

IMPROVING BROWSER-BASED UI

TEST AUTOMATION

Case study at Konecranes Siebel

Perttu Laamanen

Thesis for B.Sc. Engineering

Information and Communications Technology

August 2016

TIIVISTELMÄ

Tampereen ammattikorkeakoulu

Tieto- ja viestintätekniikan koulutusohjelma

PERTTU LAAMANEN:

Improving browser-based UI test automation

Opinnäytetyö 20 sivua

Elokuu 2016

Tekninen parannus on jatkuvaa ohjelmistokehityksessä. Testiautomaatio on trendikäs ja

moderni laadunvarmistusprosessi. Web-applikaatioiden käyttöliittymiin keskittyvä

testiautomaatio on aina ollut altis ylläpitoon liittyville haasteille. Arvaamattomat

muutokset aiheuttavat usein vaikeuksia testiautomaation relevanttiudelle. Muutosten

ennalta-arvaamattomuus liittyy yleensä ohjelmiston kehittämisen monivaiheisuuteen.

Tämä ilmenee etenkin suurissa IT
1
-organisaatiossa. Tämän tutkielman innoitti

testiautomaatioprojektin ylläpitotyö Konecranes Global Oy:llä.

Tutkielma perustuu ohjelmistotuotantomallin muutoksen (vesiputousmallista kanbaniin)

tarkkailuun testiautomaation näkökulmasta. Tutkimuksella pyrittiin löytämään

testiautomaation parannusmahdollisuuksia ja tunnistamaan tuotantomallin muutoksen

vaikutuksia testiautomaatioon.

Tutkielman käsitellään perusta moniosaisen testiautomaatiorakenteen ymmärtämiseksi.

Samalla selitetään kuinka testiautomaatio toimii yhteistyössä kohdeohjelmiston ja sen

tuotantoprosessin kanssa. Tuotantoprosessit kuvaillaan yksityiskohtaisesti, jotta lukija

saisi kunnollisen testiautomaation näkökulman tuotantomallien muutokseen.

Seuraavaksi tarkkailujakso analysoidaan ja havaitut kehitysideat tuodaan esille.

Tuloksissa selitetään tärkeät tekniset löydöt kohdeohjelmiston testiautomaation

kehitystä varten. Dynaamisen testidatan huomattiin olevan merkittävä tekijä julkaisuihin

liittyvän testiautomaation sopeuttamisen nopeuttamiseksi. Sopeuttamisen

nopeuttaminen parantaa testiautomaation laatua ylläpidettävyyden kannalta. Kanbanista

johtuva selkeämpi tuotantovaiheiden seuranta mahdollisti vakaamman

ylläpidettävyyden testiautomaatiolle.

Tutkimus nosti esille merkittävän kehitysidean testiautomaation skriptausprosessin

parantamiseksi. Ajatus parannuksen taustalla on toteuttaa skriptausprosessi käyttäen

grey-box testausmenetelmää.

Asiasanat: testiautomaatio, kanban, dynaaminen testidata

1
 Tietotekniikka

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

ICT Engineering

PERTTU LAAMANEN:

Improving browser-based UI test automation

Bachelor's thesis 20 pages

August 2016

Technical improvement is continuous in software development. Test automation is a

trending modern quality assurance procedure. Automated testing focused on web appli-

cation user interfaces has always been subject to maintainability challenges. Unpredict-

ed changes are commonly causing complications to test automation relevance. The un-

predictability of these changes is usually related to multiphasing within software devel-

opment processes. This occurs especially in big IT
1
 organizations. This thesis was in-

spired by test automation project management work at Konecranes Global Oy.

The thesis is based on observing software development process model change (from

waterfall to kanban) from the test automation perspective. During the period of research,

study was focused on finding any possible improvements aside from identifying model

transition effects on the automation.

The thesis discussion starts with laying groundwork for comprehending the manifold

test automation structure while also explaining how it co-operates with the target soft-

ware and its development process. The development processes are described in detail to

give the reader a proper test automation perspective for the process model transition.

Next the observation period is analyzed and identified improvements are expounded.

Results explicate important technical findings to improve the automated testing of the

target software. Dynamicity of the test data is found to be an important factor for short-

ening release related test automation adjustment process. Shortening the adjustment

process increases test automation quality in terms of maintenance. Kanban made it easi-

er to track development phases. This stabilized maintainability of test automation.

The study raised a major improvement idea for enhancing the test automation scripting

process. Idea behind the enhancement is to implement the grey-box testing method to

the scripting process.

Key words: test automation, kanban, dynamic test data

1

Information technology

CONTENT

1 INTRODUCTION ... 1

1.1 Research target ... 1

2 BACKGROUND ... 2

2.1 Software development process .. 2

2.1.1 Waterfall .. 2

2.1.2 Kanban .. 3

2.2 Software testing ... 3

2.2.1 Grey-box testing .. 4

2.3 Test data ... 4

2.3.1 Test data structure ... 4

2.3.2 Dynamic test data .. 6

2.3.3 Dynamic test data creation with SQL and big data 6

2.4 Test Automation .. 6

2.4.1 Selenium WebDriver and IDE .. 7

2.4.2 Robot Framework ... 7

2.5 Jenkins ... 9

3 METHOD .. 10

3.1 Research period .. 10

3.2 Waterfall solution .. 10

3.2.1 Release orientation .. 10

3.2.2 Test automation with waterfall.. 11

3.2.3 Test data with waterfall ... 12

3.3 Improving script processing ... 12

3.4 Transitioning to kanban ... 13

3.4.1 Kanban and test automation .. 13

3.5 Implementing dynamic test data .. 14

3.6 Defining test automation quality .. 14

4 RESULTS .. 16

4.1 Waterfall impact on test automation .. 16

4.2 Non-dynamic test data ... 16

4.3 Kanban effectiveness ... 17

4.4 Smoother flow from dynamic test data .. 17

5 CONCLUSION ... 19

BIBLIOGRAPHY ... 20

Terms

API Application programming interface, a code connection point

for different application components

Big data Large amount of structured and unstructured datasets

Boolean Programming data type with two possible values: true and

false

CI Continuous integration, process of merging code to a shared

repository

Dashboard Tool for website administration

Development process Model used to structure, control and plan target develop-

ment.

End user The target user of an application

Framework An abstract design that coordinates and sequences activity.

GUI Graphical user interface, visual interface of an application

IDE Programmer utility tool for source code editing, build auto-

mation and debugging

Input Data entered into software by a user.

Jenkins Tool for continuous integration

Keyword Word that represents a single action to be done to software

Output Data displayed by software.

Python High-level, general-purpose programming language

Regression testing Testing previously tested features to validate no impact from

new changes.

Repository Data structure for version controlling systems

Robot Framework Test automation framework

Selenium Testing framework for web applications

Slave machine Server for automated test script execution

Software deployment Activities of taking a system into use.

System testing Testing phase to check the whole system’s functionality.

Test automation Automated execution of software test scripts

Test script Steps written as an instruction to execute a test, synonymous

with test case

UAT User acceptance testing, final testing phase for end users

1

1 INTRODUCTION

This research was conducted with Konecranes Global Oy. Konecranes is a global crane

manufacturing and service company. The company has around 12000 employees in 48

countries. The study was carried out together with managing and programming the

Konecranes test automation project. The project team worked on Oracle’s Siebel cus-

tomer relationship management and field service systems. Siebel is used through a

browser-based graphical user interface (GUI). Software development process for Siebel

consists of following phases in a chronological order: conception, development, system

testing, user acceptance testing (UAT) and publication. Automated testing is done in

testing specific environments. Konecranes Siebel test automation uses keyword-driven

customized Robot Framework, Selenium WebDriver and Google Chrome browser envi-

ronments. Automated testing is done only on the GUI layer of the Siebel application.

1.1 Research target

The problems which the research tries to alleviate are how changing the software devel-

opment model from waterfall to kanban affects test automation and how relevance of

the test automation project results could be increased. The primary target of the research

is to find out what are the impacts of software development model change on test auto-

mation. Secondary target is to enhance maintainability and stability of the project. From

a scientific perspective, the research is done in order to find evident technical improve-

ments for Siebel web client user interface (UI) test automation. The company’s aspect

of the research is to improve test automation relevance towards testing processes.

2

2 BACKGROUND

The following section gives short insight of the research environment and terms to be

understood for research comprehension.

2.1 Software development process

A software development method is a model that is used to structure, control and plan

system development. (CMS, 2008). This research was done comparing the waterfall

model with the kanban framework. Other known methodologies and frameworks are

scrum and test-driven development (TDD). In both development models there were sep-

arate physical environments for development, system testing, user acceptance testing

and production. It’s important to note that implementations of development models can

be different between companies.

2.1.1 Waterfall

The waterfall development model is a sequential phasing process where slight overlap-

ping is acceptable. Planning and schedules are focused. (CMS, 2008). For the waterfall

model in this research, the system under development is first defined by business re-

quirements. This definition is turned into design which will be implemented into a solu-

tion. Finally the quality is tested and after publication the product will be maintained.

The development cycle is visualized in figure 2.1.

Figure 2.1: Waterfall development model. (Hoadley, 2005).

3

2.1.2 Kanban

Kanban originated from Toyota’s production system. Toyota implemented a just-in-

time production style to eliminate waste. Waste consists of process situations which add

no value to production. (Ohno, 1988.) Kanban is a framework of lean and agile devel-

opment processes. This production model was implemented to software development to

achieve lean benefits – to eliminate unnecessary work. (Ohno, 1988; J. P. Womack,

2007). Siebel team’s implementation of kanban was based on a physical kanban board.

Ideologically visualizing the development optimizes load balancing between phases and

helps target the work to correct people. (K. Scotland, n.d.). In practice the kanban board

displays a to-do list for the software development team.

Figure 2.2: Example of a kanban board. (Mitchell, 2012).

2.2 Software testing

Testing is a major software development process and thus an important part of quality

assurance for the stakeholders. The principle of testing is investigating a product with

4

predefined conditions of expected functionality. (Kaner, 2006.) Siebel testing was done

on three levels. First developers tested their developments, then the team working with

Siebel proceeded with system testing and finally a set of end users conducted user ac-

ceptance testing. Tests were executed from designed test scripts or synonymously test

cases. These scripts were documented in a project tracking tool.

2.2.1 Grey-box testing

Grey-box testing consists of black- and white-box testing. The box methods define

whether or not the tester knows about the software’s internal structures and hardware

solutions. White-box (or glass-box) testing requires in depth knowledge whereas black-

box testing only investigates external attributes and behavior. An example of a black-

box testing target would be an application’s expected behavior from the user’s point of

view. Large-scale web applications are bound to multiple hardware and software com-

ponents which makes grey-box testing an essential foundation for the testing phase.

(Nguyen et al., 2003.) A popular practice of the grey-box method is when a test design-

er is aware of the software’s internal structure and the tester is not. (Kaner, 2003).

2.3 Test data

Most test scripts require test data to be executed. Test data is data selected with specific

test script-dependent criteria. (E. J. Weyuker, 1988). Test data is often tied to the data-

base of the system. Common examples of test data are test user credentials. A good ex-

ample of data-heavy test scripts is an end-to-end test script. In Siebel development, the

user acceptance testing phase consisted of end-to-end test cases. An end-to-end case is a

complete business process with precise steps and result expectations. The heaviness of

test data in these test cases accumulates from the amount of inputs and output valida-

tions.

2.3.1 Test data structure

The test data structure in the research’s test automation repository consisted of three

layers: test data, test suite and test case files. Test data files (screenshot 2.1) were plain

variable storage files with variable and list variable declarations. A common example of

data stored into test data file variables is test user information which could be used for

5

UI data validation in the tests. Test suites (screenshot 2.2) were configuration files for

sets of tests that required the same settings or variables like test users and resource files.

Test suite files were used as the executable scripts that called resource files and test cas-

es. This created a virtual network between the three layers. Test case files (screenshot

2.3) contained the actual test scripts in keywords. Test suite, data and case files were all

written in Robot Framework syntax.

Screenshot 2.1: Test data file example.

Screenshot 2.2: Test suite file example.

6

Screenshot 2.3: Test case file example.

2.3.2 Dynamic test data

Manual test data generation is one of the factors slowing down software testing. Test

data is mostly generated manually and with a black-box approach, the test designer may

need to go deep into the system to define it. Dynamic test data generation is the process

of automatically identifying input data which satisfies the selected testing criterion. (K.

Bogdan, 1990.) In Siebel, preset dynamic test data was generated automatically from

the system’s database. Dynamic test data was also generated during the execution of test

cases in for example situations where calculation algorithms were verified.

2.3.3 Dynamic test data creation with SQL and big data

Big data is a term used for large amounts of structured and unstructured datasets. Big

data software is a challenging environment for analyzing, querying and maintaining

data. (J. M. Cavanillas et al., 2016.) The customized Siebel in this research was a very

data-heavy environment. Dynamic test data was generated with complex SQL queries

that were run against the Siebel database. SQL stands for “structured query language”

which is a syntax designed for database management.

2.4 Test Automation

Reducing costs and doing more is always a target for improvement in software devel-

opment. For this reason, automating tests with external tools has become a trendy way

7

of facilitating the testing teams’ workload. To run an automated test, a test script based

on functional specifications is scripted for an external tool to execute on the software

under development. (Dustin et al., 2008.) The possibility of constant repetitive testing is

an additional benefit of test automation. Automated tests can be triggered by continuous

integration (CI) commits. CI means merging development work into a shared main re-

pository. (Fowler & Foemmel, 2006).

2.4.1 Selenium WebDriver and IDE

Selenium WebDriver is a browser controller application programming interface (API)

which allows different programming environments to control a browser. Sending a

command to Selenium WebDriver e.g. a button click event will trigger it in a browser

instance controlled by Selenium. The Selenium integrated development environment

(IDE) is a Mozilla Firefox plugin that allows the user to record actions on the browser

instance and then run it as an automated script generated with Selenium. These scripts

can be exported in different formats. (The Architecture of Open Source Applications:

Selenium WebDriver, n.d.)

2.4.2 Robot Framework

Robot Framework is a keyword-driven python-based generic framework. (Robot

Framework Homepage, n.d.). Siebel test automation was set up with Robot Framework

and Selenium WebDriver. A picture of the Robot Framework IDE can be found from

screenshot 2.3. Selenium provides keyword libraries for Robot Framework. These li-

braries contain basic functions for processing a browser instance. Keyword-driven syn-

tax is a programming framework where functions are called with actual words. (D. R.

Faught, 2004). An example of a keyword in this case would be: “Lists Should Be

Equal” which calls lower layer functions in a structure that eventually leads to a Python

library. Functionally the example keyword would take two list variables as parameters

and compare them to output a Boolean result. Keywords were used in multiple layers.

An example of the layers would be a keyword of “Open tab X” that contained lower

layer functions “Click Link To X” and “Wait For X To Appear”. Robot Framework has

its own simplified syntax which is interpreted to Python in execution.

8

The Robot Framework structure in the research test automation was built from standard

and custom Python libraries. These libraries compiled into standard and custom key-

words that were mixed together into higher keyword layers. Customized keywords were

high layer entities consisting of keywords from the standard libraries. Higher layer

keywords were used to complete longer user interface tasks with less scripting. A cus-

tomized Python library was created for moving some customized keywords to a lower

code layer. Relationship of the libraries and keywords under the syntaxes is displayed

on figure 2.4. Robot Framework automatically generates logs after finishing a script.

These logs present the outcome of test scripts and their steps all the way to the lowest

keyword layer.

Screenshot 2.3: Robot Framework IDE (RIDE).

Figure 2.4: Syntaxes, libraries, keywords and their relations.

9

2.5 Jenkins

Automated testing under research was maintained with Jenkins – a continuous integra-

tion system. Jenkins is a panel that controls script execution on slave machines. (Dis-

tributed builds, n.d.). For Siebel test automation, Jenkins was used to run Robot Frame-

work scripts with batch commands. The test automation team used Jenkins to automati-

cally run all test suites on 5 slave machines once every day. Additionally, a Powershell

script was used to compile daily results into a custom website (screenshot 3.1) that was

accessible from the Jenkins dashboard. An example of the Jenkins dashboard is dis-

played in screenshot 2.5.

Screenshot 2.5: Jenkins dashboard.

10

3 METHOD

This section is a detailed review of what was done to observe and improve test automa-

tion quality. Research was conducted during a year in a test automation project team.

The team consisted of the researcher and vendors or summer trainees. Work was done

in the company headquarters and by working remotely from home office. The primary

target of the research was to find what the impacts of software development model

change are on Siebel’s test automation. The secondary research target was to find im-

provement ideas for the project.

3.1 Research period

The research started in late summer 2015 and ended in August 2016. A waterfall model

was in use from the beginning of the research until spring 2016. Transitioning to kanban

and dynamic test data generation started during spring 2016.

3.2 Waterfall solution

The first software development process used during the research was the waterfall mod-

el. The model’s process cycle started with specifying a release with a set of new devel-

opment items. First these items went from backlog to concept design. From design they

went to the first physical environment for development. After development they would

undergo system testing and user acceptance testing (UAT) in their own environments.

Finally the release went to production.

3.2.1 Release orientation

During the rounded 8-month period of the waterfall solution, the system was upgraded

with two releases as per scheduled by business. The big, release-oriented software de-

velopment model caused overload in some development phases due to large item

amounts moving at the same time. Major releases required full regression test cycles in

all testing phases, as test automation was not yet reliable enough to run them alone.

Running the regression test cycles manually is considered impractical. (E. Dustin,

2002).

11

3.2.2 Test automation with waterfall

Automated tests were initially executed in the environments for development, system

testing and UAT. The development environment was removed from test automation

scope because of instability and the possibility of being recompiled anytime by devel-

opers. Test automation version management was structured with release-dependent re-

positories. After items were moved from development to system testing, new item-

related automated test scripts failed. To have the tests passing again, scripts required

adjustments to the new release within its dedicated test automation repository. Due to

the nature of the waterfall model, bulks of items were moved at the same time causing

big leaps in automated test pass rate percentages. An impact analysis of the new re-

lease’s effects on test automation was done with the testing manager. An approximate

description of release challenges in test automation is depicted in figure 3.1.

Figure 3.1: Waterfall deployment and test automation results.

12

3.2.3 Test data with waterfall

Siebel test automation used lots of test data that was dependent on the release. Testing

environments were deployed with the latest copy of production one week before the

start of testing phases. Hardcoded test data had to be manually changed every time the

database was replaced. The structure of the test automation repository allowed usage of

global test data variables that reduced the maintenance work.

Figure 3.2: Global variables routed to test case files through a test suite (see chapter

2.3.1 for details on test data structure).

3.3 Improving script processing

In the beginning of 2016, the test automation team decided to improve the performance

of the automation. Some of the core customized keywords created from standard Robot

Framework keywords were programmed into a customized Python library. In other

words core functions were implemented to a lower code layer. Executing the functions

on a lower layer was expected to improve computing speed as the new code didn’t have

to be interpreted. An example of this is shown in figure 3.3.

Figure 3.3: Keyword movement to lower codebase.

13

3.4 Transitioning to kanban

In spring 2016, the company decided to change its information technology (IT) organi-

zation’s development approach to kanban. In practice the new kanban approach meant

monthly releases of small items that were compiled to 3 annual production releases. A

physical kanban board was set up in a meeting room dedicated for kanban. Meetings

were held twice a week to address progress and issues regarding the items on the board.

At the end of the research, a web camera was going to be installed to present the kanban

board for online meeting participants.

3.4.1 Kanban and test automation

With the kanban method, development items were flowing through the development

phases continuously. Testing environments would only be taken down for fresh data-

base deployments. New development items could be followed on the kanban board.

This simplified the work required to track down root causes for pass rate decreases. It

was decided that system testing environment would be deployed with a fresh UAT da-

tabase copy instead of one from production. This resulted in integrity of test data in both

of its working environments. Regression testing was reduced due to test automation

improvements and simplified flow of single development items. Reduction of regression

testing highlighted the importance of test automation stability.

14

3.5 Implementing dynamic test data

During spring 2016, the team decided to implement dynamic test data within the auto-

mated test scripts because manual adjustment after every fresh database deployment to

environments was a long process. Automated test data generation was done by fetching

the data with SQL queries through a direct connection with the environment’s database.

It was implemented in the Robot Framework scripts in a way that manual input was no

longer required to get fresh test data for test cases. Figure 3.4 shows the process flow of

automatic test data generation. For some test automation solutions, test data must al-

ways be set manually. An example would be when the automated test script requires

integration data from another application. Test automation of this research was original-

ly created to be well maintainable – thus ruling out data-dependent integration test

scripts. After observing a release transitioning in the beginning of year 2016, it was not-

ed that most of the work spent on adjustment was actually from setting up the test data

for the new environment.

Figure 3.4: Fetching test data from the database.

3.6 Defining test automation quality

Before analyzing the results, it is necessary to define what test automation quality in this

case of study is. It is important to understand that combinations of test data generation

solutions and software development models have their individual optimums depending

on the test automation target. Expectations for the test automation in this research were

to observe the state of testing environments, monitor performance, save resources in

testing phases and point out valid deployment issues. To meet the expectations, the au-

tomated tests were run in scheduled Jenkins batch commands which logged results to a

15

dashboard. The dashboard was created to monitor test automation quality. An example

of the result dashboard is shown in screenshot 3.1.

Screenshot 3.1: Dashboard for test automation results.

For Siebel, test automation quality was defined by a stable high pass rate, quick recov-

erability, flexible adjusting and good maintainability. The quality definition was limited

by the software’s nature of being a data-heavy web UI-based CRM system. A constant-

ly high overall-pass rate represented a good readiness for analyzing new deployment

operability. An indicator of quick recovery is a situation where a code structure that

causes sudden pass rate decreases can be easily identified and fixed. Quality in terms of

flexible adjusting referred to the simplicity of automating test scripts for new features.

All the previous quality factors in addition to proper development and monitoring tools

were a part of Siebel test automation project’s good maintainability.

16

4 RESULTS

Software development model change showed a stabilizing effect on test automation

maintainability. Implementation of dynamic test data shortened test automation adjust-

ment process. For both process and technical structure, positive outcome was identified

throughout the implementation and changes done within the research observation scope.

4.1 Waterfall impact on test automation

Adjusting automated scripts to the new deployments was slightly confusing with the

waterfall model. Deploying a set of development items during a short period of time

made it hard to analyze what the root causes behind pass rate decreases were due to pos-

sibility of having simultaneous scripting failures, test data mismatches and actual re-

lease indifferences. A good example was when a database copy was deployed to one of

the testing environments and new release items were moved right after the deployment.

In this situation, the non-dynamic test data would conflict with the fresh database copy

causing script failures while the new development items would affect the pass rate in a

similar manner. Identification of root causes would take longer as they weren’t predict-

able. Longer development phases allowed longer adjustment periods for bringing auto-

mated scripts up to date with the new release. This led to nearly perfect pass rates by the

end of testing phases which were very useful for validating hot fixes. Hot fixes were

made for bugs that were found after production deployment and tested in the UAT envi-

ronment.

4.2 Non-dynamic test data

Automated scripts used non-dynamic test data for the whole period of the waterfall

model. Fresh database copies from production to the testing environments always mis-

matched most of the manually set test data. Manual inputs are not practical in test auto-

mation maintenance, but in some situations they may be necessary. In this case all test

data requirements needed to be checked from an original archived test script and with

those requirements it was searched from the system. After suitable test data was found,

it was edited into a test data script file. This process was time-consuming and complex

for a new employee.

17

4.3 Kanban effectiveness

Transitioning to kanban was helpful for the test automation team. Smaller items going

through testing environments one by one made it much easier to sustain test automation

stability. Maintenance work could be prioritized since pass rate decreases were more

predictable this way. The new item movements from development to testing environ-

ments were visualized on the kanban board. Tracking these movements increased the

predictability of test script failures. Kanban development flow was supposedly more

occupied than development with the waterfall model. The new flow of work meant less

time and people for running regression tests. The flow together with improvements of

the test automation project led to reduced manual regression testing. Reduction of re-

gression testing saved time and raised the importance of test automation.

4.4 Smoother flow from dynamic test data

Implementing dynamic test data lead to a much faster and smoother flow of test auto-

mation adjustment. After a portion of test data was set to be fetched with SQL in the

beginning of automated test scripts, the automation partly adjusted itself to new data-

base deployments. Creating the SQL scripts to fetch the test data was a challenging op-

eration because of Siebel’s massive database and its complexity with out-of-the-box and

customized tables mixed together. Creation of the dynamic test data proved to be worth

the effort during the summer of 2016, as a lot of time was saved in manual test data set-

up. Dynamic test data was a major factor in the test automation stability which is im-

portant in any successful kanban implementation. Test data type comparison is shown

on table 4.1. Scripts for getting dynamic test data had no major impact on test automa-

tion performance. Dynamic test data script can be seen in screenshot 4.1 where it is dis-

played as a test case step on a log generated by Robot Framework. This example took

only 8 seconds to execute.

Screenshot 4.1: Test case step for getting test data.

18

Table 4.1: Dynamic test data versus non-dynamic test data.

Setup Dynamic test data Non-dynamic test data

Process length Short Long

Description

Create SQL query, cre-
ate script to execute
SQL on test case, copy
and paste script to test
cases

Define test data from test
script, obtain test data
through UI, set test data
into test data files

Frequency Once Every release

Pros
Test data script crea-
tion is a one-time op-
eration

Test data is as good as con-
figured to be

Cons
Database may contain
bad data

Time-consuming operation
on every release

19

5 CONCLUSION

The type of test automation used in this research was more suitable to approach with a

kanban model than a waterfall model because of simpler adjustment workflow. Less

work was needed to maintain the scripts and the results were more stable. In other

words the research was beneficial from the introductory company aspect, as test auto-

mation relevance towards testing increased. The increased relevance allowed testing

costs to be reduced. For the initial scientific perspective, technical improvements were

identified and implemented. These technical improvements were a good solution for

particularly this test automation project and they may not be implementable to other

web UI test automation projects. This can be considered a limitation of this study. This

study could be continued by researching software development model impact on test

automation with different models and test automation structures.

Making the test data dynamic was a key operation to increase maintainability. This im-

provement was left unfinished during the research, but it will definitely be completed in

the future. Most test data can be generated dynamically though some situations may

require very technical solutions.

As for finding other improvements for the scientific research perspective, ideas were

composed by identifying the durations of different test automation processes. The crea-

tion of new scripts is one of the slower processes along with setting up manual test data.

This study raised an idea of optimizing the scripting process by implementing a grey-

box method to browser UI test automation. In practice it would be done by having

black-box testers record their test cases with Selenium IDE and exporting the results

using a formatter. The exported files would then be sent to a white-box participant like a

test automation developer who then configures the test cases into a new or existing test

suite. Implementation of this new process gives ground for research continuation.

Although the results of this research were positive, some technical improvements could

have been taken into consideration when the test automation structure was originally

designed. From the beginning, dynamic test data could have been a requirement and the

structure could have been programmed mostly to the Python level.

20

BIBLIOGRAPHY

C. Kaner. Exploratory Testing, 2006. URL http://www.kaner.com/pdfs/ETatQAI.pdf.

April 23, 2016.

Centers for Medicare & Medicaid Services (CMS) Office of Information Service, 2008.

URL http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-

Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf. August 25, 2016.

T. Ohno, 1988. Toyota Production System: Beyond Large-Scale Production, pages 1-2.

J. P. Womack, 2007. The Machine That Changed The World, pages 48-51.

K. Scotland, Aspects of Kanban. URL

http://www.methodsandtools.com/archive/archive.php?id=104. August 25, 2016.

E. J. Weyuker, 1988. The evolution of program-based software test data adequacy crite-

ria. Abstract, pages 1-2.

H. Q. Nguyen, B. Johnson, M. Hacket, 2003. Testing Applications on the Web: Test

Planning for Mobile and Internet-Based Systems, pages 20-22, 7,

E. Dustin, J. Rashka, J. Paul, 2008. Automated Software Testing: Introduction, Man-

agement and Performance, pages 3-4.

P. A. Hoadley, 2005. URL

https://upload.wikimedia.org/wikipedia/commons/5/51/Waterfall_model.png. August

21, 2016.

I. Mitchell, 2012. Example of a Kanban board. URL

https://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Kanban_board_example.j

pg/726px-Kanban_board_example.jpg. August 21, 2016.

M. Fowler, M. Foemmel. Continuous integration, 2006. URL

http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-

14/lecturas/10_Fowler_Continuous_Integration.pdf. April 25, 2016.

K. Bogdan, 1990. A Dynamic Approach of Automated Test Data Generation, page 1.

J. M. Cavanillas, E. Curry, W. Wahlster, 2016. New Horizons for a Data-Driven Econ-

omy, A Roadmap for Usage and Exploitation of Big Data in Europe, pages 3-5.

The Architecture of Open Source Applications: Seleniums WebDriver. URL

http://www.aosabook.org/en/selenium.html. August 25, 2016.

Robot Framework Homepage. URL http://robotframework.org/. August 25, 2016.

D. R. Faught, 2004. Keyword-Driven Testing. URL

https://www.stickyminds.com/article/keyword-driven-testing. August 25, 2016.

http://www.kaner.com/pdfs/ETatQAI.pdf
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf
http://www.methodsandtools.com/archive/archive.php?id=104
https://upload.wikimedia.org/wikipedia/commons/5/51/Waterfall_model.png
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Kanban_board_example.jpg/726px-Kanban_board_example.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Kanban_board_example.jpg/726px-Kanban_board_example.jpg
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.aosabook.org/en/selenium.html
http://robotframework.org/
https://www.stickyminds.com/article/keyword-driven-testing

21

Distributed builds, Jenkins website. URL https://wiki.jenkins-

ci.org/display/JENKINS/Distributed+builds. August 25,2016

E. Dustin, 2002. Effective Software Testing, 50 Speficic Ways to Improve Your Test-

ing. Item 39: Automate Regression Tests When Feasible.

https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds

