
Bachelor’s thesis

Degree programme in Information Technology

Information Technology

2016

Erik Rigoberto Lanza Aplicano

BUILDING A WEB
APPLICATION USING THE
MEAN STACK

– A walk-through the process

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2016 | 25

Erik Rigoberto Lanza Aplicano

BUILDING A WEB APPLICATION USING THE
MEAN STACK

­ A walk through the process

This thesis is focused on the building of a web application using contemporary JavaScript-based
technologies. A walkthrough explanation on how to set a simple environment that takes
advantage of modern full-stack technologies. The technologies used were: AngularJS for the
front-end, Node.js together with Express for the back-end and MongoDB for the database. To
develop this application, tools, such as Vagrant, VirtualBox, and Mongoose among others were
used throughout the process.

The application consists of a social platform that allows a user to register, login, post, and
comment in different posts. The idea is similar to the widely used platforms like Reddit and
HackerNews.

This application was created for experimentation purposes and although it is working and has
different features, it can be improved visually and many other features can be added. Further
testing and even trying to deploy the application in a real server could be areas for future
development.

KEYWORDS:

JavaScript, AngularJS, Node.js, Express, MongoDB, front-end, back-end, Vagrant, VirtualBox,
Mongoose.

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 1

2 THE MEAN STACK COMPONENTS 2

2.1 MongoDB 2

2.2 Express JS 3

2.3 AngularJS 3

2.4 Node.js 4

3 DEVELOPING THE APPLICATION 7

3.1 Creating an Express project 7

3.2 Working with AngularJS 8

3.2.1 Requirements 8

3.2.2 Components 9

3.2.3 Behaviours 11

3.3 Setting Up Mongoose 14

3.4 Security 15

4 CONCLUSION 19

REFERENCES 20

FIGURES

Figure 1. Express-generator Layout. 7

PICTURES

Picture 1. One-Way Data Binding (AngularJS 2010). 4
Picture 2. Two-way Data Binding (AngularJS 2010). 4
Picture 3. Registration Page. 11
Picture 4. Login verification. 12

TABLES

Table 1. Creating an Angular app. 9
Table 2. Directives. 9
Table 3. ng-app Directive. 10
Table 4. Controllers. 10
Table 5. Creating Services. 11
Table 6. Injecting Services. 12
Table 7. Creating Routes. 14
Table 8. Initializing Mongoose. 14
Table 9. Mongoose Model. 15
Table 10. Security Dependencies. 16
Table 11. Creating Salt. 16
Table 12. Verify Password. 16
Table 13. Setting JASON Web Token. 17
Table 14. Passport Configuration. 18

file:///C:/Users/Erik/Desktop/erik_lanza_thesis.docx%23_Toc451714053
file:///C:/Users/Erik/Desktop/erik_lanza_thesis.docx%23_Toc451714054
file:///C:/Users/Erik/Desktop/erik_lanza_thesis.docx%23_Toc451714055

LIST OF ABBREVIATIONS (OR) SYMBOLS

SASS Syntactically Awesome Stylesheets

MEAN MongoDB Express AngularJS Node.js

CRUD Create Read Update Delete

CSS Cascade Style Sheets

HTML Hyper Text Markup Language

JSON Java Script Object Notation

JWT JSON Web Token

SPA Single Page Application

OS Operating System

CDN Content Delivery Network

1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

1 INTRODUCTION

Nowadays the need to create or build any kind of product has allowed new inventions to

emerge and facilitate the old ways of creating things. Frameworks, pre-processors, and

libraries are some examples of such inventions in the technology field. Almost every

programming language and technology counts on some or several frameworks that help

the developer to finalise a task.

In this thesis, the usage of different technologies and frameworks are the main subject

and the way that can be used is explained during the process of making a web

application. The application was built for experimentation purposes and although it can

be used as a an application similar to Reddit or HackerNews, it is not meant to be utilised

by an specific end-user.

My main motivation for building an application using MEAN stack, was for learning the

technologies used in this framework and the process that requires making a single web

application from end to end. The MEAN stack uses JavaScript-based technologies that

allows the developer to build a consistent single page web application.

2

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

2 THE MEAN STACK COMPONENTS

The MEAN stack consists of 4 main technologies that fully compose the application. The

front-end of the application is made using AngularJS, Node.js together with Express for

the back-end and MongoDB for the database. These four technologies are used to build

web applications. The MEAN stack works best for making single page web application

(SPA) because its functionality is mainly focused on the client side. The following

sections will be dedicated for introducing the technologies used throughout the making

of the application.

2.1 MongoDB

MongoDB is a document-oriented, cross platform, and open source database. According

to the MongoDB website: “MongoDB is an open-source document database that

provides high performance, high availability, and automatic scaling.” (MongoDB 2016).

MongoDB is a NoSQL database that offers very versatile structure that can range from

very basic databases to very complex ones. MongoDB can easily be scaled up and it

does not require to have a pre-defined schema to start working with. This makes it very

attractive for start-ups that can later on become large.

MongoDB uses a similar to JavaScript Object Notation (JSON) syntax and calls it BSON.

Differing from well-known databases, such as MySQL, MongoDB does not make use of

Tables and Rows, instead Mongo uses Collections and Documents.

To aid MongoDB, Mongoose was used throughout the building process of the web

application. “Mongoose provides a straight-forward, schema-based solution to model

your application data. It includes built-in type casting, validation, query building, business

logic hooks and more, out of the box” (Valeri Karpov, Mongoose official website 2011).It

helps the developer to model the application data in a simpler and smarter way than

using plain Mongo.

Mongoose uses Schemas to define the distribution of the documents within a Mongo

collection. There are different kinds of Schema types allowed in Mongoose: String,

Number, Date, Buffer, Boolean, Mixed, ObjectId, and Array.

3

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

2.2 Express JS

The second component of the MEAN stack is Express. “Express is a minimal and flexible

Node.js web application framework that provides a robust set of features for web and

mobile applications.” (Express JS official website 2016). Due to its features, Express is

the most popular framework for building web applications with Node.js.

Express is used for routing. That means that it manipulates the behavior of an application

towards a client request and executes functions when the request’s Uniform Request

Identifier (URI) matches the route.

An easy and effective way to start building a Express application is by using the Express-

generator which builds the application’s skeleton. The skeleton is the way the directories

are distributed and created.

2.3 AngularJS

One of the most popular types of web applications are single web applications,

AngularJS is a JavaScript front-end framework designed for making this kind of

applications. AngularJS, or better known as Angular, is open source, cross platform and

follows the MVC architectural pattern.

Angular offers two-way data binding, which is its main feature over other strong

frameworks/libraries like React and Ember. According to Andrea Bresolin (2015): “We

have a two way data binding when a model variable is bound to a HTML element that

can both change and display the value of the variable. In general, we could have more

than one HTML element bound to the same variable.”

What two-way data binding offers over one-way data binding is the ability to take a

property’s value and display it on the view at the same time as it updates it in the model.

On the other hand, in one-way data binding this is not possible. Picture 1 and Picture 2

illustrate the difference between one and two-way data binding.

4

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Picture 1. One-Way Data Binding (AngularJS 2010).

Angular offers a very broad set of personalizing an application’s HTML by using

directives. Directives control behaviours in the Document Object Model (DOM). Angular

comes with a set of Directives that make a series of processes easier, for example, ng-

repeat acts as a loop, ng-hide as a conditional statement and many others. The

Directives can also be created by the developer to make repetitive behaviours reusable.

2.4 Node.js

The MEAN stack uses Node.js for the back-end and as its final component. Node.js is a

run-time system written in JavaScript that, as the rest of the MEAN stack components,

is open source and cross-platform.

Node.js uses a package manager for reusing code that other developers have written

and update the code that is being written. This package manager is called Node Package

Picture 2. Two-way Data Binding (AngularJS
2010).

5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Manager (NPM). According to npmjs official website (2016): “It's a way to reuse code

from other developers, and also a way to share your code with them, and it makes it easy

to manage the different versions of code.”

Other Tools

In this project, many tools for making the process easier were used. One of them is

Vagrant . In this project, many tools for making the process easier were used. One of

them is Vagrant . Vagrant is an open source tool that lets the user to create a virtual

machine, with the aid of a virtualization software like VirtualBox, with preset settings for

RAM, CPU and HDD. By using Vagrant, the user saves time and avoids repetitive

commands (Hashicorp 2016).

For the development of this application, Ubuntu Operating System (OS) was used.

Ubuntu is a Debian-based operating system and free software based (Ubuntu 2016).

A fairly easy way to install all the MEAN stack requirements and layouts is to use a MEAN

stack boilerplate. A boilerplate is a premade project using a stack of technologies, in this

case the MEAN stack. The boilerplate usually counts with a already made layout of

directories and basic feature of a common web application. There are two very popular

boilerplates for the MEAN stack: the MEAN.js and the MEAN.io boilerplates both created

by Armos Haviv.

It is difficult to state which one is the best option to start a project with, since both are

very similar. Something to consider is the time each boilerplate option other has been

used by the public. This may affect the amount of documentation created for each

boilerplate.

The MEAN.io has been used longer than the MEAN.js, hence, the documentation may

be superior.

Bootstrap was used to make the application responsive and decent- looking. Bootstrap

is a CSS framework that facilitates the developer to make fully responsive websites.

Bootstrap uses a grid layout that divides the page in 12 columns in a row and the

developer chooses how many columns will be used for the content he/she picks in each

row. For example, a paragraph can occupy 6 columns in a row when is seen from a

desktop computer and a complimentary image the rest of the columns. This is able to

change when the page is seen from a mobile device, the 12 columns will be occupied by

the paragraph and other 12 columns in another row will be occupied by the

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

complimentary image. This will make them be displayed in different rows (Twitter

Bootstrap 2016).

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

3 DEVELOPING THE APPLICATION

There are different ways to start a MEAN stack application. One of them, as it was

mentioned, is by using a MEAN boilerplate. In this application no boilerplate has been

used due to various issues encountered while installing either of the boilerplates, hence,

each of the components of the MEAN stack has been installed separately.

3.1 Creating an Express project

The first step taken for creating the MEAN stack application, was to create a layout for

the directories. This layout was created using the Express-generator.

By typing the command sudo express --–ejs, myThesisApp will create a new application

layout with the name given. The ejs attribute changes the default templating engine Jade,

to something more similar to pure HTML, ejs. This command will create a series of

directories to store the files needed for the application to work. The layout looks as in

Figure 1.

├── app.js

├── bin

│ └── www

├── package.json

├── public

│ ├── images

│ ├── javascripts

│ └── stylesheets

│ └── style.css

├── routes

│ ├── index.js

│ └── users.js

└── views

 ├── error.jade

 ├── index.jade

 └── layout.jade

Figure 1. Express-generator Layout.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

The models directory was not created by the Express-generator; it was specifically

created for using Mongoose. The Mongoose models will be stored in this directory.

The public directory stores all the data and files that will be accessed by the user when

the app is ready to be published. Inside the public directory are stored directories like

JavaScript, CSS, Images and other required data needed for the web app to work

smoothly. The routes directory stores most of the back-end code and keeps the Node

controllers.

In the views directory, the main HTML file is found. In this directory all the views for the

web app are stored. It usually goes so that each view has its own HTML, but in the case

of this application, inline templates were used. Using Inline templates means that

different views of the web app are stored in the same HTML file.

3.2 Working with AngularJS

This project was started by creating the front-end of the application. Angular was used

to build the whole front-end with some HTML and Bootstrap. Angular connects all the

dots within the application.

3.2.1 Requirements

The building of the application was started by creating a basic HTML file and adding the

Content Delivery Network (CDN) to the head of the HTML file for AngularJS to work. A

JavaScript file was created with the name of angularApp.js inside of the JavaScript in the

public directory. In this file, all the AngularJS code and logic was written. It is

recommended to break down the code into different files for organizing the application in

a clear way.

To create an Angular app, a module that handles all the app was created. According to

Angular JS (2010) “A Module is a collection of services, directives, controllers, filters,

and configuration information”. (see Table 1).

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Table 1. Creating an Angular app.

var app = angular.module('myThesis', ['ui.router']);

A simple Angular app consists in a HTML file and a JavaScript file. The HTML file is the

way the app will be seen by the user, it will show the information gathered by the

JavaScript. The JavaScript’s tasks are to collect information from the database and

distribute it throughout the application.

3.2.2 Components

The JavaScript and the HTML in the application communicate with each other with

directives. The directives are components of the Angular library that have specific logic

that facilitate the tasks to be done when displaying the information in the HTML. For

instance, the ng-repeat directive works as a loop to the array “posts” declared in the

angularApp.js. Other directives, such as ng-click, triggers the function

“incrementUpvotes(post)” when clicking the “^” symbol and the ng-show shows the link

information in the post array if there is any available (see Table 2).

Table 2. Directives.

 <div ng-repeat="post in posts | orderBy:'-upvotes'">

 <span class="glyphicon glyphicon-thumbs-up"

 ng-click="incrementUpvotes(post)">

The ng-repeat directive was used to go through repetitive information like posts and

comments made by the user. The directives are always declared within the HTML, not

the JavaScript. As seen before, directives are declared as classes or attributes in HTML.

There are many in-built directives in Angular, ng-class, ng-submit, ng-model are just a

few of them. A very important directive is used to start any Angular application. The name

of this directive is “ng-app” and should have the name of the app as the value that

matches the module done previously. (see Table 3)

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Table 3. ng-app Directive.

<body ng-app="myThesis">

The Controller in AngularJS has the task of providing the information to the directives so

that they can manipulate the information and show it in the views. The controller needs

to be declared through the ng-controller directive in the HTML so this can work properly.

The controller uses the scope to display the data to the view. (see Table 4).

Table 4. Controllers.

app.controller('MainCtrl', […

The main controller handles the posts added to the database through the views. Other

controllers were made for handling the comments added to the posts (PostsCtrl), the

authorization controller (AuthController) handles behaviors like login, register and such

and the navigation controller (NavController) will take care of when the user has logged

in to display a different navigation bar.

Angular services can be defined as JavaScript functions that are responsible to do

specific tasks and work with persistent data. There are many different in-built services in

AngularJS, among them we can find $http that is used to make AJAX calls to the server.

Different ways to create an Angular service are: factories, services, and providers. For

this application the factory method was used. For using Angular factories, an object was

created, some properties were added to it and them returns the same object. (see Table

5).

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Table 5. Creating Services.

app.factory('posts',['$http', 'auth', function($http, auth) {

 var o = {

 posts: []

 };

 o.getAll = function() {

 return $http.get('/posts').success(function(data){

 angular.copy(data, o.posts);

 });

 };

[…]

 return o;

}]);

3.2.3 Behaviours

In this application, two services or factories were created: the authorization service and

the posts service. The authorization (auth) service handles registrations, logins, logouts,

users and verifications. While the posts service takes care of creating posts, adding

comments, likes, and getting the information back. The registration page is shown in

Picture 3.

Picture 3. Registration Page.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

To access the data handled by a service is necessary to inject the service to the

controller. To inject the service to the controller, the name of the service was added as

a parameter of the controller. As it is displayed in Table 6, the auth service is injected to

the NavCrtl controller to check if a user is logged in.(see Picture 4).

Table 6. Injecting Services.

app.controller('NavCtrl', [

'$scope',

'auth',

function($scope, auth){

 $scope.isLoggedIn = auth.isLoggedIn;

 $scope.currentUser = auth.currentUser;

 $scope.logOut = auth.logOut;

}]);

For managing different routes and controllers, AngularUI Router has been used.

According to Angular UI Router (2013): “Angular UI-Router is a client-side Single Page

Application routing framework for AngularJS”. AngularUI router is more flexible and

provides more features than the module that Angular already counts on, the ng-route

module.

Picture 4. Login verification.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

To start using AngularUI Router, its CDN was added to the head section in the index.ejs

file in the views directory of the application. Since this is an external module, it is also

required to add a dependency to the app. This is implemented by adding the AngularUI

as a parameter of the Angular module app.

The views for this project were made inline. This means that just one HTML file was used

to display all the different views in the project. It was implemented in this way because it

is a small project. However, for bigger projects different HTML files should be created.

Inline templates work as individual scripts inside the HTML file, in this case the index.ejs

and they are routed using AngularUI Router to individual URLs that will be displayed in

the browser (see Picture 5).

To configure the AngularUI Router, Angular’s config() function was used. Within the

config() function, the inline templates were assigned their respective routes in the

application. For this, $stateProvider, which is part of AngularUI Router, was used to give

the inline templates a place in the views. In other words, it makes those lines of code a

visible HTML document in the browser (see Table 7).

Picture 5. Routes.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Table 7. Creating Routes.

app.config([

 '$stateProvider',

 '$urlRouterProvider',

 function($stateProvider, $urlRouterProvider){

 $stateProvider

 .state('home', {

 url: '/home',

 templateUrl: '/home.html',

 controller: 'MainCtrl',

3.3 Setting Up Mongoose

For Mongoose to work, Node.js and MongoDB should be installed and running. If these

requirements are not met, it is very possible that Mongoose will not work properly or at

all. Mongoose was installed through the Node Package Manager (NPM).

In the app.js file, Mongoose is required by writing “mongoose connect” followed by the

IP address where the node server is running, in this case 88.88.88.88, followed by the

database name (Table 8). This will allow the project to access the database and be

displayed when the address is typed in the browser.

Table 8. Initializing Mongoose.

mongoose.connect('mongodb://88.88.88.88/news');

After having Mongoose required and connected, a new file called Posts.js was created

in the models directory created previously. As mentioned before, the models directory

contains the models needed for Mongoose to work on retrieving and posting data from

the database to the application and vice-versa.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

A typical Mongoose model contains a Mongoose schema that handles an action aimed

at the database. In this application different models were defined: The Posts.js model

that handles the posts made by the user. This model links the posts to the respective

comments written by a user using an Object ID. Comments.js handles the comments

posted in the posts and the Users.js handles the users registered and their contributions

to the posts (see Table 9).

Table 9. Mongoose Model.

var mongoose = require('mongoose');

var PostSchema = new mongoose.Schema({

 title: String,

 link: String,

 upvotes: {type: Number, default: 0},

 comments: [{ type: mongoose.Schema.Types.ObjectId, ref: 'Comment' }]

});

/*Method for upvotes*/

PostSchema.methods.upvote = function(cb) {

 this.upvotes += 1;

 this.save(cb);

};

mongoose.model('Post', PostSchema);

3.4 Security

Security measures for the passwords and login details were set. In this app, we use the

Password-Based Key Derivation Function 2 (PBKDF2) which comes with node’s native

crypto module for hashing passwords. The first step is to require the crypto module,

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

Mongoose and JsonWebToken (JWT) in the beginning of the Mongoose Users.js model

(see Table 10).

Table 10. Security Dependencies.

var mongoose = require('mongoose');

var crypto = require('crypto');

var jwt = require('jsonwebtoken');

Hashing passwords was implemented by combining a password with a salt, which is

randomly generated data, via PBKDF2. This was done so that the passwords are harder

to crack (see Table 11).

Table 11. Creating Salt.

UserSchema.methods.setPassword = function(password){

 this.salt = crypto.randomBytes(16).toString('hex');

 this.hash = crypto.pbkdf2Sync(password, this.salt, 1000, 64).toString('hex');

};

Later on the passwords saved will need to be verified when the user logs in. For this

case, a method that compares the password entered by the user and the hashed

password was written. The method will return a Boolean indicating if the password is

correct or not (see Table 12).

Table 12. Verify Password.

UserSchema.methods.validPassword = function(password) {

 var hash = crypto.pbkdf2Sync(password, this.salt, 1000, 64).toString('hex');

 return this.hash === hash;

};

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

For generating tokens for the users JSON Web Token was used. According to JWT

official website (2014): “JSON Web Token (JWT) is an open standard (RFC 7519) that

defines a compact and self-contained way for securely transmitting information between

parties as a JSON object. This information can be verified and trusted because it is

digitally signed. JWTs can be signed using a secret (with the HMAC algorithm) or a

public/private key pair using RSA.”

When the user is logged in, all the requests made by the user carry this token. Access,

services, and resources will be available for the user thanks to this token. A method for

generating the token is created and the expiration date was specified within it (See Table

13).

Table 13. Setting JASON Web Token.

UserSchema.methods.generateJWT = function() {

 // set expiration to 60 days

 var today = new Date();

 var exp = new Date(today);

 exp.setDate(today.getDate() + 60);

 return jwt.sign({

 _id: this._id,

 username: this.username,

 exp: parseInt(exp.getTime() / 1000),

 }, 'SECRET');

};

As a last step for this application, a passportjs was configured. According to PassportJS

(2012): “Passport is authentication middleware for Node.js. Extremely flexible and

modular, Passport can be unobtrusively dropped in to any Express-based web

application. A comprehensive set of strategies support authentication using a username

and password, Facebook, Twitter, and more.”

A passport-local strategy was used to handle username/password authentication. By

running the command npm install passport passport-local, the passport will be installed.

After the installation has been completed, the passport should be called in the app.js file.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

A new directory in the root of the application was created and named “config”. Inside this

directory, a JavaScript file was created which handles the passport configuration. (See

Table 14).

Table 14. Passport Configuration.

var passport = require('passport');

var LocalStrategy = require('passport-local').Strategy;

var mongoose = require('mongoose');

var User = mongoose.model('User');

passport.use(new LocalStrategy(

 function(username, password, done) {

 User.findOne({ username: username }, function (err, user) {

 if (err) { return done(err); }

 if (!user) {

 return done(null, false, { message: 'Incorrect username.' });

 }

 if (!user.validPassword(password)) {

 return done(null, false, { message: 'Incorrect password.' });

 }

 return done(null, user);

 });

 }

));

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

4 CONCLUSION

The application made using MEAN stack is fully working and demonstrates that using

this stack is a viable way to create a single page web application. Although the app is

working, there a many features that can be added in the future, for example, deleting

comments, adding images, creating groups and so on. For the sake of this thesis, the

MEAN stack was tested as a reliable way of making a web application and more features

could be added eventually.

The MEAN stack offers a complete set for making web applications. The consistency

that JavaScript allows using it along with the whole application and makes it very practical

and rewarding when executing the application correctly.

Making a full-stack web application can be underestimated by many young developers.

A complete web application requires considering various factors, from designing the

application, database, and structure to allow the project to grow in the future, until all the

security implementations that should be carried out in any web app nowadays.

It is indeed interesting to learn from end to end how to make an application. This allows

developers, designers, and anyone in general to be able to understand their team mates

when working on a complete web application project.

We believe that the MEAN stack is a very reliable framework to familiarize with several

current technologies and it is now one of the most popular stacks for making single-page

applications. The MEAN stack will stay around for some time.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Erik Rigoberto Lanza Aplicano

REFERENCES

AngularJS. Available at: https://angularjs.org/ Accessed 15.3.2016

AngularJS Modules. Available at: https://docs.angularjs.org/api/ng/function/angular.module
Accessed 24.03.2016

AngularJS Data Binding. Available at:
http://www.angularjshub.com/examples/basics/twowaydatabinding/ Accessed 26.03.2016

Angular UI. Available at: https://github.com/angular-ui/ui-router/ Accessed 10.04.2016

JSON Web Token. Available at: https://jwt.io/introduction/ Accessed 10.04.2016

MEAN IO. Available at: http://mean.io/ Accessed 15.3.2016

MEAN JS. Available at: http://meanjs.org/ Accessed 15.3.2016

MongoDB . Available at: https://docs.mongodb.org/manual/introduction/ Accessed 20.3.2016

Mongoose. Available at: http://mongoosejs.com/ Accessed 20.3.2016

NodeJS. Available at: https://nodejs.org/en/ Accessed 15.3.2015

Package Manager. Available at:
https://en.wikipedia.org/wiki/Package_manager#/media/File:Pms.svg Accessed 04.04.2016

PassportJS. Available at: http://passportjs.org/docs Accessed 15.04.2016

https://angularjs.org/
https://docs.angularjs.org/api/ng/function/angular.module%20Accessed%2024.03.2016
https://docs.angularjs.org/api/ng/function/angular.module%20Accessed%2024.03.2016
http://www.angularjshub.com/examples/basics/twowaydatabinding/
https://github.com/angular-ui/ui-router/
https://jwt.io/introduction/
http://mean.io/
http://meanjs.org/
http://mongoosejs.com/
https://nodejs.org/en/
https://en.wikipedia.org/wiki/Package_manager
http://passportjs.org/docs%20Accessed%2015.04.2016

