Avinash Malla

TESTING THE WISDOM OF CROWDS

Investigating whether the smartest group actually performs better than other groups
TESTING THE WISDOM OF CROWDS

Investigating whether the smartest group actually performs better than other groups

Avinash Malla
Bachelor’s thesis
Autumn 2016
Degree Programme in Business Information Technology
Oulu University of Applied Sciences
In his book, “The Wisdom of Crowds”, James Surowiecki argues that a group becomes “smart” and makes better decision than an individual if the group satisfies the four conditions—diversity of opinion, independence, decentralization and aggregation. This thesis intends to investigate whether groups that have higher diversity of opinion, independence, decentralization and aggregation perform better than the groups that don’t. Ideally, the groups should perform better when they satisfy the four conditions better.

A research was conducted on the groups that participated in the week-long annual event organized by Oulu University of Applied Sciences called Innoweek. There were two sets of groups that worked on two different tasks. The participants were asked to score how they themselves performed in the group based on the four conditions. They were asked to score the degree to which they satisfied the four conditions using a Likert scale. These scores were then compared with the actual results of Innoweek to explore any correlations that existed.

The results showed that one set of groups followed The Wisdom of Crowds hypothesis while another set of groups, working on a different task, did not. Both sets of groups however performed better when they had higher diversity of opinion. The results of the study can be optimized by repeating the research with different sets of data and on a larger scale. A more scientific approach should be taken towards the collection and assessment of the data.

Keywords: wisdom of crowds, knowledge management, diversity of opinion, independence, decentralization, aggregation, smart group
CONTENTS

1 INTRODUCTION ............................................................................................................................... 5
2 WISDOM OF CROWDS ..................................................................................................................... 7
  2.1 Diversity of Opinion .................................................................................................................... 8
  2.2 Independence............................................................................................................................... 8
  2.3 Decentralization............................................................................................................................ 9
  2.4 Aggregation.................................................................................................................................. 9
3 CASE INNOWEEK .............................................................................................................................. 11
  3.1 Innoweek..................................................................................................................................... 11
  3.2 Research Questions and Methodology....................................................................................... 12
4 RESULTS ............................................................................................................................................ 13
  4.1 Definitions................................................................................................................................... 13
  4.2 Correlations................................................................................................................................. 14
    4.2.1 Diversity of Opinion versus Actual Rank .............................................................................. 15
    4.2.2 Independence versus Actual Rank ....................................................................................... 16
    4.2.3 Decentralization versus Actual Rank ................................................................................. 18
    4.2.4 Aggregation versus Actual Rank ....................................................................................... 19
    4.2.5 Wisdom of Crowds versus Actual Rank ............................................................................ 20
5 DISCUSSION ...................................................................................................................................... 22
6 CONCLUSION ..................................................................................................................................... 24
REFERENCES ......................................................................................................................................... 26
APPENDIX ............................................................................................................................................. 29
1 INTRODUCTION

While visiting a country fair in Plymouth, England, a scientist named Francis Galton came across a weight judging competition where participants were asked to guess the weight of an ox. All the guesses were then combined to calculate the average guess of the participating crowd. He discovered that the crowd’s guess (1197 lbs) was surprisingly close to the actual weight (1198 lbs). This estimate of the crowd was closer to the actual weight than any individual guesses. (Surowiecki 2005, xi-xiii.) In his book, The Wisdom of Crowds, James Surowiecki examines this behaviour of groups. He studies the collective wisdom of crowds and the conditions necessary to utilize this collective wisdom. Surowiecki argues that under the right circumstances, groups are remarkably intelligent, and often smarter than the smartest people in them. According to him, there are four conditions that characterise the wise crowd:- diversity of opinion, independence, decentralization and aggregation. (2005, 22.) This thesis which will largely be based on the book-The Wisdom of Crowds-intends to test whether a group fulfilling these conditions will actually perform better than the group that does not.

In the modern technology driven society, data is being produced at the rate of 2.5 quintillion bytes per day (IBM, cited 23.05.2016). 1 quintillion equals to 1 followed by 18 zeroes. This gigantic pile of data should be refined, contextualized and analysed to attain information and knowledge to help the decision making process.

Knowledge management is the acquisition and use of resources to create an environment in which information is accessible to individuals and in which individuals acquire, share and use that information to develop their own knowledge and are encouraged and enabled to apply their knowledge for the benefit of the organization (Harman & Brelade 2007, 1).

To better understand the concept of Knowledge Management, the model of knowledge must be understood at first. The model of knowledge explains the process of gaining wisdom from meaningless data by processing it through various stages. Data is the lowest level of abstraction that has no meaning or value. The data is arranged and contextualized to make it meaningful and valuable in order to retrieve information. Then the various bits of information are put together to derive a pattern to extract knowledge. Finally, the underlying principles behind the patterns are understood. This gives wisdom. (Ackoff 1989, 3-9.)
Wisdom of crowds can be observed in various real life scenarios. Hiking trails can be viewed as examples of wisdom of crowds. Mostly, the trails are in good places, avoiding natural hazards and directing hikers towards the point of interest. Even though individual hikers freely decide their favourite routes, the best ones get used more and over time define the trails. (Powazek 2009, cited 28.11.2016.) In organizational context, small businesses with fewer resources can harness the wisdom of crowds to solve real life business problems like pricing strategy, product testing, website testing and competitive advantage among others.

This thesis will attempt to test Surowiecki’s hypothesis by conducting a research during the “Innoweek” event at the School of Business and Information Technology at Oulu University of Applied Sciences. For this event, students are divided into groups and these groups are challenged to come up with a solution to a real life problem provided by external commissioners. The questionnaire, which will be distributed on the last day of this week long event, will ask them whether their group fulfils the four conditions as stated by Surowiecki.

The research will be used to rank the groups based on the extent to which each group satisfies the four conditions of Wisdom of Crowds. In other words, the research will rank the teams based on their smartness. This ranking will be compared with the final results of Innoweek to check whether the smartest groups actually performed better at Innoweek.
2 WISDOM OF CROWDS

Aristotle, a 4th century BC Greek philosopher is known as the first person to discuss about collective wisdom in his book Politics.

*For the many, of whom each individual is but an ordinary person, when they meet together may very likely be better than the few good, if regarded not individually but collectively, just as a feast to which many contribute is better than a dinner provided out of a single purse.*  
(Aristotle 1999, 65)

Apart from the Francis Galton experiment, Surowiecki uses another example of the Google PageRank algorithm to further explain how Google uses the concept of collective wisdom to return the best search result at lightning speed. The algorithm largely depends on aggregating the links to one website from another, where each link is considered as a vote. Using these and more case examples Surowiecki argues that a group becomes “smart” and makes better decision than an individual, provided that the group satisfies the four conditions-diversity of opinion, independence, decentralization and aggregation. (Surowiecki 2005, 16-22.) He uses the example of prediction markets to exhibit the application of Wisdom of Crowds. In the prediction markets designed by the Iowa Electronic Markets (IEM) to predict the election results, people could trade futures contracts based on how they think a candidate will perform in an election. The IEM predictions were found to be accurate three-fourths of the time. (2005, 17-19.)

Based on Surowiecki’s book, Harri Oinas-Kukkonen (2004, 173-189) outlines the wisdom of crowds approach as follows:

i. It is possible to describe how people in a group think as a whole.

ii. In some cases, groups are remarkably intelligent and are often smarter than the smartest people in them.

iii. The three conditions for a group to be intelligent are diversity, independence, and decentralization.

iv. The best decisions are a product of disagreement and contest.

v. Too much communication can make the group as a whole less intelligent.

vi. Information aggregation functionality is needed.

vii. The right information needs to be delivered to the right people in the right place, at the right time, and in the right way.
viii. There is no need to chase the expert.

2.1 Diversity of Opinion

A group will not perform any different than an individual if group members have similar opinions. Surowiecki argues that each person should have some “private” information that is unique. Diversity of Opinion can be maintained by assembling a diverse group of people who possess varying degrees of knowledge and insight. The group should contain experts as well as people without knowledge in the field. (Surowiecki 2005, 10.) Diversity adds the otherwise absent perspectives and minimises the destructive features of group decision making. Diversity expands the range of possible solutions. In large groups, diversity is obvious, but in smaller groups, it should be encouraged to avoid influence. (Surowiecki 2005, 23.) Diversity, here should be understood as cognitive diversity, where people have various degrees of knowledge and insight. (Surowiecki 2005, 31).

Cohesion in homogeneous groups is more than in diverse groups. The group members’ dependence on the group increases as they become more cohesive. This consequently insulates them from external influence and convinces them that the group’s judgment must be right. (Surowiecki 2005, 36-37.) Diversity not only adds different perspectives to the group but also facilitates people to speak their minds. (Surowiecki 2005, 39). Surowiecki gives an example of how the Kennedy administration failed during the Bay of Pigs Invasion due to a lack of opposing opinions as it was carried out under the guidance of the administration’s few like-minded people. (2005, 37)

2.2 Independence

Independence among group members is another condition for the group to be smart. The smartest groups consist of people with diverse opinions who are not influenced by others. Necessary measures should be taken to avoid groupthink. Groupthink occurs when a group makes faulty decisions because group pressures lead to a deterioration of “mental efficiency, reality testing, and moral judgment” (Janis 1972, 9). The people in the group should be able to make their own minds and answer the questions independently and uninfluenced by groupthink.

“An intelligent group, especially when confronted with cognition problems, does not ask its members to modify their positions in order to let the group reach a decision everyone can be happy with. Instead, it figures out how to use mechanisms-- to aggregate and produce
collective judgments that represent not what any one person in the group thinks but rather, in some sense what they all think. -- the best way for a group to be smart is for each person in it to think and act as independently as possible" (Surowiecki 2005, xix).

According to Surowiecki, independence is important due to two reasons. First, it ensures that the human mistakes don’t correlate. Second, independent individuals bring new data rather than the familiar old information. (Surowiecki 2005, 41.)

2.3 Decentralization

Decentralization is the third condition for a group to be smart. Decentralization means that the group members belong to different backgrounds and are thus specialized on different areas and can draw on their local knowledge when making decisions. This helps with diversity and independence. (Räisänen, 3.) According to Surowiecki, a group can become smarter by including people with local and specific knowledge. The chances of having a good solution increases when the person is closer to the context. Decentralization encourages independence and specialization. The survey groups are created by choosing people from different demographics like age, gender, education, place of birth, nationality, etc. (2005, 41.)

Decentralization facilitates specialization which in turn feeds decentralization. Specialization increases the productivity and efficiency along with widening the scope and fostering diversity of opinion and information gathering. Decentralization is of paramount importance to tacit knowledge. Tacit knowledge is knowledge that can’t be easily summarized or conveyed to others, because it is specific to a particular place or job or experience, but it is nonetheless tremendously valuable. (Hayek, F. 1945) This definition sheds light on the assumption that the closer a person is to a problem, the more likely he or she is to have a good solution to it. (Surowiecki 2005, 71)

2.4 Aggregation

Aggregation is the method of converting various private judgements of individuals in a group into a collective output (Surowiecki 2005, 10). It explores whether individuals are making individual decisions or a collective one. Surowiecki identifies aggregation as the fourth condition for a group to be smart. He gives the example of the Linux Operating System where large number of coders working individually in a decentralized fashion contribute to improve the system. These
contributions are then scrutinised by a small group of coders including the creator Linus Torvalds before being implemented. Thus aggregating the work done by numerous autonomous individuals. (Surowiecki 2005, 74.)

According to Lyon & Pacuit, mathematical aggregation methods like mean, median, mode, etc., can be used to aggregate the crowd’s contribution. Group deliberation is another method of aggregation which entails the crowd meeting to discuss the problem at hand before arriving at a collective judgement. (2014. Cited 15.07.2016.) Prediction markets is another commonly used aggregation method to aggregate opinions and is more popular lately. (Surowiecki 2014, 4.) Wikipedia articles and Facebook homepage can be viewed as examples of aggregation. (Räisänen & Watts, 4). Facebook’s algorithm gathers the updates from the user’s friends, aggregates them and only shows updates it deems important to the user.
3 CASE INNOWEEK

Innoweek is an annual event organized by the School of Business and Information Technology at Oulu University of Applied Sciences (referred from now on as OUAS). Students from all the degree programs of the school participate in the event. They are awarded with three credits for this project work course. The supervising teachers divide the students into groups. The teachers give special attention to maintain the diversity by ensuring students from different degree programs and nationality are chosen while forming groups. This idea of group work and the dynamics of diversity in the group provided an opportune premise to investigate the proposition of the wisdom of crowd.

3.1 Innoweek

The objective of Innoweek as stated in the OUAS curriculum enables “the students to act in the innovation process to develop activities of organizations or to identify new business opportunities. The goal is to develop innovation and team working skills.” (OUAS 2016, cited 18.10.2016). The students work in groups to tackle real life business problems. At the end of the week-long event, the groups present their ideas in front of the company representatives. For this year’s event, two organizations (commissioners) challenged the students with their problems. The first commissioner was PrintoCent – a company that creates innovative products and business solutions based on printed electronics. They challenged the students to come up with proposals and marketing plans for their various products. The other commissioner, Student Union of Oulu University of Applied Sciences (referred from now as OSAKO) challenged the students to propose a plan to increase the voter turnout in the student union elections. The students had one week to work in their group to prepare a presentation that would be presented at the final day of the event.

Before the week of the event, interested students enrolled themselves to the course. Students from all the degree programs at OUAS were eligible to enrol and a total of 61 students enrolled for the course. The supervising teachers for the course, then, assigned the students to two groups-PrintoCent and OSAKO. The students from each task were then divided into smaller groups of four to five students. Eight groups participated in the PrintoCent task while OSAKO had six. To maintain diversity while forming groups, the teachers chose students from different degree programs and included at least one foreign student in every group. On the first day of the event, the
commissioners presented the challenge to their corresponding student groups. The students worked each day for a week in their groups to come up with the best solution. On the final day of the week, the groups presented their ideas to the commissioners.

3.2 Research Questions and Methodology

The objective of this research was to find out if the groups participating in Innoweek adhered to the theory of the wisdom of crowds as defined by James Surowiecki. The research intends to answer the following research questions:

1. Do the groups follow the wisdom of crowds?
2. What is the correlation between the four conditions - diversity of opinion, independence, decentralization and aggregation - and their performance? Do the groups that satisfy these four conditions better actually perform better in the tasks?
3. Is any one of the four conditions more important than others?

To answer these questions, a questionnaire was prepared and distributed to the students on the final day of Innoweek. The questionnaire was divided into four sections based on the four conditions of wisdom of crowds and each section contained three statements. The participants were asked to rate their opinion about the statements using a five-level Likert scale. Each level carried a score from 1 to 5. Every participants' average score for each of the four conditions was calculated. Each group's average score was then calculated by aggregating the average scores of the participants to derive the groups' average score for Diversity of Opinion, Independence, Decentralization and Aggregation. The groups' average score for each condition was again aggregated to arrive at the final Wisdom of Crowds(WoC) score. The survey questionnaire form can be found in Appendix 1.
4 RESULTS

This chapter analyses the outcome of the research by comparing each conditions of Wisdom of Crowds with the actual performance of the groups. The correlations between each conditions and the actual performance of groups in both the tasks are compared. Among the 61 students who enrolled for Innoweek, 46 participated in the survey as seen in Table 1. Even though the course was open for students from all the degree programs, the business students outnumbered the others with 20 from the Degree Program in International Business and 17 from Liiketalouden ammattikorkeakoulututkinto- the Bachelor of Business Administration program taught in Finnish.

<table>
<thead>
<tr>
<th>Table 1: Participants’ Distribution across tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PrintoCent</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Number of Enrolled Participants</td>
</tr>
<tr>
<td>Number of Survey Participants</td>
</tr>
<tr>
<td>Percentage of Survey Participants</td>
</tr>
</tbody>
</table>

4.1 Definitions

During the research various terminologies were created to explain the calculations. These terminologies and their mathematical meanings are explained in this section.

Actual Rank: The actual rank was derived from the results of Innoweek. The participating groups were ranked from first to last based on the scores they received from the judges.

Diversity of Opinion Rank: Ranking of the groups from first to last based on the Diversity of Opinion score.
Independence Rank: Ranking of the groups from first to last based on the Diversity of Opinion score.
Decentralization Rank: Ranking of the groups from first to last based on the Decentralization score.
Aggregation Rank: Ranking of the groups from first to last based on the Aggregation score.
Wisdom of Crowds (WoC) Rank: Ranking of the groups from first to last based on the overall WoC score. WoC score was calculated by averaging the scores from the four conditions.
Task 1: The task commissioned by PrintoCent for Innoweek
Task 2: The task commissioned by OSAKO for Innoweek

4.2 Correlations

In order to establish the relation, if any, between the four conditions of wisdom of crowds and the actual performance of the groups, Spearman’s Rank Correlation was used. Spearman’s Correlation is used to measure the degree of correlation between two sets of observations or between paired values when the relative order of magnitude is given for each series. (Chikkodi and Satyaprasad 2009, cited 23.11.2016). The scores for each of the four conditions are ranked from first to last and compared with the actual rank using the Spearman’s Rank Correlation Coefficient formula.

\[
\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}
\]

where,

- \( n \) = number of items being ranked
- \( d \) = the numerical difference between corresponding pair of ranks, \((X_i - Y_i)\)
- \( \sum d^2 \) = the sum of squares of \( d \)

(Kvam & Vidakovic 2007, 122.)

The value for Spearman’s Coefficient (also known as Spearman’s rho and denoted by ‘\( \rho \)’) ranges between -1 to +1. Where \( \rho \) is >0, it indicates the positive correlation, where \( \rho \) is <0, it indicates the negative correlation in the order of ranking or selection or judging. The strength of the Spearman’s Correlation Coefficient can be interpreted as follows using the absolute value of \( \rho \):
0.00-0.19 “very weak”
0.20-0.39 “weak”
0.40-0.59 “moderate”
0.60-0.79 “strong”
0.80-1.0 “very strong” (Statstutor, cited 12.11.2016.)

4.2.1 Diversity of Opinion versus Actual Rank

**Figure 1. Diversity of Opinion versus Actual Rank for Task 1**

**Figure 2. Diversity of Opinion versus Actual Rank for Task 2**
These graphs exhibit the correlation between the Diversity of Opinion and the Actual Rank in the two tasks. The positive value of $\rho$ indicates the positive correlation between the Diversity of Opinion and the actual performance of the groups. The groups in both the tasks exhibited the increase in the actual performance when there is an increase in the diversity of opinion. Task 1 with the $\rho$ value of 0.4761905 (see Figure 1) indicates a moderate positive correlation while Task 2 displays a very strong positive correlation with $\rho$ value of 0.8285714 (see Figure 2). This suggests that the groups with the higher diversity of opinion performed better in their task. The teachers supervising the students during Innoweek tried their best to make sure the students came from different degree programs and nationalities while forming groups. This heterogeneity of backgrounds ensured the diversity of opinion in groups. Thus the more diverse groups evidently performed well in their task.

4.2.2 Independence versus Actual Rank

![Graph showing the correlation between Independence Rank and Actual Rank for Task 1. The graph displays a linear trend with $\rho = 0.0119763$.](image)

*Figure 3. Independence versus Actual Rank for Task 1*
These graphs demonstrate the correlation between independence and their performance of the task. The Spearman’s Correlation Coefficient for Independence Rank versus Actual Rank for Task 1 is 0.0119763 (see Figure 3). This suggests that there is a very weak positive correlation between the two. Ideally, the more independent the group members are, the better the outcome of the task. It can be observed that the groups in Task 2 adhere to the postulation of Wisdom of Crowd more than the groups in Task 1. The groups in Task 2 exhibit a moderate correlation between Independence and Actual Rank with the Spearman’s Correlation Coefficient value of 0.5507825 (see Figure 4).
4.2.3 Decentralization versus Actual Rank

For a group to be decentralized, the group members should be as close to the context as possible. During the formation of the groups, the members are ideally chosen from a population of varied age, degree program, gender, nationality and other demographic attributes. The graphs above show that the groups in Task 1 exhibit a very weak positive correlation between decentralization and performance with the $\rho$ value of 0.0238095 (see Figure 5) but with the $\rho$ value of 0.7714286 (see Figure 6).
(see Figure 6) in Task 2 the groups with higher decentralization performed slightly better than those without.

### 4.2.4 Aggregation versus Actual Rank

#### Figure 7. Aggregation versus Actual Rank for Task 1

\[ \rho = 0.0479051 \]

#### Figure 8. Aggregation versus Actual Rank for Task 2

\[ \rho = 0.8857143 \]

Wisdom of Crowds explains aggregation as the method used by the group members to turn individual judgments to collective decisions. The group members were asked how they made
decisions in their group. They were asked whether the group leader made the decisions or the whole team participated in the decision making. When the Aggregation Rank was compared with Actual Rank using the Spearman’s Rank Correlation Coefficient, the groups in Task 1 display a very weak negative correlation with the $\rho$ value of $-0.0479051$ (see Figure 7). The groups in Task 2 demonstrate a very strong positive correlation with the $\rho$ value of $0.8857143$ (see Figure 8) indicating better performance by the group that exercised higher level of participative decision making.

4.2.5 Wisdom of Crowds versus Actual Rank

Figure 9. Wisdom of Crowds versus Actual Rank for Task 1
When the bigger picture was inspected comparing the overall Wisdom of Crowds Rank of the groups against the Actual Rank, the groups in Task 1 exhibited a very weak positive correlation with the $\rho$ value of $0.047619048$ (see Figure 9) while the groups in Task 2 demonstrate a strong positive correlation with the $\rho$ value of $0.771428571$ (see Figure 10). The groups in Task 1 do not follow the Wisdom of Crowds hypothesis but for Task 2, the groups that satisfied the four conditions of Wisdom of Crowds better were actually better in performing their tasks.
This thesis was built upon the premise that a group performs better if the four conditions of diversity of opinion, independence, decentralization and aggregation are met. When I examined the hypothesis on the groups in Innoweek, two contrasting results appeared. The groups performing one task did better only when they had higher diversity of opinion while the groups performing another task did better when they had higher diversity of opinion as well as higher independence, decentralization and aggregation. This means that the groups performing the second task followed the Wisdom of Crowds but the ones performing the first task did not.

The conflicting outcome of the research may be due to certain factors pertaining to the nature of the tasks and statistical shortcomings. The first task challenged the students to come up with plans to commercialize a company’s various products. This might have affected the independence among group members as their scope of performance was in some way limited to the products’ features and the company’s guidelines. The second task on the other hand challenged students to come up with a plan to increase the voter turnout during OSAKO’s annual student union elections. This was more of an open task where the participants’ scope was not limited enabling them to come up with any kind of ideas.

Innoweek, being a school task, was in some manner limited to various parameters enforced by the course and thus hindering the independence factor among the participants. All the participants of the survey were students. The grading scale of the course was pass or fail. Working harder than others did not ensure a better outcome for them. This may have discouraged some students to perform at their optimum level. The methodology to collect data for the study might also have been unscientific. The survey questions might not have been able to provide a true view of the groups’ performance as it was completely dependent on the participants’ opinion. Response bias could have also affected the results. Since they were asked to score their own work during the survey, they might have rated themselves higher.

The two tasks were judged by their corresponding commissioners. The judges might have had differing judgement criteria. The lack of a scientific mechanism for the judges to evaluate the participants’ performance and consequent subjective judgement by them could also have affected the outcome. Another reason could be the number of participants and groups. The first task had
more participants than the second task. About 85% of the participants working on the first task participated in the survey while only 69% of those working on the second task answered the survey. This disparity in the number of participants might also have affected the outcome of the study. The inclusion of qualitative data could have improved the results. Interviewing some participants could have given a detailed perspective on the nature of the tasks allowing a better understanding of the disparity in results.
6 CONCLUSION

James Surowiecki argues that when a group of individuals working together satisfy the four conditions: diversity of opinion, independence, decentralization and aggregation, they perform better than an individual. Through his book “The Wisdom of Crowds”, upon which this thesis is based, Surowiecki uses real life examples to show that the average opinion of groups is often more correct than most individuals in the group. This hypothesis was examined on the students working in groups for Innoweek. The results showed that the groups working on one task abided by the hypothesis while results of the groups working on the other task did not comply.

Diversity of Opinion ensures that people possessing varying knowledge and insights are represented in the group. The group should contain people who are experts as well as the ones completely unfamiliar to the subject. They should be independent and uninfluenced by others’ opinions. The group should include people with local and specific knowledge. Their chances of having a good solution increases when they are closer to the context. This group of individuals should formulate a mechanism to convert their private judgement to a collective one. Once these four conditions of diversity of opinion, independence, decentralization and aggregation are met, the group becomes ‘smart’ and performs better.

The four conditions were examined individually against the actual performance using the Spearman’s Rank Correlation Coefficient where each groups’ scores were ranked from first to last and compared with the actual results of Innoweek. This rank versus rank correlation displayed the effect any or all of the four conditions had on the actual performance. According to the results, the groups working on the task commissioned by PrintoCent only performed better when there was higher diversity of opinion. These groups did not perform better when they had higher independence, decentralization or aggregation. On the other hand, the groups working on the OSAKO commissioned task performed better when they had higher diversity of opinion, independence, decentralization or aggregation. Diversity of Opinion being a common theme for the better performance of the groups, it could be said that groups perform better when members of the groups contribute with the unique information and perspective they have.

The research was limited by various factors. Low number of participants affected the quality of data hindering the chances to attain optimum heterogeneity in groups. For future research the
experiment can be conducted in an organizational setting with a much larger group of people and by ensuring higher diversity of opinion, independence and decentralization. A more scientific approach should be taken when measuring the conditions of wisdom of crowds and assessing the performances. The same experiment can be repeated multiple times with different sets of data to obtain any conclusive outcome.
REFERENCES


Oulu University of Applied Sciences, Innoweek Innovation Project. Internal source. Cited 18.10.2016,
https://oiva.oamk.fi/tietoa_opiskelustoa/opintojen_suunnittelu/opas/koulutusohjelmat/?koulutus=bit
2016s&lk=s2016&alasivu=opintojakso&kieli=en&oj=K1115YY_en

http://powazek.com/posts/1933


Räisänen, T. 2013. Investigating aggregation and diversity for wisdom of crowds approach. 8th International Workshop on Knowledge Management, October 18-19, Bratislava, Slovakia.


Testing the Wisdom of Crowds
This survey will be used for a Bachelor's Thesis

1. Age _____ 2. Group Number __________

3. Gender
☐ Female ☐ Male

4. Degree Program
☐ BSc ☐ DIK ☐ TIK ☐ LK ☐ KIR ☐ OTHER __________

In this survey,
1=Strongly Disagree, 2=Disagree, 3=Undecided, 4=Agree, 5=Strongly Agree

Diversity of Opinions
Did the group members have different points of view?

3. Other members in my team had a lot of different opinions
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

6. I had a lot of different opinions
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

7. As a whole our team had lots of different opinions
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

Independence
Were ideas expressed freely or were the group members influenced by others?

8. My team members could express their ideas freely
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

9. I could express my ideas freely
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

10. In my team, the members did not try to influence each other's opinions
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

Decentralization/Diversity
Did team members belong from different nationalities, degree program, gender?

11. My team members had different knowledge backgrounds
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

12. I had a lot of different knowledge compared to my team members
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5

13. My team as a whole was diverse
☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5
### Aggregation

**Individual or Participative Decision Making?**

14. All the team members participated in the decision making

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

15. I participated in the decision making

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

16. Everybody in the team were equal in the decision making process

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

---

Thank you for your time