

Muftau Tunde Abdulrahamon

Development of a mobile workout application

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Development of a mobile workout application

20 November, 2016

 Abstract

Author(s)
Title

Number of Pages
Date

Muftau Tunde Abdulrahamon
Development of a mobile workout application

46 pages
20 November, 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Instructor(s)

Kari Aaltonen, Project Manager

The application is aimed at developing a workout model for people who needed to perform

exercises in a conformable procedure. GYMKit is a mobile application designed with An-

droid technology. Regular exercise has health and physical benefits which are hard to ig-

nore. Health and physical fitness are the fundamental targets for the Application. Basically,

GYMKit is implemented in such a way that the collection of implicit routines and that which

is prescribed to the trainees by their trainers are in one component. GYMKit is a form of

hub or component for categories of built-in and custom workout routines.

GYMKit is designed to contain the built-in categories of workouts. The collection of

workouts is meant to contain descriptions and procedures on how the workouts should be

performed. The collections are the ones recommended by experts and each category of

workouts has a set of another workout. Users can also customize their workouts, either

with personal training plans or routines given to them by their trainers for the purposes of

monitoring their physical and wellbeing outcome.

Perhaps, some trainers do monitor their workout tasks by keeping the accounts on a book-

let. GYMKit application has a component that stores and monitors user’s workout routines.

GYMKit offers a great intermediate utility between trainers and trainees. However, it is

strictly encouraged to monitor the consequence activities in the application for the impact

to be felt.

Keywords APIs, SDK, iOS, CRUD, DVM, GYMKit, XML, Gradle.

Contents

1 Introduction 1

1.1 Overview 1

1.2 Objectives 2

2 Mobile Application Development 3

2.1 Native Application 4

2.2 Web Application 6

2.3 Application Architecture 7

 2.3.1 Mobile Application 8

 2.3.2 Device Configuration Management 9

 2.3.3 Authentication 10

2.4 Application Technology 10

3 Android Architecture 12

3.1 Android Application Framework 12

3.2 Development Tools 15

3.3 Platform version and SDK 16

3.4 Android Virtual Machine 17

3.5 Networking Features 18

4 GYMKit Back-End Architecture 22

4.1 Parse Platform Overview 22

4.2 Android SDK 22

4.3 Parse Data Browser 23

4.4 GYMKit Classes 25

5 GYMKit Application Implementation 26

5.1 Overview 26

5.2 Environmental Setup and Development Tools 26

5.3 Application Packages 29

5.3.1 Activity Classes 29

5.3.2 Model Classes 31

5.3.3 Adapter Classes 32

5.4 Project Resources 32

6 GYMKit Application Testing 33

6.1 Testing Consideration 33

6.2 Application Testing Techniques 34

7 Conclusion 35

References 36

1

1. Introduction

People have been avoiding active tasks these days, partly due to the facts that more

and more technologies have been invented to make our lives easier and less rigorous.

We drive and work in the office, sitting for hours. Machines make our laundry. We en-

tertain ourselves with TV programs for unreasonable hours and a few people engage

themselves in physical work. (Emis Group 2016)

We move around less and burn off less energy than people used to. Research sug-

gests that many adults spend more than 5 hours a day sitting down, at work and during

their leisure time (Park 2010). Inactivity is described by the Department of Health as a

silent killer In United Kingdom. Evidence could be seen that idleness, such as sitting or

lying down for longer periods, is terrible for the health of an average human. (UK

Department of Health 2012)

People need to get involved in one activity or another to ward off diseases, improve

quality of life, control body weight and keep fit at all times. It has been proven that eat-

ing a balanced diet alone is not enough for body fitness. Performing a regular exercise

for different parts of the body would keep the muscles of the body in healthy condition

and good shape. (BodyBuilding 2016)

1.1 Overview

GYMKit is a project designed to support and serve as a guiding tool for trainees and

aiding mechanism for trainers both at home and at the GYM. The project is an Android

Application targeted at people who like to keeps fit and keep track of their workout

tasks and sets of workouts done at regular interval. A huge number of people work out

without any workout plans, some do have plans but not well documented.

What would have been the situation if the workout and set of workouts were selected

from an application on a mobile device? GYMKit is one of many Workout applications

developed for this purpose.

2

GYMKit aims to design a better workout application with more features that make it

stand isolated among others. Users are able to customize their collection of workouts

to their own taste and keep abreast with tasks performed from time to time. This expe-

rience could only be served from a mobile gadget and not having to hinder the users

from using other apps on their mobile devices.

1.2. Objectives

GYMKit provides some important features, which are important to people while working

out both at home and in the gym. Most exercises people like to do in the gym are all

contained within the application. People perform cardio workouts, biceps, triceps, and

abdominal, back, neck etc. With these, users can select any of the available workouts

within the above mentioned categories.

Users also have the opportunity of customizing their workout categories by adding their

needed workout or that given to them by their instructors as part of monitoring strategy.

There is a task implementation for every workout to users and after every workout, the

user’s activity would be stored in the database for future feedback or estimation when

needed by training instructors.

Part of the customization of the workouts is the notification of users for workout activity.

Users can enable the notification features, which alarms them of upcoming exercises to

be performed. Another customized feature is to add category of workouts to favourite

menu for quick access.

Some of the important components of the application would be discussed in the conse-

quent chapters. The application architecture alongside with its implementation will be

touched upon. GYMKit application testing, which is an important concept in the devel-

opment of the project will be discussed in chapter 6.

3

2 Mobile Application Development

Mobile application development is similar in one way or another to Web application

development and has its fundamental purpose as being the creation of applications

that could be built, executed and used on mobile platforms. However, mobile applica-

tions are often written specifically to take advantage of the unique features a specific

device comes with in terms of both hardware and platform utilities.

Mobile application performance is always at stake when it comes to usability. Users

appreciate the richness of an application. Handheld devices are designed for this pur-

pose. All the rich components of the architecture that are expected to be incorporated

are designed within the system such as the execution speed, specified processor, vir-

tual machine and a whole bunch of APIs. The end-result of this is that the applications

would be written for a specific processor of a device and an operating system. If any

mobile application needs to run on similar operation system, the same application only

need to be installed but perhaps, should be rewritten for a different operation system.

Statistically, most mobile applications use both Android and iOS (IPhone operating

system). These two technology has been used in so many mobile technologies and

most often, each technology has modelled the operating system to suit its needs by

using various configuration techniques that comes with the operating system. Every

operating system is orchestrated to work with the applications designed for itself. An-

droid application cannot run on the Windows platform and vice versa. (Dogtiev 2015)

Figure 1: Usage of the iOS and Android technologies (Dogtiev, 2015)

4

Base on figure 1, the Android platform has continuously outgrown iOS in terms of mar-

ket share of downloaded applications. In the financial year quarter conference, which is

a worldwide developers conference, Apple had announced the number of iOS apps

that were downloaded. The graph demonstrates android and iOS apps ecosystem and

market growth. However, the popularity of both platforms have increases robustly and it

is now, no technology has not been able to slow down their pace.

2.1 Native Application

Native applications are Mobile applications that run locally on a mobile device. These

apps are downloaded from the platform’s store.

Apple applications are downloaded from the App store and Google apps are down-

loaded from the Google store. The stores, which are usually cloud storage, store appli-

cations created by developers and they could be published for sale or for free. Android

application has, as it claims to be, had a huge portion of market share of free applica-

tion deployment as shown in figure 2.

Figure 2: The Market spread of Android Technology. (Idc 2016)

5

What distinguishes native apps from their competitive alternatives is that they are de-

signed for a specific kind of device. For instance, iPhone applications are written in

Objective-C, Android apps in Java and BlackBerry with Java.

Each mobile platform comes with their own development tools to give developers what

to work with, user interface provisions, virtual machine and Android SDK. With these

developers are empowered to develop a native app at ease.

There are a few advantages to writing applications natively:

 They give the utmost speed, reliability and responsive features to users.

 They can make use of more functionality of the devices including the camera,

recording, compass, Global Positioning System (GPS) and swipe gestures.

 Publishers can make use of push-notifications, notifying users every time when

there is new content published.

This is not only about the access or control over the device itself, but the platform offers

developers of native apps fundamental layout capabilities. Developers are free to make

use of the features, which gives the design a more responsive approach than just a

web app.

One of the major disadvantages of native apps is that they will not work with other kind

of operating system. When developing a mobile app in Objective-C for iOS, it is not

going to run on Android without being entirely re-written in Java. When building for mul-

tiple platforms, developing a native app can be quite expensive.

Native apps are offering the best user experience. When building from scratch, developer

should be aware of the cost ineffectiveness and support.

Considering the cost of app development, developers or agencies could charge up to

€15,000 to €40,000 on a native app built from the scratch (Yarmosh 2015). With native

apps, some features or support don not have to be built again. What is needed is that

the support components would be indicated on the current application as if the compo-

nent was part of the application. Platforms or application designers mostly design for a

specific set of functionalities. The figure 3 below shows few of the mobile applications

operating systems

6

Figure 3. Platforms capable of creating native Applications. (Continued Learning

2015)

2.2 Web Application

A web application is a mobile version of native apps. Web applications are displayed

with a web browser, like Safari or Google Chrome. The web application appears on the

browser like every other web application. The audience does not have to install a web

app. There is no need for more available space in the device in question.

Web applications are designed to look and behave like apps and are commonly ideal

when the purpose is simply to make content or key routines available on mobile. Web

apps use JavaScript, modular JavaScript, CSS, SCSS, HTML5 and other JavaScript

frameworks. A developer will not granted any permission to the underlying SDK provid-

ed in Android architecture. Developing a web app is simple with template-like struc-

tures.

There are web application experts out there that are convinced that web apps are

equal to and came to replace the native apps. Their arguments are restricted to cost

and functionality effectiveness. (Borodescu 2013)

Web apps do not depend on any on any of the underlying native apps to make use of

any of their ready-made components or features. More implementations still need to be

included in the web app architecture for it to be fully called to attention for full replace-

ment of native apps. However, proponents of web apps will not agree with this stand.

7

Web applications have their own limitations mostly in terms of what they could perform

efficiently. What web applications require always is the connection to the internet. (Kari

2016)

It is not possible to send notifications and make them appear in the app content. It is

difficult to use from the user standpoint. In addition, when using web app, because it

relies on Internet connection several features might be lost during transmission and

would be faced with security risk as well. Thus, native and hybrid apps appear on the

App Store and Google Play. With millions of searches every day on these stores, there

is always a need to give the users what they would appreciate. (Matt 2011)

Figure 4: Some features attributed to the three forms of mobile applications. (Dar 2015)

2.3 Application Architecture

Mobile application architecture is essentially the implementation of tools and proce-

dures to construct a mobile application with the design models being considered. The

design and techniques used will be compatible with every platform that supports the

desired architecture and figure 4 shows some of the features attributed to the mobile

applications development. The architecture in context in most cases is understood to

be the platform on which every mobile application would be developed. The Android

architecture is actually based on the android platform and every application that is exe-

8

cuted on it uses the underlying structure of the platform. The same scenario is for the

iOS architecture. The underlying architecture basically lead developers to consider

some certain challenges that have to be acknowledged while developing any kind of

mobile application. (Dar 2015)

Figure 5. The mobile application architecture. (Kari 2016)

2.3.1 Mobile Application

A mobile application is a software application developed basically for hand-held gadg-

ets such as smartphones and tablets that are structurally different in terms of architec-

tural layout to their contemporary desktop devices. Mobile applications market has

grown so much that a huge number of application have been developed for different

platforms and these developments have never stopped to create jobs in the technology

market. (Kari 2016)

Mobile applications are designed based on the yearning of the people for the need for

new technologies in the market. These applications can be pre-installed on the device

9

at the time of production or perhaps installed by users when there is a need for more

applications to power their needs. The developers of these applications also have to

consider certain aspects such as the screen sizes of the device in which the application

would be executed. The configuration of the various platforms, hardware specifications,

platform updates, changes in the APIs and the best practices. (Al Salool 2012)

A mobile user interface is one of the most important features of all mobile apps. It is

actually the presentation logic of the apps and the user tends to appreciate the applica-

tion even before using it by looking at the user interface. Developers would have to be

forced to conform to some features such as the layout, application widgets, compound

layouts and the design, and in most cases would have to rely on some third-party li-

braries for this purpose. The user interface is the view component that exhibits the

hardware and the logic of the whole application. (Continued Learning 2015)

In the next section I will discuss some of the key design provisions that developers

should consider when developing a mobile application. They are the fundamentals per-

formance proficiencies of mobile applications.

2.3.2 Device Configuration Management

Configuration management is a technique used in describing the software and proce-

dures that are necessary for the secure distribution of mobile applications on mobile

devices. The configuration offers a reasonable solution such as software licensing,

authorization and authentication, application lifecycle and application limitations.

The underlying platforms also provide management features. Failure of the application

to conform to this configuration exposes the application to various attacks that obvious-

ly result from administrative mal-implementation from within the mobile application.

When designing an application with configuration management in mind, developers

need to consider some requirements such as configuration stores which have sensitive

data within it encrypted, implementation of privileges and allowing authentication for

access permission to restricted configuration files. (Microsoft 2016)

10

2.3.3 Authentication

Authentication must be taken into consideration when developing a mobile application.

It is the basis on which application security relies on. Hijackers and web crawlers al-

ways look for loopholes in mobile application connections and browsing. Thus a good

authentication implementation creates a reasonable amount of security against un-

wanted privileges. (Degges 2015)

A strategy needs to be developed to identify those that have access to the datastore.

Only authenticated users have access to the right data stores. Soring the password in

a plain text is a bad principle when it comes to mobile application design.

Storage of password in a plain text must be avoided in the database or whatsoever.

Most mobile applications are designed to have an internet access which means data

request and response are probably over the internet. Users data are conveyed from the

device to the database in a remote location. This information is not expected to get into

the hands of unwanted users. That is why important user data such as passwords

should be encrypted during transmission for proper accountability and credibility of user

data. (Microsoft 2016)

2.4 Application Technology

The rate of technological development and successfulness in the mobile market has

given rise to so many challenges that prompt developers to strategize plans for major

projects to set the ball rolling in the mobile development proliferation. However, since

the beginning of the smartphone revolution, the iPhone IOS development encom-

passes the mobile market, just recently Google Android has overtaken iPhone in terms

of market share. The Google targeted strategies and the platform’s nature which is an

open source architecture. Other mobile operating systems that are part of the mobile

market share are listed below. (Al Salool 2012)

 BlackBerry.

 Windows 10 Mobile.

 PhoneGap.

11

When considering how to incorporate mobile technology into existing business logic,

the primary issue for both clients and developers is currently the choice between native

apps and web applications - or a combination of both. The advancement in mobile

technologies has lead to the development of businesses in other sectors that are nec-

essary to the mobile technology such as the hardware sector and application pro-

gramming interface (API).

Native platforms (Android/iOS) or Hybrid (Cordova/Phonegap) are important platforms

to remember when considering a mobile strategy. Developers are faced with many

challenges when considering the users of their apps, whether to focus the design on a

Web application or on native apps. Both technologies are solutions to the design issue,

due of the number of platforms operating, and the best path for the development logic

may be different for different platforms.

There is also a huge competition in mobile software, which has brought about a robust

change within each platform. Both Apple iOS and Android have undergone a powerful

change with update and release, with the intention of supporting users with extensive

features. Few platforms such as Android for instance – are being deployed on devices

produced by different manufacturers. Each of the mobile developer always wants to

make changes to the operating system configuration. There is a need for them to con-

sider some additional features that would make the platform architecture somehow

different from another, yet with the same operating system. Nonetheless, Android

hardware is now available in the mobile market.

At the early stage of smartphones, consumers that brought the devices were rich peo-

ple. But now smartphones are now available at a lower cost, and the statistic shows the

total number of mobile phone users in Finland from 2011 to 2019. Growth in the num-

ber of users is expected to remain slightly unchanged: from 4.5 million in 2013 to 4.6

million by 2017 (Idc 2016). As a result of different releases and manufacturers, devel-

opers have to consider multiple screen sizes, hardware specifications, API updates and

configurations.

12

Figure 6. Number of smartphone users around the world. (Idc 2016)

3. Android Architecture

 3.1 Android Application Framework

The Android platform is an operating system that is a stack of software components

that are categorized into five layers. The following is the operating system compo-

nent stacks. (Al Salool 2012)

 Applications

 Application framework

 Libraries

 Android runtime

 Linux kernel. (Al Salool 2012)

13

Figure 7. The Android Platform Architecture components. (Al Salool 2012)

14

Applications

Android application is at the top of the components stack. Android applications are

developed and installed into this layer. This layer is the one that is fully under the

control of the application users. Some of the examples of the applications are

games, dictionaries, File Viewers, banking system applications.

Application Framework

This is the layer that provides some services to the underlying applications. These

are higher-level services made available to the applications. The services are mod-

elled in the form of Java classes that applications users are allowed to make use of.

Some of the Android framework services are listed below.

 Activity Manager – The application lifecycle and the activity stack are con-

trol by the Activity Manager. The package of services provides a bunch of

services needed by developers that would be used in their apps.

 View System – The view system is the building block of the user interface

components. Android provides services on this basis in the form of widgets

for an interactive UI features on applications. user interface is by far one of

the most important components of Android design.

 Resource Manager – The manager provides access to resources that are

embedded. These resources are non-coded components that are used in

the user’s application Java code. The resources are referenced in the appli-

cations.

 Notification Manager – The manager allows applications to show alert

messages and contains management features for notification settings.

 Content providers – Applications require some other features that are

needed by other applications. The data can be shared among the applica-

tions. (Android 2016)

15

Android Runtime

The android runtime system is an important layer of the architecture and contains

the Dalvik Virtual Machine (DVM). DVM is a Java virtual machine specifically or-

chestrated and used for Android platform.

The DVM uses the Linux kernel components such as the memory management

and the multi-threading features, which are vital to the java language. The VM

provides the environment for the execution of each Android application in its own

process and attributed with an instance of the Dalvik virtual machine. The runtime

also has the component core libraries used by developers in the form of standard

java programming language for writing Android applications.

Android Libraries

This section is composed of Java-based libraries mainly written for Android devel-

opment. The major library in this category includes the Application framework.

 3.2 Development Tools

Initially the Eclipse ADT is the Android Development tool (IDE), which is a plugin

that is no longer supported by Android platform. The official IDE for Android is now

Android Studio.

Most Android projects are now developed with Android Studio. Gradle is now the

supported method for building Android Application. The GYMKit project is entirely

developed with the Android Studio tool. There is no need for any migration of the

project. The Android studio consists of a major features that are required for the

development of Android applications with ease.

16

 3.3 Platform version and SDK

The latest release of update for the Android distribution numbers for each Android

version has been made known by Google. Android Lollipop continues to be the

most favoured Android version. The number of users continues to increase.

GYMKit Application is developed with Android Lollipop version with the required

API level, which is 21 and 22.

Android SDK is a development toolkit that contains all the needed libraries for the

development of Android applications. It also composes of working apps with

codes and the Android virtual device manager. With this, users can test applica-

tions on any version of Android on devices that runs Android platform. Different

components including the platform tools, Android Debugging Bridge (ADB) and

the build-tools can be downloaded.

(Android 2016)

17

 3.4 Android Virtual Machine

Every Android Application runs in its own process with an instance of a Dalvik vir-

tual machine. The Virtual machine is designed in a way that multiple instance can

be executed on a device efficiently without any conflict. The Dalvik virtual machine

executes a specific file extension, which is a.dex executable format. The Java lan-

guage compilers compile java classes into this format.

The source code format of Java language in Android is in x.apk and when built

would be converted into .class and finally converted into x.dex executable, this is

shown in the figure below. (Scriptol 2015)

Figure 6: The conversion stages from Java source code the final stage of a.dex exe-

cutable by the Dalvik virtual machine. (Scriptol 2015)

18

3.5 Networking Features

The Android technology is a huge platform that offers a number of user interface com-

ponents and possesses the potentials of handling data in a more robust manner. The

ways in which it implements Networking functionalities add more to its enriching poten-

tials. Most applications are developed with the basis of connecting to the outside world,

be it fetching data from the server or playing an online game. The Android architecture

provides a robust set of features which allows developers to connect application users

to the internet for one or more reasons. (Al Salool 2012)

Connecting embedded devices or mobile devices to the Internet is made possible

through the networking packages implemented into the Android SDK. To perform any

Network operation with an android application, the application needs to add the below

permission to the application’s manifest file. (Al Salool 2012)

Most of the cases whereby the Android Applications needed to connect to the network,

the HTTP method is used to send and receive data from the data-store. When devel-

opers download the Android SDK, the developer now has the so call HttpURLConnec-

tion client, which is a package for making the connection through the user devices. The

package supports the following features.

 HTTPS

 Streaming uploads and downloads

 Configurable timeouts

 IPv6

 Connection pooling. (Microsoft 2016)

With the networking capabilities, Android applications developer would have the full

control of the following.

 The Developer would be able to choose an HTTP client

 Developers would be able to check the network and manage the connection

 Performing Network Operation on a separate Thread with ease

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

19

 Connecting and Downloading Data from the data-store

 Finally converting the obtained InputStream data to a string for Application usa-

bility or view rendering. (Microsoft 2016)

 Designing User Interface

User interfaces in Android platform are built using the Android layouts that may be

different for all types of devices. With the flexible framework provided by android,

the developer can be able to offer their users different sorts of UI designs that allow

on Android application to display different layouts, modelling the widget with custom

ones.

The Android framework offers the following user interface potentials:

 Developers would be able to develop Applications for multiple screens. The

layout would be flexible enough to fit perfectly on any screen size and the

interaction concepts are designed in an adaptive manner.

 The developers would have the capability of adding different sorts of widg-

ets to the layout using the support libraries. For instance the toolbar support

library could be used to implement application bar on any varieties of devic-

es with so many properties developers can render to the views.

 The user interface features also provide the developers with features that al-

low the showing of pop-up messages to the app users, also with the support

library such as Snackbar widget.

 The Android Framework also provides the developers with ability to custom-

ize the layout widgets to more suitable and interactive views

 Being able to maintain compatibility is a vital concept in API development.

With android UI components, there is a possibility for the recent versions of

the platform to be compatible with the older ones due to the backward-

compatibility of the UI APIs included in the SDK.

 Implementation of accessibility features into the Android SDK makes it more

sophisticated for creating a UI for physically disabled people.

 Developers would be able to create a UI with rich APIs such as those used

in implementing the material design. This entails the definition of custom an-

imation, management of drawables, inclusion of material themes and main-

20

tains the compatibility of the material design with previous Android UI de-

signs. (Rouse 2016)

 Concept of Usability

Usability can be defined as the ease of use of a mobile device or an application. In

this concept, I will be referring to the ease of use of a mobile application. The aim of

the use of the mobile application is to get some features and functionality and the

application would be difficult to use without the usability being considered. Every

application is expected to be effective, sophisticated, and satisfactory and the color

and contrast should be intact and follow some other principles that are considered

the standard to be followed by developers.

The design of the application should be done in such a way that users of all abilities

would be able to use the UI efficiently. Also those with different disabilities such as

hearing impairment, low vision, or blindness should be able to engage themselves

in using the apps.

Users of all apps should be able to appreciate the color and contrast of the mobile

applications. Developers should also take into consideration the sound implementa-

tion of the app, which is an alternative to the visual implementation. Unnecessary

sounds should always be avoided and the sounds that interpret screen elements or

content should be designed for a correct or almost correct efficiency.

The design of the applicaton should also respond to user input effectively with the

touch target performing at its maximum functionality. The touch targets are the are-

as that respond to the user input. The touch target should be at least 48 * 48 dp to

ensure balanced density and usability of UI widgets and information. The recom-

mended size of touchscreen widgets is 7-10 mm. (Dar 2015)

Visibility and Accessibility of text content are also primary concepts in this context.

The accessibility text is read by the screen-reader Software such as Android Talk-

back. The Accessible text includes visible text and nonvisible content of the Appli-

cations. Both visible and nonvisible text should be descriptive enough. Developers

21

should test the app with a screen-reader before launching the app to the public. (Al

Salool 2012)

With the use of the standard platform controls, applications contain the necessary

mark-up and the implementation visual contents. Every platform has its own assis-

tive technology. The app should be able to adapt to this to give users the efficient

experience that they suit. (Dar 2015)

 Scope of Human Computer Interaction

The human computer interaction concept lies within the scope of the design and

the usage of computer technology taking into consideration the interfaces between

the people and the computers. People relates with the system in a certain way

which is considered as a standard to developers of applications since developers

develops applications to satisfy their respective users. Paying so much attention to

the design with the users in mind is the hearth of application framework. So many

applications users still believe that enough attention has not given to user oriented

design procedures. The ease of use should always go along side with the design of

any kind of computer application. The study of the user preferences should be con-

sidered at the inception of the development phase due for it changes from time to

time. (Rouse 2016)

22

 4 GYMKit Back-End Architecture

 4.1 Parse Platform Overview

The Parse technology is a BaaS platform simply stand for Backend as a service.

The platform provides developers with a range of development software develop-

ment kit (SDK) for the creation of different kinds of applications on various technol-

ogies or platforms. Android, iOS, Windows and JavaScript apps can be developed

using their respective Parse SDK. Each of the technology SDK contains various

classes and methods needed to incorporate backend features to applications.

The technology has the following main features:

 Parse Core: This is a feature in Parse that is used mainly in saving applica-

tions data to the backend Database.

 Parse Push: This gives notification features to applications.

GYMKit application uses the Android SDK for its backend. The cloud server, push

notification and analytics components are the features of the platform utilized. The

rest of this chapter focuses on detailing the implementation of the parse platform for

the development of the GYMKit applications. The Parse platform offers as backup

option that is in the form of JSON file. The backup could be imported back to the

parse data browser if need be. Parse server developers now have the benefits of

including index managements, performance tuning and backup and restore func-

tionalities. (Parse 2016)

 4.2 Android SDK

Parse provides a variety of SDKs for mobile app development. The SDK contains

enough APIs that contain several classes for the development of applications with

ease. GYMKit uses Android SDK tool for its backend environment.

The following are some of the objects that are contained in Android SDK:

 The ParseObject: This object is tasked with the all functionalities that pertain

to storing data on the parse platform. This object contains key-value pairs

that are compatible with JSON data.

23

 ParseQuery: The Android SDK provides the query object for the purpose of

fetching multiple data from the Parse and also putting conditions on the ob-

jects retrieved from the database. With the ParseQuery, a retrieved object

could be cached automatically avoiding the writing of the code every now

and then necessary. The idea behind the query is to create a query object,

apply a condition on it and finally fetch the matching ParseObject from the

Parse using the findInBackground method with a FindCallback. These are a

few of the methods provided by the ParseQuery Object.

 ParseUser: In most apps there is always the idea of creating a user account

using an authentication means or the other. Parse provides the ParseUser

object that is a specialized user class. It automatically handles a user opera-

tion that pertains to account authentication.

 ParseFile: This object lets the developer store large files in the cloud. These

files would be too large to fit into the store using the ParseObject. ParseFile

is used for storing Images, videos, music and any other binary data that are

up to 10 megabytes. (Parse 2016)

 4.3 Parse Data Browser

The data browser is provided by the parse platform for viewing user data in the

cloud. It contains several features that make mobile applications more creative. In

the data browser, developers could see their application that was connected to their

respective app. Any data that are required to be retrieved from the backend are

displayed on the data browser. In the next section I will discuss all the classes used

in the GYMKit applications. The figure below shows the data browser of the Parse

platform displaying list of classes and objects.

24

 Figure 7: Data browser of the parse platform. (Parse 2016)

25

 4.4 GYMKit Classes

The GYMKit classes are the representation of all the workout categories in Parse

platform. Workout category will contain some features that will be represented with

the columns of each class. The GYMKit app has 13 built-in classes and users of

the GYMKit application can create their own custom workout categories, which

would then be displayed on the data browser. The application also has some other

classes that are meant for other functions. The below list are the classes contained

in the GYMKit app on the Parse platform:

 AppUser

 Category workouts

 Biceps

 Cardio

 Chest

 Traps

 Shoulders

 Triceps

 Calves

 Triceps

 Neck

 Back

 Glutes

 Adductors

 Abdominals

 Abductors.

26

 5.GYMKit Application Implementation

 5.1 Overview

The GYMKit application implementation entails all the features of the project and its

functionalities. The GYMKit implementation includes the special components of

Android technology and how the components where combined with the layout re-

sources alongside with the backend components which were discussed in chapter

4. The backend technology plays a robust role in the performances of this project

and its functionalities are felt in all the activities used in this project. To begin with, I

will analyse the component a little bit in the Environmental setup, explain some key

concepts of the development tools and then describe the components of the appli-

cation itself.

 5.2 Environmental Setup and Development Tools

The GYMKit project was implemented using the Android technology and its devel-

opment tool called Android Studio. The latest version of the Android Studio is being

was used to develop this application.

Manifest File: In the form of AndroidManifest.xml is the file that describes the ap-

plication fundamental components. All the created Activities, Broadcast Receivers,

Services and content providers are declared here. The minimum SDK version that

is used is 14 and the target SDK is 23. The numbers indicate the API Level, which

indicates the supports for different devices and different Android features. That was

the API Level used as at the time the application was developed and has the sup-

port for some of the current Android newly developed technologies such as the Ma-

terial Designs.

Build.Gradle: The compilation and the building of a Android application done by

the Build.gradle provided in the Android Studio. There is Gradle for the entire

GYMKit project and that for each of the projects modules.

27

Running GYMKit on Real Device: The following steps were taken when setting up

my Android device for testing the GYMKit application on real Device.

1. Connecting the Android device to the System with a USB cable. The Develop-

ment device used for the project is the Android Studio that was installed on a

Window Device, so I need to install the USB driver.

2. Enabling USB debugging on device from the settings.

The Android Studio installs the application on the connected device and starts the

Application. The application components are essential parts in developing an An-

droid application. The Android technology is configured on the Application level us-

ing the Manifest file that is an XML file AndroidManifest.xml. This file describes the

interaction of all application components. GYMKit project made use of the compo-

nents provided by Android. The following is the list and short analysis of the com-

ponent tasks.

Activity: The activity is the component that every user of an application interacts

with. It has a user interface that displays what the users see on the screen. All the

lists of the workouts and categories would be displayed with Activity in this project.

For my application to make use of these properties, the activities I used have to ex-

tend or be a subclass of the Android Activity class in this way.

Services: This component runs in the background to perform operations that takes

longer time. The long-running operation was performed in a new thread, which then

reconnected or the result was be output to the main thread. In Android application,

the concept there can only be one main thread and more than one worker threads.

For the Services features to be used in application, a Service class has to be ex-

tended like this.

28

Content Providers: Moving data around is essential when building Android appli-

cation. This component takes care of supplying data from one application to anoth-

er. Whenever a request is made to another application it could be SMS application,

alarm application and email application. The Content providers handle the commu-

nication between the application and the calling application. GYMKit has made use

of the gallery and the messaging applications in its implementation.

To use this property, the subclass must be extended.

Broadcast Receiver: This component monitors the messages broadcasted from

one application to another or from the system. This could be Alarm Broadcast, Bat-

tery Level or System Boot etc.

These messages were broadcasted and intercepted using the Intent Object and the

BroadcastReceiver subclass like this.

29

 5.3 Application Packages

The application packages consist of all fundamental features of the GYMKit appli-

cation. The project was divided into three packages which was meant to make the

project simple by separating concepts or components for easy interaction within

similar components. All activity components are separated from the Bean or model

components that serves as helper to the Activity implementation. The Adapter

packages consist of all classes meant for custom screen adapter for all activity

screen views. These are all needed in huge projects for better understanding of

what is going on.

 5.3.1 Activity Classes

The GYMKit project consist of 23 Activities. Some of the important ones are listed

here and the implementation of the activities is listed in chapter 6. The following are

few of the Activities;

DataLoaderSplash: This activity performs the function displaying a view on the

screen that serves as a splash activity. The activity makes use of the load-

er_layout.xml for its content view layout. When this Activity is started, the Project

name will be displayed for 3 seconds to the user and after the time out, the next Ac-

tivity would be invoked.

The implementation has a package name activity. With this package name this ac-

tivity is accessible throughout the whole project. This activity also extends the Ap-

pCompatActivity, which is the version 7 supports API for the basic Activity class.

Authentication1: This activity is tasked with the functionality of collecting the Email

information of the user. This comes after the confirming that this user is a new user

or has just installed the Application for the first time. This email is stored in the

backend alongside with the user phone number for later Authentication.

Authentication2: This Activity is responsible for the second Authentication, which

collects the user phone number by prompting user to enter the phone number in

the space provided on the screen. The phone number is needed together with the

30

user email. Both of them are used to create a profile for every user that install the

GYMKit app. This Activity will also start the last authentication procedure of the

whole project.

Authentication3: This is the final Activity that will authenticate the user if the user

enters 5 digits which conforms with that contained in the backend. Every user

granted access will have access to the Application main page which is named as

HOMEPAGE.

Homepage Activity: The Homepage is responsible for displaying the following op-

tions:

1. Category

2. Settings

3. Favourite Workouts

4. Recent Workouts.

All the four options are displayed on the Navigation drawer. This Activity uses the

Frame Layout to display each of the options displayed on the Navigation drawer.

Category: This extends the Fragment class. The Category Activity consists all the

Categories of workouts available for Users. By default, the in-built or default Cate-

gories of workouts will be available for the user at the inception for the installation

of the Application. After that, the user also possesses the ability to customize each

of the categories by adding new workouts and performing every CRUD operation

on them.

Settings: With this, the user could make some changes on the basic settings on

the Application. The basics settings include changing user profile picture, profile

name and Notifications.

Favourite Workouts: These are a selected list of workouts which are favoured by

users.

31

Recent Workouts: This Activity list all recently performed workouts by user. As

soon as the workout task is performed by the user, It will be tagged as being re-

cent. This activity will only contains 10 workouts.

Description Activity: This is responsible for Displaying the image of the workout

and contains the Description about the workout as well. The user can perform

CRUD operation on this Activity.

Task: This Activity displays the fields of what is to be performed by every user of

the App. The user can set default fields and Navigate to the description activity.

 5.3.2 Model Classes

The Package consists of all classes which are needed by some of the classes of

the Activity package. They function as the helping classes to the previously treated

classes. In most cases, they help in the setting and getting of data within the pack-

age. The implementation of these model classes will be listed at the end of this sec-

tion. The mainly used classes are mentioned below:

1. WorkoutBean.

2. DividerItemDecoration.

3. MyBinder

4. MyParcelable

5. NavigationDrawer

6. RoundImage

32

 5.3.3 Adapter Classes

This package consists of classes which are adapter classes for most of the Ac-

tivities used in the project. The implementation of the methods which are han-

dled in the istener are made in the adapter classes. The two mostly used

Adapter classes in the GYMKit project are WorkoutAdapter and the Workout-

CategoryAdapter. These two adapters contain most of the functionalities of both

the workout and the category activity. The adapters also make use of the

WorkoutBean in their operations. All the key features are made visible in their

implementations.

 5.4 Project Resources

GYMKit utilises various resources which are needed for the look and feel of the

project. These resources contain folders consisting of files that are applied to all

the project packages. The following are all the resources folders used in the

GYMKit project; (Android Developer 2016)

1. Drawables: Bitmap files (.png, .9.png, .jpg, .gif).

2. Layout: XML files that define a user interface layout.

3. Menu: XML files that define application menus, such as an Options

Menu, Context Menu, or Sub Menu.

4. Colors: XML files that define a state list of colours. They are saved in

res/color/ and accessed from the R. color class.

5. Dimens: One of the XML files included in the values folder of the An-

droid resource folder.

6. Strings: This resource provides text strings for an application with op-

tional text styling and formatting.

33

7. Styles: This resource defines the format and look for a UI. A style can be

applied to an individual view (from within a layout file) or to an entire ac-

tivity or application (from within the manifest file).

6 GYMKit Application Testing

6.1 Testing Considerations

Testing a Mobile Application is a one of the Application procedures that encompasses

the success of the application being developed before being deployed to the app store

of Google play. Developers test for so many reasons such as battery drainage, applica-

tion crash and poor performances. All the testing procedures are monitored for correc-

tion purposes. The performance of an application dictates what the application users

do with apps. The security of the applications should also be scrutinized using sophisti-

cated software.

The following are the basic things that were tested on the GYMKit application:

 Compatibility of the Scripts and the libraries.

 User Interface

 User experience tat includes navigation, help features, error messages and

alert.

 Diverse layout UI views: Making an app more competitive in the market, devel-

opers should always ensure the development for different screen sizes of

phones and tablets. Testers of the apps should majorly rely on emulators and

stimulators that have certain limitations.

 User interaction: Mobile devices are becoming smarter, which give App design-

ers a new testing procedure and components. Developers ensure app does not

only work but also works well with the user interactions.

 Privacy and security: App developers should also test for the security of user

data in the store.

 Mobile OS update: Mobile operating system mostly requires update. Developers

should test for the efficiently in which the updates come in to play. Every update

should be ensured for backward compatibility checking. Some apps depend on

the old version of the API version and any updates must be ensured for com-

patibility or else the app would be rendered useless in the device

34

 6.2 Application Testing Techniques

The mobile Application testing process includes the environment and the tech-

niques that are used for the testing of the GYMKit app. The app is developed using

the Android development environment, which is a tool containing the API level

components. Specifically, the android version that was used for the development of

the project is 5.1 and uses the API level 22.

The following are some of the testing procedures used for the testing of the GYMKit

application:

 Using an automated testing with an emulator. The testing runs on an an-

droid device that is controlled by a computer using a USB cable with the

presence of a drive in this case, a Google drive. The result can be captures

using the performance tool.

 Database testing is also applied in the testing mechanism that is important

for the confidentiality and integrity of the data. There is a need to check for

the performance of the CRUD operation from the GYMKit app on the data-

base, The Parse platform.

 Compatibility Testing is also made on the GYMKit app to ensure the appli-

cation works as intended on the targeted devices. Targeted operating sys-

tem, screen sizes and File system operations should work as planned.

 Functionality testing including testing for control widgets, storage media

and Hardware performance. All these could be done manually. GYMKit app

has its functionality testing done by running various operational methods

several times.

 Power Consumption Testing was also made on the GYMKit app to check

for any battery drainage operation. Wrong device settings could drain bat-

tery of a device and this is actually a concern for device app users. More

and more testing approaches are carried out to stress test some methods

with high power consumption.

 Usability Testing is one of the testing on the GYMKit app that ensures that

the right user interface is used for its development This includes the Color

and color contrast, UI widgets, widgets functionalities and navigation pro-

cedures.

35

 7. Conclusion

The GYMKit project was developed for people who want to take full control of their

body either through their workout instructors or through personal training plans. The

project was successfully developed with categories of workouts and their respective

descriptions. The users can perform routines contained in the GYMKit application and

also have the opportunity of adding more training routines and workout procedures to

the application.

The workout exercises have a strong and effective impact on the body muscles. It has

been proving in so many ways to be efficient health-wise if well done. The efficient use

of the application ensures that trainers will be able to monitor gradual stages in the

development and changes of the body structures. Strict control is needed with the use

of this application, which is the reason it includes a component where trainers and

trainees have the options of determining whatever routine they would like to perform.

Since this is the first version of the project, more and more updates will be implement-

ed later. I hope to add more features to the application in the future. Working hard to

incorporate more components to the project and try to see other features needed by

the application users. However, one component is the one where the app user would

have the opportunity of sharing workout plans back and forth with their trainers in a

certain format.

Lastly, it is encouraged that users of this application strictly utilize GYMKit with the

guidelines of their workout trainers. This is very important for those who are under

physio-therapist consultancy. Aside from this, I would strive to update the built-in

workout routines and description and procedures on each workout based on regular

practices. Later, the application will include a component that allows a trainer to add

contact information on the application for those that need guidance on the workout pro-

cedures

36

References

Al Salool, Anas. (2012). Android Architecture For System Application Software

Stack. http://android-app-tutorial.blogspot.fi/2012/08/architecture-system-

application-stack.html (Accessed 8.22.2016).

Android Developer. (2016).

https://developer.android.com/guide/topics/resources/available-

resources.html (Accessed 5.28.2016).

Android. SDK Platform Release Notes. (2016).

https://developer.android.com/studio/releases/platforms.html (Accessed

10.20.2016).

BodyBuilding. Find A Plan. (2016). http://www.bodybuilding.com/fun/find-a-

plan.html (Accessed 7.12.2016).

Borodescu, Ciprian. (2013). Web Sites vs. Web Apps: What the experts think.

https://www.visionmobile.com/blog/2013/07/web-sites-vs-web-apps-

what-the-experts-think (Accessed 9.20.2016).

Continued Learning. (2015). “Native App Development and HTML5.” Continued

Learning. http://blog.continued-learning.com/native-app-development-

and-html5/ (Accessed 10.15.2016).

Dar, Hassan. (2015). architecture of mobile software applications.

http://www.slideshare.net/hassandar18/architecture-of-mobile-software-

applications (Accessed 10.12.2016).

Degges, Randall. (2015). How to Manage API Authentication Lifecycle on

Mobile Devices. https://stormpath.com/blog/manage-authentication-

lifecycle-mobile (Accessed 9.14.2016).

37

Dogtiev, Artyom. (2015). App Usage Statistics: 2015 Roundup.

http://www.businessofapps.com/app-usage-statistics-2015/ (Accessed

10.8.2016).

Emis Group. (2016). Physical Activity For Health.

http://patient.info/health/physical-activity-for-health (Accessed 10.1.

2016).

Idc. (2016). Smartphone OS Market Share, 2016 Q2.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp (Accessed

10.20.2016).

Kari, J.N. (2016). Which Architecture Prevails for Mobile Application

Development? http://smartbridge.com/architecture-prevails-mobile-

application-development/ (Accessed 10.5.2016).

Matt, K. (2011) Native mobile app vs mobile web.

https://mlibraries.jiscinvolve.org/wp/2011/12/19/native-mobile-app-vs-

mobile-web/. (Accessed 10.5.2016).

Meier, J.D. (2008) “Mobile Application Architecture Guide, Application

Architecture Pocket Guide Series.” Microsoft. http://robtiffany.com/wp-

content/uploads/2012/08/Mobile_Architecture_Guide_v1.1.pdf (Accessed

7 25, 2016).

Microsoft. (2016). Chapter 3: Security Design Guidelines for Web Services.

https://msdn.microsoft.com/en-us/library/ff649737.aspx (Accessed 10.3.

2016).

Park, Alice. (2010). Get Up! Sitting Less Can Add Years to Your Life.

http://healthland.time.com/2012/07/10/get-up-sitting-less-can-add-years-

to-your-life/ (Accessed 10.22.2016).

Parse. Android Guide. (2016). http://parseplatform.github.io/docs/android/guide/

(Accessed 10.25.2016).

38

Rouse, Margart. (2016). HCI (human-computer interaction).

http://searchsoftwarequality.techtarget.com/definition/HCI-human-

computer-interaction. (Accessed 8.20.2016).

Schweckel, Laura. (2014). 21 Low-Impact Workouts That Are More Effective

Than You Think. http://greatist.com/fitness/take-it-easy-21-unexpected-

low-impact-workouts (Accessed 11.1.2016).

Scriptol. (2015). Dalvik, the virtual machine of Android.

http://www.scriptol.com/programming/dalvik.php (Accessed 8.26.2016).

UK Department of Health. (2012). Responsibility Deal network chair blogs about

physical inactivity: the silent killer in our workplac.

https://www.gov.uk/government/news/responsibility-deal-network-chair-

blogs-about-physical-inactivity-the-silent-killer-in-our-workplace

(Accessed 10.20.2016).

Yarmosh, Ken. (2015). How Much Does an App Cost: A Massive Review of

Pricing and other Budget Considerations.

http://savvyapps.com/blog/how-much-does-app-cost-massive-review-

pricing-budget-considerations (Accessed 10.15.2016).

39

Appendices

40

1. public class Authentication1 extends AppCompatActivity implements AdapterView.
OnItemSelectedListener {

2.
3. Button confirm;
4. EditText EmailAddress;
5. String contactLinkedAccount;
6. String AuthDigit;
7. boolean sent = false;
8. private String userDigit = "";
9. final Context context = this;
10.
11. @Override
12. protected void onCreate(Bundle savedInstanceState) {
13. super.onCreate(savedInstanceState);
14. setContentView(R.layout.authentication1);
15. EmailAddress = (EditText) findViewById(R.id.authentication1_phoneNumbe

r);
16. confirm = (Button) findViewById(R.id.authentication1_continue);
17. if(savedInstanceState !=null){
18. EmailAddress.setText(savedInstanceState.getString("EmailAddress"))

;
19. }
20.
21.
22. confirm.setOnClickListener(new View.OnClickListener() {
23.
24. @Override
25. public void onClick(View v) {
26. //insert Email address into shared preference
27. insertIntoSharedPreference();
28. }
29. });
30.
31.
32. }
33. public void insertIntoSharedPreference(){
34. SharedPreferences sharedPrefs = getSharedPreferences("Existing_User",

MODE_PRIVATE);
35. SharedPreferences.Editor prefsEditor = sharedPrefs.edit();
36. prefsEditor.putString("user_email", EmailAddress.getText().toString())

;
37. prefsEditor.commit();
38. Intent secondAuth = new Intent(Authentication1.this,Authentication2.cl

ass);
39. startActivity(secondAuth);
40. //finish();
41. }
42. @Override
43. public void onSaveInstanceState(Bundle savedInstanceState) {
44. super.onSaveInstanceState(savedInstanceState);
45. // Save UI state changes to the savedInstanceState.
46. // This bundle will be passed to onCreate if the process is
47. // killed and restarted.
48. savedInstanceState.putString("EmailAddress",EmailAddress.getText().toS

tring());
49. }
50.
51. public void onItemSelected(AdapterView<?> parent, View view,
52. int pos, long id) {
53. }
54.
55. public void onNothingSelected(AdapterView<?> parent) {
56. // Another interface callback
57. }

41

package activity;

public class AddCategory extends AppCompatActivity {

 private static int RESULT_LOAD_IMAGE = 1;

 public boolean favourite = false;

 Bitmap SaveBitmap;

 Bitmap bitmapIcon;

 String picturePath;

 ParseFile file;

 Context context = this;

 ImageView categoryIcon;

 static final int[] dummyImages = new int[] {

R.drawable.gymkit,R.drawable.gymkit,R.drawable.gymkit,R.drawable.gymki

t };

 ImageView FavIcon,AddIcon;

 TextView FavText,AddText;

 TextView categoryName,targetMuscle,equipment;

 EditText categoryNameText,targetMuscleText,equipmentText;

 public RelativeLayout fav,add;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.add_category);

 Toolbar toolbar = (Toolbar)

findViewById(R.id.addCategoryToolbar);

 // Sets the Toolbar to act as the ActionBar for this Activity

window.

 // Make sure the toolbar exists in the activity and is not

null

 setSupportActionBar(toolbar);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 getSupportActionBar().setDisplayShowTitleEnabled(false);

 FavIcon = (ImageView) findViewById(R.id.fav_cat_icon);

 FavText = (TextView) findViewById(R.id.fav_cat_text);

 fav = (RelativeLayout) findViewById(R.id.fav);

 add = (RelativeLayout) findViewById(R.id.add);

 AddIcon = (ImageView) findViewById(R.id.add_cat_icon);

 AddText = (TextView) findViewById(R.id.add_cat_text);

 // Textview widgets of the View

 categoryName = (TextView) findViewById(R.id.categoryName);

 targetMuscle = (TextView) findViewById(R.id.targetMuscle);

 equipment = (TextView) findViewById(R.id.equipment);

 // EditText Widgets of the View

 categoryNameText = (EditText)

findViewById(R.id.categoryName_editText);

 // categoryNameText.requestFocus();

 targetMuscleText = (EditText)

findViewById(R.id.targetMuscle_editText);

 equipmentText = (EditText)

findViewById(R.id.equipment_editText);

 targetMuscleText.setText(null);

 categoryNameText.setText(null);

 FavIcon.setImageResource(R.drawable.addtofav);

42

package activity;

public class AddWorkout extends AppCompatActivity {

 private static int RESULT_LOAD_IMAGE = 1;

 public boolean favourite = false,alarmState;

 Bitmap SaveBitmap;

 Bitmap bitmapIcon;

 String picturePath,WorkoutName;

 ParseFile file;

 Context context = this;

 ImageView categoryIcon;

 static final int[] dummyImages = new int[] {

R.drawable.gymkit,R.drawable.gymkit,R.drawable.gymkit,R.drawable.gymki

t };

 ImageView FavIcon,AddIcon;

 TextView FavText,AddText;

 TextView

Title,set,equipment,round,toolBarTitle,alarm,equip,description,muscle,

trainingText;

 EditText

Title_edit,set_editText,round_editText,equip_editText,description_edit

Text,muscle_editText;

 Switch myswitch;

 RadioGroup radioGroup;

 RadioButton radioButton;

 Button confirm,training;

 public String[] keys,values;

 public HashMap<String, String> trainingDays,dummyTrainingDays;

 public RelativeLayout fav,add;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.add_workout);

 trainingDays = new HashMap<String, String>();

 dummyTrainingDays = new HashMap<String, String>();

 Toolbar toolbar = (Toolbar)

findViewById(R.id.addCategoryToolbar);

 // Sets the Toolbar to act as the ActionBar for this Activity

window.

 // Make sure the toolbar exists in the activity and is not

null

 setSupportActionBar(toolbar);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 getSupportActionBar().setDisplayShowTitleEnabled(false);

 toolBarTitle = (TextView) findViewById(R.id.toolbar_title);

 FavIcon = (ImageView) findViewById(R.id.fav_cat_icon);

 FavText = (TextView) findViewById(R.id.fav_cat_text);

 fav = (RelativeLayout) findViewById(R.id.fav);

 add = (RelativeLayout) findViewById(R.id.add);

 AddIcon = (ImageView) findViewById(R.id.add_cat_icon);

 AddText = (TextView) findViewById(R.id.add_cat_text);

 // Textview widgets of the View

 Title = (TextView) findViewById(R.id.Title);

 set = (TextView) findViewById(R.id.set);

 round = (TextView) findViewById(R.id.round);

43

package activity;

public class Authentication2 extends AppCompatActivity {

 EditText phoneNumberEditText;

 Button continueButton,cancelButton;

 String user_email,user_phoneNumber,subStr;

 private static int DELAY = 5000;

 private Handler handler;

 private ProgressDialog progress;

 private Context context = this;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.authentication2);

 phoneNumberEditText=

(EditText)findViewById(R.id.authentication2_digit);

 continueButton=

(Button)findViewById(R.id.authentication2_continue);

 cancelButton=

(Button)findViewById(R.id.authentication2_cancel);

 ActivityCompat.requestPermissions(this, new

String[]{Manifest.permission.SEND_SMS}, 1);

 continueButton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 insertIntoSharedPreference();

 progress = new ProgressDialog(context);

 progress.setTitle("Please Wait!!");

 progress.setMessage("Wait!!");

 progress.setCancelable(false);

progress.setProgressStyle(ProgressDialog.STYLE_SPINNER);

 handler = new Handler() {

 @Override

 public void handleMessage(Message msg) {

 progress.dismiss();

 getDigit();

 Intent Authentication3 = new

Intent(Authentication2.this, Authentication3.class);

 startActivity(Authentication3);

 super.handleMessage(msg);

 }

 };

 progress.show();

 new Thread() {

 public void run() {

 handler.sendEmptyMessage(DELAY);

 }

 }.start();

 }

 });

44

package activity;

public class Authentication3 extends AppCompatActivity {

 Button confirm;

 Button cancel;

 EditText AuthKey;

 private Handler handler;

 private Context context;

 private ArrayList<WorkoutBean> CategoryList = new ArrayList<>();

 private ProgressDialog progress;

 String UserObjectId;

 ArrayList<MyParcelable> myList = new ArrayList<MyParcelable>();

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.authentication3);

 context = this;

 AuthKey = (EditText)

findViewById(R.id.authentication3_authkey);

 confirm = (Button)

findViewById(R.id.authentication3_continue);

 cancel = (Button) findViewById(R.id.authentication3_cancel);

 confirm.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 //insert Email address into shared preference

 checkActualUserData();

 }

 });

 cancel.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 finish();

 }

 });

 }

 public void checkActualUserData(){

 SharedPreferences getsharedPrefs =

getSharedPreferences("Existing_User", MODE_PRIVATE);

 String prefAuthKey=

getsharedPrefs.getString("AuthKey","authentication key");

 // if(AuthKey.getText().toString().equals(prefAuthKey)){

 final ProgressDialog ringProgressDialog = new

ProgressDialog(Authentication3.this,R.style.TestTheme);

 ringProgressDialog.setCancelable(true);

 ringProgressDialog.setTitle("Please wait ...");

 ringProgressDialog.setMessage("Fetching all your workouts

...");

 ringProgressDialog.show();

45

package activity;

public class Category extends Fragment{

 private ArrayList<WorkoutBean> CategoryList = new ArrayList<>();

 private ArrayList<WorkoutBean> CategoryList1;

 private RecyclerView recyclerView;

 private WorkoutCategoryAdapter mAdapter;

 WorkoutBean category;

 String UserObjectId;

 private static int DELAY = 5000;

 private Handler handler;

 ParseFile file;

 //private Context context=;

 private ProgressDialog progress;

 float dummyfloat,thisdY;

 View itemView;

 Canvas dummyCanvas;

 int thisactionState;

 boolean thisisCurrentlyActive;

 int dummySwipePosition = 0,swipedPosition = -1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 mAdapter = new

WorkoutCategoryAdapter(CategoryList,getActivity());

 super.onCreate(savedInstanceState);

 }

 @Override

 public void onResume() {

 setUpItemTouchHelper();

 queryParseCategory();

 mAdapter.notifyDataSetChanged();

 super.onResume();

 }

 public void queryParseCategory(){

 //parseImageLoader();

 CategoryList.clear();

 SharedPreferences getsharedPrefs =

getActivity().getSharedPreferences("Existing_User",

Context.MODE_PRIVATE);

 String User_email = getsharedPrefs.getString("user_email",

"some email");

 ParseQuery<ParseObject> User = ParseQuery.getQuery("AppUser");

 User.whereEqualTo("email","tunde4mons@yahoo.com");

 User.getFirstInBackground(new GetCallback<ParseObject>() {

 @Override

 public void done(ParseObject object, ParseException e) {

 if (object != null) {

 UserObjectId = object.getObjectId();

 Log.i("myUser",UserObjectId);

 } else {

 }

 }

 });

 //ParseObject obj = ParseObject.createWithoutData("AppUser",

UserObjectId);

46

package adapter;

public class WorkoutCategoryAdapter extends

RecyclerView.Adapter<WorkoutCategoryAdapter.MyViewHolder>

 implements ItemTouchHelperAdapter {

 public ArrayList<WorkoutBean> CategoryList,itemsPendingRemoval;

 public ArrayList<WorkoutBean> dummy;

 Context context;

 Bitmap bitmapIcon;

 RoundImage roundImage;

 private static ItemTouchHelperAdapter HelperAdapter;

 boolean undoOn;

 View itemView;

 Dialog dialogButton;

 Dialog dialogHandler;

 public class MyViewHolder extends RecyclerView.ViewHolder

implements View.OnClickListener {

 public TextView categoryName, equipment, targetMuscle;

 public ImageView icon;

 //public ImageButton view_more;

 public Button undoButton;

 public ImageButton delete_button,edit_buton;

 public RelativeLayout item_row,undo_button_handler;

 public MyViewHolder(View view) {

 super(view);

 item_row = (RelativeLayout)

view.findViewById(R.id.item_row);

 undo_button_handler = (RelativeLayout)

view.findViewById(R.id.undo_button_handler);

 icon = (ImageView) view.findViewById(R.id.icon);

 categoryName = (TextView)

view.findViewById(R.id.categoryName);

 /* equipment = (TextView)

view.findViewById(R.id.equipment);*/

 targetMuscle = (TextView)

view.findViewById(R.id.targetMuscle);

 //view_more = (ImageButton)

view.findViewById(R.id.view_more);

 undoButton = (Button) view.findViewById(R.id.undo_button);

 delete_button = (ImageButton)

view.findViewById(R.id.delete_button);

 edit_buton = (ImageButton)

view.findViewById(R.id.edit_button);

 //view_more.setOnClickListener(this);

 }

 @Override

 public void onClick(View v) {

 }

 }

 public WorkoutCategoryAdapter(ArrayList<WorkoutBean> CategoryList,

Context context) {

 itemsPendingRemoval = new ArrayList<WorkoutBean>();

 this.CategoryList = CategoryList;

 this.context = context;

