

Maysan Abdullah

SPM System Cybersecurity

Information Technology

2016

Keywords SPM, Security, Hashing, Encryption

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology

ABSTRACT

Author Maysan Abdullah

Title SPM System Cybersecurity

Year 2016

Language English

Pages 18

Name of Supervisor Smail Menani

This document discusses the SPM (Student Project Management) system security

measures and best practices.

The system will be integrated with VAMK’s own database and network, but it

should also allow for external participants. Therefore, implementing an authenti-

cation mechanism for the system is required, in addition to managing the users’

information, passwords, and other sensitive data.

Three aspects are discussed which are: authentication, password hashing, and data

encryption.

A secure authentication mechanism is provided, as well as discussing secure

password hashing techniques. The best hashing algorithm for the purposes of the

system is decided to be the BCrypt algorithm.

Multiple encryption algorithms are discussed and compared. The comparison re-

sulted in the decision to use the Blowfish algorithm as the encryption algorithm

for the SPM system.

The chosen procedures and algorithms follow the recommendations of security

experts, and are determined to be highly adequate for guaranteeing the safety and

security of information in the SPM system.

CONTENTS
1 INTRODUCTION .. 3

1.1 Authentication ... 3

1.2 Password Hashing ... 3

1.3 Encryption ... 4

2 AUTHENTICATION ... 5

2.1 Credential Flow ... 5

3 PASSWORD HASHING ... 8

3.1 Password Hash Attacks ... 8

3.1.1 Brute Force Attack .. 8

3.1.2 Dictionary Attack .. 9

3.1.3 Lookup Table Attack... 9

3.1.4 Rainbow Table Attack... 9

3.2 Countering Attacks ... 9

3.2.1 Adding Salt ... 9

3.2.2 Using Secure Hash Algorithm .. 10

3.3 Choosing Hashing Algorithm ... 11

3.3.1 PBKDF2 .. 11

3.3.2 BCrypt ... 11

3.3.3 Conclusion .. 12

4 ENCRYPTION ... 13

4.1 DES ... 13

4.2 Triple DES .. 13

4.3 AES ... 13

4.4 RSA ... 14

4.5 Blowfish .. 14

4.6 Comparison ... 14

4.7 Conclusion .. 15

5 FINAL CONCLUSION .. 16

REFERENCES .. 17

LIST OF FIGURES AND TABLES

Figure 1. Authentication credential flow. .. 6

Figure 2. Web API authentication flow. .. 6

Table 1. Encryption algorithms comparison. ... 15

1 INTRODUCTION

The SPM (Student Project Management) system being developed for the Industri-

al Innovation Academy is used for teachers to enter projects, assign tasks, and

monitor the participants progress and for students to specify what they have ac-

complished, and enter any required data.

The System will be integrated with VAMK own database, and use its own authen-

tication system, but it should also allow for participants from outside VAMK to

access the system. Therefore, a membership database is needed, and an authenti-

cation system should be implemented.

Furthermore, it is important to protect user passwords, and any other sensitive in-

formation from being exposed to attackers.

In this document we will discuss three aspects of security and the best practices

and techniques to follow in order to achieve the best possible security for the sys-

tem.

The discussed aspects are:

1.1 Authentication

The system authentication mechanism will be discussed. The .NET Web API au-

thentication technique will be used utilizing the OAuth2 protocol.

1.2 Password Hashing

Password protection is important, and the way passwords are secured is by using a

cryptographic hashing function on the passwords entered by users, so it cannot be

reversed.

Two popular and secure algorithms (PBKDF2 and BCrypt) are discussed and

compared, and the best and most secure algorithm will be chosen for the system.

1.3 Encryption

The database might contain important data that should be protected even if the

database has been exposed to an attacker. Therefore, an encryption algorithm will

be used on these data to ensure their secrecy.

Five common encryption algorithms will be discussed (DES, 3DES, AES, RSA,

and Blowfish). For each one, the characteristics of the algorithm will be listed

with its advantages/disadvantages, and as a result of the comparison the best algo-

rithm for our purposes will be chosen for the SPM system.

2 AUTHENTICATION

The SPM system user base will be mostly students, and teachers in VAMK, and

as such authenticating them can be done using LDAP, and VAMK own database.

However, the system should allow for external users as well, therefore their data

should be entered in the system own database, and an authentication system

should be implemented for this purpose.

It’s important to ensure that only authenticated users have access to the system,

and that resource access should be determined based on the particular roles of the

users.

The authentication process will be implemented using .NET web API utilizing the

OAuth2 protocol.

2.1 Credential Flow

The authentication flow happens as follows:

 Users enter their credentials (username, password) through client inter-

face.

 The credentials are sent to the “Authorization Server”.

 If the authentication is successful, the server will return an access token to

the client.

 When a request for a resource is sent, the client will include this token in

the authorization header of the http request.

This flow is demonstrated in figure 1.

Figure 1. Authentication credential flow.

In Web API, the previous flow is implemented as demonstrated by the following

figure.

Figure 2. Web API authentication flow.

Users will enter their credentials in the JavaScript client, which will send them to

the authorization server. The credentials will be validated, and in the case of suc-

cess an access token will be sent back. When the user tries to call certain function,

the client will send this token in the Authorization header of the request sent to the

Authentication filter, which will check the validity of the token. If the token is

valid, the request will be delegated to the Authorization filter that will check if the

call is designated with the “Authorize” attribute and make sure the user has per-

mission to access that particular functionality. If the authorization succeeds, the

appropriate API controller is called to respond to the request, otherwise an Unau-

thorized error (401) is sent.

The OWIN middleware component forms a link between the authorization server,

and authentication filter on one hand, and the OAuth2 protocol implementation on

the other.

3 PASSWORD HASHING

User passwords need to be safely stored in the database in a way that even if an

attacker was able to access the database they won’t be able to know the pass-

words, or at least it will take a long time giving users a chance to change them.

To accomplish this, a hashing function is applied to the passwords entered by us-

ers which will convert each one into a string of fixed-length, that cannot be con-

verted back to the original password.

When a user tries to login to the system, the hashing function will be applied to

the entered password, and the result will be compared with the value stored in the

database and if they match, the login process will succeed. This means that the

actual password is never stored anywhere.

Algorithms used for hashing passwords need to be specifically designed to be se-

cure and are known as cryptographic hash functions as opposed to faster but unse-

cure hashing functions used in programming data structures.

Cryptographic hashing algorithms include: SHA256, SHA512, RipeMD, BCrypt,

WHIRLPOOL, and others.

3.1 Password Hash Attacks

There many types of attacks that can be tried on a password hash in order to crack

it. Here are the most common ones.

3.1.1 Brute Force Attack

The simplest type of attack. Every possible combination is hashed and compared

with the available hash, and if they match the original password is discovered.

This attack cannot be prevented, but it’s not efficient, and it takes a long time.

3.1.2 Dictionary Attack

This attack is similar to the previous one, except that instead of trying all possible

combinations, a file with the most commonly used passwords is used as a source

with possibly some operations applied to each word to get different variations.

This attack like the brute force one is not very efficient, but countering it requires

that users choose difficult and not common passwords.

3.1.3 Lookup Table Attack

Lookup tables are obtained by pre-compiling a list of hashes from some dictionary

of passwords along with the passwords themselves in a data structure where get-

ting the corresponding password from its hash is very fast.

This attack is very efficient, and if the passwords chosen weren’t following secu-

rity guidelines (dictionary words, commonly used passwords), the hash can be

cracked almost instantaneously.

3.1.4 Rainbow Table Attack

Rainbow tables are similar to lookup tables but they are designed to be as space

efficient as possible instead of being fast. This allows them to store a very large

number of passwords making them effective for password hash cracking.

3.2 Countering Attacks

In order to prevent these attacks or at least make them inefficient, the following

procedures will be applied.

3.2.1 Adding Salt

Lookup and rainbow table attacks rely on password hashes being the same for the

same password. This can be countered by adding a random factor that varies the

hashes even for the same password. This can be accomplished by adding a ran-

dom string known as “salt” to the password before hashing it. This way even if

two users choose the same password, the has for each will be different. The salt

needs to be stored in the database as well, so that when authenticating the stored

salt will be added to the entered password then hashed and compared to the value

stored in the database.

This will ensure, that lookup and rainbow tables cannot be pre-compiled in ad-

vance since the attacker won’t have knowledge of the salt beforehand.

In order for the salt to be secure, it has to be generated every time a password is

chosen and not reused again. It should also be long enough, otherwise cracking it

could be done faster.

It is also important to generate the salt using a Cryptographically Secure Pseudo-

Random Number Generator (CSPRNG). These generators, unlike the normal ran-

dom number generators used in programming languages are designed to be as

random and unpredictable as possible to ensure that cracking the salt is more dif-

ficult.

In .NET there is a class implementation for this purpose which is the class: Sys-

tem.Security.Cryptography.RNGCryptoServiceProvider.

3.2.2 Using Secure Hash Algorithm

As mentioned before, brute force and dictionary attacks cannot be prevented. The

only counter measure is to ensure that the cracking process is as slow and ineffi-

cient as possible giving the administration and users enough time to change pass-

words and protect data.

To accomplish this, a special type of hashing algorithms designed to be slow and

computing intensive should be used. This way even if the attacker is using high-

end devices, the process will still take a very long time.

These algorithms take an argument that specifies how secure the hash should be,

which will determine how slow the process will be. The argument should be cho-

sen to provide the slowest time while still being tolerable by the users.

3.3 Choosing Hashing Algorithm

There are two algorithms that are usually recommended for password hashing:

PBKDF2, and BCrypt. In the following, these two algorithms advantages and dis-

advantages will be compared and the best algorithm for our purposes will be cho-

sen.

3.3.1 PBKDF2

PBKDF2 is an easy function that performs HMAC (Hash based Message Authen-

tication Code) as many times as specified by a parameter. HMAC is performed by

applying a hash function in combination with a secret key.

This algorithm is designed to be computation intensive, so it’s very taxing on the

CPU making any cracking attempt very slow as long as the attacker is relying on-

ly on CPUs. However, this algorithm can be implemented efficiently on GPUs, so

if the attacker has a powerful GPU, cracking hashes produced by this algorithm

can become much faster.

NIST (National Institute of Standards and Technology) actually recommends this

algorithm for password hashing, so it’s safe enough to use as long as a high

enough iteration count is used.

3.3.2 BCrypt

BCrypt is based on the Blowfish block cipher, and it’s designed to be difficult to

perform on GPUs. This is accomplished by relying on access to table that is con-

stantly changing in memory, which is hard to do in GPUs, and it’s easier for

CPUs. Therefore, BCrypt is both computation and memory intensive making it

harder to crack than PBKDF2 even if the attacker uses high end GPU.

The problem however arises if attackers use FPGA devices instead which can im-

plement this algorithm much better than GPUs making the cracking process faster.

3.3.3 Conclusion

Both of these algorithms are good enough for our purposes, and are generally rec-

ommended to use. BCrypt however has some advantage in that it’s both taxing on

the CPU and RAM. It was developed in 1999, so it has been tested for a long

time, and so far it has not been broken. It’s also widely used and supported in the

security community, and has good implementations available for it.

Therefore, the bcrypt algorithm is chosen as the password hashing algorithm for

the SPM system.

4 ENCRYPTION

There are pieces of information that are important to protect and need to be kept

secret even if an attacker has access to the database or was able to intercept com-

munication. Therefore, we need to apply an encryption algorithm to these data to

guarantee security.

In the following the most common algorithms will be discussed and compared,

then the best algorithms for our purposes will be chosen.

4.1 DES

DES (Data Encryption Standard) is a symmetric key encryption method for data

which is outdated by now, but it’s used as the basis for more advanced algorithms.

DES is a block cipher algorithm, so the cryptographic key and algorithm are ap-

plied to a block of data simultaneously rather than one bit at a time. The message

is divided into 64-bit blocks and then encrypted. The process involves 16 rounds.

The key length determines how difficult brute force attacks are. In DES the key

length is 64 bits but only 56 are actually usable and the rest are used for parity.

4.2 Triple DES

Designed as a replacement for DES, which was dominant for a while, but is also

outdated now. It uses 3 keys 56-bits each for a total of 168 bits.

Despite being outdated it is still used in some hardware encryption solutions in

financial services and other industries.

4.3 AES

AES (Advanced Encryption Standard) algorithm is used by the U.S. Government

and other organizations as the standard encryption algorithm.

It is efficient in 128-bit form, but it also uses keys of 192 and 256 bits for even

safer encryption.

AES is considered impervious to most attacks, except brute force, which attempts

all possible combinations in the 128, 192, or 256-bit cipher in addition to key re-

covery and side channel attacks. But it is still considered a very safe encryption

algorithm.

4.4 RSA

RSA is a public-key encryption algorithm and the standard for encrypting data

over the internet.

RSA is an asymmetric algorithm due to its use of a pair of keys. There is a public

key, which is used to encrypt the message, and a private key to decrypt it. The re-

sult of RSA encryption is a huge batch of data that takes attackers a long time and

processing power to break.

4.5 Blowfish

Blowfish was also designed to replace DES. It is a symmetric cipher that splits

messages into blocks of 64 bits and encrypts them individually. It uses a variable

key length ranging from 32 to 448 bits, and uses 16 rounds.

Blowfish is known for both its tremendous speed and overall effectiveness and it

has no know vulnerabilities.

4.6 Comparison

The following table lists the previous algorithms with various attributes compar-

ing them to each other.

Table 1. Encryption algorithms comparison.

4.7 Conclusion

From the previous table, we can see that the algorithm that provides the highest

level of security, with good speed and performance is the Blowfish encryption al-

gorithm, and as such this algorithm will be used in the SPM system.

5 FINAL CONCLUSION

In this document, we have discussed the topics of authentication, password hash-

ing and data encryption.

.NET Web API authentication mechanism has been used utilizing the OAuth2

protocol, where we get an access token after the login process, and use it for au-

thorization purposes.

We have talked about the importance of password hashing and using strong cryp-

tographic hashing functions in order to make cracking the passwords as difficult

and time consuming as possible.

We discussed two hashing algorithms (PBKDF2 and BCrypt) and we arrived at

the conclusion that BCrypt has some advantages over PBKDF2, and decided to

use it the hashing algorithm in the SPM system.

In the future more recent algorithms such as SCrypt can be studied and analysed

to determine if it is a better alternative to BCrypt.

Finally, we studied and compared five common encryption algorithms (DES,

3DES, AES, RSA, and Blowfish).

After comparing the attributes of each algorithm, it has been determined that

Blowfish is the most secure encryption algorithm with good performance, and de-

cided to adopt it as the encryption algorithm for the SPM system.

We think that the chosen mechanisms and algorithms provide a very strong secu-

rity for the system, and satisfy the security goals required for the SPM system.

REFERENCES

Wasson, M. Secure a Web API with Individual Accounts and Local Login in

ASP.NET Web API 2.2. http://www.asp.net/web-

api/overview/security/individual-accounts-in-web-api

Defuse Security. Salted Password Hashing - Doing it Right.

https://crackstation.net/hashing-security.htm

Preziuso, M. Password Hashing: PBKDF2, Scrypt, Bcrypt.

https://medium.com/@mpreziuso/password-hashing-pbkdf2-scrypt-bcrypt-

1ef4bb9c19b3#.3o8pk5be6

Bradford, C. 5 Common Encryption Algorithms and the Unbreakables of the Fu-

ture. http://www.storagecraft.com/blog/5-common-encryption-algorithms

Bhanot, R. Hans, R. A Review and Comparative Analysis of Various Encryption

Algorithms. http://www.sersc.org/journals/IJSIA/vol9_no4_2015/27.pdf

