

Yang Zhou

Development of Distributed Cache Strategy

for Analytic Cluster in an Internet of Things

System

Technology and Communication

2016

FOREWORD

This is my final undergraduate thesis in the Degree Programme in Information

Technology, at Vaasa University of Applied Sciences, Vaasan Ammattikor-

keakoulu.

Sincerely I want to thank my thesis supervisor, Dr. Yang Liu, for his various help

and great guidance both in the fields of academic research and thesis writing.

Benefiting from his rich professional knowledge and conscientious mentoring I

have built up scientific researching skills and finally finished the writing of this

thesis. Furthermore, I appreciate greatly his support and inspiration during my

study period, which boosted my confidence and efficiency.

Moreover, I would like to express my great appreciation to my mentors in the in-

dustry, Tuomas Ritola and Mathias Grädler, for their great, effective and various

instructions and support for achieving the final successful result in an engineering

perspective. Also I am grateful to my company Wapice Ltd for providing me this

valuable and interesting thesis topic.

Besides, I am also very thankful to other professors and staffs in Vaasan Am-

mattikorkeakoulu, including Mr. Santiago Chavez, Dr. Menani Smail, Dr.

Ghodrat Moghadampour, Mr. Jani Ahvonen, Dr. Chao Gao, Mr. Antti Virtanen

and all other teaches and staffs who have kindly helped and guided me with their

wisdom and knowledge during my undergraduate study, which forms the founda-

tion for this thesis work, and my further studies and career.

Finally, I want to express my biggest gratitude to my family and friends for their

understanding and generous support. They always are my strongest backup when I

am pursuing my dream.

Yang Zhou

Vaasa, Finland

5/2/2016

 1(87)

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT

Author Yang Zhou

Title Development of Distributed Cache Strategy for Analytic

Cluster in an Internet of Things System

Year 2016

Language English

Pages 84 + Appendices

Name of Supervisor Yang Liu

This thesis discusses the development of a distributed cache strategy for an analyt-

ic cluster in an IoT system. In this thesis, LRU and Proactive Cache and essential

distributed system related concepts are discussed. The study about the approaches

for performance optimization, nodes and data distributing in the IoT system are

also included.

In the IoT system, the cluster for data analysis involves large volume of data and

some specific processes such as streaming processing raises a need for real-time

data querying, which brings a heavy load to the data center for catering the request.

Besides for expanding the capability of the data center, a well-organized cache

layer is required, which will noticeably enhance the performance and scalability

of the data center.

This thesis mainly contributes to the development of a cache strategy based on the

distributed system. In the cache strategy session, LRU and Proactive Cache, and

the optimizing of them for the IoT system are discussed. Next, a set of topology

model of nodes is introduced and compared. After that, the algorithm of data par-

titioning is discussed and examined. Redis is used as the main database in the

study, Apache Kafka is involved for enabling Proactive Cache and Spring Boot is

adopted as the platform for the implementation of algorithms and business logic

included in this thesis. The result of this thesis is tested using local development

machine and the development server in Wapice Ltd.

It can be concluded that the distributed cache strategy developed in this thesis is

functional and well-extendable. It fulfills the need of high performance data que-

rying from analytic cluster and reduces the load from data center in the IoT sys-

tem.

Keywords Caching, distributed system, IoT, data partitioning,

cluster topology

CONTENTS
FOREWORD

ABSTRACT

1. INTRODUCTION .. 11

1.1 Purpose .. 11

1.2 Overall structure of this thesis .. 11

1.3 Background of IoT Ticket and Wapice Ltd .. 13

1.3.1 Wapice Ltd .. 13

1.3.2 IoT-Ticket ... 13

1.4 Introduction of Data Cache ... 15

1.5 Redis ... 16

1.6 Apache Kafka.. 17

1.7 Introduction of Microservice .. 18

1.8 Spring Boot ... 19

2. DATA MODEL .. 21

2.1 Data model in target IoT system ... 21

2.2 Data model in cache .. 22

2.2.1 Fundamental data structure ... 22

2.2.2 Key-Value based data structure .. 25

3. CACHE STRATEGY ... 28

3.1 LRU in Redis .. 28

3.1.1 Approximated LRU algorithm .. 29

3.1.2 The configuration for Approximated LRU in Redis 32

3.2 Optimizing for LRU in Redis ... 34

3.2.1 TTL ... 34

3.2.2 Placeholder .. 34

3.3 Proactive Caching ... 39

3.3.1 Zookeeper and Kafka .. 41

3.3.2 Simulated data source ... 42

3.3.3 Consumer in Kafka ... 45

3.4 Aggregation... 47

4. CLUSTER TOPOLOGY MODEL ... 48

4.1 Master – Master Model ... 48

 3(87)

4.2 Master – Slave Model ... 49

4.3 Master – Master – Slave Model .. 50

4.4 Implementation ... 52

4.4.1 Sub-cluster of master nodes .. 52

4.4.2 Sub-cluster of Master - Slave .. 53

5. DATA PARTITIONING ALGORITHM ... 57

5.1 Simple hash solution ... 58

5.2 Consistent Hashing solution ... 59

5.2.1 Hash Ring .. 59

5.2.2 Mapping of objects .. 60

5.2.3 Mapping of nodes .. 60

5.2.4 Adding and removing of nodes ... 62

5.2.5 Virtual node ... 64

5.3 Pseudo-code of Consistent Hashing.. 65

6. MICROSERVICE .. 68

6.1 Configuration service .. 68

6.2 Discovery Service ... 69

6.3 Cache Service.. 69

7. TESTING AND ANALYSIS ... 70

7.1 Cache strategy test .. 70

7.2 Master sub-cluster test .. 73

7.3 Slave node test .. 74

7.3.1 Insert to master and read from slave test 76

7.3.2 Consistency test ... 77

7.3.3 Consistency test 2 .. 78

8. DISCUSSION AND FURTHER DEVELOPMENT 80

8.1 The failure tolerance in the cluster .. 80

8.2 Grouping cache data by different industry .. 80

8.3 Test in real distributed environment ... 81

9. SUMMARY ... 82

REFERENCES .. 83

APPENDICES

 5(87)

LIST OF ABBREVIATIONS

IoT Internet of Thing

Ltd Limited

LRU Least Recent Used

WRM Wapice Remote Management

MRU Most Recently Used

PLRU Pseudo-LRU

RR Random Replacement (RR)

SLRU Segmented LRU

SQL Structured Query Language

NoSQL Not only SQL

MID Manufacturer Identification

TTL Time To Live

JSON JavaScript Object Notation

DI Dependency Injection

SYNC Synchronize

ASYNC Asynchronous

DHT Distributed Hash Table

MIT Massachusetts Institute of Technology

P2P Peer-to-peer

CARP Cache Array Routing Protocol

WWW World Wide Web

IP Internet Protocol

REST Representational State Transfer

ms Millisecond

 7(87)

LIST OF FIGURES AND TABLES

Figure 1. IoT-Ticket, overview of communication(monitoring)/2/ p. 14

Figure 2. IoT-Ticket, overview of communication(controlling)/2/ p. 14

Figure 3. IoT-Ticket Analytics screenshots/2/ p. 14

Figure 4. Redis major data structure /6/ p. 16

Figure 5. Model of Apache Kafka /7/ p. 17

Figure 6. Anatomy of a Topic of Apache Kafka /7/ p. 18

Figure 7. An example of microservice architecture /10/ p. 19

Figure 8. An example of microservice based of Spring Boot /12/ p. 20

Figure 9. Lists data type in Redis /14/ p. 24

Figure 10. Sets data type in Redis /14/ p. 24

Figure 11. Hashes data type in Redis /14/ p. 25

Figure 12. Data structure design in cache p. 27

Figure 13. Traditional LRU caching schema/15/ p. 28

Figure 14. Flow chart of sampling in Approximated LRU p. 30

Figure 15. Graphical comparison of Approximated LRU and LRU /16/ p. 31

Figure 16. Inconsecutive data generating p. 34

Figure 17. Flowchart of “Placeholder” optimizing p. 37

Figure 18. Traditional cache pattern /17/ p. 40

Figure 19. Proactive Caching pattern /17/ p. 40

Figure 20. Zookeeper service is running p. 42

Figure 21. Kafka service is running upon the Zookeeper p. 42

Figure 22. List of created topics in Kafka p. 43

Figure 23. Aggregation of cache strategy p. 47

Figure 24. Master – Master topology mode/14/ p. 48

Figure 25. Master – Slave topology mode /14/ p. 50

Figure 26. Master – Master – Slave topology model p. 51

Figure 27. Hash Ring p. 59

Figure 28. Objects are mapped in the Hash Ring p. 60

Figure 29. Nodes and Objects are mapped in the same Hash Ring p. 61

Figure 30. Each object is store in node by Consistent Hashing p. 62

Figure 31. One node is removed from cluster p. 63

Figure 32. One node is added to cluster p. 64

Figure 33. Virtual node p. 65

Figure 34. Brief microservice system structure p. 68

Figure 35. Query without cache strategy deployment p. 70

Figure 36. Query with partial cache strategy deployment p. 71

Figure 37. Query with full cache strategy deployment p. 71

Figure 38. 3 master nodes were up running in development machine p. 73

Figure 39. Print of the test for master sub-cluster p. 74

 9(87)

Table 1. ProcessData(simplified) data model p. 21

Table 2. Data type mapping in ProcessData(simplified) data model p. 22

Table 3. Time-based performance of Redis collection data types/13/ p. 23

Table 4. Eviction policy list and description /16/ p. 32

Table 5. Redis configuration options for slave node p. 53

Table 6. Collected data from the strategy test p. 71

Table 7. Average time consumption of strategy test p. 72

Chart 1. Collected from strategy test data in line chart p. 72

LIST OF APPENDICES

APPENDIX 1. Java Implementation of Consistent Hashing

 11(87)

1. INTRODUCTION

1.1 Purpose

This thesis discusses the development of a distributed cache strategy for an analyt-

ic cluster in the IoT system. The objective of studied cache strategy is to provide a

high performance, highly extendable and highly stable cache solution in the dis-

tributed system on IoT environment to reduce the load of center databases and en-

hance the data query performance. There are mainly five parts in the study of this

thesis. In the first part, the data model and cache strategy, which are the main fo-

cus in this thesis, are discussed in detail. In the second part, the nodes topology

model which indicates how the nodes are connected and how they collaborate is

discussed. In the third part, a data partitioning algorithm which describes how the

data is distributed into the cluster is introduced. In the fourth part, the micro-

service based architecture which adopted in this thesis is depicted. In the final part,

the core components are examined and the further development is discussed.

1.2 Overall structure of this thesis

This thesis are mainly divided into 9 chapters and ordered by the logical flow of

the study. In chapter 1, the overall information of this thesis and the background

of involved components are introduced. In chapter 2, the model of sensor data and

cache data are described. In chapter 3, the cache strategy of LRU, Proactive Cache

and the approaches for optimizing in IoT system are discussed. Chapter 4 focuses

on the topology models of nodes. Chapter 5 discusses the data partitioning. In

chapter 6, the microservice based architecture which is adopt by the study of this

thesis is represented. Chapter 7 and 8 discuss about the result of test and the fur-

ther development of this study. Chapter 9 summarizes up the content of this thesis.

The project in this thesis mainly consists of 5 parts: data model, cache strategy,

cluster topology model, data partitioning algorithm and microservice.

1. Data model

Data model consists of two parts: model of sensor data and model of cache data.

Since the cache discussed in this thesis is designed for the analytic cluster, not all

fields from sensor data are needed to be cached, a converting process is required.

Furthermore, for effective data storing and querying with Redis database, a dedi-

cated data model is developed.

2. Cache strategy

Cache strategy is the primary topic in this thesis. Cache strategy contains two lay-

ers. The first layer is in the database server, in which the LRU solution is adopted.

The second layer is in the cache service layer, in which Proactive Caching is de-

ployed. Besides, the optimizing approaches for the IoT system are discussed.

3. Cluster topology model

Along with the development of algorithm, cluster topology model describes how

the nodes are connected to assemble the cache cluster. In the cluster topology

model, Master – Master, Master – Slave and Master – Master – Slave topology

models are discussed.

4. Data partitioning algorithm

For distributing the data into the cache cluster, a discussion about the data parti-

tioning algorithm is raised. Consistent Hashing algorithm which introduces a con-

cept of Hashing Ring and maps both data and nodes in the same hash space is in-

troduced in the data partitioning algorithm session.

5. Microservice

Microservice is a system architecture adopted in the study of this thesis in the

cache service implementation by using Spring Boot. It brings great flexibility and

scalability in the system level.

 13(87)

1.3 Background of IoT Ticket and Wapice Ltd

Wapice Ltd is the sponsor of this thesis work and IoT-Ticket is the target IoT sys-

tem for which this thesis is developed.

1.3.1 Wapice Ltd

Wapice Ltd is a private and independent company. It was started in 1999 and

the headquarters is in Vaasa, Finland. Now there are over 300 software spe-

cialists are working in Wapice, and the company is keeping growing. Wapice

is based in Vaasa, and also has deployed the offices in Helsinki, Tampere,

Seinäjoki, Hyvinkää, Oulu and Jyväskylä. /1/

Wapice Ltd is an AAA-rated company in which the software production is

based on a certified ISO 9001:2008 quality management system and ISO

14001:2004 environmental management system. /1/

The three of Wapice major products: IoT-Ticket, Summium and EcoReaction

have got the Key Flag granted from the organization of Finnish work. /1/

1.3.2 IoT-Ticket

 Background

IoT-Ticket is a modern Internet of Thing system. IoT-Ticket is developed by

Wapice Ltd and received its name in beginning of 2015, but has been devel-

oped and promoted since 2005 under the name Wapice Remote Management

platform (WRM platform). /2/

The development target of IoT-Ticket was and is to create a modern, easy to

use, web-based platform which allows remote monitoring and control of assets

with a powerful report creation and analytics possibilities taking advantage of

a secure Big-data system. Enabling regulatory reporting, supervisory monitor-

ing & control, operational efficiency & KPI tracking and condition monitoring

is the goal to be achieved. /2/

Figure 1. IoT-Ticket, overview of communication (monitoring) /2/

Figure 2. IoT-Ticket, overview of communication (controlling) /2/

 IoT-Ticket Analytics

IoT-Ticket Analytics supports users to analyze and dig value based on data

collected over a long period of time. The web-based and easy to use Analytics

package seamlessly integrates to the IoT-Ticket Dashboard.

 15(87)

Figure 3. IoT-Ticket Analytics screenshots /2/

1.4 Introduction of Data Cache

Cache is a generic term of the technologies which temporarily stores some specif-

ic data elsewhere from the main data center for enhancing the performance of data

querying. The definition of the Cache is: In the computer system, the cache is a

component as a temporary data storage for enhancing the performance in further

work when the stored data is involved in. The data is stored in the cache can be

the middle or final result of the previous work, or just the duplication of some

pieces of data. /3/

When the requested data can be found in a cache, the cache hit happens. When the

cache hit occurs, the stored data can be provided for the request directly avoiding

recalculating or reading from a slower data store, which could significantly en-

hance the performance in further calculation. /3/

In this research, the function of cache is not only increasing the speed of data que-

ry, but also reducing the load of data center to promote a better stability and

scalability.

 Cache algorithm

The Cache algorithms are the sort of algorithms for ruling the way how the cache

program works, like when to evict the stored data, which data to be evicted and

how to locate the data which should be evicted.

The examples of frequently used cache algorithms are: Least Recently Used

(LRU), Most Recently Used (MRU), Pseudo-LRU (PLRU), Random Replace-

ment (RR) and Segmented LRU (SLRU). /4/

 Distributed Cache

In contrast to with the traditional single node cache, a distributed cache may span

multiple servers so that it can grow in size and in transactional capacity. The de-

velopment of distributed cache based on the increasing internet speed and the de-

creasing price of both the memory and servers. Distributed cache enable the pos-

sibility to handle voluminous data by using cheap cluster consists of commodity

computers. /3/ /5/

1.5 Redis

Redis is adopted as main database in the cache cluster in this thesis. Redis is an

open source project (BSD licensed) which was started form 2009. It is a C based

single thread NoSQL database. For bringing the high performance, redis uses the

in-memory storage mechanism. Redis is a key-value based database which has

fairly simple data structure; furthermore this is one of the factors which leads a

better speed in data operation for Redis. Redis supports data structures such as

strings, hashes, lists, sets, sorted. Redis also has various noticeable features like

built-in replication, Lua scripting and LRU eviction which boost its popularity.

Redis brings also great stability and scalability which is one of the key considera-

tions of its adoption.

The Redis version adopted in the study of this thesis is 2.8.

 17(87)

Figure 4. Redis major data structure /6/

1.6 Apache Kafka

Apache Kafka is a message broker service with the advanced feather of distribu-

tary, partitioning and replication. It’s an open-source message queue developed by

Apache Software Foundation based on Scala. In Kafka the work flow is organized

by several modules mainly includes: Topic, Producer, Broker and Consumer.

Topic is the categories Kafka maintains feeds of messages in. Producer is the pro-

cess in Kafka that publishes messages. Consumer is the process that subscribes to

topics and receives the published messages from Produce via the subscribed top-

ics. Kafka message queue is hosted in a single or multiple nodes formed cluster.

Each node of the cluster is called a Broker. Generally the work flow could be de-

picted as that producer sends messages over the network to the Kafka cluster

which delivers the messages to the consumer. /7/

Figure 5. Model of Apache Kafka /7/

Kafka cluster processes a partitioned queue for each involved Topic. Every parti-

tion is group of messages in an ordered queue which is unmodifiable. The new

committed message is appended to the tail of the queue. Every message in the

queue is assigned a unique id according to its offset for the identification in the

partition. And every published message not matter whether has it been consumed

are kept in a configurable period of time by the Kafka Cluster. Since the Kafka

cluster only holds the essential details of data, the big volume of retained data will

not lead to problems.

Figure 6. Anatomy of a Topic of Apache Kafka /7/

1.7 Introduction of Microservice

In software development, microservices are small, independent processes that

communicate with each other to form complex applications which utilize lan-

guage-agnostic APIs. These services are small building blocks, highly decoupled

and focused on doing a small task, promoting a modular approach for the system

level architecting. The microservices architectural style is becoming the standard

for building continuously deployed systems. /8/

The term "Micro-Web-Services" was introduced by Dr. Peter Rodgers in a presen-

tation in Cloud Computing Expo in 2005. In that event, the presentation of "Soft-

ware components are Micro-Web-Services" was stated. And In May 2012, the

"microservices" was decided as the most appropriate name for aforementioned

system architecture. /8/ /9/

 19(87)

Figure 7. An example of microservice architecture /10/

1.8 Spring Boot

Spring Boot is an open source project under Spring community which was initiat-

ed in 2002. Spring Boot provides the facilitation to create stand-alone, production-

grade Spring based Applications. Spring Boot can embed Tomcat, Jetty or Under-

tow directly which distinguishing from the traditional server-dependency model

and makes Spring Boot application can be run independently. Spring Boot uses

Maven or Gradle as dependency management tool and an opinionated 'starter'

configuration file is provided for simplifying the work. Besides, Spring Boot also

provides the production-ready features for example health checks. And it can be

guaranteed that within Spring Boot, the code generation and XML configuration

is completely avoided, which makes the development more convenient and effi-

cient. /11/

Based on the features mentioned in the proceeding figure, Spring Boot is fre-

quently used for construction of microservice architecture based system.

Figure 8. An example of microservice based of Spring Boot /12/

 21(87)

2. DATA MODEL

The cache layer in this study is built upon the existing IoT system, IoT-Ticket.

The data model in this thesis follows the solution in the target IoT system. Since

this study only focus on providing the data caching for analytic cluster, only the

related data model is discussed. The data model session consists of two parts, the

data model in IoT-Ticket and the data model in cache layer of the study.

2.1 Data model in target IoT system

In the target IoT system, the data model “ProcessData” is the model for raw sen-

sor data which is the input for the analytic cluster. In this study, the discussion and

development of data model is performed based on “ProcessData”.

Data Type Field Name

Long Integer mid

Integer type

Long Integer epocHour

Long Integer timestamp

[dataType] data

Table 1. ProcessData(simplified) data model

In “ProcessData” data model, Manufacturer Identification (mid) is stored in Long

Integer format as the identification for distinguishing the origin of the data record.

“timestamp” is stored in Long Integer format in which the time when this data

record is generated is kept in millisecond scale. “epochour” is another field for

recording generating time as “timestamp”, it is calculated from “timestamp” and

is in hour scale. For example, if one data record keeps “timestamp”

“1462436089149”, the corresponding “epocHour” is “1462435200000”. The for-

mula is depicted below:

{
𝑉𝑒𝑝𝑜𝑐𝐻𝑜𝑢𝑟 = 𝑉𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − (𝑉𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 % 𝐻𝑜𝑢𝑟)

Hour = 3600000 (ms)

 “type” indicates the data type of the data which kept in current data records. An

Integer value is provided be “type”, each Integer value stands for a different data

type.

Integer Value Data Type

0 Double

1 Integer

2 String

3 Boolean

4 Binary

Table 2. Data type mapping in ProcessData(simplified) data model

The data in the “ProcessData(simplified)” model which is discussed in this study

is sensor data, which is generated from sensors in the IoT system. It is strictly or-

dered by the timeline, and is also static, namely the generated data will never be

updated or individually deleted. And it is obvious that the volume of this category

of data is large and increasing fast. Therefore, it can be concluded that the main

feature of this category of data can be summarized as chronological, static and

voluminous.

2.2 Data model in cache

2.2.1 Fundamental data structure

The model in cache is designed based on the Redis in-built data structure and op-

timized for the data usage of the analytic cluster. In the work flow of the analytic

 23(87)

cluster, the sensor data is queried and processed by the minimum unit of hours,

namely the data should be grouped by the hour when they have been generated.

Hence in the cache layer, a data structure of collection should be adopted. In Re-

dis there are 4 data types that support collection data structure: Lists, Sets, Sorted

Sort and Hashes. For the sake of better performance, firstly the time-based per-

formance of related operations between these four data types is compared.

 Operation

Data type

Add Multiple

Add

Get Single

element by

index

Get All

Lists O (1) O (n) O(S) O (N+1)

Sets O (1) O (n) - O (N)

Sorted Sets O (log(N)) O (log(N)) O (log(N)+1) O(log(N)+N)

Hashes O (1) O (n) O (1) O (N)

Table 3. Time-based performance of Redis collection data types /13/

In the table above, O notation is a means to classify the algorithm (data structure)

on its performance when the data grows. O (1) means time taken by the command

on a data structure is constant. O (N) and O (n) mean time taken by the command

on a data structure scales linearly on the amount of data it contains. O (log (N)):

Time taken by the command on a data structure is logarithmic in nature. Where N

is the number of elements, n is the number of elements to be added or got, S is the

number of elements before the target element in a list.

From the data of the table above, it can be observed that the sorted Sets is firstly

out of considering because of obvious disadvantage of performance; Lists, Sets,

Hashes has very similar time-based performance in the operations including: Add,

Multiple Add and Get All. Furthermore, even though there is quite big difference

of time-based performance between those of getting a specific element from col-

lection, but it cannot be strong evidence since this operation will not be frequently

used in the target cache system.

Hence, in next step the structure and use scenario of these three data types are

compared.

 Lists

Figure 9. Lists data type in Redis /14/

Lists is designed to store data sequentially in a Redis server where the write

speeds are more desirable than read performance. For example, log messages. /14/

 Sets

Figure 10. Sets data type in Redis /14/

 25(87)

Sets is designed to store data as a set in Redis server. The use cases for set data

would be more for an analytics purpose, for example for the analysis of how many

people browse the product page and how many end up purchasing the product.

/14/

 Hashes

Figure 11. Hashes data type in Redis /14/

Hashes is designed to store simple and complex data objects in the Redis server.

For example, user profile. /14/

For the considering of optimizing the performance for data query, the data struc-

ture in the cache layer in this study should be designed both for speedy writing

and fast reading with clear organization and minimum converting operation.

Based on this consideration, it can be analyzed that Lists has a fast writing speed

but it takes a longer time for the reading operation; sets is designed for data opera-

tion in Redis than data storage; both Lists and Sets have flat data structure which

may bring more converting operation in practice; Hashes has both speedy writing

and reading capacity and brings a multiple layers structure which is very suitable

for the need of the study in this thesis. Consequently Hashes is a best choice and it

is adopted.

2.2.2 Key-Value based data structure

Redis is a Key-Value based NoSQL database. Naturally a Key-Value based data

structure is desired for the cache system upon it.

As stated in the preceding, the data record is distinguished by the Manufacturer

Identification (mid) and grouped by the hour when they are generated (epocHour).

One effective solution for the key of a data collection is to compose mid and

epocHour. Therefore, the reference key is designed in string format as:

mid − epocHour (1)

For example: “33156-1462435200000”.

The value part in a Key-Value pair is discussed in previous session: a Hashes data

type is adopted. Therefore the data structure can be depicted as:

[𝑚𝑖𝑑 − 𝑒𝑝𝑜𝑐𝐻𝑜𝑢𝑟]𝑘𝑒𝑦 − [𝐻𝑎𝑠ℎ𝑒𝑠]𝑣𝑎𝑙𝑢𝑒 (2)

In the studied cache system, the desired output should contains values of queried

mid, epocHour, timestamp and processed data, and the latter should be grouped

by epocHour. The mid and epocHour are organized in the reference key in the

first layer of data structure, next the timestamp and processed data should be con-

sidered. Hashes is also a collection which stores Key-Value pairs in which the

“key” position is perfect for the timestamp and the “value” position is filled by

actual data. The structure of Hashes here can be depicted as:

[𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝]𝑘𝑒𝑦 − [𝑑𝑎𝑡𝑎]𝑣𝑎𝑙𝑢𝑒 (3)

For example: “1462436156558-65.0235”

The complete data structure design is:

[𝑚𝑖𝑑 − 𝑒𝑝𝑜𝑐𝐻𝑜𝑢𝑟]𝑘𝑒𝑦 − [
 (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)𝑘𝑒𝑦 − (𝑑𝑎𝑡𝑎)𝑣𝑎𝑙𝑢𝑒

 (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)𝑘𝑒𝑦 − (𝑑𝑎𝑡𝑎)𝑣𝑎𝑙𝑢𝑒
. .]

𝑣𝑎𝑙𝑢𝑒

 (4)

 27(87)

Figure 12. Data structure design in cache

With this data structure, the needs of the analytic cluster are fulfilled and the data

converting operations are kept to a minimum degree. It is an effective design for

the cache system in the study of this thesis.

3. CACHE STRATEGY

The cache strategy is the major focus in this thesis. The cache strategy is devel-

oped for managing the cached data and enhancing the efficiency of the usage of

the caching storage. In this study, the cache strategy can be mainly divided into

two layers. The first layer is upon the Redis database level, the in-built LRU im-

plementation is deployed. The second layer is built on the microservices in this

study on which the various cache algorithms can be used. In this thesis scope, the

Proactive Caching is introduced and implemented.

3.1 LRU in Redis

Least Recent Use (LRU) is an extensive use cache algorithm. Typically, in LRU

the least recently used items are firstly discarded when the storage is full. In origi-

nal LRU solution, a track of when the stored data is used is desired, it could be

expensive, if it needs to be ensured that the algorithm always discards the actual

least recently used item. Namely the operation could consume much system re-

sources. /3/

Figure 13. Traditional LRU caching schema /15/

 29(87)

3.1.1 Approximated LRU algorithm

In this study, the LRU implementation provided by Redis is adopted. The Redis

implementation is not a strict LRU version that can be called as “Approximated

LRU”, in which a concept of sampling is introduced. The reason why the real

LRU is not used is that it is too expensive of the system resource for maintaining

the “cache-line” and evicting the precise least recently used one. This means that

it does not work to find and pick the best candidate that is least recently used for

eviction. Instead, a sampling program will be run via which a small group of keys

will be selected, and the one with the oldest access time within this group will be

evicted.

 The pseudo-code

BEGIN

SAMPLE_AMOUNT <- 10 // Amount of samples
sample_group <- empty set //Initiating the sample group
/*Populating the sample group by random algorithm*/
index <-0
REPEAT
 sample_group[index] = pick data via randomized algorithm
 index ++
UNTIL index >= SAMPLE_AMOUNT

lru_data <- null // For recording LRU data
/*Looking for the LRU data in sample group*/
index <-0
REPEAT
 IF lru_data == null ||
 lru_data.timestamp > sample_group[i].timestamp
 {
 lru_data = sample_group[i]
 }
 index ++
UNTIL index >= sample_group.length

/*Evicting*/
remove lru_data

END

 The Flow chart

Figure 14. Flow chart of sampling in Approximated LRU

 31(87)

 Comparing Approximated LRU and LRU

Although Approximated LRU is not a strict LRU version, in practice the approx-

imation is virtually equivalent to the application using Redis. A test of the differ-

ence between the LRU approximation used by Redis and the true LRU is per-

formed, the result is represented graphically below.

The figures below show the test which filled a Redis DB with a set of data. The

data were wrote in sequence, therefore the first set of inserted data has highest

priority to be evicted in a strict LRU algorithm. /16/

Figure 15. Graphical comparison of Approximated LRU and LRU /16/

There are three colors of points in the figures above, creating three separate area.

It can be observed that the ash grey parts stand for the keys which were evicted.

The gray parts stand for the keys that were not evicted. The green parts stand for

the keys that were added. It is expected that in a theoretical LRU implementation,

the first half within the older keys will be evicted, as showed on the first figure.

And in the Approximated LRU algorithm will instead only probabilistically evict-

ing the older keys. /16/

From the figures of comparison above it can be observed that, the more samples

are token the better precision is achieved in the Approximated LRU, correspond-

ingly the more system resource will be consumed. It also can be found that when

the number of samples reaches 10, in Redis 3.0 the result of approximation LRU

is already very close to the theoretical LRU solution.

3.1.2 The configuration for Approximated LRU in Redis

For enabling the Approximated LRU in Redis database level, there are several op-

tions should be configured from the “redis.conf” file within the Redis server.

 maxmemory

“maxmemory” is a configure option for setting the maximum memory the corre-

sponding Redis instance can use. For example, in this study, it is expected that 2

Gigabits of the memory should be used, then:

maxmemory 2gb

 maxmemory-policy

“maxmemory- policy” is a configure option for setting the policy of data eviction

after the current data amount exceeds the limit which is set by “maxmemory”. The

current supported policies are listed below:

Policy Name Description

noeviction Erros will be returned errors when the memory is full and the

client is still trying to perform the sort of operation which

causes the more use of the memory.

allkeys-lru All of the existing keys is in the sampling scope for the LRU

algorithm for eviction which create room for new joined data.

 33(87)

volatile-lru Only the keys with expiring set of the existing keys is in the

sampling scope for the LRU algorithm for eviction which cre-

ate room for new joined data.

allkeys-random Random keys will be evicted for the sake of making space for

the new data added.

volatile-random Random keys will be evicted for the sake of making space for

the new data added, but the only the keys with expiring set will

be involved in the randomized scope.

volatile-ttl Only keys with an expiring set will be evicted when the

memory is full, and the eviction of keys will follow the rule of

a shorter time to live (TTL) first.

Table 4. Eviction policy list and description /16/

In the study of this thesis, the “allkeys-lru” is adopted, then:

maxmemory − policy allkeys − lru

 maxmemory-samples

“maxmemory- samples” is a configure option for setting the amount of samples

which will be collected by a randomized algorithm for the Redis data storage, and

the collected samples will be examined to find the least recently used one among

the samples when the storage size reaches the limit that is set by “maxmemory”.

In the study of this thesis, the number 10 is firstly adopted and it might be modi-

fied in the further development if needed, then:

maxmemory − samples 10

3.2 Optimizing for LRU in Redis

There are two points which are developed in this study for optimizing the perfor-

mance of the LRU solution in the first layer of the cache strategy. These optimiza-

tions are developed based on the characters of sensor data in the target IoT system

which are chronological, static and voluminous.

3.2.1 TTL

Time to live (TTL) is an operation that is setting a limit of lifespan for an item in

the system. Within the scope of this study, the mentioned item is the cached data.

Setting of TTL is an optional optimizing point for near real time data query from

client, such as stream processing. By setting TTL, the data will be expired and

evicted in a given time period which will proactively clean the cache storage for

reducing the chance of eviction sampling operation in Redis and leading a more

efficient cache storage usage.

3.2.2 Placeholder

As mentioned in the preceding, in the target IoT system, the data is normally gen-

erated from sensors. This category of data is generated following the timeline and

stored as logs for further use which will never be updated or individually deleted.

It can be summarized that it is strictly chronological and invariable. Moreover, in

practice, it is possible that in some period of time there is no data generated in

some sensors. Therefore the data is not always sequential. In this thesis, the data is

grouped by hour when they are generated and therefore it can be analogized that

the data is generated as a series of block following the timeline, and at some peri-

od of time, there is no block existing and the absence lasts permanently.

Figure 16. Inconsecutive data generating

 35(87)

As shown in the figure above, the dark blocks stand for the existing data, the grey

ones stand for the lacking data in the timeline.

In the first layer of cache strategy, cache server receives data after the query oper-

ation from client, for example when client queries the data in the timespan from

timestamp 1 to timestamp 9 as depicted in figure 16, the cache will receive the

data block 1, 2, 3, 4, 5 and 9, and they will be kept in the cache storage. Next time,

when client queries from the same timespan (timestamp1 to timesptamp9), the

cached data will be returned. But there is an issue raised here, since the data block

at timespan (grouped by hour) 6, 7, 8 are not existing in the cache, a query opera-

tion from data center will still be triggered. Obviously this operation gets no data.

However, it is evitable. Since the data within this study is strictly chronological

and invariable, the absence of data in some timespan will never be filled, the

aforementioned database query operation should be prevented for performance

optimization.

For preventing the redundant query operation descripted above, one concept of

“placeholder” is introduced here. It can be descripted as: when populating the

cache with queried data, filling the timespan (by hour) which return no data a

placeholder in the cache. The placeholder is only a mark in the storage of cache

which only marks the place is fulfilled and takes a small and constant room.

The formula of stored cache data collection is:

∑ 𝑓(𝑖) = {
𝑃, 𝑙𝑒𝑛(𝑖) ≤ 0
𝐻, 𝑙𝑒𝑛(𝑖) > 0

𝐿

𝑖=0

Where L is the count of hours in the timespan of the incoming query, i stands for

the index of data block in the return data, P stands for the placeholder, H stands

for the Hashes data type in Redis, len(i) stands for the amount of data record in

the data block under index i.

On the implementation perspective, for coherence of cache storage, the place

holder is also formed by a Hashes data type with the key of “mid-epochHour”.

Because of the constraint from the Redis database, an empty Hashes cannot be

kept in the database. Hence, inside the corresponding Hashes, instead of the real

data one and only one pair of the constant string “EMPTY_TAG”:“EMPTY_TAG”

will be set. Then, on the caching reading phase, one filter for filtering the place-

holder is added which distinguishes placeholder according to both length of the

examined Hashes and the mark which is given “EMPTY_TAG”.

 Flowchart of “Placeholder” optimizing:

 37(87)

Figure 17. Flowchart of “Placeholder” optimizing

 The pseudo-code

BEGIN

/*Initiating system resource*/
HOUR <- 1000 * 60 * 60
EMPTY_TAG <- "EPT"
db <- Data_center_connection
redisCache <- Cachec_luster

/*Initiating query parameters*/
mid <- MID
start <- start timestamp
end <- end timestamp

/*Calculating epocHours in the time range from query*/
epochours <- calculating epochours from start and end
length <- length of epocHours
index <- 0

/*storing the epochour under which data is missing*/
epocHours_lack <- empty colletion

/*storing data found from cache*/
hit_data_from_cache <- empty colletion

/*Search in cache*/
REPEAT
 key <- mid+"-"+epochours[index]
 data <- search reqult from redisCache by key

 /*If cache hit, filtering the placeholder
 and add result to return data*/
 IF data is found
 {
 filtering the Placeholder by examining EMPTY_TAG
 IF data is not a Placeholder
 {
 hit_data_from_cache add data
 }

 }

 /*If cache miss, mark the missing epochour*/
 ELSE
 {
 epocHours_lack add epochours[index]

 39(87)

 }
 index ++
UNTIL index >= length

/*If no missing epochhour is marked,
return the result*/
IF epocHours_lack.length <= 0
{
 RETURN hit_data_from_cache
}
/*If some data missing, query from DB*/
ELSE
{
 data_set_from_DB <- query from db

 /*Inserting placeholder if return data is not sequential*/
 IF data_set_from_DB is not sequential
 {
 REPEAT
 /*Assembling placeholder*/
 placeholder_key <- mid+"-"+missing epochour
 placeholder_value <- Hashes: [EMPTY_TAG:EMPTY_TAG]
 placeholder <- placeholder_key:placeholder_value
 insert placeholder into redisCache
 UNTIL all missing epochours is inserted as placeholder
 }

 /*merge data set queried for cache and DB*/
 return_data_set <- data_set_from_DB + hit_data_from_cache

 /*Return final result*/
 RETURN return_data_set
}

END

3.3 Proactive Caching

Proactive caching is firstly introduced by Microsoft SQL Server Analysis Services

for optimizing the performance of caching in use case of near real time data hous-

ing and business intelligence. This is also an ideal idea for enhancing the caching

performance in the analytic cluster in an IoT system when the near real time data

querying is required, for example, stream data processing. In traditional cache

mechanism, the cache layer retrieves data reactively in which the data is queried

from database and filled in cache when a request comes and corresponding data is

missing in the cache.

Figure 18. Traditional cache pattern /17/

 Contrast to traditional cache pattern, in Proactive Caching pattern, the fresh data

is regularly queried from the database and updated in the cache, which allows the

clients read near real time data directly from cache. By using Proactive Caching,

the caching performance of near real data housing is enhanced and the load of

center database in concurrence is reduced.

Figure 19. Proactive Caching pattern /17/

 41(87)

Proactive Caching is adopted in the second layer of the cache strategy. And in the

target IoT system, Apache Kafka message queue is adopted as message broker

between the data source (sensors) and consumers (center database and other

backend components). Based on this architecture, the solution of Proactive Cach-

ing used in this study is even more aggressive that instead of regularly querying

for center database, the data is collected directly from the data source by register-

ing a consumer in the Kafka message queue and listening to the topics of given

sensors for which the Proactive Caching is enabled.

3.3.1 Zookeeper and Kafka

In the current phase of development, it is preferred to establish a separate Kafka

message queue then directly using the one in production server. For starting the

Kafka message queue, a Zookeeper and a Kafka server are required.

Zookeeper is a configuration service, which is designed for the distributed system.

In the general practice, the Apache Kafka is deployed upon the ZooKeeper which

notably reduce the complex for the development and maintenance. /18/

For enabling the Zookeeper and Kafka service, firstly they should be downloaded

and installed in the development machine. Then, under the windows folder of

Kafka server, the commands below should be run:

zookeeper − server − start. bat config\zookeeper. properties

And

kafka − server − start. bat config\server. properties

Figure 20. Zookeeper service is running

Figure 21. Kafka service is running upon the Zookeeper

The Screenshot above shows that Zookeeper is up running at port 2181, Kafka

connects to Zookeeper and is running of port 9092. After the Kafka is running

correctly, the step can be move to next.

3.3.2 Simulated data source

After the Kafka message queue is available on development machine, a simulated

data source can be developed for further use. The simulated data source is fairly

simple and it consists of two parts: A topic in Kafka message queue and a single

thread application acts as producer and sends a message via given topics. For cre-

ating a topic in Kafka message queue, the following command should be run un-

der the windows folder of Kafka server:

 43(87)

kafka − topics. bat − −create − −zookeeper localhost: 2181 − −replication

− factor 1 − −partitions 1 − −topic pdata − test

The command above creates a topic “pdata-test” with 1 partition and 1 replication.

The result of topic creation can be tested by the command:

kafka − topics. bat − −list − −zookeeper localhost: 2181

It can be checked in the screen that the topic “pdata-test” is created.

Figure 22. List of created topics in Kafka

The simulated producer is an independent Spring Boot application which connects

to the Kafka message queue and generating dummy data and publishes them via

the topic which is created in the last step. The simulated producer uses the official

provided java library “kafka-clients-0.9.0.0”.

Firstly the configuration for connecting to development Kafka message queue is

set:

bootstrap.servers=127.0.0.1:9092
acks=all
retries=0
batch.size=16384
auto.commit.interval.ms=1000
linger.ms=0
key.serializer =
org.apache.kafka.common.serialization.StringSerializer

val-
ue.serializer=org.apache.kafka.common.serialization.StringSe
rializer
block.on.buffer.full=true

Secondly the application imports the class “KafkaProducer” and “ProducerRecord”

from library “kafka-clients-0.9.0.0”, loads the configuration, connects to the de-

velopment Kafka service, continually generates dummy messages with “mid”,

“timestamp”, “valdouble” in JSON format simulating a sensor does and publishes

them via topic “pdata-test”.

 Pseudo codes:

BEGIN

/*Simulated senensor identification*/
MID <- 30979

/*Setting configuration info for connection*/
Properties <- Configuration_Info

/*Importing helper class from "kafka-clients-0.9.0.0"*/
IMPORT KafkaProducer
IMPORT ProducerRecord

/*Initiating KafkaProducer by loading configuration*/
producer <- KafkaProducer.load(Properties)

/*Repeating sending message with JSON format via given topic
 simulating a sensor*/
REPEAT
 /*Creating simulating data*/
 jsonObj <- {MID, current timestamp, random value}
 /*Testing topic*/
 topic <- "pdata-test"
 kafkaMessage <- ProducerRecord(topic, jsonObj)
 /*Publishing the message*/
 producer.SEND(kafkaMessage)
UNTIL TERMINAL

END

 45(87)

3.3.3 Consumer in Kafka

In this study, a Kafka consumer performs as bridge between data source (producer)

and cache layer. It is built as a separate Spring Boot component which can be

started and terminated according to configuration information and does not influ-

ence other threads. In the same way as the simulated producer, the consumer uses

the officially provided java library “kafka-clients-0.9.0.0”.

Firstly the configuration for connecting to Kafka message queue for development

is set:

bootstrap.servers=localhost:9092
group.id=test
enable.auto.commit=true
key.deserializer=org.apache.kafka.common.serialization.Strin
gDeserializer
val-
ue.deserializer=org.apache.kafka.common.serialization.String
Deserializer

session.timeout.ms=10000

These buffer sizes seem to be needed to avoid consumer
switching to a mode where it processes one bufferful
every 5 seconds with multiple timeouts along the way.
fetch.min.bytes=50000
receive.buffer.bytes=262144
max.partition.fetch.bytes=2097152

Next, the application imports the class “KafkaConsumer”, “ConsumerRecord”

and “ConsumerRecords” from library “kafka-clients-0.9.0.0”, loads the configura-

tion and connects to the development Kafka service. A reference of cache service

which maintains the cache layer is injected in running time by using the Spring

feature “Dependency Injection” (DI).

After the connection with the Kafka service is established, the consumer sub-

scribes to the given Topic “pdata-test” and listens to the coming message. When

the message comes, it will be decoded from the JSON format into values and up-

dated to the cache layer.

 Pseudo codes:

BEGIN

/*Simulated senensor identification*/
TOPIC <- pdata-test

/*Setting configuration info for connection*/
Properties <- Configuration_Info

/*Importing helper class from "kafka-clients-0.9.0.0"*/
IMPORT KafkaConsumer
IMPORT ConsumerRecord
IMPORT ConsumerRecords

/*Import Cache_service by Dependency Injection
in running time*/
IMPORT Cache_service

/*Initiating KafkaConsumer by loading configuration*/
consumer <- KafkaConsumer.load(Properties)

/*consumer subscribe to the given topic*/
consumer.subscribe([TOPIC])

/*consumer listens to the message from Kafka service*/
REPEAT

 consumer listen to the subscribed topic

 IF message comes
 {
 /*Messages comes as a set*/
 ConsumerRecords <- message.getRecords
 REPEAT
 /*Iterating the message set*/
 ConsumerRecord = ConsumerRecords.next

 /*Decoding*/
 data <- DECODE_JSON(ConsumerRecord)

 /*Updating the cache via Cache_service*/
 Cache_service.update_cache(data)

 47(87)

 UNTIL all records are processed
 }

UNTIL TERMINAL
END

3.4 Aggregation

It can be summarized that the cache strategy in this study contains 2 independent

layers. The first layer is an optimized LRU solution which performs as basic

cache policy and which is deployed across the database layer and service layer.

The second layer, Proactive Caching solution, acts as supplement cache policy for

optimizing the cache performance in near real time data process scenario. It is lo-

cated in an individual service component and it can be initiated and terminated via

configuration according to the requirement. The two layers collaborate and main-

tains the same cache database cluster.

Figure 23. Aggregation of cache strategy

4. CLUSTER TOPOLOGY MODEL

For the sake of stability and scalability, it is important that data is kept in a repli-

cated manner. In the study of this thesis, instead of using the single node database,

Redis database cluster is involved. A consideration of how the nodes in the cluster

are connected and what is the way they collaborate is raised. The targets of the

cluster topology model design are two points:

1. Splitting dataset among multiple nodes

2. Continuous operations when a subset of the nodes are failures

Different to most common cache solutions which have low write and high read

scenario, the cache in this study needs to cater for both high write concurrency

from Proactive Caching mechanism and high read concurrency from client which

is analytic cluster.

4.1 Master – Master Model

In the built-in solution for replication provided by Redis which is a simple Master

– Slave replication, the slave node only has read capacity. Therefore, for catering

for the high concurrency for write, a Master – Master topology model is intro-

duced.

 49(87)

Figure 24. Master – Master topology mode /14/

A Master – Master topology model connects multiple Redis databases forming a

master cluster in which every node carries both read and write capabilities. This

solution solves the need of high concurrency in write. In the Master – Master to-

pology model, the dataset is partitioned among the master nodes within the cluster

according to a given rule.

Many databases come with the in-built capability for sharding the data across

nodes. The advantage of in-built dataset sharding is that, apart from high concur-

rency in writes, it provides a mechanism of partial failure tolerance. Namely, even

if one of the nodes in the cluster goes down, but the cluster can still maintain the

response for request correctly and continuously.

Redis does not natively provide the solution for aforementioned data sharding.

However, it is applicable to build logic upon the Redis cluster, which performs to

shard and store the dataset which will still enable the capability for catering high

concurrency in write. In the study of this thesis, the sharding logic can be de-

ployed on the Spring Boot based service, which will be descripted detailed in the

following implementation session and Data Partitioning Algorithm chapter.

4.2 Master – Slave Model

Besides the high concurrency in write, the high concurrency in read is another re-

quirement which should be satisfied on the cache layer in the study of this thesis.

For archiving this target, a Master – Slave model is considered.

Figure 25. Master – Slave topology mode /14/

In a Master – Slave model, master is the node for data writing and then the data is

replicated into all the slave nodes which response for the data read request. The

replication performances are asynchronous, namely when the master node re-

ceives a data writing, the slaves are not written synchronously. But a separate pro-

cess performs the replication asynchronously; in other words eventual consistency.

This mechanism brings lower impact of performance. In contrast, if the synchro-

nous replication is deployed instead, the master will update all the slaves synchro-

nously when a data is written and then only all updates are performed, this data

writing operation can be marked as a success and finished. Obviously the more

performance penalty will be brought.

Redis provides an in-built Master – Slave solution in database level which brings

in production performance, failure-tolerance and linear scalability up to 1,000

nodes. Therefore it is adopted in the study of this thesis.

4.3 Master – Master – Slave Model

After the introduction of both Master – Master and Master – Slave topology mod-

el, an integration of them that is able to cater high concurrency in both write and

read can be made. It’s called “Master – Master – Slave” topology model.

 51(87)

In the “Master – Master – Slave” topology models, a set of master nodes connect

together forming a sub-cluster which consumes all of the write operation and the

dataset is sharded among the master nodes according to the data sharding algo-

rithm, Consistent Hashing. The data partition in every master node is replicated

into a group of slave nodes in which each slave node keeps a complete copy of

data from corresponding master node. And the slave nodes response all of the read

request. Besides the combination of the advantage of Master – Master and Master

– Slave topology model, Master – Master – Slave solution also brings an extra

flexibility when the cluster is extending. When the concurrency in write is in-

creasing, the more nodes can be added in Master sub-cluster, when the concurren-

cy in read is increasing, the more slaves nodes can be added.

Figure 26. Master – Master – Slave topology model

4.4 Implementation

For enabling the Master – Master – Slave topology model in the Redis cluster,

there are mainly two tasks. The first one is connecting the set of master nodes vir-

tually by the sharding algorithm, the second one is up running and configuring a

given set of slave nodes for each master nodes.

4.4.1 Sub-cluster of master nodes

Since the Redis does not originally support the Master – Master topology, the

connection of master nodes should be maintained by additional service with the

implementation of a data partitioning algorithm. In this research the service is

formed by a Spring Boot application and it acts like a hub for every request to the

cache cluster.

 Pseudo codes:

BEGIN

/*Initial the sub-cluster of master*/
REPEAT
Nkey <- Hash(masterNode)
master_pool.add(Nkey:masterNode)
UNTIL all master nodes are added

/*Only read and write operation is required*/
REPEAT
 listen to the event

 /*If a write request comes, the value
 is distributed to mapped node*/
 IF event comes && event = "write"
 {
 Vkey <- Hash(value)
 Nkey <- Mapping_by_algorithm(Vkey)
 masterNode <- master_pool.get(Nkey)
 masterNode.addValue(value)
 }

 /*If a read request comes, the value
 is read from a slave node*/
 IF event comes && event = "read"

 53(87)

 {
 Vkey <- Hash(key)
 Nkey <- Mapping_by_algorithm(Vkey)
 slaveNode <- master_pool.get_a_slave(Nkey)
 response <- slave.read(key)
 return response
 }

UNTIL TERMINAL

END

4.4.2 Sub-cluster of Master - Slave

After the arrangement of the master nodes, the corresponding slave nodes can be

connected to each of them. This step can be done by using Redis in-built Master –

Slave mechanism. A “redis.conf” file which contains the configuration infor-

mation in Redis server plays important role here, in which the slave node related

options is configured.

The major options about the configuration for slave node are listed in the table

below:

Configuration option Description

slaveof <masterip> <masterport> Master-Slave replication. slaveof is used to

make a Redis instance a replication of an-

other Redis server.

slave-priority <number> The slave-priority is used by Redis Sentinel

for the selection of new master node from

the slave nodes when the current master

node is down. The slave-priority is repre-

sented with an integer number. The lower

number represents the higher priority in

selection. But the integer 0 is with a special

setting. If a slave node is set slave-priority

= 0, it will not be selected to be the master

node.

masterauth <master-password> Password for connection, if the master is

password protected.

slave-serve-stale-data <boolean> When the connection between the slave

and its master is broken, or when the repli-

cation is still in progress, there are two op-

tions for the slave to perform:

[no]: the slave will answer to all the sort of

request of “SLAVEOF” and “INFO” with

an error "SYNC with master in progress".

[yes]: the slave will still answer with the

existing data to client requests.

repl-ping-slave-period <number> Slaves send PINGs to server in a prede-

fined interval.

repl-timeout <number> Timeout for:

3) Slave timeout in the masters’ perspec-

tive.

2) Master timeout in the slaves’ perspec-

tive.

1) Bulk transfer I/O during SYNC, in

slaves’ perspective.

repl-disable-tcp-nodelay <boolean> After SYNC, Disabling the

TCP_NODELAY on the slave socket:

[no]: the less delay but the more bandwidth

 55(87)

will be used.

[yes]: The smaller number of TCP packets

and less bandwidth are used when sending

data to slaves. However, in slaves’ sides,

the extra time is consumed when receiving

these data.

repl-backlog-size <size> Setting the replication backlog size which

is a buffer for keeping the slave data when

slaves are offline for some while. When the

disconnected slaves go online, a full resync

might be avoid, since a partial resync could

be already enough, which just passes the

portion of missed data while the slaves are

disconnected.

repl-backlog-ttl <number> Defining how long time the data will be

buffered when the slaves are disconnected.

Table 5. Redis configuration options for slave node /19/

As example, in this study, these values are set for establishing a slave node:

Current slave node will run at port 16380, with offset 1000 to its master node

port 16380

The master node for this slave node is located in development machine on port

6380

slaveof 127.0.0.1 6380

Because of the limit of Master – Master – Slave topology model at current phase,

a slave should not be promoted to a master node when its master node is down.

slave − priority 0

The slave node should continuously reply to the client when its master node is

disconnected for consistency.

slave − serve − stale − data yes

Slave sends PING to master node in every 10 seconds

repl − ping − slave − period 10

The timeout is 60 seconds for bulk SYNC, slave-master communication

repl − timeout 60

TCP_NODELAY on the slave socket after SYNC should be enabled

repl − disable − tcp − nodelay no

The replication backlog which acts as buffer, the size is set to 1mb

repl − backlog − size 1mb

The backlog will be freed after a master has disconnected with slaves for 1 hour,

repl − backlog − ttl 3600

 57(87)

5. DATA PARTITIONING ALGORITHM

For maintaining the data partitioning among the distributed cache cluster, a proper

data partitioning algorithm should be deployed. The algorithm which is adopted in

this study is Consistent Hashing.

Consistent Hashing is one of distributed hash table (DHT) algorithms. It was in-

troduced by Massachusetts Institute of Technology (MIT) for relieving Hot Spots

on the World Wide Web (WWW). Consistent Hashing solves the problems

brought from CARP which performs simple hash algorithm, and deploys the DHT

in P2P environment in practice. /20/

Consistent Hashing is defined with 4 properties:

 Balance

When given a specific view 𝒱 a set of items which are selected from the hash

family by a randomly chosen function. If also it has high probability the fraction

of items mapped to each bucket is O(1/|𝒱|), a ranged hash family is balanced.

/20/

 Monotonicity

When for all views 𝒱1 ⊆ 𝒱2 ⊆ ℬ, 𝑓𝑣1
(i) ∈ 𝒱1 implies𝑓𝑣1

(i) = 𝑓𝑣2
(i), the ranged

hash function f is monotone. Also, a ranged hash family is monotone, if all ranged

hash function in which is. /20/

 Spread

Set 𝒱1 …𝒱𝑣 be a group of views, which consist of C different buckets and each of

them individually having at least C/t buckets. The spread σ(i) is the quanti-

ty |{𝑓𝒱𝑗
(𝑖)}𝑗=1

𝑉 |, for a ranged hash function and a specific item i. The maximum

spread of an item is the spread of a hash function σ(f). When with high probabil-

ity, the spread of a hash family is σ. σ is also the spread of a random hash function

from the family. /20/

 Load

A set of V views is defined as before. For a bucket b and a ranged hash function f,

the load λ(b) is the quantity| ⋃ 𝑓𝒱
−1(𝑏)𝒱 |. The hash function’s load is the maxi-

mum load of a bucket. When with high probability the load of a hash family is λ, a

randomly chosen hash function also has load λ. (Note that 𝑓𝒱
−1(𝑏) is the set of

items assigned to bucket b in view 𝒱) /20/

Where ℐ is the group of items, ℬ is the group of buckets and i is item. A view (𝒱)

is any subset of the buckets ℬ. f (𝒱, i) is the bucket, to which item i is assigned in

view 𝒱 and f (𝒱, i) = 𝑓𝒱(𝑖). It is required that 𝑓𝒱(ℐ) ⊆ 𝒱 for every view 𝒱 because

items should only be assigned to usable buckets. /20/

5.1 Simple hash solution

The formula of simple hash solution is

hash(o) mod N

Where o stands for the object which is distributed into the cluster, N stands for the

amount of the node within the cluster.

For the sake of more understandable description, it is assumed that there are 3

nodes in the cluster, the indexes of them are 𝑛1, 𝑛2, 𝑛3, and there are 10 objects

should be distributed among the cluster which is 𝑜𝑖 , 𝑖 ∈ [0,10).

In the simple Hash solution, firstly each object will be hashed into a distinguish

hash value, the hash value v is calculated:

𝑣𝑖 = ℎ𝑎𝑠ℎ(𝑜𝑖), 𝑖 ∈ [0,10) (1)

 59(87)

Next, the index n of node for each value should be stored in can be calculated:

𝑛𝑖 = 𝑣𝑖 % N, N = 3 𝑖 ∈ [0,10) (2)

Now each object is distributed into the cluster in the corresponding node.

But the problem is raised when there is even a single node which is added or re-

moved to the cluster, namely the range value N is changed. According to the for-

mula 𝑛𝑖 = 𝑣𝑖 % N, the distribution value 𝑛𝑖 of all objects originally stored in this

cluster is changed. It means that once the change of node happen, all of objects

stored in the cluster should be re-distributed. Obviously it is too expensive in the

maintaining perspective on a production environment.

5.2 Consistent Hashing solution

One of the solutions for the problem occurs in the simple hash is Consistent Hash-

ing.

5.2.1 Hash Ring

It is known that the hash function actually maps objects and caches to a number

range which is [0, 232 − 1]. In Consistent Hashing, the hash space is treated as a

closed ring, called Hash Ring.

Figure 27. Hash Ring

5.2.2 Mapping of objects

As in the previous session, it is assumed that there are 3 nodes in the cluster, the

index of them are 𝑛1, 𝑛2, 𝑛3, and there are 10 objects which should be distributed

across the cluster which are 𝑜𝑖 , 𝑖 ∈ [0,10).

Firstly each object is hashed into a distinguished hash value, and each object is

mapped in the Hash Ring. The hash value v is calculated:

𝑣𝑖 = ℎ𝑎𝑠ℎ(𝑜𝑖), 𝑖 ∈ [0,10) (1)

Figure 28. Objects are mapped in the Hash Ring

5.2.3 Mapping of nodes

In the same way as objects, each node is also hashed to a hash value by providing

its identification value, for example IP address + port. Next, each node is mapped

in the Hash Ring. The hash value V is calculated:

𝑉𝑗 = ℎ𝑎𝑠ℎ(𝑛𝑗), 𝑗 ∈ {1,2,3} (2)

 61(87)

Figure 29. Nodes and Objects are mapped in the same Hash Ring

In this phase, it can be observed that nodes and objects are crossly mapped in the

Hash Ring. Next, each object will be stored in the node which is closest to it in the

clockwise:

𝑛𝑖 = 𝑣𝑖 ≺ 𝑉𝑗(𝑐𝑙𝑜𝑘𝑤𝑖𝑠𝑒), 𝑗 ∈ {1,2,3} 𝑖 ∈ [0,10) (3)

Where the operator ≺ stands for the operation that, finding the nearest node 𝑉𝑗 on

the Hash Ring in clockwise for 𝑣𝑖 .

Figure 30. Each object is stored in the node by Consistent Hashing

The distribution of objects in the cluster can be observed:

𝑛1= [1, 3, 4, 9],

𝑛2 = [5, 6],

𝑛3 = [0, 2, 7, 8]

5.2.4 Adding and removing of nodes

Consistent Hashing is a good solution for reducing the data migration when nodes

added or removed from the cluster. For example, it is assumed that 𝑛2 is removed

from the cluster.

 63(87)

Figure 31. One node is removed from cluster

It can be observed that there are only objects 𝑜5, 𝑜6 which are originally stored in

𝑛2 should be reallocated in 𝑛3, the others remains in same node. Therefore

roughly there are
1

𝑁
 fraction of data is influenced.

Next, it is assumed that there is a new node 𝑛4 which is joined into the cluster.

The V for the new node is also calculated: 𝑉4 = ℎ𝑎𝑠ℎ(𝑛4), and 𝑛4 is mapped in

the Hash Ring via 𝑉4.

Figure 32. One node is added to cluster

It can be observed that when 𝑛4 is joined, for which only object 𝑜5 which is origi-

nally stored in 𝑛2 should be reallocated in 𝑛4, the others remains in same node.

Therefore there are roughly
1

𝑁+1
 fraction of data which is influenced.

5.2.5 Virtual node

It is easy to find from the previous description that, the node and objects are ran-

domly distributed in the hash space, the load balance among the nodes is not

guaranteed. For instance, in the production environment, it is very possible that

there are two nodes, 𝑛𝑥 and 𝑛𝑥+1, which are very close, in this case most of the

objects near them in clockwise will be stored in the 𝑛𝑥 and 𝑛𝑥+1and gets rarely

the chance. For enhancing the balance among the nodes, the concept of “Virtual

node” is introduced. The idea is to replicate each node by multiple virtual nodes

and these virtual nodes are spread in the hash space instead of the real node. When

the object is matched with a virtual node, it will actually be stored in a corre-

sponding real node. There are multiple ways to create virtual nodes for a node, for

example, one of the easiest solutions can be adding a suffix to the identification of

a node, as follows:

 65(87)

host: port#1

host: port#2 ..

And the hash value 𝑉𝑣of the virtual node for a node n can be calculated by:

𝑉𝑣𝑖 = ℎ𝑎𝑠ℎ(𝑛 + 𝑠𝑖)

Where s stands for suffix.

Figure 33. Virtual node

5.3 Pseudo-code of Consistent Hashing

BEGIN

numberOfReplicas <- number // Number of virtual nodes
circle <- HashMap //Hash Ring

/*Initiating by adding initiate nodes*/
INITIAL
{
 REPEAT
 add(node)

 UNTIL all initial nodes are added
}

/*Function for adding node to Hash Ring*/
FUNCTION addNode(node)
{
 /*Adding Virtual nodes instead of real node*/
 index <- 0
 REPEAT
 /*Generating virtual nodes hash*/
 hash <- HASH(node.Identification +"#"+index)
 circle.put(hash, node);
 index ++
 UNTIL index >= numberOfReplicas
}

/*Function for revoming node to Hash Ring*/
FUNCTION removeNode(node)
{
 /*Removing Virtual nodes*/
 index <- 0
 REPEAT
 hash <- HASH(node.Identification +"#"+index)
 circle.remove(hash, node);
 index ++
 UNTIL index >= numberOfReplicas
}

/*Function for setting object into cluster*/
FUNCTION setObject(key, object)
{
 hash <- HASH(key)

 /*Get subset of circle which hash values are bigger
 than the hash of incomming key*/
 tailCircle <- circle.getTail(hash)

 /*If the subset is empty, the nearest node in clockwise
 for incomming key should be the first node;
 otherwise, it should be first node in the subset*/
 IF tailCircle is empty
 {
 node_hash <- circle.firstKey()
 }
 ELSE
 {
 node_hash <- tailCircle.firstKey()

 67(87)

 }

 /*Getting the node and saving the object*/
 node <- circle.get(node_hash)
 node saves the key:object
}

/*Function for getting object into cluster*/
FUNCTION getObject(key)
{
 hash <- HASH(key)
 tailCircle <- circle.getTail(hash)
 IF tailCircle is empty
 {
 node_hash <- circle.firstKey()
 }
 ELSE
 {
 node_hash <- tailCircle.firstKey()
 }

 /*Getting the node and getting the object*/
 node <- circle.get(node_hash)
 object <- node gets object by key
 RETURN object
}

END

6. MICROSERVICE

The analytic cluster for which this research is performed is constructed with mi-

croservice architecture based on the Spring Boot. Within a microservice system,

each service is a small building block which is highly decoupled and focused on a

specific task. And these services communicate with each other by a given ap-

proach, for example in this thesis, it is REST. The cache layer discussed in the

thesis is also built as a service in the microservice system in target IoT system.

Figure 34. Brief microservice system structure

Since the cache service is only one part of the microservice system, the micro-

service will be briefly introduced in this thesis.

6.1 Configuration service

It is introduced by the twelve-factor app methodology that configurations for a

microservice application should be stored in the environment, not in the pro-

ject./21/ The configuration service is introduced for this purpose. Configuration

service is a fundamental component in the microservice architecture, it works for

the management of configuration of the system in running time.

In the involved microservice system in this study, the configuration is stored in

several files in the dedicated Git repositories, when the configuration service is

 69(87)

started up, it will reference the path to those configuration files and begin to serve

them up to the microservices that request those configurations. In this pattern, the

configuration is both externalized and centralized in one place that can be version-

controlled and revised without restarting if a configuration needs to be modified.

In Spring Boot solution, when the change of configuration is made, a signal of

refresh to discovery service can be issued that informing all microservices to up-

date their configuration.

6.2 Discovery Service

The discovery service is also a core component of the microservice architecture.

All of the instances of available service in the cluster are maintained by the dis-

covery service. Eureka is adopted in the discussed microservice system for this

purpose.

Eureka is a REST based service. The major functionality of it is locating services

for the load balancing purpose and failover of middle-tier servers, which provides

the solution to automatically discover and connect to other services within the

cluster./22/

6.3 Cache Service

The cache layer which is developed in the study of this thesis is built as a micro-

service in the discussed microservice system. One of the salient advantages of its

flexibility. It makes the cache strategy like Proactive Caching can be easily started

and terminated without influencing other services. Furthermore, the extension like

the deployment of multiple different cache service with different cache strategy

can be more applicable in further development based on the flexibility provided

by the microservice architecture.

7. TESTING AND ANALYSIS

Since the limitation of the current phase of development that the actual distributed

environment for hosting the cache cluster is not ready yet, the tests described in

this chapter were performed in the development machine. Redis version 2.8 is

adopted.

7.1 Cache strategy test

Since there are several limitations including: the actual server for hosting cache

cluster is not available yet, the cache service has to be launched from local devel-

opment machine as the same as the test client and the network condition is not

very stable. A precise testing does not seem applicable. Therefore a small and

rough test is performed instead, and the result should be clear enough to concep-

tually prove the effectiveness of the cache strategy.

A cache strategy test was performed in development machine which hosted the

virtual cache cluster and connected to the center database cluster for development

use in Wapice Ltd. A 500 pieces scale of data set was used for testing. A Postman

client was used as simulated client in the test.

In the test, the client continuously sent a request to the cache service querying da-

ta in a given time period (30 days) of a sensor, and the time consumptions in be-

low 3 cases were collected, which are:

1. Query without cache strategy deployment

2. Query with partial cache strategy deployment (no “placeholder”)

3. Query with full cache strategy deployment

The request for each case was performed 10 times respectivly.

 71(87)

Figure 35. Query without cache strategy deployment

Figure 36. Query with partial cache strategy deployment

Figure 37. Query with full cache strategy deployment

The collected data of the test was time consumption, the unit is ms (millisecond),

and it was collected in the table below:

Without cache strategy

deployment(ms)

With partial cache

strategy deployment

(ms)

With full cache strategy

deployment (ms)

455 269 43

424 498 48

434 344 41

439 373 42

411 322 40

416 382 39

389 357 40

387 363 42

397 358 45

433 365 42

Table 6. Collected data from the strategy test

Chart 1. Collected from strategy test data in line chart

From the data in the table 6, the average time consumption in each case can be

calculated:

 Without cache

strategy deploy-

ment

With partial

cache strategy

deployment

With full cache

strategy deploy-

ment

Average time

consumption(ms) 418.5 363.1 42.2

Table 7. Average time consumption of strategy test

It can be observed from both average time consumption and the line chart of col-

lected data that, generally the time consumption in cases of without cache strate-

0

100

200

300

400

500

600

Without cache
strategy
deployment
(ms)

With partial
cache strategy
deployment
(ms)

With full cache
strategy
deployment
(ms)

 73(87)

gy𝑇𝑛, with partial cache strategy deployment𝑇𝑝, with full cache strategy deploy-

ment𝑇𝑓 is:

𝑇𝑛 > 𝑇𝑝 > 𝑇𝑓

 Result

The cache strategy and the placeholder optimization developed in the study of this

thesis effectively reduce the time consumption of the data query. And it can be

deduced that the load of center database can be reduced.

7.2 Master sub-cluster test

In the test of Master sub-cluster, there were 3 master nodes were up and running

on the port 6379, 6380 and 6381 which formed the master sub-cluster.

Figure 38. 3 master nodes were up running in development machine

In the test, 10 keys with value 0 to 9 were generated and written into the sub-

cluster of master nodes. After the write operation, the 10 written values were read

and printed with the port number of the node in which the value was kept.

Figure 39. Print of the test for master sub-cluster

From the print it can be found that the 10 values are distributed among the 3 mas-

ter nodes. In the progress, when each data was inserted into the cluster, the hash of

the key was calculated and the corresponding node for this data was matched by

Consistent Hashing algorithm. It was proved that the master sub-cluster performs

correctly.

 Conclusion

The Master sub-cluster performed correctly as design, test passed.

7.3 Slave node test

In the test of slave node, a slave node in development machine which replicatesd

the master node at 127.0.0.1 port 6380 was involved. After the slave node started,

the activities had been done were shown in the print from both master node and

slave node.

 75(87)

It should be noticed that in this test, the PID of master node were 15964 and 7896

(after restarting) and the PID of slave node were 22008 and 20384. The PID can

be used to distinguish the master and slave nodes in the console print.

The print from slave node:

[15964] 12 May 11:08:03.387 # Server started, Redis version 2.8.2400

[15964] 12 May 11:08:03.387 * DB loaded from disk: 0.000 seconds

[15964] 12 May 11:08:03.398 * The server is now ready to accept connections on port 16380

[15964] 12 May 11:08:04.387 * Connecting to MASTER 127.0.0.1:6380

[15964] 12 May 11:08:04.387 * MASTER <-> SLAVE sync started

[15964] 12 May 11:08:04.387 * Non blocking connect for SYNC fired the event.

[15964] 12 May 11:08:04.389 * Master replied to PING, replication can continue...

[15964] 12 May 11:08:04.389 * Partial resynchronization not possible (no cached master)

[15964] 12 May 11:08:04.396 * Full resync from master:

1d2c3b3580ffd1523bcfe8baa5faea6c0cf0bb44:253

[15964] 12 May 11:08:04.577 * MASTER <-> SLAVE sync: receiving 18 bytes from master

[15964] 12 May 11:08:04.581 * MASTER <-> SLAVE sync: Flushing old data

[15964] 12 May 11:08:04.581 * MASTER <-> SLAVE sync: Loading DB in memory

[15964] 12 May 11:08:04.582 * MASTER <-> SLAVE sync: Finished with success

The print from master node

[22008] 12 May 11:08:04.391 * Slave 127.0.0.1:16380 asks for synchronization

[22008] 12 May 11:08:04.391 * Full resync requested by slave 127.0.0.1:16380

[22008] 12 May 11:08:04.391 * Starting BGSAVE for SYNC with target: disk

[22008] 12 May 11:08:04.396 * Background saving started by pid 18824

[22008] 12 May 11:08:04.548 # fork operation complete

[22008] 12 May 11:08:04.574 * Background saving terminated with success

[22008] 12 May 11:08:04.578 * Synchronization with slave succeeded

It can be found that after initiating, the slave node raised an event of SYNC and

tried to connect to the master node. The Master node answered the request and a

full RE-SYNC was performed. The SYNC finished with success and slave node

received the data in master node as replication.

7.3.1 Insert to master and read from slave test

In this test, a piece of data “msg - solid” was inserted into master node at port

6380 and it could be read from slave node at port 16380.

Print from client of master node:

127.0.0.1:6380> get msg

(nil)

127.0.0.1:6380> set msg solid

OK

127.0.0.1:6380> get msg

"solid"

Print from client of slave node:

127.0.0.1:16380> get msg

"solid"

In the progress, when a new data was inserted into the master node, it was syn-

chronized to the slave node in a given interval. After that, this data was available

in the slave node and could be read.

 Conclusion

A piece of data inserted in the master node, could be read from slave node, test

passed.

 77(87)

7.3.2 Consistency test

In this test, the master node was turned down. When the master node was turned

down, the slave should continuously answer the read request from client with its

own dataset.

Firstly, the master node was terminated which simulated a master failure:

[22008] 12 May 12:27:49.639 # User requested shutdown...

[22008] 12 May 12:27:49.639 # Redis is now ready to exit, bye bye...

The slave node reported the error of disconnection of master node:

[15964] 12 May 12:32:47.934 * Connecting to MASTER 127.0.0.1:6380

[15964] 12 May 12:32:47.934 * MASTER <-> SLAVE sync started

[15964] 12 May 12:32:48.936 * Non blocking connect for SYNC fired the event.

[15964] 12 May 12:32:48.936 # Sending command to master in replication handshake: -Writing to

master: Unknown error

The client sent a read request, and got the data returned.

127.0.0.1:16380> get msg

"solid"

In the progress, when the master server was down, the slave node noticed that

since the master node had not been answering the PIN for a given period. But the

slave node still answered the read request according to the configuration.

 Conclusion

When the master node is turned down, the slave continuously answered the read

request from the client with its own dataset, test passed.

7.3.3 Consistency test 2

In this test, the slave was turned down. If the slave node was turned down, in a

period when the slave node was not performing, the data updates in the master

node will be synchronized to the slave node when it restarts.

Firstly, the slave node was terminated which simulated a slave failure:

[15964] 12 May 12:38:26.258 # User requested shutdown...

[15964] 12 May 12:38:26.258 # Redis is now ready to exit, bye bye...

The master node was informed about the disconnection of the slave node

127.0.0.1:16380:

[7896] 12 May 12:38:26.258 # Connection with slave 127.0.0.1:16380 lost.

Now the data with key “msg” was updated:

127.0.0.1:6380> set msg "this is a new message comes when slave is down"

OK

Next, the slave node was restarted with PID 20384 and synchronized with the

master node:

[20384] 12 May 12:48:20.433 # Server started, Redis version 2.8.2400

[20384] 12 May 12:48:20.434 * DB loaded from disk: 0.000 seconds

[20384] 12 May 12:48:20.435 * The server is now ready to accept connections on port 16380

[20384] 12 May 12:48:21.438 * Connecting to MASTER 127.0.0.1:6380

[20384] 12 May 12:48:21.439 * MASTER <-> SLAVE sync started

[20384] 12 May 12:48:21.439 * Non blocking connect for SYNC fired the event.

[20384] 12 May 12:48:21.440 * Master replied to PING, replication can continue...

[20384] 12 May 12:48:21.440 * Partial resynchronization not possible (no cached master)

[20384] 12 May 12:48:21.446 * Full resync from master:

09f133f14e2c32e8bc2f85940122c68f118a6b73:1247

[20384] 12 May 12:48:21.519 * MASTER <-> SLAVE sync: receiving 72 bytes from master

[20384] 12 May 12:48:21.522 * MASTER <-> SLAVE sync: Flushing old data

[20384] 12 May 12:48:21.522 * MASTER <-> SLAVE sync: Loading DB in memory

[20384] 12 May 12:48:21.523 * MASTER <-> SLAVE sync: Finished with success

 79(87)

The master node was informed of the rejoined slave node:

[20384] 12 May 12:48:20.433 # Server started, Redis version 2.8.2400

[20384] 12 May 12:48:20.434 * DB loaded from disk: 0.000 seconds

[20384] 12 May 12:48:20.435 * The server is now ready to accept connections on port 16380

[20384] 12 May 12:48:21.438 * Connecting to MASTER 127.0.0.1:6380

[20384] 12 May 12:48:21.439 * MASTER <-> SLAVE sync started

[20384] 12 May 12:48:21.439 * Non blocking connect for SYNC fired the event.

[20384] 12 May 12:48:21.440 * Master replied to PING, replication can continue...

[20384] 12 May 12:48:21.440 * Partial resynchronization not possible (no cached master)

[20384] 12 May 12:48:21.446 * Full resync from master:

09f133f14e2c32e8bc2f85940122c68f118a6b73:1247

[20384] 12 May 12:48:21.519 * MASTER <-> SLAVE sync: receiving 72 bytes from master

[20384] 12 May 12:48:21.522 * MASTER <-> SLAVE sync: Flushing old data

[20384] 12 May 12:48:21.522 * MASTER <-> SLAVE sync: Loading DB in memory

[20384] 12 May 12:48:21.523 * MASTER <-> SLAVE sync: Finished with success

Now at the client of the slave node, it could be found that the value with key

“msg” was updated:

127.0.0.1:16380> get msg

"this is a new message comes when slave is down"

 Result

If the slave node was turned down, in the period when the slave node was not per-

forming, the data updated in the master node was synchronized to the slave node

when it restarted, test passed.

8. DISCUSSION AND FURTHER DEVELOPMENT

8.1 The failure tolerance in the cluster

In the Master – Master – Slave topology model which is discussed in chapter 4,

the failure tolerance is patricidal in current solution.

In a typical Master – Slave topology model, when the master node is down, a

slave node will be promoted to be the new master, and the when the old master

node restarts, it will be joined as a slave node. But in the discussed Master – Mas-

ter – Slave topology model, since Redis does not inherently support Master –

Master topology model, the connection and data sharding logic is deployed in the

service layer. On the other hand, the Master – Slave topology model is deployed

by using Redis in-built solution in database layer. When a slave node is down, the

rest of the cluster still performs, but when a master node is down, the slave node

cannot be promoted to be the new master node. Because there is not a path via

which service layer can communicate with database layer for the information of

change about master node in current solution. Namely, the list of master nodes

maintained in the service layer is relatively static. Therefore, in the current solu-

tion, when a master node is down, its slave nodes will not promoted to be new

master, instead, they will continuously respond to the read request with existing

data till the failed master node is restarted.

Further development in related perspective can be performed by looking for the

solution that is providing full failure tolerance in the Master – Master – Slave to-

pology model, in which when a master node is down, a slave node can be promot-

ed as a new master node and registered in the master – maser sub-cluster, and

when the failed master node is restarted, it is quitted from the master – maser sub-

cluster and rejoined as a slave node.

8.2 Grouping cache data by different industry

In current data sharding solution, the distribution of the data is strictly following

the Consistent Hashing algorithm which is full random. Therefore the data from

the same industry could be stored in every node among the cluster.

 81(87)

There is point of optimization that, by further developing the Consistent Hashing

or adding a separate calculation, making the data from sensors which are from

same industry allocated in a same node or a given sub-cluster. This solution will

further improve the performance of the cache.

8.3 Test in real distributed environment

Because of the limitation in the current development phase, the real distributed

environment for hosting the cache service which is developed in this research is

not ready yet. Therefore, the testing has to be performed in the local development

machine by simulating.

In the further development, when the real distributed environment is ready, in

which the deployment and test should be performed. A more precise result will be

produced and more factors can be considered.

9. SUMMARY

This thesis introduces the development of a distributed cache strategy for analytic

cluster in an IoT system in detail.

For constructing a high performance cache strategy for analytic cluster in specific

IoT system environment, firstly the related data model in the IoT system is ana-

lyzed, by that the data model which will be used in the cache layer and optimized

for the target analytic cluster is designed. Next, the cache strategy is introduced.

LRU as a proper solution is discussed and deployed using Redis in-built solution

as the first layer in the cache strategy. For optimizing the LRU with the character

of the target IoT system, a concept of “placeholder” is introduced. It is proved to

be effective in the testing session. In another perspective, for a better performance

of cache when the near real time data query is required by the target analytic clus-

ter, a specified Proactive Caching solution based on the Apache Kafka is devel-

oped. Then, a Master – Master – Slave topology model is constructed iteratively,

which describes how the nodes of database server are connected and how do they

collaborate. Following, Consistent Hashing is introduced to answer the question

that how the data is partitioned into the cluster built so far. Next, the microservice

is introduced which is the system architecture the development of the target IoT

system follows and the studied cache layer is built as a microservice in the system.

It brings advanced scalability and flexibility in multiple purposes. Finally, the ma-

jor opponents in the study are examined and the several points of further devel-

opment are discussed.

It can be concluded that the studied cache strategy is well designed and optimized

for the specific analytic cluster deployed in the IoT system in current phase.

Moreover, the study can be improved by more effective testing and optimizing to

achieve a production ready level.

 83(87)

REFERENCES

/1/ Wapice Ltd. Accessed 2.5.2016.

https://www.wapice.com/about-us/wapice

/2/ IoT-Ticket. Accessed 2.5.2016.

https://www.iot-ticket.com

/3/ Wikipedia. Cache (computing). Accessed 2.5.2016.

https://en.wikipedia.org/wiki/Cache_(computing)

/4/ Wikipedia. Cache algorithms. Accessed 2.5.2016.

https://en.wikipedia.org/wiki/Cache_algorithms

/5/ Paul, S; Z Fei. Distributed caching with centralized control. 2001. Computer

Communications 24,(2),256–268

/6/ Tim, Palko. High-Volume Data Collection and Real Time Analytics Using

Redis. 2013. Accessed 3.5.2016.

http://www.slideshare.net/cacois/cois-palkostrata2013

/7/ Kafka 0.9.0 Documentation. Accessed 3.5.2016.

http://kafka.apache.org/documentation.html#introduction

/8/ Wikipedia. Microservices. Accessed 3.5.2016.

https://en.wikipedia.org/wiki/Microservices

/9/ James, Lewis; Martin, Fowler. Microservice. 2014. Accessed 4.5.2016.

http://martinfowler.com/articles/microservices.html

/10/ Kenny, Bastani. Building Microservices with Polyglot Persistence Using

Spring Cloud and Docker. 2015. Accessed 4.5.2016.

http://www.kennybastani.com/2015/08/polyglot-persistence-spring-cloud-

docker.html

/11/ Spring Boot official site. Accessed 6.5.2016.

http://projects.spring.io/spring-boot/

/12/ Paul,Chapman. Microservices with Spring. 2015. Accessed 6.5.2016.

https://spring.io/blog/2015/07/14/microservices-with-spring

/13/ Redis documentation. Accessed 6.5.2016.

http://redis.io/commands

/14/ Vinoo, Das. 2015. Learning Redis. 1st ED. 35 Livery Street, Birmingham B3

2PB, UK. Packt Publishing Ltd.

/15/ Aaron, Toponce. The Adjustable Replacement Cache. 2012. Accessed

6.5.2016.

https://pthree.org/2012/12/07/zfs-administration-part-iv-the-adjustable-

replacement-cache/

/16/ Using Redis as an LRU cache. Accessed 6.5.2016.

http://redis.io/topics/lru-cache

/17/ Alexey, Ragozin. Data Grid Pattern - Proactive caching. 2011. Accessed

7.5.2016.

http://blog.ragozin.info/2011/10/grid-pattern-proactive-caching.html

/18/ Zookeeper. Accessed 7.5.2016.

http://zookeeper.apache.org/

/19/ Redis 2.8 configuration. Accessed 7.5.2016.

http://download.redis.io/redis-stable/redis.conf

/20/ David Karger; Eric, Lehman; Tom, Leighton; Matthew, Levine; Daniel, Lew-

in; Rina, Panigrahy. Consistent hashing and random trees: distributed caching pro-

tocols for relieving hot spots on the World Wide Web. 1997.STOC '97 Proceed-

ings of the twenty-ninth annual ACM symposium on Theory of computing.

10,654-663

/21/ Adam, Wiggins. Twelve-factor app methodology. 2012. Accessed 10.5.2016.

http://12factor.net/config

/22/ Eureka git repository. Accessed 10.5.2016.

https://github.com/Netflix/eureka

https://github.com/Netflix/eureka

 85(87)

Appendix 1

Java Implementation of Consistent Hashing

import java.util.Collection;

import java.util.SortedMap;

import java.util.TreeMap;

public class ConsistentHash<T> {

 private final HashFunction hashFunction;

 private final int numberOfReplicas;

 private final SortedMap<Integer, T> circle =

 new TreeMap<Integer, T>();

 public abstract boolean add_object_to_node(T Node,

Object key, Object value);

 public abstract Object get_object_from_node(T Node,

Object key);

 public ConsistentHash(HashFunction hashFunction, int

numberOfReplicas, Collection<T> nodes) {

 this.hashFunction = hashFunction;

 this.numberOfReplicas = numberOfReplicas;

 for (T node : nodes) {

 add(node);

 }

 }

 public void add(T node) {

 for (int i = 0; i < numberOfReplicas; i++) {

 circle.put(hashFunction.hash(node.toString() +

i), node);

 }

 }

 public void remove(T node) {

 for (int i = 0; i < numberOfReplicas; i++) {

 circle.remove(hashFunction.hash(node.toString() +

i));

 }

 }

 public Boolean setValue(Object key, Object value) {

 T thisNode = find_node(key);

 if(thisNode == null)

 return false

 else

 return add_object_to_node(thisNode, key, value);

 }

 public T getValue(Object key) {

 T thisNode = find_node(key);

 if(thisNode == null)

 return null

 else

 return get_object_from_node(thisNode, key);

 }

 public T find_node(Object key){

 if (circle.isEmpty()) {

 return null;

 }

 int hash = hashFunction.hash(key);

 SortedMap<Integer, T> tailMap = cir-

cle.tailMap(hash);

 int node_hash = tailMap.isEmpty() ? cir-

cle.firstKey() : tailMap.firstKey();

 T thisNode = circle.get(hash);

 return thisNode

 }

}

 87(87)

