bör det fyllas minst 300 mm kross. Krossen vibreras väl (proctor ≥ 95%)

Grunden bör dräneras och isoleras. Dräneringen bör monteras enligt RIL 126 anvisningar” (Ingenjörbyrå Mathias Smeds Ab)

2.3.2 Sockel och grund

Hallens grundmur består av fyra varv med 150 mm breda lättbetong-stenar. På insidan av lättbetong-stenarna finns 100 mm XPS isolering. Under lättbetong-stenarna och isoleringen finns en betongsula vars mått är 600x200 mm.

Golvet består av en 100 mm tjock betongplatta. Under betongen finns ett 150 mm tjockt lager med polystyren. Under isoleringen finns ett 300 mm tjockt skikt med komprimerad kapillärbrytande kross 8-16 och 0-32 kross under det.

Figur 7. Skiss på markliggande golv
2.3.3 Stomme och väggar

Hallen bärs upp av 28 stycken 205x495mm stora limträpelare. Pelarnas centrumavstånd är 5,5 m på långsidorna och 4,5 m på gavlarna. Ytterväggarna som består av plåt-sandwichelement sätts på yttersidan av pelarna.

Figur 8. Ytterväggar av plåt-sandwichelement med tjocklek 175 mm

Figur 9. Mellanväggar mellan modulerna av plåt-sandwichelement 100 mm, brandklass EI60

De bärande mellanväggarna i sociala utrymmen har brandkravet EI30. Dessa har en bärande trästomme och en 13 mm tjock gipsskiva på båda sidorna om väggen för att uppfylla brandkravet.
2.3.4 Fasad

Ytterväggarna är 175 mm tjocka plåt-sandwichelement. Man har valt att framsidan av byggnaden ska ha två olika färger, ljusgrå med koden RR21 och ljusblå med koden RR35. Resten av fasaderna är ljusgrå.

2.3.5 Tak

Figur 11. Vindshjälp

Taket isoleras med 400 mm mineralull. Under isoleringen finns diffusionsspärr, skålning och längst ner gipsskivor som spacklas och målas. Gipsskivningen fungerar både som sektionerande (EI30) och stomstabiliserade byggnadsdel eftersom skivorna fördelar laster till långsidornas limträbalkar.
3 Brandsäkerhet

3.1 Brandklasser

Enligt byggbestämmelsesamlingen används tre brandklasser i Finland. Brandklassernas namn är P1, P2 och P3. Brandklassen för en byggnad bestäms utifrån byggnadens användningsändamål, i det här arbetet en hallbyggnad. Storleken på byggnaden, våningsantal, personantal och konstruktionernas material har också inverkan på bestämmandet av brandklass. (Finlands byggbestämmelsesamling, E1 kap. 3, 2011.)

Brandklassen P1 har de största kraven. I en byggnad som hör till brandklass P1 skall de bärande konstruktionerna klara av brand utan att störta samman. När det gäller brandklass P1 är byggnadens storlek, våningsantal och personantal inte begränsad. I byggnaden får det finnas verksamhet som hör till brandfarlighetsklass 1 och 2. (Finlands byggbestämmelsesamling, E1 kap. 3, 2011 och E2 kap. 4, 2005.)

Brandklassen P3 har de mildaste kraven. För de bärande konstruktionerna i en byggnad som hör till P3 ställs inga särskilda krav på brandmotstånd. För att uppnå tillräckligt hög brandsäkerhet i byggnaden begränsas storleken på byggnaden och antalet personer som får befinna sig i byggnaden beroende på användningsändamålet. Om byggnaden är en produktions- eller lagerbyggnad får den endast vara en våning och högst 14 meter hög. (Finlands byggbestämmelsesamling, E1 kap. 3, 2011 och E2 kap. 4, 2005.)

3.2 Brandfarlighetsklass

När det gäller verksamheten i produktions- och/eller lagerutrymmen finns det två stycken brandfarlighetsklasser, brandfarlighetsklass 1 och 2. Brandfarlighetsklassen anger hur brandfarlig verksamhet som finns i byggnaden. (Finlands byggbestämmelsesamling E2 kap. 2, 2005.)

Brandfarlighetsklass 1 innebär att verksamheten i byggnaden har en liten eller måttlig brandfara. Brandfarlighetsklass 2 innebär att i byggnadens verksamhet medför en betydande eller stor brandfara eller att det finns risk för explosion. (Finlands byggbestämmelsesamling E2 kap. 2, 2005.)

När man bestämmer vilken brandfarlighetsklass en byggnad ska ha är det den huvudsakliga verksamheten som avgör. Det finns dock undantag då olika brandceller i en byggnad kan ha olika brandfarlighetsklasser. Brandfarlighetsklassen skall antecknas i bygglovsritningarna. (Finlands byggbestämmelsesamling E2 kap. 2, 2005.)

Hallen i detta arbete kommer att fungera som produktions- och lagerhall. Verksamheten i byggnaden leder inte till någon stor brand- och explosionsfara och därför tillhör hallen brandfarlighetsklass 1. (Finlands byggbestämmelsesamling E2 kap. 2 och bilaga 1, 2005.)

Eftersom brandfarlighetsklass 1 valts för hallen så kan hallens brandklass bestämmas till P3. (Finlands byggbestämmelsesamling E2 kap. 2, 2005 och E1 tabell 3.2.1, 2011.)
3.3 Skyddsgrad

När det gäller produktions- och lagerutrymmen finns det tre olika skyddsgrader. Skyddsgraden anger vilken form av skyddsutrustning som byggnaden förses med gällande underlättandet av räddnings- och släckningsarbetet. Skyddsgrad 1 behöver minst utrustning och skyddsgrad 3 mest utrustning. (Finlands byggbestämmelsesamling E2 kap. 3, 2005.)

Vilken skyddsgrad som byggnaden har påverkar byggnadens brandklass, hur stor en brandcell får vara, rökventilation samt brandklasskraven på byggnadsdelar. (Finlands byggbestämmelsesamling E2 kap. 3, 2005.)

Byggnader som hör till skyddsgrad 1 bör ha vanlig primärsläckningsutrustning och om det behövs även förstärkt primärsläckningsutrustning. Vanlig primärsläckningsutrustning innebär att byggnaden har brandposter och handbrandsläckare. Detta gäller för brandfarlighetsklass 1. Förstärkt primärsläckningsutrustning används vid behov för brandfarlighetsklass 2 och avser ett effektivt brandpostnätverk och tunga kemiska släckare. (Finlands byggbestämmelsesamling E2 kap. 3, 2005.)

Byggnader som hör till skyddsgrad 2 bör ha brandlarmalanläggning som ger automatiskt larm till nödcentralen samt ha primärsläckningsutrustning. Vid byggnaden ska det även vara möjligt att senast tio minuter efter larmet gått inleda släckningsarbete. (Finlands byggbestämmelsesamling E2 kap. 3, 2005.)

Den strängaste skyddsgraden, skyddsgrad 3, bör ha automatisk släckningsanläggning och primärsläckningsutrustning. Byggnaden kan ha sprinkleranläggning om vatten är ett lämpligt släckmedel och byggnaden behöver en effektiv automatisk släckningsanläggning. Om det passar bättre för byggnaden och verksamheten i den att släcka med skum kan byggnaden ha automatisk skumanläggning. (Finlands byggbestämmelsesamling E2 kap. 3, 2005.)

Produktions- och lagerhallen i detta arbete uppfyller kraven för att höra till skyddsgrad 1.
3.4 Sektionering

Sektionering utförs enligt byggbestämmelsesamlingen med beakta av tre huvudprinciper.

Våningssektionering, vilket innebär att man strävar till att olika våningar sektioneras från varandra. Denna princip behövs inte i detta arbete eftersom hallen endast är en våning.

Arealsektionering, vilket innebär att det finns en övre gräns för hur stor en brandcell får vara, se tabell nedan.

Sektionering enligt användning, vilket betyder att utrymmen med avvikande användning eller olika stor brandbelastning sektioneras. I detta arbete kommer den sista principen ha den största betydelsen.

(Finlands byggbestämmelsesamling E1 kap. 5, 2011.)

<table>
<thead>
<tr>
<th>TABELL 1</th>
<th>STÖRSTA TILLÅTNA STORLEK PÅ BRANDCELLER VID AREALSEKTIONERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolumn</td>
<td>P1</td>
</tr>
<tr>
<td>1 våning</td>
<td>6000 m²</td>
</tr>
<tr>
<td>2 våningar</td>
<td>6000 m²</td>
</tr>
<tr>
<td>3 våningar</td>
<td>6000 m²</td>
</tr>
<tr>
<td>Prövning</td>
<td>enligt</td>
</tr>
</tbody>
</table>

Tabell 1. Arealsektionering. (Finlands byggbestämmelsesamling E2 kap. 6, tabell 1, 2005.)

Hallen i detta arbete är indelad i sex brandceller. Varje halldel är en brandcell.

Största tillåtna storlek på brandcell för brandfarlighetsklass 1, brandklass P3, skyddssgrad 1 och en våning är 2000 m² . Detta betyder att kravet uppfylls eftersom hallens största brandcell är 200 m². (Finlands byggbestämmelsesamling E2 kap. 6, tabell 1, 2005.)
4 Bygglovshandlingar

I detta kapitel presenteras bygglovshandlingar och huvudritningar och vad som ska ingå i dessa. De olika ritningarna som ingår i huvudritningar presenteras även, samt berättas kort om.

4.1 Bygglovshandlingar

För att kunna påbörja ett byggnadsprojekt och få bygglov krävs bygglovshandlingar. Bygglovshandlingar är viktiga dokument som innehåller information om projektet. Dessa lämnas in hos staden eller kommunen som beviljar bygglov. I dokumenten ska det framkomma bland annat vad som byggs, platsen för byggnaden och vem som är ansvarig och projektledare. (Markanvändnings och bygglagen, 125 §, 131§)

4.2 Huvudritningar

Huvudritningarna som används vid ansökan om bygglov ska innehålla tillräckligt med uppgifter som krävs för att man ska kunna avgöra om de uppfyller kraven i bestämmelserna om byggande och god byggnadssed. Huvudritningarna ska också innehålla uppgifter om det finns något som kan inverka på byggnadens och byggnadsens säkerhet. (Miljöministeriets förordning om planer och utredningar som gäller byggande, 2 §)

Till huvudritningarna som man använder då man ansöker om bygglov hör situationsplan, planritningar, sektionsritningar och fasadritningar. (Finlands byggbestämmelsesamling A2 kap. 5, 2002.)
4.2.1 Situationsplan

4.2.2 Fasadritningar

Fasadritningar är ritningar på byggnadens fasader. Fasadritningarna ska ritas av byggnadens alla sidor samt de synliga delarna av taket. Allt som finns med i fasaden ska ritas, såsom fönster, trappor, dörrar, brandstegar osv. Höjdlägen och materialen, ytbehandlingar och färg på fasadernas ytor ska även framkomma, samt takluttingen. Väderstrecket som fasaden vänder sig till ska också finnas med på fasadritningarna. (Finlands byggbestämmelsesamling A2 kap. 5, 2002., Miljöministeriets förordning om planer och utredningar som gäller byggande, 8 §.)

Fasadritningar görs vanligtvis i skala 1:100. Om det är frågan om ett stort projekt kan skala 1:200 användas. (Finlands byggbestämmelsesamling A2 kap. 5, 2002.)

4.2.3 Planritning

En planritning ska innehålla ritningar över varje våning eller nivå i byggnaden. Man kan föreställa sig att man skär av byggnaden ungefär 1m från golvet horisontalt och tittar ner på byggnaden. I planritningen visas bl.a. konstruktioner, dörrar med öppningsriktningar, fönster, fast inredning och utrustning, och rumsbeskrivning. Byggnadens och delarnas huvudmått ska framkomma. Även information om brandceller och utrymningsområden ska finnas med i planritningen. (Finlands byggbestämmelsesamling A2 kap. 5, 2002., Miljöministeriets förordning om planer och utredningar som gäller byggande, 7 §.)

Planritningar görs vanligtvis i samma skala som fasadritningarna. (Finlands byggbestämmelsesamling A2 kap. 5, 2002.)
4.2.4 Sektionsritningar

En sektionsritning är en skärning där byggnadens konstruktioner framträder till fullo och visar vilka material som kommer användas. I sektionsritningar visas i allmänhet bl.a. konstruktioner och byggnadsdelar med öppningar och vid behov innertaken. Våningshöjder och höjdlägen som behövs visas också samt höjd på skyddsräcken. Sektionsritningar görs precis som fasadritningar och planritningar vanligtvis i skala 1:100. (Finlands byggbestämmelsesamling A2 kap. 5, 2002.)

5 Olika uppvärmningssätt

Syftet med detta kapitel är att jämföra olika uppvärmningssätt samt fördelar och nackdelar med de olika uppvärmningssätten. De olika uppvärmningssätten som tas upp är uppvärmning med biobränsle, berg-, jord- och luftvärme, solvärme, fjärrvärme, gas och flexibla system. I slutet av kapitlet berättas det vilket uppvärmningssätt som valts för produktions- och lagerhallen.

5.1 Biobränsle

En av de största fördelarna med biobränsle är att när man förbränner det så bildas det inga stora utsläpp av växthusgasen koldioxid. Biobränslen påverkar dock miljön även negativt eftersom det vid odling, uttag från skogen, hantering och transportering används motorredskap och fordon som drivs av fossila bränslen och därför bildar koldioxid. När man förbränner biobränslen sker det även utsläpp av tjära, kolväten, svaveldioxid och kväveoxider som påverkar vår miljö och hälsa negativt. (Andrén & Axelsson, 2007)

En annan nackdel med biobränsle som uppvärmningssätt är att det krävs en större egen arbetsinsats än jämfört med till exempel el- eller oljeuppvärmning. (Andrén & Axelsson, 2007)
5.1.1 Pellets

Pellets är en ren naturprodukt som produceras av rester från träindustrin. De är rundastavar som är 1-2 cm långa och har en diameter på 6-12 mm. De rester som används är bland annat sågspån, kutterspån och bark. Träets lignin används som bindemedel. (Andrén & Axelsson, 2007)

5.1.2 Briketter

Briketterna har precis som pellets låg fukthalt. Briketternas fukthalt är mellan 8 och 12 procent och det säkerställer att det blir bra förbränning. Energinnehållet ligger på ungefär 4,7 kWh per kg. Briketterna innehåller nästan dubbelt så mycket värme per kg jämfört med ved och askmängden som bildas är mindre än för ved men större än för pellets. (Andrén & Axelsson, 2007)

5.1.3 Ved

Vid vedeldning kan det uppkomma skadliga ämnen varav vissa är carcinogetna. För att minimera utsläppen krävs att man har en bra miljögodkänd utrustning som används på rätt sätt och att man har torr ved som man eldar. (Andrén & Axelsson, 2007)

5.2 Berg-, jord- och luftvärmepump

Precis som utvecklingen av pellets så tog även utvecklingen av värmepumpar fart på 1970-talet i samband med oljekriserna. (Andrén & Axelsson, 2007)

Oavsett typ av värmepump fungerar de alla enligt samma grundprincip. Principen är att de utnyttjar s.k. lagrad solenergi och omvandlar energin till värme för byggnader och tappvarmvattnet. Solenergin kan vara lagrad i marken, berggrunden, i sjövattnet och i luften. (Björklund & Ohlsson, 2012)
Värmen från pumpen består till två tredjedelar av gratis energi från antingen mark, berg, luft eller vatten och en tredjedel av den el som krävs för att driva värmepumpen. (Andrén & Axelsson, 2007)

Bäst ekonomiska resultat får man om man dimensionerar värmepumpen till 60 procent av husets maximala effektbehov. En jord-, berg- eller sjövärmepump klarar, om man dimensionerar värmepumpen till 60 procent, ca 95 procent av det årliga värmebehovet. Värmebehovet som finns kvar brukar vanligen täckas med en elpatron. (Andrén & Axelsson, 2007)

5.2.1 Ytjordvärmepump

En ytjordvärmepump tar tillvara på den värme som finns lagrad i marken via en nergrävd slang. Slanglängden anpassas efter vilken typ av värmepump det är fråga om, värmepumpens effekt och markens värmelagrande egenskaper. För att få så små skador på tomten som möjligt, sätts slangen ner i marken med en specialmaskin. (Andrén & Axelsson, 2007)

Marken där slangen grävs ner bör vara lätt att gräva i och inte ha större stenar eller träd och buskar. Det kan också vara bra att rita in slangens placering på tomtkarten ifall man i framtiden kommer gräva på tomten. (Mårtensson, 2007)

5.2.2 Bergvärmepump

Bergvärmepumpens funktion bygger på att bergvärmepumpen tar tillvara på den värme som finns lagrad i berggrunden. Man borrar en så kallad energibrunn i marken som kan vara mellan 60 och 200 meter, och från vilken värmen hämtas via en slang som sänks ner i brunnen. (Andrén & Axelsson, 2007)

Nere i energibrunnen som är djupt bورد är medeltemperaturen ungefär 4 plusgrader. Eftersom temperaturen vid energibrunnen är jämn leder det till att bergvärmepumpar är mycket effektiva. (Mårtensson, 2007)

Bergvärmepumpens anläggning tar liten plats och man behöver inte göra så stora ingrepp på tomten. Man kan också använda grundvattnet som värmetillgång. (Andrén & Axelsson, 2007)
5.2.3 Luft-vattenvärmepump
Luft-vattenvärmepumpen fungerar enligt principen att även relativt kall luft innehåller värme. Även temperaturer under noll grader fungerar luft-vattenvärmepumpen bra. (Andrén & Axelsson, 2007)

Luft-vattenvärmepumpen omvandlar energin som finns i uteluften till värme och överför den till värme- och tappvattensystemet. (Björklund & Ohlsson, 2012)

5.2.4 Luft-luftvärmepump
Luft-luftvärmepumpen kan användas som komplement till annan uppvärmning, till exempel till direktverkande el. Den hämtar energi från utomhusluften och omvandlar den till varmluft. Luft-luftvärmepumpen kan dock inte producera varmvatten och fungerar inte vid låga temperaturer. (Björklund & Ohlsson, 2012)

5.2.5 Frånluftvärmepump
Frånluftsvärmepumpen fungerar så att den tar tillvara på energin i husets frånluftsventilation och överför värmen till värmesystemet och tappvarmvattensystemet. Frånluftsvärmepumpen räcker dock inte som enda värmekälla i en byggnad. (Björklund & Ohlsson, 2012)

Framförallt i nyproducerade hus med mekanisk frånluftsventilation är frånluftsvärmepumpar vanliga och är effektiv då det finns en jämn tillgång på uppvärmd inomhusluft. (Andrén & Axelsson, 2007)

5.2.6 Sjövärmepump
5.2.7 Grundvattenvärmepump

Precis som man kan använda sjövatten som värmekälla kan man även använda grundvatten. Dock är det ganska ovanligt. För att man ska kunna använda sig av grundvattnet måste man ha stor tillgång till grundvatten, ha långt avstånd till andra uttagsbrunnar och rent vatten som inte skadar värmepumpens värmeväxlare. (Mårtensson, 2007)

Det som är svårt att veta är hur stor tillgången efter grundvatten är innan man borrat. För att inte grundvattennivån ska sjunka måste använt vatten återpumpas till marken via en infiltrationsbrunn som bör finnas i närheten. (Mårtensson, 2007)

5.3 Solvärme

Det finns flera olika sätt som man kan använda sig av för att ta tillvara på solens strålar. De aktiva värmesystemen är de som är vanligast. De består av en solfångare som omvandlar solstrålningen till värme och används till tappvarmvatten, värme samt till uppvärmningen av pooler och bassänger. (Andrén & Axelsson, 2007)

Luftburen värme är ett annat alternativ om man vill utnyttja solenergin. Det fungerar genom att inkommande luft i ett hus förvärms av en luftsolfångare. (Andrén & Axelsson, 2007)

5.4 Fjärrvärme

Man kan beskriva ett fjärrvärmesystem som en sluten krets. En stor värmeponna värmer vatten som sedan leds ut till hus genom nedgräväda distributionsledningar. Varje hus som har fjärrvärme har en abonnentcentral där värmen från fjärrvärmeverket växlas över till husets eget värmesystem. När växlingen är gjord leds vattnet tillbaka till fjärrvärmeverkets panncentral för att värmas igen. (Mårtensson, 2007)

En fördel med fjärrvärme är att den är driftsäker. Den är också miljövänlig, effektiv och lättskött. (Mårtensson, 2007)

I Vasa, Finland produceras fjärrvärmen tillsammans av Vaskiluodon Voimas och Westenergys kraftverk på ett miljövänligt sätt. I Vaskiluodon Voimas kraftverk används kol, biomassa och små mängder torv som bränslen. På Westenergys kraftverk som är en avfallsförbränningsanläggning används brännbart avfall som sorteras på anläggningen som bränsle. I båda kraftverken samproduceras el och värme. (Vaasan sähkö)

![Figur 12. Fjärrvärme. (Landskrona energi)](image-url)
5.5 Gas

Biogas är en annan gas som också används till värme. Den bildas när organiskt material bryts ner av metanproducerade bakterier vid avsaknad av syre. De organiska materialen som används är bland annat gödsel, hushållsavfall och växter. Gasen som bildas på detta vis innehåller ungefär 60 % metan och 40 % koldioxid. Biogasen kan förädlas så att den går att förbränna på samma sätt som naturgasen och få samma förbränningsegenskaper. Då man bränner biogas bildas det inte heller något nettotillskott av koldioxid. (Mårtensson, 2007)

5.6 Flexibla system

Flexibla system innebär möjligheten att i samma värmeanläggning kunna växla mellan olika energislag. Detta sätt har uppkommit eftersom framtidens energipriser är ovissa. Om man väljer ett flexibelt system kan man använda det energislag som för stunden är mest ekonomiskt men sen växla till ett annat om det skett en förändring i priserna eller om man av andra skäl vill byta. Att kombinera olja, ved och en elpatron är det som är vanligast. (Mårtensson, 2007)
Uppvärmningssättet för produktions- och lagerhallen i detta arbete har av ekonomiska och praktiska orsaker valts frånluftsvärmepump samt eluppvärmning eftersom frånluftsvärmepumpen inte kan verka som ensam värmeğälla för en byggnad. El-värme har valts eftersom det har billig installation och frånluftsvärmepumpen har valts som komplement eftersom den är relativt billig och effektiv.

6 Energicertifikat

Från och med år 2008 har det krävts energicertifikat i Finland för alla nya byggnader som uppförts. Sedan år 2009 har det även krävts energicertifikat vid försäljning av stora byggnader och nya småhus. (miljo.fi) Den som äger byggnaden har ansvaret för att det skaffas ett energicertifikat för byggnaden. (Lag om energicertifikat för byggnader, § 2.)

När man ansöker om bygglov för nybyggnad ska man visa byggnadens beräknade energiprestanda med energicertifikat. Reparation eller ändringsarbeten på byggnaden, utbyggnad eller om man ändrar användningsändamålet för byggnaden anses inte som nybyggnad. Energicertifikatet är giltigt tills det ersätts med ett nytt, men högst tio år från att det upprättades. (Lag om energicertifikat för byggnader, § 5, § 8)

Det finns dock undantag när energicertifikat inte behövs. Skyldigheten att skaffa ett energicertifikat gäller bland annat inte byggnader som är högst 50 m², byggnader som används som semesterbostäder, tillfälliga byggnader, industribyggnader och verkstäder, simhallar, lagerbyggnader, ishallar, kyrkor, växthus och skyddsrum. (Lag om energicertifikat för byggnader, § 3)

Eftersom byggnaden i detta arbete är en produktions- och lagerhall behövs inte något energicertifikat enligt § 3 i Lag om energicertifikat för byggnader.
7 Kostnadsberäkning

I detta kapitel behandlas vilka ekonomiska ramar projektet har och hur kostnadskalkylen är gjord. Avslutningsvis presenteras resultatet för kostnadskalkylen.

7.1 Ekonomiska ramar

7.2 Utförandet

7.3 Resultat

Resultaten av kostnadsberäkningen blev en ungefärlig kalkyl för projektets kostnader. I kostnaderna ingår både material och arbete. Kostnader för de olika valen gällande sociala utrymmen och loft gjordes skilt så att köpare kan se vilka alternativ de har och vad de kostar.

Kostnaden för projektet blev sammanlagt 520000 € utan moms. I kostnaden ingår inte värme.
8 Resultat

Resultatet av detta examensarbete blev fullständiga bygghövdsritningar (bilaga 4). Situationsplanen är ritad i skala 1:500 medan fasaderna, planritningarna och skärningarna är ritade i skala 1:100. En kostnadskalkyl (bilaga 2) togs även fram samt en jämförelse av olika uppvärmningssätt och byggsättsbeskrivningar (bilaga 1). Inget energicertifikat gjordes eftersom det inte behövs för en hallbyggnad.

9 Diskussion

För mig har detta examensarbete varit lärorikt på många sätt. Jag har lärt mig hur man gör fullständiga bygghövdsritningar och mina kunskaper i AutoCad har förbättrats. Att söka information effektivt och läsa i lagtexter är också något jag blivit bättre på.

Den största utmaningen i arbetet var att göra kostnadskalkylen i och med att jag inte hade några erfarenheter inom det från förut. Jag har även fått större förståelse för konstruktioner och byggnadskomponenter i allmänhet tack vare bygghövdsritningarna och kostnadskalkylen, vilket jag tycker har varit väldigt viktigt. Att läsa in sig på uppvärmningssätt var också intressant eftersom jag inte hade någon kunskap alls om det från tidigare.

Om jag skulle kunna göra något annorlunda nu i efterhand och hade haft tid skulle jag jämföra olika lösningar för hallen. Både hur olika konstruktionslösningar och uppvärmningssätt påverkar kostnaden skulle vara intressant att se. Även olika förslag för rumsindelningen skulle kunna göras.

För beställaren innebär detta arbete att Ingenjörsbyrå Mathias Smeds Ab har färdiga bygghövdsritningar för produktions- och lagerhallen. Då bygghövdsritningarna är godkända och arbetsritningar, detaljer samt installationsplanering är uppgjorda kan beställaren börja bygga hallen.
Avslutningsvis kan jag meddela att beställaren kan anses nöjd med arbetet. Även jag själv är nöjd och jag tror jag kommer ha stor nytta av kunskapen jag fått tack vare mitt examensarbete i framtiden.
Källförteckning

Vaasan seudun toimitila- ja tonttirekisteriin. [Online]

Miljöministeriet
Finlands byggbestämmelsesamling (E1, 2011), (E2, 2005), (A2, 2002), (C4, 2003)
http://www.ym.fi/svFI/Markanvandning_och_byggnande/Lagstiftning_och_anvisningar/Byggbestämmelsesamlingen [hämtat: februari 2016].

Markanvändningslagen och bygglagen 5.21999/132

Akvedukt Bokförlag.

Stockholm: Liber AB

Landskrona energi. [Online]
http://www.landskronaenergi.se/ [hämtat: 27.4.2016].

Miljöminiseriet. [Online]

Paroc. [Online]
http://paroc.fi/ [hämtat: april, maj 2016].

Vaasan sähkö. [Online] http://www.vaasansahko.fi/SV/Innehall/Pages/Produktion.aspx [hämtat: maj 2016].

Rakennustieto OY
RT 83-11009 Alapohjarakenteita (2010)
[hämtat: maj 2016].

PlaniaTalo, beräkningsprogram

Puuinfo.[Online]
Puuhallin rakenteet, suunnittelu ja valintaperusteet

BYGGSÄTTSBESKRIVNING

Allmänt

Projektet gäller en produktions- och lagerhall på Långskogens industriområde i Vasa. Hallen är 1019 m² stor och består av sex brandceller. Tomten är 5327 m² stor.

1. Tomten

Trafikerade områden asfalteras, övriga delar har grusbeläggning. Se situationsplan.

2. Grundläggning

Armerad grundsula med 300 mm komprimerad kapillärbrytande kross 8-16 under hela grunden och 0-32 kross under. Sockeln består av fyra varv med 150 mm Leca-stenar. Pelarsulor enligt skilda konstruktionsritningar.

3. Golvkonstruktion

Markbärande betongplatta som armeras enligt skilda konstruktionsritningar. Golvets uppbyggnad är visad i konstruktionstyp NB1.

4. Ytterväggar

175 mm tjocka Paroc-element av modellen AST® S. Färgerna är ljusgrå RR21 och ljusblå RR35. Infästning och lister enligt skilda detaljritningar.

5. Takkonstruktioner

NR-fackverkstattakstolar som stagas enligt skilda konstruktionsritningar mot knäckning och vippning. Takstolarna har spännvidd 18 m och monteras på ett centrumavstånd på 900 mm. Undre bommen isoleras med 400 mm mineralull. Innertaket består av diffusionsspärr, skålning och gipsskiva som spacklas och målas. Profilerat plåttak med stuprör och snörashinder enligt fasadritning.
6. Fönster

Fönster av typen MSEA. Fönstren är orangemålade (RAL 1004) med standard beslag.

7. Ytterdörrar

Isolerade lyftdörrar i aluminium. Färgen är orange, RAL 1004. Dörr och fönster i lyftdörren.

8. Innerdörrar

Normal slät dörr med färgen vit.
Branddörr i trä med färgen vit mellan brandcell och sociala utrymmen i de större brandcellerna.

9. Mellanväggar

100 mm tjocka Paroc-element av modellen AST® S mellan varje brandcell. De bärande mellanväggarna till sociala utrymmen har isolerad trästomme med 13 mm gips på båda sidorna om väggen. De icke bärande mellanväggarna är vanliga 94 mm tjocka väggar med trästomme. I de större brandcellernas badrum byggs en mellanvägg på insidan av ytterväggen för att rummet ska kunna användas som våtutrymme.

10. Golvbeläggning

Ytbehandlad betong. Wc- och badrumsgolven förses med klinkers.

11. Inredning

Tilläggval. Köksinredning enligt separat inredningsritning.
12. Hushållsmaskiner

Tilläggsval. Kylskåp.

13. Elinstallationer

Hallen värms upp med en frånluftsvärmepump och el, övriga elinstallationer enligt normalplanering. Hallen förses även med kraftströmsuttag.

14. VVS-installationer

Vatten och avlopp ansluts till kommunalteknik, övriga vvs-installationer enligt normalplanering.

Uppgifterna är preliminära. Ingenjörsbyrå Mathias Smeds Ab förbehåller sig rätten att göra ändringar.
<table>
<thead>
<tr>
<th>Produktions- och lagerhall</th>
<th>mängd</th>
<th>enhet</th>
<th>Pris per enhet</th>
<th>Totalt</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordbyggnad</td>
<td>61000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BYGGNAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grunden</td>
<td>31625</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golvet</td>
<td>47005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vattentak (övre bjälklag)</td>
<td>80745,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilerad plåt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Läkt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ströläkt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kondensskyddat undertak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takstol</td>
<td>42 st</td>
<td></td>
<td></td>
<td>10725,81</td>
<td>10725,81</td>
</tr>
<tr>
<td>Mineralull 400 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusionsspärr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skålning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva 13 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spackling & målning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stuprör</td>
<td>71</td>
<td>€/st</td>
<td></td>
<td>778</td>
<td>778</td>
</tr>
<tr>
<td>Snörrashinder</td>
<td>65</td>
<td>€/st</td>
<td></td>
<td>1235</td>
<td>1235</td>
</tr>
<tr>
<td>Ytterväggar</td>
<td>32993,49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroc-element 175 mm</td>
<td>812,99</td>
<td>m2</td>
<td>35,49 €/m2</td>
<td>28853,02</td>
<td></td>
</tr>
<tr>
<td>Sockelanslutning</td>
<td>121,81</td>
<td>m</td>
<td>14,03 €/m</td>
<td>1709</td>
<td></td>
</tr>
<tr>
<td>Fastsättning i trästomme</td>
<td>139,41</td>
<td>m</td>
<td>14,04 €/m</td>
<td>1957,26</td>
<td></td>
</tr>
<tr>
<td>Hörmanslutning</td>
<td>23,23</td>
<td>m</td>
<td>20,41 €/m</td>
<td>474,21</td>
<td></td>
</tr>
<tr>
<td>Mellanväggar mellan brandcellerna</td>
<td>17280,61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroc-element 100 mm</td>
<td>452,61</td>
<td>m2</td>
<td>29,85 €/m2</td>
<td>13510,41</td>
<td></td>
</tr>
<tr>
<td>Golvanslutning</td>
<td>78,6</td>
<td>m</td>
<td>13,18 €/m</td>
<td>1035,92</td>
<td></td>
</tr>
<tr>
<td>Fastsättning i trästomme</td>
<td>52,27</td>
<td>m</td>
<td>14,04 €/m</td>
<td>733,97</td>
<td></td>
</tr>
<tr>
<td>Fastsättning i tak</td>
<td>78,6</td>
<td>m</td>
<td>25,45 €/m</td>
<td>2000,31</td>
<td></td>
</tr>
<tr>
<td>Bärande konstruktioner</td>
<td>17000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelare GL30c 205x495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EI30 till vattentak</td>
<td>3727,52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ovanför Paroc-mellanväggar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fönster och dörrar</td>
<td>28185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyftdörrar, 5 st 40x42, 2 st 30x27</td>
<td>7 st</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fönster 15x15</td>
<td>7 st</td>
<td>427,71 €/st</td>
<td>2993,97 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tilläggsval för olika haldelar

Litett haltdel med wc + förråd

<table>
<thead>
<tr>
<th>Bärande mellanväggar 123 mm</th>
<th>11,97 m²</th>
<th>54,57 €/m²</th>
<th>653,2 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trästomme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mellanväggar 94 mm</th>
<th>3,65 m²</th>
<th>46,16 €/m²</th>
<th>168,4 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trästomme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mellanbjälklag</th>
<th>5,38 m²</th>
<th>59,85 €/m²</th>
<th>322 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spånskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasor 48x148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skålning 22x100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dörrar</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slät dörr</td>
<td>2 st</td>
<td>67,71 €/st</td>
<td>135,42 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wc-stol</td>
<td>300 €/st</td>
<td></td>
<td>600 €</td>
</tr>
<tr>
<td>Lavoar</td>
<td>300 €/st</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minikök</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Montering av wc</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enligt skild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>offert</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Montering av kök</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>208 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transportkostnader</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beroende på tilläggsval</td>
</tr>
</tbody>
</table>

Total kostnad för små haldelar med alla tilläggsval **2637,02 €**
Stor halldel

Haldel 2, 3 & 4

<table>
<thead>
<tr>
<th>Bärande mellanväggar 123 mm</th>
<th>26,68 m²</th>
<th>54,57 €/m²</th>
<th>1456,1 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trästomme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mellanväggar 94 mm</th>
<th>9,8 m²</th>
<th>46,16 €/m²</th>
<th>452,56 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trästomme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mellanväggar i våtutrymme</th>
<th>12,3 m²</th>
<th>123,77 €/m²</th>
<th>1523,28 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Väggfärg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggspackel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trästomme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vattenisolering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(även vägg på insidan av Paroc- yttervägg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>På Paroc-mellanvägg i våtutrymme</th>
<th>3,68 m²</th>
<th>86,66 €/m²</th>
<th>319,28 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Våtrumsgips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vattenisolering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Våtutrymmens bottenbjälklag</th>
<th>2,75 m²</th>
<th>99,31 €/m²</th>
<th>273,37 €</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mellanbjälklag</th>
<th></th>
<th></th>
<th>3000,57 €</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Utanför sociala utrymmen (1m)</th>
<th>10,96 m²</th>
<th>25,37 €/m²</th>
<th>277,97 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spånskiva 22 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasor 48x223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utbyggnad</td>
<td>M²</td>
<td>Pris/m²</td>
<td>Total pris</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Ovanför sociala utrymmen</td>
<td>36,9</td>
<td>73,77</td>
<td>2722,6 €</td>
</tr>
<tr>
<td>Spånskiva 22 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasar 48x223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skålning 22x100 c400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gipsskiva 2x13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spackling & målning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dörrar

<table>
<thead>
<tr>
<th>DörrTyp</th>
<th>Män</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branddörr, trä</td>
<td>2</td>
<td>265,18</td>
<td>530,36 €</td>
</tr>
<tr>
<td>Slät dörr</td>
<td>2</td>
<td>67,71</td>
<td>135,42 €</td>
</tr>
</tbody>
</table>

Trappa

<table>
<thead>
<tr>
<th>TrappaTyp</th>
<th>Män</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000 €</td>
</tr>
</tbody>
</table>

Kök

<table>
<thead>
<tr>
<th>KötTyp</th>
<th>Män</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2000 €</td>
</tr>
</tbody>
</table>

Badrum

<table>
<thead>
<tr>
<th>BadrumTyp</th>
<th>Män</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-stol</td>
<td>300</td>
<td></td>
<td>1000 €</td>
</tr>
<tr>
<td>Lavoar</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dusch</td>
<td>400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Montering av kök

<table>
<thead>
<tr>
<th></th>
<th>Enligt skild</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enligt skild</td>
<td></td>
<td>416 €</td>
</tr>
</tbody>
</table>

Montering av badrum

<table>
<thead>
<tr>
<th></th>
<th>Enligt skild</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enligt skild</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transport för tilläggsval

<table>
<thead>
<tr>
<th></th>
<th>Enligt skild</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enligt skild</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total kostnad för tilläggsvalen för halldel 2, 3 eller 4

<table>
<thead>
<tr>
<th></th>
<th>12106,94 €</th>
</tr>
</thead>
</table>

Halldel 1

<table>
<thead>
<tr>
<th>Utbyggnad</th>
<th>M²</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bärande mellanväggar 123 mm</td>
<td>20,2</td>
<td>54,57</td>
<td>1102,43 €</td>
</tr>
<tr>
<td>Mellanväggar 94 mm</td>
<td>2,9</td>
<td>46,16</td>
<td>135,6 €</td>
</tr>
<tr>
<td>Mellanväggar i våtutrymme</td>
<td>12,3</td>
<td>123,77</td>
<td>1523,28 €</td>
</tr>
<tr>
<td>På Paroc-mellanvägg i våtutrymme</td>
<td>3,68</td>
<td>86,66</td>
<td>319,28 €</td>
</tr>
<tr>
<td>Våtutrymmens bottenbjälklag</td>
<td>2,75</td>
<td>99,31</td>
<td>273,37 €</td>
</tr>
<tr>
<td>Mellanbjälklag</td>
<td></td>
<td></td>
<td>1498,96 €</td>
</tr>
<tr>
<td>Utanför sociala utrymmen (1m)</td>
<td>5,45</td>
<td>25,37</td>
<td>138,2 €</td>
</tr>
<tr>
<td>Ovanför sociala utrymmen</td>
<td>18,45</td>
<td>73,77</td>
<td>1360,76 €</td>
</tr>
</tbody>
</table>

Dörrar

<table>
<thead>
<tr>
<th>DörrTyp</th>
<th>Män</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branddörr, trä</td>
<td>1</td>
<td>265,18</td>
<td>265,18 €</td>
</tr>
<tr>
<td>Slät dörr</td>
<td>2</td>
<td>67,71</td>
<td>135,42 €</td>
</tr>
</tbody>
</table>

Trappa

<table>
<thead>
<tr>
<th></th>
<th>Män</th>
<th>Pris/m²</th>
<th>Total pris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000 €</td>
</tr>
</tbody>
</table>
Kök
2000 €

Badrum
1000 €
Wc-stol
300 €/st
Lavoar
300 €/st
Dusch
400 €/st

Montering av kök
416 €

Montering av badrum
Enligt skild

Transport för tilläggsval
Offert

Total kostnad för tilläggsvalen för halldel 1
9669,52 €

TEKNIK

El
1019 m²
49 €/m²
49931 €
Avlopp
1019 m²
81 €/m²
82539 €
Ventilation
1019 m²
42 €/m²
42798 €
Värme
Enligt skild

PROJEKTJÄNSTER

Byggluvskostnader
1319 €
Arbetsplatsledning
5000 €

Arbetsplatsen

Belysning
1000 €

Värme under arbetstiden
Enligt skild

Städning
208 €/månad
832 €

Soptransport
1000 €

Maskiner och verktyg

Kranbil
100 €/h
2000 €

Ställningar
5717 €/månad
5717 €

Materialtransport
3500 €

Total kostnad för hallen utan haldelarnas tilläggsval
520204,94 €
Mellanbjälklag

<table>
<thead>
<tr>
<th>metric</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C24</td>
<td>normalt virke</td>
</tr>
<tr>
<td>tvärsnitt</td>
<td>l</td>
</tr>
<tr>
<td>L</td>
<td>3,4</td>
</tr>
<tr>
<td>L_tot</td>
<td>4,4</td>
</tr>
<tr>
<td>b</td>
<td>0,048</td>
</tr>
<tr>
<td>h</td>
<td>0,223</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>cc</td>
<td>600</td>
</tr>
<tr>
<td>g</td>
<td>1</td>
</tr>
<tr>
<td>q</td>
<td>2</td>
</tr>
<tr>
<td>pd</td>
<td>2,49</td>
</tr>
<tr>
<td>Md</td>
<td>3,00247474</td>
</tr>
<tr>
<td>σ_md</td>
<td>7,54709209</td>
</tr>
<tr>
<td>böjhållfasthet för kerto-balk</td>
<td>13,71428571</td>
</tr>
<tr>
<td>f_md</td>
<td>10,956</td>
</tr>
<tr>
<td>utnyttjandegrad</td>
<td>η_m</td>
</tr>
<tr>
<td></td>
<td>0,550308798</td>
</tr>
<tr>
<td>R_B</td>
<td>3,866823529</td>
</tr>
<tr>
<td>V_d</td>
<td>3,187053529</td>
</tr>
<tr>
<td>Max skjuvpäning</td>
<td>τ_d</td>
</tr>
<tr>
<td></td>
<td>0,446616246</td>
</tr>
<tr>
<td>Skjuvhållfasthet för kerto-S</td>
<td>f_vd</td>
</tr>
<tr>
<td></td>
<td>1,428571429</td>
</tr>
<tr>
<td>utnyttjandegradsmed hänsyn till momentan nedböjning</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>η_{v_y}</td>
<td>0,312631372</td>
</tr>
<tr>
<td>E</td>
<td>11000</td>
</tr>
<tr>
<td>I</td>
<td>4,43583E-05</td>
</tr>
<tr>
<td>$E*I$</td>
<td>0,487940948</td>
</tr>
</tbody>
</table>

Momentan nedböjning av enhetslast (jämförelse) 1 kN/m

W_1 | 0,002825692 | W_2 | 0,001938759 |

mellan stöd | efter stöd | 0,001938759 |

a) momentan nedböjning för balken

p_k | 1,8 |

W_{inst} | 5,0862456 | $W_{\text{inst}2}$ | 3,489766553 |

gräns för momentan nedböjning i mellanbjälklag, l/400

8,5 | 2,5 |

utnyttjandegradsmed hänsyn till momentan nedböjning

| η_{inst} | 0,598381835 | $\eta_{\text{inst}2}$ | 0,410560771 |

b) slutlig nedböjning

$W_{\text{g,inst}}$ | 1,6954152 | $W_{\text{g,inst}2}$ | 1,163255518 |

g_1 | 0,6 | q_1 | 1,2 |

$W_{\text{q,inst}}$ | 5,651384 | $W_{\text{q,inst}2}$ | 3,877518392 |

W_{fin} | 11,07671264 | $W_{\text{fin}2}$ | 7,599936048 |

$W_{\text{net,fin}}$ gäller kravet l/300

gränsen | 11,33333333 | 3,333333333 |
utnyttjandegraden med hänsyn till slutlig nedböjning

| \(\eta_{\text{fin}} \) | 0,977356998 | \(\eta_{\text{fin2}} \) | 2,279980814 |
Byggnadsyta 1019,4m²
Våningsyta 1019,4m²
Våningsyta MBL §115 1019,4m²
Lägenhetsyta 993,7m²
Volym 6780m³
<table>
<thead>
<tr>
<th>Detalj</th>
<th>Markliggande golv</th>
<th>Rit.nr. – Plr.nro</th>
<th>skala – mittakaava</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1:20</td>
<td></td>
</tr>
<tr>
<td>Namn – Nimi</td>
<td>ritad av – piirtänyt</td>
<td>Ing.byrå M Smeds</td>
<td>Datum – Pvm</td>
</tr>
<tr>
<td>LYFTKRANSVÄGEN 9</td>
<td></td>
<td></td>
<td>12.5.2016</td>
</tr>
<tr>
<td>65380 VASA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ytbehandling enligt beskrivning
- betongplatta med armering, 100 mm
- EPS 100, 150 mm
- komprimerad kapillärbrytande kross 8–16 >300 mm
- kross 0–32
Yttervägg
Paroc-element
175 mm

Mellanvägg mellan moduler
Paroc-element
100 mm
Bärande mellanväggar:
- spackling och ytbehandling
- gipsskiva 13 mm
- stomme 97 mm
 - isolering 100 mm
- gipsskiva 13 mm
- spackling och ytbehandling
- profilerad plåt
- läkt 32x100, (c–avstånd enligt plåttillverkarens anvisning)
- strövläkt 22x50
- kondensskyddat undertak
- takstolar enligt skild plan
- isolering 400 mm
- diffusionsspärr
- skålning
- gipsskiva 13 mm