

Ahmed Mansour

Building Scalable Web Applications

Researching Frameworks and Design Patterns

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

15 September 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Ahmed Mansour
Building Scalable Web Applications, Researching Frameworks
and Design Patterns
48 pages
15 September 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s) Kimmo Sauren, Senior Lecturer
Ville Kuusela, (Senior Team leader)

A paradox of choice is a problem in web technologies. The purpose of the project was to
research modern technologies to build large-scale web applications. The main goal of the
project was to offer practical recommendations of web frameworks and design patterns
that help developing a web application that is both scalable and maintainable.

The research was based on the requirements of a large application that was developed in
an IT service company. An analysis of the application’s requirements was made to under-
stand its main challenges. The analysis led to recommendations to support the applica-
tion’s requirements.

As a result, certain web frameworks and design patterns were described. The project of-
fers technical explanations and guidelines of how these technologies function. In addition,
a practical implementation of a web application architecture was developed using some of
the technologies described in the project.

Reusability of the code and loosely coupled components are the main factors to build a
scalable and maintainable web application. The findings are limited to the technology
available at the time this project took place. However, the methods that were applied to
find these technologies will be reusable in the future to evaluate new ones.

Keywords web frameworks, design patterns, Angular 2, React, Module
pattern, Observer pattern, web development, architecture

Contents

Abbreviations and Terms 5

1 Introduction 1

1.1 Overview of the Project 1
1.2 Overview of the Company 1

2 Fundamentals of Building Web Applications 2

2.1 Web Frameworks 2
2.2 Design Patterns 6

2.2.1 Fundamental Elements of Patterns 7
2.2.2 Reasons to Use Design Patterns 8

3 Criteria for Research 9

3.1 Criteria for Web Frameworks Research 9
3.2 Practical Guide to Research Design Patterns 12

4 Design Patterns for Maintainable Applications 14

4.1 Observer Pattern 14
4.1.1 Advantages 17
4.1.2 Disadvantages 18

4.2 Module Pattern 19
4.2.1 Module Theory 20
4.2.2 Object Literals 21
4.2.3 Advantages 22
4.2.4 Disadvantages 23

4.3 Revealing Module Pattern 23

5 Scalable JavaScript Web Frameworks 25

5.1 React 26
5.1.1 Virtual DOM 27
5.1.2 JavaScript XML 28
5.1.3 Data Flow 29
5.1.4 Lifecycle of the Component 29
5.1.5 Final Conclusions 30

5.2 Angular 2 31

5.2.1 Data Architecture 32
5.2.2 TypeScript 33
5.2.3 Data Flow and Components 34
5.2.4 Observables and RxJS 36

6 Implementation of Scalable Application Architecture 39

6.1 Angular 2 vs. React 40
6.2 Practical Architecture and Structure 41

7 Conclusion 46

References 47

Abbreviations and Terms

ASP.NET Server-side web application framework made for web

development. It is developed by Microsoft.

Ajax Stands for Asynchronous JavaScript and XML. It is the

use of the XMLHttpRequest object to communicate

with server-side scripts. It can send as well as receive

information in a variety of formats, including JSON,

XML, HTML, and even text files.

Client Visual user interface portion of an application in the

context of web applications.

Closure

Powerful programming technique which is possible by

having an inner function that has access to the outer

(enclosing) function’s variables—scope chain.

ERP system

 Enterprise Resource Planning system is a category of

business-management software typically a suite of in-

tegrated applications that an organization can use to

collect, store, manage and interpret data from many

business activities.

Git A version control system that is used for software de-

velopment and other version control tasks.

HTML5 HyperText Markup Language is Mark-up language that

is used to structure and present content on the web.

Java General purpose programming language.

JavaScript High level interpreted programming language.

NDA Non Disclosure Agreement

Material Design A design-language developed in 2014 by Google. It

makes more liberal use of grid-based layouts, responsive

animations and transitions, padding, and depth effects

such as lighting and shadows.

Open source Development model that gives universal access to a

product and allow its redistribution.

PHP Server-side scripting language for web development

could be also used as a general programming lan-

guage.

Responsive web design An approach while building website to provide viewing

and interaction experience across a wide range of de-

vices with different sizes.

Routing The process of using URLs to drive the user interface

(UI) in a web application.

Sass

A scripting language that is interpreted into Cascading

Style Sheets (CSS)

Server Device or program that provides functionality to other

devices (client)

Static Refers to a web design that can not adapt to viewer

needs.

 DOM The Document Object Model is a cross-platform and

language-independent application programming inter-

face that treats an HTML document as a tree structure.

Webpack An open-source JavaScript module bundler.

1

1 Introduction

1.1 Overview of the Project

The goal of this project is to study different web frameworks and design patterns com-

monly used within web frameworks. The case that is taken into consideration is an ap-

plication that will be developed to one of Tieto’s customers. The application has chal-

lenging requirements and it is unique to its case. It is necessary to do research first to

decide which set of technologies to use and how to implement the building blocks of

the application. A major requirement for the application is to handle large amounts of

data without dropping the performance and maintain good customer experience. The

application is expected to be used from different locations in North America, Europe

and China. Issues such as localised languages, time zones and regional laws have to

be taken into account.

1.2 Overview of the Company

Tieto is one of the largest IT service providers in the Nordic region. It consists of over

13,000 employees in around 20 different countries. The company is involved in various

areas mostly offering their customers IT solutions and services. Tieto is heavily present

in the following areas:

• Financial services

• Healthcare and wellbeing

• Retails and wholesalers

• Forestry

• Oil and gas

[1.]

Initially Tieto started its operations in 1968, under a different name at that time, devel-

oping IT systems for the Union Bank of Finland. During the late 1990s and the early

2000s the company experienced a huge growth and merged with many other compa-

nies to what is known today as Tieto. [1.]

Due to NDA it is not possible to write in detail about the company’s own projects or

software in the thesis.

2

2 Fundamentals of Building Web Applications

Building a web application on a large scale is an extremely demanding task. It often

requires effort to decide how the application will be built out. Applications on the scale

of Facebook, LinkedIn or YouTube have a long list of requirements and features. Ques-

tions like “which technologies are best suited for the application” or “how to structure

the codebase of the application”, are often difficult questions to answer but also im-

portant questions that define the application and its chance to succeed in the market.

With the focus on the client-side, the Frontend, of web applications there are multiple

decisions to make. Some of the major ones are choosing which libraries or frameworks

will fit best with the requirements of the system, and which design patterns will be used

to give a scalable architecture to the application and allow further development with

minimum limitations.

There are plenty of different web frameworks available like Angular 1, Ember, Back-

bone, React, and JQuery. The frameworks vary with many different implementations of

different patterns and features. However, when it comes to the client-side framework

they are commonly created based on JavaScript.

Design patterns in software development and architecture have been developing over

time in order to build more efficient and robust software. There are plenty of patterns

available which each solve a specific problem. Often it is important to pick and match

the patterns that support with an architecture that offer high performance, decoupled

parts to ease changing dependencies of the application and ease code re-usability

across the whole application.

2.1 Web Frameworks

In the scope of software development, a framework is a set of libraries or prewritten

code that gives certain functionalities for applications. A framework can be considered

the building base that engineers can build over. In most cases, the framework provides

the application with a certain structure. The reason behind the popularity of the frame-

work concept is that it speeds up the development of the project. Frameworks allow

engineers to focus on solving the main problem instead of worrying about rewriting

3

features and structures which are very common in most web applications. Frameworks

provide functions and features which are usually well tested and proved to be working.

Thus, the code is reliable to be used in production level. Nowadays, most web frame-

works are free of charge to use and open sourced allowing anyone to join and contrib-

ute in a way or another. [2, 8.] Typically, a developer can be part of the development

process of a framework. Contributions can be done by proposing improvements to the

core team who is responsible for the framework. Also, reviewing the code and inspect-

ing it for bugs is helpful. Another way of contributing, is getting familiar with the frame-

work and offering assistance to others who have the interest in using this particular

framework. [3.]

In 1990 the World Wide Web was created. The nature of the web at that time was very

static. Interactivity between the user and the website did not much exist and the pro-

cess of updating the content of a website on the web took plenty of manual work. First

publishers had to edit their pages in their local environment and then to upload to the

server. [2; 2.]

All data processing and application logic was done on the server-side. The browser

was considered being only able to display content. If the user entered invalid data, it

would be sent and checked on the server. Afterwards a message was returned and the

page was re-rendered to its initial state. Things improved by allowing small processing

chores inside the browser environment. For security reasons, any execution was within

controlled area and had no access to the user’s private data and was only limited to

data within this page. The executable scripts were written in a language called JavaS-

cript that quickly grew in popularity since it improved the experience of the user. [4.]

The years from 1990 onwards it could be considered a transition period in client-side

development. The time prepared the web to adapt to changes such as the huge in-

crease in usage of mobile phones. As a result, a concept such as Responsive Web

Design was promoted and development of technologies such as HTML5 was acceler-

ated in the period between 2005-2010. Another revolutionary milestone was introduc-

ing browsers that had their own full operating system. This innovation softened the line

between PCs and browsers. For instance, through Chrome or Firefox and HTML5 web

development, quality video game experiences could be effectively created right in the

browser. Today the term “web application” has become generic and interactivity is a

4

vital part of most website that has made them more complex but interesting to develop.

[5.]

The following points will highlight the main advantages of using frameworks:

• Frameworks reduce the development time by using reusable code that was al-

ready written, tested and developed by other skilled engineers. The highest

costs in any software development project is the time. Therefore, frameworks

are beneficial financial-wise.

• Software development may include different developers throughout its devel-

opment process. Frameworks often promote a design pattern or specific archi-

tecture. These design pattern and best practices make it easier for the develop-

ers to comprehend the code and fast start working with it.

• Frameworks make it easier for junior developers to learn design patterns and

understand the logic behind different patterns. A junior developer often has a

steeper learning curve when they use frameworks compared to learning a regu-

lar programming language. This is due to the fact that it is required to know the

framework’s own programming language as well as the specific syntax that the

framework uses.

• The majority of frameworks are often open sourced meaning that the workload

is divided among many skilled developers. Frameworks offer a variety of fea-

tures so developers do not have to start from scratch and worry about all as-

pects while building the project. A framework’s users get support free of charge

with common issues such as localization, internationalization or security issues

etc.

• By code modularity frameworks support “high level” of programming. For exam-

ple, carrying out simple tasks like database handling or login can be in the

framework but separated from other layers showing the business logic.

[2,11 - 13; 3, 1; 6.]

Frameworks have the positive aspects but they definitely have some negative ones as

well. Here are the most common ones:

5

• Frameworks are built for a general purpose. Their common code is created in a

manner that it is able to process as much as possible. On the other hand, it is

not optimized specifically for a certain task and that affects the performance in

some cases.

• To benefit from all the tools offered by the framework, it requires always the de-

velopers to invest significant time in educating themselves and have the appro-

priate background. Sometimes the learning curve is steeper if the developer is

moving from one framework to another (with the assumption that the second

framework is similar in size, the use of the programming language, the imple-

mentation of design patterns, and the architecture). Therefore, it always de-

pends on the developer’s experience.

• Over time, some frameworks tend to be stricter and do not offer flexibility in de-

velopment. Choosing the right framework is a crucial decision. If the developers

decide to use the wrong framework they will find themselves required to do ex-

tra work to work around certain challenges just to proceed with their tasks. In

these cases, for the most part, it is not the framework’s mistake but the devel-

oper’s choice. Perhaps the framework was created for a different set of tasks

other than what the developer had in mind.

• Developers have been surveyed and some have stated that building things from

the scratch give them the feeling of higher productivity and along the way they

feel more creative since they are not stuck with a certain framework or one way

of doing things. It is a personal opinion and it varies from one developer to an-

other.

• One of the main technical problems with frameworks is common bugs. Some-

time, bug and security issues are detected while the framework is already being

used among many applications. As a result, all these applications will suffer

from the same problem. This puts the application at risk all the time. Frame-

works have to be used with caution and only consider the professional ones

with a skilled community around them.

[2,12–13 ; 3,2 .]

6

Reasons to Use Frameworks

Someone could start thinking of a new web application. However, it is often time-

consuming to build web applications, which makes the idea challenging to develop fur-

ther. In that case, it is smarter to spend less time developing a prototype to verify that

the idea is worth the effort. Having a prototype application is the best way to get the

reliable opinion if the final application will really succeed. In this scenario, frameworks

are typically useful as they shorten the development time. Therefore, the prototype will

be developed in a shorter time. [2, 13.] Otherwise, getting the application ready in

shorter time without consideration for future development leads to what is referred to in

the developer’s community as “Spaghetti Code”. Later it becomes a mission impossible

to maintain the codebase of the application. This is when frameworks can become very

beneficial since they offer a predefined structure that guides the developer how things

could be done.

2.2 Design Patterns

Often programmers get a feeling that the problem they are facing seems familiar. Actu-

ally they have solved it before. However, they usually decide to come up with a new

solution without realizing that they actually solved it before. Inventing the same solution

is a common problem for developers. That is why design patterns exist, to avoid this

same problem of being resolved again and again.

The aim of section 2.2 is to understand what design patterns actually mean, why they

are used, and to point out some of the common design patterns that are applicable to

JavaScript.

Architectural patterns generally focus on the end result of the development process

and the relationships between different classes and objects. Even though architectural

patterns are important they are not sufficient enough. It is recommended to have a re-

usable design for a system. Therefore, each building block has to be developed in a

manner that promotes re-usability and flexibility in interchanging its content. A lower

level strategy needs to be implemented. Architectural patterns are not very helpful if the

building blocks are not built properly. Thus, optimal design patterns complement a

good architectural design.

7

Architectural patterns are helpful when it comes to separation of concerns between the

model and the view. They are described further in section 3.1.1 as part of the criteria to

evaluate a web framework.

The challenge to most experienced developers is designing solutions that are problem-

specific and also generic enough to handle future problems and requirements. Building

object-oriented applications is hard. However, it is even harder to have a loosely cou-

pled reusable object-oriented application. It is always undesired to redesign solutions.

Flexibility is needed to minimise redoing the work twice. Developers always try to solve

problems by reusing previous solutions again instead of trying to solve every single

problem repeatedly. [7, 11.; 7.]

One generic way to define a pattern is the following, according to Raplh Johnson

(1994): “Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same way

twice.” [7, 12.]

2.2.1 Fundamental Elements of Patterns

Every pattern has a name, problem, solution and consequences. Each element will be

described in this section:

• Name: A pattern’s name is descriptive enough to tell the problem being solved,

the proposed solutions and consequences in couple of words. The name is

used for discussions between different people and in documentation. [7, 12-13.]

• Problem: The main problem that is being solved. It generally explains what is

the issue, its context, and when to apply the pattern. Depending on the pattern,

some problems are very specific with a list of conditions that have to be present

for that particular pattern to be applicable and other patterns are more generic.

[7, 12-13.]

8

• Solution: A proposal where pattern offers a template that can be applied in dif-

ferent scenarios. The solution is an abstract description of an arrangement of

components that solve the problem. [7, 12-13.]

• Consequences: The result and the sacrifices of using the pattern are typically

discussed in this part. Since it is not often very clear which pattern is the best

when it comes to choosing one. A comparison of different patterns’ conse-

quences helps to choose a better fit for the problem present. [7, 12-13.]

2.2.2 Reasons to Use Design Patterns

The major benefit of using design patterns is that they give a standard terminology and

get developers accustomed to certain kind of situations. Therefore, design patterns

could be considered as a common platform for software engineers. [9, 7-8; 6, 11–16.]

For instance, an observer design pattern unifies event handling to a single point per

event that notifies the observers once the event occurs.

There has been development in design patterns for a long time. They provide solutions

and best programming practises to certain common problems that are faced in the pro-

cess of developing an application. In that manner, developers who have not experi-

enced a particular problem before could make use of the design patterns that focus on

solving their problem.

Design patterns make parts of the codebase reusable and easier to integrate into other

systems. They aid developers to choose an option that makes the code reusable in-

stead of an option that is not very flexible. As a result, design patterns support with

designing the system in the right manner faster. [8.]

9

3 Criteria for Research

Web frameworks and design patterns are considered two major tools in web develop-

ment. These tools boost development time and ease the process of building large web

applications. Web frameworks and design patterns are often interconnected to each

other. Modern frameworks often adopt different design patterns in its architecture to

give best programming practises. Design patterns are applicable solely depending on

the nature of the problem encountered in the application. Therefore, experienced de-

velopers must always consider the flexibility of web frameworks and which design pat-

terns the framework promotes. Using very strict frameworks is not recommended.

The sizes of frameworks vary just as the nature of problems faced during software de-

velopment. Questions that are often asked when a new application is being built are

“Which framework to use?”, “Is this framework the best solution to my problem?”. In the

same manner, different design patterns and architectural structures each have their

own benefits only depending on the requirements of the application. This paradox of

choice, creates a need for general guidelines to help evaluate a particular framework

and design patterns to use while developing the application.

3.1 Criteria for Web Frameworks Research

Frameworks are all marketed to the developers as the best solution with many possibil-

ities. It is extremely difficult to decide which framework is the right one to use. Especial-

ly that it sometimes occurs that a framework does not perform as promised.

Often when a framework is being considered for development a long list of features is

advertised. However, there is no general criteria to evaluate the frameworks. This

makes it difficult to decide if that particular framework will be a good choice for the ap-

plication. This problem urges to compile a list of features and certain points to evaluate

a framework. The list has to contain the common features of web applications and

common concerns that most developers have. More specifically, it has to include some

of the functionalities that promote rapid development and lower the overall time of de-

velopment, testing and maintenance. This generic list includes technical and non-

technical points which should guide developers to the important parts in any frame-

work. Each point will be discussed in details in the sections below.

10

Architectural Patterns

Architectural patterns can be defined as solutions which can be reapplied in commonly

occurring challenges in software design. They are similar to design patterns but on a

higher level. Every complex large system gets deconstructed on different levels to sim-

plify its complexity. The system gets deconstructed on the high level using architectural

patterns. In addition, it also gets deconstructed on lower level using design patterns.

Design patterns are discussed in section 2.2 to illustrate how they work on the low level

code. [10.]

Architectural patterns are tools that are related to larger portions, or components, of an

application. Architectural patterns also are related to the global properties of the sys-

tem. As a result, it is essential for a framework to adopt some architectural pattern.

These patterns enforce a form of structure that increase scalability, reusability, and

maintainability of the system. Architectural patterns like MVC (Model-View-Controller),

MVVM (Model-View-ViewModel) and MVP (Model-View-Presenter) are currently used

by many developers for the front-end. It depends on the case of the application which

pattern would be the best choice. Therefore, all the three patterns will be briefly ex-

plained to illustrate their key differences. [10.]

In MVC, the model part manages the data for an application. They are mainly respon-

sible to represent the data that an application needs. The Views are the visual repre-

sentations of the model’s current state. A view looks after any model changes and up-

dates itself accordingly. The controllers are considered as the middle layer between the

models and the views. The controllers are taking care of updating the model if the user

manipulates the view. Typically, all the business logic is stored in the controllers. [10.]

In MVP, the P represents a presenter. This component holds the business logic of the

user interface for the view. Invocations from the view are taken care of by the presenter

which typically passes it to an interface. This gives the chance to mock the view in unit

tests. [10.]

Since the MVP pattern increases the testability of the application, it is often used in the

enterprise-level applications. MVVM pattern is based on MVC and MVP. It tries to

stress clearly the separation of the user-interface from the business logic in an applica-

tion. [10.]

11

Frameworks that adopt an architectural pattern are recommended. General criteria to

evaluate web frameworks are to have a framework with an architectural pattern that is

flexible enough to allow the development of the application. The pattern must allow on

a high-level maximum reusability of the code, enforcement of the separation of concern

principle, and simplification of the application.

License

Most frameworks are distributed under licenses that give the developer some freedom

to use it for commercial applications. But then there are some which are not very gen-

erous. The worst scenario that can occur to one is developing the whole application

and find out that the license does not allow the developer to distribute it commercially.

It is highly advised to read the license terms properly before starting the development.

[11.]

Learning Curve

The flexibility offered by frameworks vary tremendously. Some frameworks are loose

when it comes to naming conventions, directory structure etc. However, other frame-

works could be so strict that they keep throwing errors at the smallest of problems.

Programmers generally try to follow the general conventions when a feature gets im-

plemented. However, some may just decide to implement it their way. It is advised to

choose a framework that requires the smallest possible learning curve. However, a big

learning curve can be justified if the framework is offering a lot of positive features to

the application.

Unit Tests

Unit testing is a crucial part of professional development. Unit tests are the way for the

programmers to validate their work. Unit tests are used to ensure that the source code

of single component/unit is functioning properly in the application. Frameworks that

allow unit tests are considered better and some frameworks offer the possibility to write

custom tests besides the basic tests to verify the reliability of the vital parts of the appli-

cation. [12, 7-8.]

12

Documentation

A well-documented framework will have a plenty of examples, sample code, articles,

tutorials and snippets. The documentation itself has to be clear and detailed enough

that early users and evangelists understand how to use the framework. Documentation

is the main factor for the success of a framework. Choosing a framework with poor

documentation will lead to problems with understanding how to use each feature. [13.]

Community

Regardless of having a well-documented framework, problems always appear over

time. Seeking assistance from the community behind that particular framework is the

usual way to solve these problems. There have been two extremes in the development

world. Some communities are very aggressive towards new users and tend to be tough

on them while others are cheerfully welcoming new users and guiding them. Therefore,

choosing a framework with a friendly community is preferred in the long run. Communi-

ties are often determining whether a framework will succeed or fail.

Browser Support

It is extremely important to verify that the chosen framework supports the browser re-

quirements given by the project. Sometimes, clients request support to an old version

of a particular browser. Internet Explorer 8 is an example. The framework must be

checked that its features are compatible with the required browsers.

3.2 Practical Guide to Research Design Patterns

Design patterns are always made to a specific problem with specific circumstances. In

that sense, it is difficult to come up with some generic criteria to evaluate different de-

sign patterns as it was the case with web frameworks. Every time new code is written it

has a different challenge. However, different factors have been taken into consideration

while choosing which design patterns are going to be studied further in this thesis.

How applicable a design pattern to JavaScript has been one factor. As stated, JavaS-

cript is the dominant programming language for client-side development. How much a

13

design pattern is actually being used has been considered too. The aim was to find

design patterns which are solving the most common problems. Preferably the design

patterns would be also as generic as possible. Generally, the design patterns were

researched based on the challenges that were encountered while developing the case

study application.

The general approach to find an applicable design pattern:

• First, the problem needs to be identified.

• Second. a research is done to find the solution.

• In case of finding different alternatives, a comparison of each solution is need-

ed. The consequences of each solution and its trade-offs have to be consid-

ered.

• Third, the solution has to be integrated with the code that had the problem.

• Fourth, a verification that the problem has been resolved is needed to ensure

that the solution worked.

[9, 8.]

14

4 Design Patterns for Maintainable Applications

The design patterns described in this chapter are the Observer Pattern, Module Pattern

and revealing module Pattern. Practical examples and code snippets of the chosen

design patterns are listed. The aim of this chapter is to give a practical description of

how these design patterns are implemented in different circumstances. Reasons to use

each pattern and when they are applicable are described as well.

The selection of the design patterns was made based on the most common challenges

encountered while developing the case study application in Tieto. However, the select-

ed patterns had to be as generic and as common as possible so that they are applica-

ble to wide variety of large web applications.

The case study application had an interactive nature with large number of events oc-

curring. Often, one event, in the context of web applications, had multiple reactions in

the background and the state of the application had to be updated constantly. Many

parts of the application were used in multiple areas across the entire application.

Therefore, reusable modular components and reactive programming style were neces-

sary to be implemented.

As one criterion, the selected design patterns had to be easily integrated with the

frameworks described in chapter 5.

4.1 Observer Pattern

The Observer pattern gives a model where several objects, known as observers, are

able to subscribe to a certain event and get a notice every time this particular event

takes place. That subscribe-able model is often in a form of an object, and could be

referred to as a subject, that maintains a list of all its observers that depend on it. This

pattern is one of the building blocks of what is to referred to as event-driven program-

ming in JavaScript and other programming languages. [10.; 13.]

In the case where a subject has to notify its observers about a certain event happening,

it just has to broadcast a notification to its observers with information related to the

event. [15, 215.] When an observer does not need to be notified of these events by its

subject anymore, the subject may delete that particular observer from its list of observ-

15

ers and this way the subject does not notify that observer of any future events. An Ob-

server also may unsubscribe from a subject. [15, 219-220.]

Figure 1. Illustration of the connection between the subject and observers. Copied from
Harmes [15, 216.]

In reference to Figure 1, the relationship between a subject and observers is one-to-

many in terms of its dependencies. The Observer design pattern comes hand in hand

with a good object-oriented design and it gives the opportunity to loose coupling be-

tween different objects in the code base that need to interact together. [15, 215.]

In order to be able to get a broader sense of the use cases of that pattern, a general

definition of the pattern has been given in a book named, Design patterns: Elements of

reusable Object-Oriented Software: “One or more observers are interested in the state

of a subject and register their interest with the subject by attaching themselves. When

something changes in our subject that the observer may be interested in, a notify

message is sent which calls the update method in each observer. When the observer is

no longer interested in the subject's state, they can simply detach themselves.” [10.]

It is very common to build web apps that contain multiple event handlers. Event han-

dlers are basically functions that listen to a certain event and wait until it gets notified

when that particular event has happened. [10.] The notification that is delivered to the

event handlers usually contains details about that particular event. For instance, a

“click” event is fired once an element on the page has been clicked by the user. The

event may return information like the “id” of that element to the event handler function

listening to it.

16

With reference to the event-handler and the event paradigm in JavaScript, the para-

digm could be considered as a manifestation of the Observer pattern. Publica-

tion/Subscription or Pub/Sub are used to refer to design patterns that are similar to the

Observer pattern. [15, 216.]

In the client-side world where JavaScript is mostly used, the Observer pattern is com-

monly implemented in form of Publish/Subscribe pattern. Even though this pattern is

very similar to Observer pattern, there are few differences among both of these pat-

terns. The Observer pattern works in a manner where the observer object needs to

listen to events from the subject. The observer needs to subscribe to that particular

subject. In contrast to that, the Publish/Subscribe pattern works in a way where there is

a specific topic or event channel that is found between the publisher and subscriber.

Publisher fires the events and the subscriber gets the information that the event occurs.

This implementation allows custom arguments to be available to the subscriber by giv-

ing the possibility to the code to define specific events which are specific to that particu-

lar application. [14; 10.] The main difference is that the Publish/Subscribe pattern al-

lows any subscriber that have a valid event handler to listen to a publisher and receive

the events broadcasted. This idea removes dependencies between both the subscriber

and the publisher therefore making them less coupled.

The code snippet in Listing 1 is a simple example of creating a Publish/Subscribe mod-

el:

17

//simple new message handler

//Count storage for the amount of messages received
let messageCounter = 0;

// "newMessage" will be the name to initialise subscribers which will listen for
that kind of event

// Render a prevew of new messages
let subsriberA = subscribe("newMessage", function (header, body) {
 //logs to the console
 console.log("A new message was received ", header);
 // Use the data that was passed from our subject
 // to display a message preview to the user
 $(".messageSender").html(body.sender);
 $(".messagePreview").html(body.content);

});

// Here's another subscriber using the same data to perform
// a different task.

// Update the counter displaying the number of new
// messages received via the publisher

let subscriberB = subscribe("newMessage", function (header, body) {

 $('.newMessageCounter').html(++messageCounter);

});

publish("newMessage", [{
 header: "hello@google.com",
 body: "Hey there! How are you doing today?"
}]);

// We could then at a later point unsubscribe our subscribers
// from receiving any new topic notifications as follows:
// unsubscribe(subscriberA);
//or
// unsubscribe(subscriberB);
	

Listing 1. Creating subscribers and publishers [10.]

4.1.1 Advantages

In a scenario where a web application contains a large number of events occurring,

following the Observer pattern is a good way to keep the application functioning without

cutting the performance. It is typical for any application to have hundreds if not thou-

sands of events happening in one session. Therefore, having observable objects to

listen to the actions through one event listener and then send all the data to all its sub-

scribers. As a result, there is no need to have multiple new listeners to that same ele-

18

ments which affect the performance of the application tremendously and makes the

application unmaintainable. [15, 223.]

Another benefit for using that pattern is that it encourages developers to consider the

relationships between different parts of their application. It gives a chance to find the

layers that contain direct relationships that are getting strongly coupled and replace

them with a group of subjects and observers. As a result, the application will be broken

down into smaller, more maintainable, loosely coupled parts which have the potential to

be reused in multiple areas in the codebase. [15, 223; 10.]

4.1.2 Disadvantages

Problems that are associated with the Observer pattern actually are related to its main

advantages and the manner it is set up. Since different areas of the application are

loosely decoupled, ensuring the quality of different parts of the application becomes

difficult as we can not assure separately that each part is working the way it is intended

to work. [10.]

A scenario that elaborates the problem is as follows. A publisher with one or more of its

subscribers are listening to it. It is safe to always make the assumption that at least one

of them is listening. The subscriber that is supposed to perform a function fails or

crashes for any reason. At this point, the publisher will have no way of knowing that this

has happened since they are decoupled and basically blind to each other.

Another side-effect of applying the Observer pattern to an application, is that setting up

these observable objects is costly in terms of application load time. Therefore, having a

big number of observable objects with different observers will slow down the applica-

tion. [15, 223.]

The Observer or Pub/Sub patterns may come with costly drawbacks in some cases.

Therefore, they should be used with some caution. One way around the application

load time issue is to use a technique called “Lazy loading”. Lazy loading works in a way

that it only loads parts of the application when needed. This way only the necessary

observables would be initialised and not all of them at the same time.

19

The Observer pattern may not be the absolute best solution to all problems. However,

this pattern definitely could be considered as one of the best tools when it comes to

designing decoupled systems. It is recommended for any developer who writes JavaS-

cript application to consider implementing the Observer pattern or some variation of it.

4.2 Module Pattern

The module pattern is a commonly used pattern that promotes state, privacy and code

organization which are all possible by using closures. The module pattern gives a plat-

form to wrap public and private methods together with variables. It ensures that no

code get leaked into the global scope and run over some other code which could be

written by another programmer. The pattern functions in a manner that it provides only

a public API and everything else is kept privately in the component using closures. [10.]

This implementation gives a decent solution to protect the core logic of each compo-

nent while assembling different parts of the application together. Thus, only an inter-

face is exposed to the outside world. There are multiple ways to apply this implementa-

tion in practise and those are defined in details in this chapter.

In JavaScript, the privacy of variables does not exist as the language does not have

any access modifiers. As a result, variables in JavaScript can not be declared as public

or private like in more traditional programming languages like Java. To have this idea

implemented in JavaScript, function scope is used so that variables in a function are

only accessible within the closing braces of that function. Closure is what makes it pos-

sible in JavaScript to implement the module pattern since variables and functions that

are declared are only available within that module which acts as a large function. The

public interface becomes available by returning objects outside the function which be-

come usable by other modules.

It is essential to understand the theory behind modules to be able to correctly imple-

ment the module pattern and benefit from its advantages. It is also essential to under-

stand object literals since the module pattern is partially based on them.

20

4.2.1 Module Theory

Modules are often used in most current architectures of web applications that are being

developed today. Modules in that sense represent integral parts of any application’s

codebase and usually they have a single purpose in the whole application. Often mod-

ules are easily interchangeable. If modules are built in the right manner, they are self

contained in that way that could be reused even in another application if they require a

similar module. [10.]

A module may have its dependencies defined which allows that module to have its de-

pendencies fetched automatically right away. From scalability point of view, implement-

ing modules in that manner with their dependencies defined makes it much easier to

keep track of the different dependencies and avoid manually loading all the modules or

including a script tags to manage all these various dependencies. [10 ; 8.]

Facebook is a good example to explain modules. Facebook’s news feed, chat room,

notifications, and events list are modules which are independent and do not have any

dependencies on other parts of the application. However, depending on how demand-

ing the logic of a module is, it may require very complex implementation. It is common

to create more of sub-modules that act as a dependency for all other parts of that par-

ticular module. The module of Facebook’s chatroom has probably a sub-module like

emoticons which are shared also with the news feed module.

Within the module architecture, a module typically has a very limited information about

what is happening in the rest of the application. Therefore, this responsibility needs to

be handled by another part. A good option for responsibilities delegation is using other

patterns. A module has to take responsibility of sending announcements to the applica-

tion when something of interest occurs and the module should not take into considera-

tion the state of the other modules. This way it becomes easy to add or remove mod-

ules without the risk of the rest of the application failing.

Loose coupling is a requirement to make the modular design to be functional. It allows

the modules to be maintainable by removing some dependencies if they are not need-

ed. Therefore, modules should not be relying on each other in order to work as intend-

ed. It becomes relatively easy to track the changes that may occur to the application

when one part is changed. [8.]

21

4.2.2 Object Literals

With reference to the object literal notation, an object could be defined as “a set of

comma-separated name/value pairs enclosed in curly braces ({})”. [16.]

var person = {
 key: value,
 firstName: "John",
 lastName: "Doe",
 age: 50,
 functionkey: function () {
 //function's code goes here
 },
 eyeColor: "blue"
};	

Listing 2. Object person

As Listing 2 illustrates, names inside the object could be either identifiers as keys, or

strings as values. Each key/value pair is followed by a comma unless it is the last pair

to be defined in the object.

Listing 3 is a simple example to show how objects could assist with implementing a

module and keep the code private and only allow one public method. The code is writ-

ten with Ecmascript 6 which is newer version of JavaScript.

22

let myGradesCalculator = (() => {

 // Keep this variable private inside this closure scope
 let myGrades = [93, 95, 88, 0, 55, 91];

 // Expose these functions via an interface while hiding
 // the implementation of the module within the function() block

 return {
 failing:() => {
 let failingGrades = myGrades.filter((item) => {
 return item < 70;
 });

 return 'You failed ' + failingGrades.length + ' times.';
 },
 avg: () => {
 let total = myGrades.reduce((accumulator, item) => {
 return accumulator + item;
 }, 0);

 return 'Your average grade is ' + total / myGrades.length + '.';
 }

 }
})();

myGradesCalculator.failing(); // logs 'You failed 2 times.'	

Listing 3. myGradesCalculator module

Similarities could be found among the usage of object literals and other methods such

as “immediately-invoked functions “. Main difference is that modules implemented with

object-literals do not return functions but an object is returned instead.

4.2.3 Advantages

With reference to JavaScript’s lack of ability to declare public and private variables and

functions, the module pattern assists with organizing the code that grows when an ap-

plication is scaled up. Whether the module is used with JavaScript or other languages,

the pattern promotes self-contained implementations which are highly beneficial. Thus,

it makes major parts of the system loosely decoupled. Each module push only one ob-

ject to the global namespace, or the global state, which keeps the global namespace

much cleaner. Modules interact with each other through the “main” method or a facade.

Having less clutter in the global namespace reduces the possibilities that other libraries

and frameworks collide with the code of the application. [16; 9.]

23

4.2.4 Disadvantages

The pattern functions in a way that it only exposes a public interface. As a result, the

module’s behaviour becomes a mystery which is difficult to unit test. The modules often

do not offer any testing interface that could allow testing its sub-modules. When mod-

ules are used they should just be trusted that they behave the way they are intended to

do. Unless the inner code of the module is tested, there is no other way to verify that

the module functions in special corner cases of the application. [10.]

The downside of module patterns could partially be overcome with changing the im-

plementation of the regular module pattern by using objects literals or immediately-

invoked functions. [17.]

4.3 Revealing Module Pattern

The Revealing Module pattern was created as a response to the frustration of using

module pattern. Since programmers were forced to have the name of the main object

repeated every time calling public function from another function. Also accessing public

variable names was needed. This fact violated one of the basic fundamentals of Soft-

ware engineering which is “Don’t Repeat Yourself” or DRY as some may refer to it.

Programmer Christian Heilmann decided to put effort into updating the module pattern.

His implementation worked in a way that all the functions and variables, which are in

the private scope, must be defined. Afterwards, an anonymous object is returned with

pointers to these private methods and variables that are needed to be revealed to rest

of the application. [17.]

Listing 4 shows how to re-implement the same module of “myGradesCalculator” but

using the revealing module pattern.

24

let myGradesCalculator = (() => {

 // Keep this variable private inside this closure scope
 let myGrades = [93, 95, 88, 0, 55, 91];

 let failing = () => {
 let failingGrades = myGrades.filter((item) => {
 return item < 70;
 });

 return 'You failed ' + failingGrades.length + ' times.';
 };

 let avg = () => {
 let total = myGrades.reduce((accumulator, item) => {
 return accumulator + item;
 }, 0);

 return'Your average grade is ' + total / myGrades.length + '.';
 };

 // Explicitly reveal public pointers to the private functions
 // that we want to reveal publicly

 return {
 average: avg,
 failing: failing
 }
})();

myGradesCalculator.failing(); // will log 'You failed 2 times.'
myGradesCalculator.average(); // will log 'Your average grade is
70.33333333333333.'	

Listing 4. Another implementation of myGradesCalculator

The Revealing Module pattern must be used with caution. If where all the methods are

exposed, then the module does not become very stable anymore. Methods which are

created based on this design may be more fragile in comparison to the other patterns

but it also partially solves the drawbacks of the other patterns. Depending on the re-

quirement of the system and the environment, the revealing module pattern may be

very helpful. On the other hand, it could be the main cause to not have a very robust

system, if it is not implemented right.

25

5 Scalable JavaScript Web Frameworks

In this chapter, two JavaScript web frameworks will be analysed in detail. These two

frameworks are React from Facebook and Angular 2 from Google. The analysis will

give a technical overview of the different functionalities and technologies. The major

benefits and drawbacks of these frameworks are described as well.

There are multiple reasons why these two frameworks are chosen for this analysis:

• Both frameworks promote solid architecture patterns and provide excellent doc-

umentation, have a relatively acceptable learning curve, and are supported by

majority of browsers and their older versions. Thus, they fulfil all the criteria

specified in section 3.1.

• At the time of conducting this study, these two frameworks were the most wide-

ly used by professional developers to build web applications on a big scale. As

a result, they have huge communities around them both. Even though Angular

2 is in release candidate stage currently, it has already a reasonably big com-

munity and it is expected to grow even bigger once developers upgrade from

Angular 1.

• Both of these frameworks have big corporations working on developing them

further, thus making the frameworks more reliable since they will be supported

for longer period of time by their sponsors.

• Angular 2 and React both promote component-based development. Compo-

nents design is basically an implementation of the module pattern. Component-

based development leads to designing the architecture of the application in a

manner that makes the code of the application both reusable and loosely cou-

pled.

The aim of this chapter is to give a practical understanding and an example of using a

web framework that is built to develop large-scale web applications. The aim is also to

give a general idea what kind of features such frameworks offer and how in practice

they could boost development time.

26

5.1 React

React was released in 2013 by Facebook and it is generally taking a different approach

compared to Ember and Angular 1 which often are named MVC client-side frame-

works. React does not precisely fit under the MVC category. It is being marketed as

more of the V or the view part in MVC. The rest of the needed parts of the pattern are

flexible. Often Flux or Redux architectures is used to fill out the needed parts. Exam-

ples of applications using React are Facebook, Instagram, BBC, and Netflix. [18, 5-6.]

Developing a web application in the early days followed a certain process which was

the only possible way at the time. First a request from the application would be sent to

the server and then the server would send back the content of the full page. This was

considered a very simple process from a technical point view since it did not include

any events occurring in the browser due to interactivity from the user. [18,18]

This have made languages like PHP popular since it allows server-side app develop-

ment in an easy manner. Creating functional components in a language like PHP is a

simple task. Therefore, many developers have written different PHP components that

were easy to reuse code and could be implemented in other applications as well. [18,

20.]

However, this process was a fundamental step to create a good experience for the

user of the application. Every single time a new action was taken, a new request to the

server had to be sent and afterwards get a response sent back. In addition, data pro-

cessing on the server erased the clientstate that has been created in the application.

[19, 16.]

With the goal of making a better experience for the user, developers started to write

different libraries to assist with loading applications in the browser using JavaScript.

These libraries had different styles of manipulating the DOM from simple HTML tem-

plates systems to other systems that controlled the whole application. As a result, this

environment created a state of instability as the applications depending on such librar-

ies have scaled up. It became very difficult to control all different events which made it

much more difficult to control in comparison to the PHP style of development. [18, 22.]

27

Development of React started with purpose to take the PHP’s style to load the whole

page on the client side applications. Basically React could be considered a “state ma-

chine” assisting the developer to deal with the issue of the changing state. It solves this

problem by focusing on a very narrow scope. It only cares about updating the DOM

and responding to events. [19, 19.]

5.1.1 Virtual DOM

Features such as AJAX, routing, storage or data-structures are not included in React.

This makes React not a Model-View-Controller framework but more like the V part in

the MVC architecture. Therefore, React is very flexible and has the ability to play along

a big variety of systems. React is commonly used in other MVC frameworks as well to

render the views. Every time the page is reloaded when an event occurs, the process

is extremely slow with JavaScript. This is because the DOM is trying to read the page

and update its content. However, React offers a very powerful concept called virtual

DOM. React only have to update the DOM and check the changes from its virtual

DOM. This feature is one of the main reasons why React is very quick when it comes

to performance in comparison to other frameworks. [20, 41 ; 18, 20.]

The virtual DOM works in a manner where it takes the state of the DOM and translates

it into virtual representation using a render functions. Once a state-change has oc-

curred, these functions are triggered again. The triggered functions find a new virtual

representation of the page that is equivalent to the real page after the state-change.

Instantly the virtual DOM is updated in alignment with the necessary changes. These

changes are applied to the actual DOM showing the new view. This implementation

was criticised when it was first introduced.

The criticism was based on the assumption that it would take a longer time in compari-

son to the usual JavaScript approach of modifying every element on needed basis.

Nevertheless, what happens in React behind the scenes is that it does exactly the

same thing as it was being criticised for. However, what makes it very efficient is the

algorithm which finds the different parts between the current and the previous versions

of the virtual DOM. Based on the results coming from this algorithm, React renders the

minimum amount of updates needed to the DOM. As a result, React offers a high per-

formance since it avoids unnecessary DOM manipulations which is one of the main

28

reasons behind poor performance for any JavaScript based library/framework. [19, 36 ;

21.]

The main problem that React has been aiming to solve is the chain of state-changes.

Having a big scale web application built on the client side gives a high chance that one

interaction leads to an update which triggers a different event leading to a third update.

Handling these updates and batching them properly must be taken into account. Oth-

erwise, the performance of the whole application starts to drop. React’s virtual DOM

minimises these problems by taking only necessary actions in one step. As a result, it

makes the process of maintaining the application easier. In situations where a state

has changed because a user has clicked a button or an external event have occurred,

the developer needs to only let React know that the state has experienced a change.

At that point React takes control and automatically updates the rest depending states.

React uses one event handler for the whole application and passes all the occurring

events to that particular event handler. This technique boosts React’s performance.

5.1.2 JavaScript XML

JavaScript XML is often referred to as “JSX”. The main purpose of the components in

React is to implement one of the programming principles called the separation of con-

cerns. The components are not used for creating templates or for displaying logic as

components in other libraries and frameworks are used for. A fundamental idea in Re-

act is that the mark-up language and the scripting code are tied together. This way

while building the mark-up for the application, all the expressive power of JavaScript

will be available to support it. [22.]

React gives a high level API to generate the virtual DOM. However, developers might

experience problems in events where complex structures are being generated. This is

where the use of an intermediate format becomes a smart solution. Facebook’s JSX is

one common format that is being used in React. JSX is a superset of JavaScript that

gives you the possibility to mix syntax similar to XML and JavaScript. It is used to con-

struct the mark-up inside React’s components. The API given by React is used to serve

this purpose but using JSX instead makes the components more readable and there-

fore more maintainable. [19, 53-60.]

29

It is common that JSX syntax is odd to many developers who have never used it be-

fore. The fact that the mark-up is being written within JavaScript looks confusing at the

first sight. However, there are many benefits of using JSX and it becomes very logical

once developers get familiar with it. Some of the benefits are:

• It provides an easy way to show the structure of the application.

• It gives a layer of abstraction to create a React Element.

• It puts all the code and the markup related tightly close to each other.

• It is plain JavaScript so no new syntax need to be learnt.

• It makes the markup easier to read and understand.

[21;20.]

5.1.3 Data Flow

React makes a paradigm shift from the usual way of building applications and puts

some interesting concepts under the spotlight. JSX is one of these paradigm shifts.

Especially, that the HTML mark-up and the JavaScript code are being used together at

the same place. The methods used for data flow in React are another unusual concept

to many developers as well. That’s why, these methods may not be very clear at the

first glance. [18, 69 – 73 ; 19, 65 - 69.]

The data flows only in one direction between all React’s components. Data always

comes from the parent component to the child component. The fact that data flows in

this manner makes the components easy to understand. Therefore, React’s compo-

nents have an easily predictable state. Every component uses props, “properties”, as a

way to pass data from the parent to the child. A typical scenario will be that there is a

component that takes props from its parent and renders the view. When that property

changes at a top-level component, it is propagated down the component-tree. There-

fore, the component used earlier will be re-rendered since it was using that property.

Components can also have internal state which is different from props. It can be con-

sidered a presentation of how the data of a component may look like anytime. The

state is modified only internally within its component. [19, 68-80; 22.]

5.1.4 Lifecycle of the Component

A React component is a state machine and in all scenarios it should return the same

output for a given input. In the lifecycle of the component, there are multiple changes in

30

its props, in its state and even in its DOM representation. React gives lifecycle hooks

for its components to be able to react accordingly to different changes throughout its

stages starting from the creation and the lifetime to the teardown. [23.]

Examples of different lifecycle hooks are briefly described below:

• Instantiation: First stage in a component lifecycle where a new component is

created and rendered for the first time. Different methods are available to con-

trol the state of the component when it is created. “getDefaultProps”, “getInitial-

State”, “componentWillMount” and “render” are all examples of the available

methods in this phase. [18, 50-54.; 20, 80-82.]

• Lifetime: Once the component is rendered for the first time, other methods be-

come available to give further flexibility to control the component. Examples are

“componentWillReceiveProps” and “componentWillUpdate” that allow manipula-

tion of the state of the component. [18, 56-59.; 20, 123-127.]

• Teardown & clean-up: This life cycle occurs once the component is not needed

any more and need to be removed from the view. Method “componentWillUn-

mount” will run right before the component is being removed and gives the op-

portunity to clean up or send data if needed. [18, 59-62.]

React’s methods to manage the component’s lifecycle are well-designed. Since com-

ponents are considered state machines, they are made to give a stable output and

predictable mark-up at each stage of their lifecycle. Since the parent components pass

on props to their children and these children render their own children components, it is

rare to have a component that lives in an isolated environment. Caution is needed

when designing how the data will flow through the application.

5.1.5 Final Conclusions

React is relatively easy to learn. Developers do not experience difficult learning curve.

React contains less of what is commonly known as “domain-specific language”. [17, 6.]

Thus, developers who have prior experience with JavaScript will have an easy time to

understand how it works. With a component-based approach, React maximizes the

code reusability. Each component represents a single part of the user interface, like a

form element, a search button or a page title. [18, 79-81.]

31

When it comes to performance and speed, React is considered extremely fast. The

implementation of a virtual DOM takes credit for React’s speed. The virtual DOM is a

local simplified copy of HTML’s DOM that React stores. Instead of doing the “real”

DOM operations which often slow down the user experience. React allows developers

to do all the operations needed inside this abstract DOM instead of the “real” DOM.

[19,81-82.]

React also supports server-side rendering. This contributes to high performance and

solves Search Engine Optimization problems which are experienced with frameworks

that do not support this feature. The way it is implemented includes React having the

first render done on the server. Afterwards, all updates taking place in the UI occur on

the client-side. [18,152-158.]

React Native is an exclusive advantage that comes with React. React Native gives

possibility to create a mobile application on both iOS and Android using the same com-

ponents used to create the web application. [18, 28–30.]

5.2 Angular 2

Angular 2 is a newer version of the Angular web framework that is being developed by

Google. There are two major versions of Angular. Angular 1 was the first known stable

version of Angular and it has been used in production already by big companies such

as Vevo and YouTube for PS3. Angular 2, on the other hand, is the newer release from

Google. Angular 2 was in Release Candidate stage in the time of writing. Angular 2 has

very different features and solely for marketing purposes it was named “Angular 2” but

the whole layout of the framework has been reformed. Therefore, Angular 1 and Angu-

lar 2 have be addressed separately and considered to be different frameworks. [24.]

The background of Angular started with Angular 1 being first released in 2009. But it is

considered more recent since it was more popular in year 2012. In reference to Figure

2, Angular 1 had a huge interest over the recent years. However, the numbers on Fig-

ure 2. are not giving the right impression since these are not referring to the percentage

of the usage in the market. Instead, the numbers are referring to the amount of times it

was searched on Google’s search engine during the time period of 2009-2015. [25, 35-

37.]

32

Figure 2. Comparison of search counts between Angular, Ember and React. Copied

from Pronschinske [29.]

Angular 2 is still a work in-progress, as the time of conducting this study. The frame-

work is expected to be released in the last quarter of 2016. The framework is already

mature enough to build a stable web application as it is in Release Candidate phase

and no major changes are expected. It is expected to have a similar popularity as An-

gular 1 had. Angular 2 has already a growing community around it. An active communi-

ty is definitely pushing the framework forward with creating different plugins and librar-

ies to be compatible with it. Angular 2 applications are commonly developed with a

programming language called TypeScript but also it is possible to write Angular 2 ap-

plications in JavaScript and Dart.

This analysis will focus on the parts which are unique to Angular 2 in comparison to

other web frameworks. Certain technologies and patterns that Angular 2 uses will be

described in details. The main aim of this section is to give a practical and a technical

overview of how Angular 2 works and what to expect as a developer while considering

using it.

5.2.1 Data Architecture

Angular 2 does not enforce any particular pattern or a technology stack which makes

the architecture of the framework flexible. Angular 2 makes it easier to adopt different

architectures without having the performance suffering. This is due to the fact that eve-

33

ry application has its own requirements and challenges and therefore one solution that

works well in some applications may not work for others. [26, 152.] However, freedom

comes with a cost. Making decisions with many options creates a paradox of choice

problem to developers, especially the inexperienced ones. Therefore, different alterna-

tives need to be considered before making a choice.

Some of the possible patterns and implementations that could be used together with

Angular 2 include the following:

• Flux: Promotes a unidirectional data-flow. It has three major parts. Stores which

hold the data together, Views that actually fetches what is rendered in the store,

and Actions which change the data that is contained in the store.

• Observables: Each observable gives what is called a stream of data. These

streams could be subscribed to and then call different methods to react to the

changes announced.

• Redux: Is one implementation that has been inspired by Flux. It is very similar

but contains one more major part, a reducer. A reducer is group of pure func-

tions that belong to a specific action.
[26, 152-153.]

5.2.2 TypeScript

TypeScript is the recommended language to use while building an application with An-

gular 2. The Angular’s core team at Google decided to integrate it with the framework

and the codebase of Angular 2 is written in TypeScript. The language is primarily de-

veloped by Microsoft.

Typescript is considered a superset of JavaScript but a more similar version to pro-

gramming language Java as it gives the possibility to define new types.

Figure 3 demonstrates how Typescript is a superset of both ES6 and ES5 versions of

JavaScript.

34

Figure 3. Typescript in relation to different JavaScript versions

The fact that types are available over the generic “var” gives more opportunities to

have more support in terms of tools. Developers who are more familiar with loosely

typed languages like JavaScript may not prefer the idea at the first glance. However, in

practise a typed language increases the productivity of developers. TypeScript offers a

static code analyser so while code is being inserted the editor is able to give guidance

by suggesting functions parameters, available objects and methods. It also acts as a

safety net. In events like inserting a wrong value in the code that does not match its

expected type, the editor will be able to highlight the mistake and what is the correct

type to insert.

In reference to types, TypeScript allows created custom types. In a scenario where the

application is using a third-party library that is built in JavaScript. It is possible to create

specific type declarations for that library. The TypeScript community is very active so

the declarations for most JavaScript libraries are available. TypeScript is easily com-

piled back to basic JavaScript and therefore it is supported by all browsers.

5.2.3 Data Flow and Components

Component is a key concept in Angular 2. An application written with Angular 2 is basi-

cally one high-level component which holds its parts together in other components. In

other words, an application is built by a tree of components. [26, 70.]

To demonstrate the concept in a more practical way, the following scenario could be

considered. Building a dashboard that has a basic functionality. The dashboard will

35

have two views, sales report and orders. The dashboard also has a navigation bar

which is in a form of an independent component. Sales report have filters componentss

and list-items components while orders also has a list-items component and Item-

details component.

Figure 4. Components tree of a regular dashboard.

Figure 4 shows how an application could consist of different components and demon-

strates how components can be used in multiple parts of the application such as “list-

items” component. Each of these components contains the logic that belongs only to

that particular part of the application.

Listing 5 is a very simple example of a component declaration.

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'dashboard',
 templateUrl: 'name.component.html'
})
export class DashboardComponent implements OnInit {
 constructor() { } // Often used to inject dependencies

 ngOnInit() { } // one life cycle method that is trigged once the
component was initialized.
}

Listing 5. Dashboard component

36

The data flows from the top of the hierarchy to the bottom and vice-versa. There are

two decorators available for this purpose. @Input inside a child component will allow its

parent component to bind to a variable and pass data to it.

Figure 5. Components tree where the data flows from the bottom children to the top

parent.

It is also possible for the children component to send data back to its parents as shown

in Figure 5. @Output is another decorator that takes care of outputting the data to its

parent component.

5.2.4 Observables and RxJS

This data architecture pattern is a practical implementation of the Observer design pat-

tern. Observables heavily depend on reactive programming paradigm. A popular reac-

tive streams library for JavaScript is RxJS that gives handy methods for calling different

functions on streams of data. Observables are often used with RxJS as its relatively

easy to work with it and Angular 2. [26, 155 – 156.]

The idea behind Observables has been explained before when the Observer design

pattern was described. A code sample implementing a simple observable will be used

to show how Observables are implemented in Angular 2.

37

import { Injectable } from '@angular/core';
import { Subject } from 'rxjs/Subject';

@Injectable()

export class EventsService {

 // Observable string sources
 private eventAnnouncedSource = new Subject<string>();
 private eventConfirmedSource = new Subject<string>();
 // Observable string streams
 eventAnnounced$ = this.eventAnnouncedSource.asObservable();
 eventConfirmed$ = this.eventConfirmedSource.asObservable();
 // Service message commands
 announceEvent(event: string) {
 this.eventAnnouncedSource.next(event);
 }
 confirmEvent(sponsor: string) {
 this.eventConfirmedSource.next(sponsor);
 }

}

Listing 6. Angular 2 service with two subjects that could be subscribed to.

Listing 6 demonstrates how a simple Observable may look like. Two Subjects were

created, “eventAnouncedSource” and “eventConfirmedSourced”. Now these subjects

will keep a list of different events and different sponsors as well. Now it becomes easier

to subscribe to the Subjects and receive the data streams. The “EventService” can be

used by other Angular components. For instance, “EventControlComponent”, in the

code snippet found in Listing 7, is using it on a high level.

import { Component } from '@angular/core';
import { EventsService } from './';
@Component({
 selector: 'event-control',
 providers: [EventsService]
})
export class EventControlComponent {
 sponsers = ['HS', 'Redbull', 'Helsinki Kaupunki'];
 history: string[] = [];
 events = ['Karaoke night',
 'Midnight run',
 'Art Gallery'];
 nextevent = 0;
 constructor(private eventsService: EventsService) {
 eventsService.eventConfirmed$.subscribe(
 sponsor => {
 this.history.push(`${sponsor} confirmed the event`);
 });
 }
 announce() {

38

 let event = this.events[this.nextevent++];
 this.eventsService.announceEvent(event);
 this.history.push(`event "${event}" announced`);
 if (this.nextevent >= this.events.length) { this.nextevent =
0; }
 }
}

Listing 7. An Angular 2 component to handle events

Using Observables requires some knowledge of RxJS and reactive programming. As

RxJS offers multiple methods to handle different situations while dealing with data

streams. The library is considered challenging at the first glance to many developers

as it works in a different manner in comparison to other libraries that handle data. A

detailed analysis of RxJS is not within the scope of this thesis but few points will be

highlighted to give an overview of what makes it different.

• “Pushing” data is different in Reactive programming. The usual case in impera-

tive programming is that data is gathered by a method called “pull” but with us-

ing Observables “push” is used instead to allow the streams to send the data to

its subscribers.

• RxJS is a pure functional paradigm. Methods such as map, filter, and reduce

are all regular methods that are often used while using functional programming.

Therefore, prior experience with that makes it much easier to use RxJS as all

these streams that have been mentioned earlier are some form of lists and

functional methods are applicable.

• Promises and streams are different. Promises are a technique to handle async

server-calls which is preferred over callbacks. Streams emit many values while

Promises emit only one value. Streams could be thought of as the new Promis-

es that will be preferred over Promises as they increase readability and data

maintenance.

• Streams are data pipelines. The streams work in a manner where it is possible

to have access to whichever part of the stream and have the flexibility to com-

bine different streams and create new ones. The stream concept gives a full

control of what to do with the data and which data to select.

[26, 155 ; 27.]

39

6 Implementation of Scalable Application Architecture

As a result of the findings discussed in chapter 4 and 5, development of a large web

application started. The application had challenging requirements in terms of architec-

ture, business-logic, and performance. The main idea behind the application was to

have a business-to-business (B2B) channel allowing a multi-international company to

sell their products to other businesses across Europe, North America, and Asia. The

application would also be used to by their customers to track their orders. Typically, a

company would use this application to get products shipped to them and the applica-

tion’s core value is to be able to place orders and track them accurately. Due to the

wide range of the users, the application has to support 6 languages, multiple time

zones, multiple unit of measurements and local laws of different countries. The applica-

tion has to connect to a central ERP system to place orders in the system and fetch

data for other functionalities. Functionalities of the applications included:

• Generate orders & transactions reports.

• Search and filter items from multiple records.

• Create new orders.

• Track order in real-time.

• Admin panel to manage and update items in the application.

The front-end was developed using latest technologies available at time. Angular 2 was

chosen as the main framework to build the application. Publish/Subscribe & modular

patterns were heavily used in the architecture of the application. The main technologies

the stack used include the following:

• HTML

• Sass

• Git

• Angular 2

• TypeScript

• Rxjs

• Webpack 2

• Material Design

• Jasmine 2

• Karma

40

6.1 Angular 2 vs. React

When it comes to React and Angular 2, they are both excellent choices available in

2016. As described in Chapter 5, they promote good architecture patterns, use compo-

nent-based development, have strong community around them, and offer best pro-

gramming practises.

Choosing between the two options was not an easy task. The evaluation of the frame-

works was not only based on the technical features. The specific case of the applica-

tion and the development team’s competences were taken into consideration as well.

In the case of the application being developed in this thesis work, there have been mul-

tiple factors in favour of Angular 2 over React.

Out of the box Angular 2 has more functionalities and options in comparison to React.

Angular 2 contain functionalities such as routing, server API calls, management of de-

pendencies, code testing, and directional data flows. All these options are available

without installing any additional libraries. On the other hand, React has the same func-

tionalities available but they are not included out of the box. In React, additional librar-

ies always have to be researched as there is a large number of options available for

each common functionality. As a result, the development team has to make many deci-

sions that it becomes a problem. Angular 2 offered more recommendations out of the

box which helped kicking off the development. The application had a tight delivery

schedule and it was expected to have more developers starting to work on the same

application at a later stage. Therefore, using a consistent framework like Angular 2 was

more convenient.

Tools supporting for Angular 2 are richer than the options available for React due to the

technologies it is using. React’s JSX has less support from code editors as it is not a

standard markup language like HTML. React relies solely on JavaScript versions ES5

& ES6. JavaScript is a loosely typed language and therefore there is a limitation to the

IDE’s support. However, TypeScript the primary language of Angular 2 is a better ver-

sion of JavaScript. Angular 2 does not require TypeScript but it is definitely recom-

mended to use by the community and the Angular 2 core team. Using a strongly typed

language like TypeScript gives a huge productivity enhancement in software develop-

ment. It gives more control over the code and therefore less chances for errors.

41

Web components is a group of features that are being added to HTML and the DOM by

W3C standard. Web components are intended to create reusable widgets in web appli-

cations. They expected to be widely used in the future. Angular 2’s design has ac-

counted for the new web component’s standard. Angular 2’s gives the possibility to

convert the code in native web components. Therefore, it will be easier task to convert

Angular 2 code into web components in comparison to React. Part of building scalable

web applications is thinking ahead of time. The compatibility of the technologies used

with new standards is an important issue.

In addition to the technical advantages of Angular 2, the development team had prior

experience with Angular 1. Therefore, it was relatively easier to use Angular 2 over

React. Since TypeScript is slightly similar to Java which is a strong typed object-

oriented language. Some of the development team members had experience with Java

which would give them a smaller learning curve while learning TypeScript.

It was more convenient to use Angular 2 over React. With reference to the points de-

scribed earlier in chapters 4 and 5 and the technical merits that were offered by Angu-

lar 2 and the challenging nature of the application’s requirements, they support choos-

ing Angular 2. In addition, the time schedule planned for the application to be delivered

and the background of the development team were other factors to choose Angular 2.

6.2 Practical Architecture and Structure

Creating a scalable and maintainable application starts with a good architecture that

does not limit development and allows maximum code reusability. Angular 2 promotes

a structure for the application’s parts that follows the best programming practises and is

logically linking the code together. An overview of Angular 2’s architecture is highlight-

ed in Figure 6. Angular 2 consists of modules which hold together services and com-

ponents.

42

Figure 6. illustration of Angular 2’s architecture. [24.]

The application developed in the thesis had a structure that was built following Angular

2’s architecture and the modular design pattern. Thus, each group of functionalities

were grouped together in a module. In reference to Listing 8, the application’s modules

can be found under directory “src”. The whole application is bundled together under a

root module called app module found in app folder. App folder contains different mod-

ules such as order, dashboard, and shared modules. Each of the application’s modules

has a folder starting with a “+” sign to indicate that it’s a module. The sign is a naming

convention recommended by Angular 2.

├── config

└── src

 ├── app /**root app module**/

 │ ├── +order /**order module **/

 │ ├── +dashboard /**dashboard module **/

 │ └── +shared /**shared module **/

 │ ├── app.component.ts

 │ ├── app.config.ts

 │ ├── app.e2e.ts

 │ ├── app.module.ts

 │ ├── app.routes.ts

 │ ├── app.service.ts

43

 │ ├── app.spec.ts

 │ ├── app.style.scss

 │ ├── app.template.html

├── assets

 └── custom_typings

Listing 8. Overview of the application’s general structure.

Every module typically has its own routing configurations. Therefore, each module is

responsible for controlling how to load its components. The routes are stored in files

with extension “*.routes.ts”. The root app module also contains a routing file that is re-

sponsible for controlling the paths to every other module.

In addition, the app module contains the end to end, e2e, tests of the whole application.

The e2e tests are performed only on a high level and only test the application’s mod-

ules. Typically end to end tests are to ensure that the modules of the application per-

form together as expected.

Each module consists of multiple components that together form the module. Listing 9

offers more detailed illustration of how a module may look like in terms of structure.

The dashboard module includes order reports and stock reports component. Also it

contains the necessary files to export the dashboard module such as “dash-

board.component.ts” and “dashboard.module.ts“.

├── orders-report

│ └── shared

│ └── order-report.service.ts

├── stock-report

│ ├── shared

├── dashboard.component.ts

├── dashboard.spec.ts

├── dashboard.module.ts

├── dashboard.routes.ts

├── dashboard.style.scss

44

├── dashboard.template.html

└── index.ts

Listing 9. Dashboard module’s files

The file with name “dashboard.spec.ts” in Listing 9 is responsible for the unit tests of

the dashboard component. Angular 2 recommends writing unit tests with extension “

*.spec.ts “. With that naming convention it becomes easy to locate all the unit test files.

Listing 8 contained a folder called assets on the same level as the src folder. Assets is

where some of the application’s supporting files live. Files such as CSS libraries, font

files, and images are all meant to be in the assets. Listing 10 gives an insight of the

different files that may be placed in the assets folder. The CSS files should not be con-

fused with component’s styling as CSS files in assets folder are only for libraries.

└── assets

 ├── css

 ├── fonts

 ├── icon

 ├── img

 ├── mock-data

 └── svg

Listing10. Illustration of application’s assets folder

An important module found in the overview of the application was the shared module.

This module is responsible for all the different components which are shared all over

the application. For instances, input elements with validations and navigation bar com-

ponents are used in other modules in the application. The shared module also may

contain CSS styles which are shared in multiple other modules. The shared module’s

implementation allows code to be reused across the application. Listing 11 gives a

simple structure of how the shared module could be built considering the scenario that

the orders module requires having a navigation bar. The only action required is to im-

port the shared module into the orders module and the code of the nav component is

instantly available for the order module.

45

└── shared

 ├── dropdown-element

 ├── nav

 ├── quantity-input-element

 ├── radio-list

 └── styles

 ├── modules

 └── partials

Listing 11. Shared module

46

7 Conclusion

Design decisions and use of available technologies are major factors that play a huge

role in building a large web application that is functional and maintainable. Frame-

works, design patterns, and architectural structures are extremely helpful to boost de-

velopment time and make complex applications possible.

The final result of this project was practical recommendations and guidelines to design

and develop a large-scale maintainable web application. Therefore, the project

achieved its goals. All of the design patterns and web frameworks that were re-

searched followed common principles and patterns. These tools are aiming to solve

common problems faced by developers to allow them to focus on the real challenges of

their case. This is possible only by the code re-usage, application of the ready-made

solutions, and the loosely coupled codebase.

The findings are limited to the technology available at the time this project was taking

place. However, the logic and the methods that were applied to find the frameworks

and the design patters will be reusable in the future to evaluate technologies available

at that time. There is no absolute solution to every problem. Every application has its

own unique problems. Therefore, identifying these problems and researching solutions

is the key element to create a good application.

47

References

1 Tieto home page. [Online] Accessed 15 September 2016 URL:

http://www.tieto.com/

2 MODx Web Development. John, Antano; March 2009:8-13

3 7 reasons why frameworks are the new programming languages. Peter Wayner;
Infoworld; March 30 2015. [Online] Accessed 4 May 2016 URL:
http://www.infoworld.com/article/2902242/application-development/7-reasons-
why-frameworks-are-the-new-programming-languages.html?page=2

4 On the Way to the Web: The Secret History of the Internet and Its Founders.
Banks, Michael A.; January 2008: 49

5 Web Teaching. A Guide to Designing Interactive Teaching for the World Wide
Web. Brooks, David W. Nolan, Diane E., Gallagher, Susan M.; February 2001; 3

6 Web 2.0 Website Programming with Django: Step Through the Development Of
A Complete Social Bookmarking Application with the Python Web Framework
That Encourages Clean And Rapid Development.Hourieh, Ayman; April 2008; 5-
6

7 Design patterns: Elements of reusable Object-Oriented Software, Gamma , Raplh
Johnson, Richard Helm, John Vissides; October 1994

8 Patterns For Large-Scale JavaScript Application Architecture , Addy Osmani
[online]. Accessed 28 June 2016 URL:
https://addyosmani.com/largescalejavascript/

9 Design Patterns For Dummies, Steve Holzner ; May 8, 2006;

10 Learning JavaScript Design Patterns [Online]. Addy Osmani; 2015. [Online] Ac-
cessed August 29 2016 URL:
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#detailmvcmv
p

11 Software License Unveiled: How Legislation by License Controls Software Ac-
cess. Phillips, Douglas E.; June 2009; 9-20

12 JavaScript Unit Testing. Salen, Hazem; 2013; 7-8

13 Software Engineering [ONLINE]. St. Andrews University; 2010: chapter 30 - doc-
umentation URL:

14 Speaking on the Observer Pattern - Tony Sintes ; May 2001 [online]. URL:
http://www.javaworld.com/article/2077444/learn-java/speaking-on-the-observer-
pattern.html

15 Pro Javascript Design Patterns , Harmes , Ross ; 2008

48

16 Show love to the module pattern , Christian Heilmann ; July 2007 [online]. Ac-
cessed August 29 2016 URL:
http://www.christianheilmann.com/2007/07/24/show-love-to-the-module-pattern/

17 Again with the module pattern - reveal something to the world , Christian Heil-
mann ; August 2007 [online]. Accessed August 29 2016 URL:
http://www.christianheilmann.com/2007/08/22/again-with-the-module-pattern-
reveal-something-to-the-world/

18 Developing a React Edge. Frankie Bagnardi, Jonthan Beebe, Richard Feld-
man,Tom Hallett, Simon Højberg, Karl Mikkelsen ; November 2015

19 Introduction to React , Cory Gackenheimer ; 2015

20 React.js essentials : a fast-paced guide to designing and building scalable and
maintainable web apps with React.js , Artemij Fedosejev ; 2016

21 React’s JSX: The Other Side of the Coin, Cory House; Aug 13 2015 [Online].
Accessed September 5 2016 URL: https://medium.com/@housecor/react-s-jsx-
the-other-side-of-the-coin-2ace7ab62b98#.7zyb84qo9

22 Thinking in React – Official Facebook’s React documentation. Accessed Sep-
tember 5 2016 URL: https://facebook.github.io/react/docs/thinking-in-react.html

23 Component Specs and Life Cyclce – Official Facebook’s React documentation.
Accessed September 5 2016 URL:
https://facebook.github.io/react/docs/component-specs.html

24 Architecture Overview [Online]. Google; 2016.[Online] Accessed September 5
2016 URL: https://angular.io/docs/ts/latest/guide/architecture.html

25 Beginning AngularJS. Andrew Grant; 2014; 35-34

26 Ng-book 2: The complete Book on AngularJS 2 , Ari Lerner, Felipe Coury , Nate
Murray , Carlos Taborda; 2016

27 ReactiveX - Observable, RxJS official documentation. [Online] URL:
http://reactivex.io/documentation/observable.html

28 Observer Design pattern using JavaScript , Salvatore Vetro ; 2006 [online]. Ac-
cessed September 5 2016 URL:
http://www.codeproject.com/Articles/13914/Observer-Design-Pattern-Using-
JavaScript

29 Infographic: AngularJS vs. Ember vs. Backbone.js by Mitch Pronschinske
[Online] Accessed 6 Sept 2016. URL: https://dzone.com/articles/infographic-
angularjs-vs-ember-vs-backbonejs

Appendix 2

1 (1)

