

Alexander Smirnov

MOBILE TERMINAL FRAMEWORK SOFTWARE FOR

SUPPORTING SAFETY NAVIGATION

MOBILE TERMINAL FRAMEWORK SOFTWARE FOR

SUPPORTING SAFETY NAVIGATION

Alexander Smirnov
Master Thesis
Autumn 2016
Master’s Degree, Wireless Communications
Oulu University of Applied Sciences

TIIVISTELMÄ

Oulun seudun ammattikorkeakoulu
Ylempi korkeakoulututkinto

Tekijä: Alexander Smirnov
Opinnäytetyön nimi: Mobiiliterminaalin ohjelmistoalusta tuekseen turvallista
nagivointia
Työn ohjaajat: Timo Vainio, Markku Korhonen
Työn valmistumislukukausi ja -vuosi: Syksy 2016 Sivumäärä: 113

Tämä opinnnöytetyö oli tarkoitettu Ryhti projektin jatkokehitykselle, jossa luottiin
älykkäitä kotiympäristöjä ja niihin liittyviä hyvinvointipalveluita. Ryhti-projekti oli
toteutettu Pehr Brahen ohjelmistolaboratoriossa vuonna 2011 ja tämän
opinnäytetyön tarkoitus oli siirtää Ryhti-projetin konseptit ja ideat Android-
mobiilialustalle. Lopputuloksena Androidille piti luoda ohjelmistoalustan jonka
kautta voisi tarjota turvallista navigointia puhelinten ja älykkäiden kellojen
kautta.

Opinnäytetyössä ensin esitettään mobiiliterveyden ja hyvinvoinnin konseptteja.
Esimerkkejä vastaavista olemassa olevista tuotteeista esitettään ja samalla
käydään läpi niiden etuja ja haittoja, ottamalla kuvioon terveys- ja
hyvinvointipalveluiden saattavuus kehitetysmaissa. Samalla näytetään
esimerkkejä älypuhelimeen pohjautuvista terveystyökaluista ja käydään läpi
niitä tuloksia mitä oli saattuu niiden käytöstä reaalimaailmassa. Seuraavaksi
esitetään konspetit modulaarisesta mobiililaitteistosta ja ohjelmistosta.

Keskustelu modulaarisista ratkaisuista tuo puheenaiheeksi konseptit älykkäistä
hyvinvointiympäristöistä ja esineiden Internetistä (Internet of Things). Näiden
älykkäiden järjeselmijen pohjalta esitetään turvallisen navigoinnin konsepttejä ja
kerrotaan mobiiliterminaalin ohjelmistoalustan (MTFS) pääominaisuuksista.
Systeemin tärkeiimät käyttötapaukset esitetään lukijalle ja samalla käydään läpi
esimerkkejä vastaavista olemassa olevista tuotteista, ja vertaillaan niiden etuja
ja haittoja. Puheenaiheeksi myös otetaan mobiilikäyttäjän tietoturvasuojaus ja
lukijalle esitetään kaikki päätökset ja ratkaisut mitä tämän opinnäytetyön tekijän
piti tehdä käyttäjän tietoturvallisuudelle mobiiliterminaalin ohjelmistoalustan
kehityksessä.

Seuraavat kappaleet esittävät kehitetyn ohjelmistoalustan teknillisiä toteutuksia
ja komponenttien ominaisuuksia. Lukijalle kerrotaan miten alustan komponentit
oli testaattu ja mitä parannuksia niille oli tehty. Loppukappaleissa alustalle
esitetään kehitysehdotuksia ja samalla näytetään esimerkin muusta
mobiilisovelluksista mitä nyt olisi mahdollista toteuttaa kehitetyn
mobiiliohjelmistoalustan pohjalta.

Asiasanat: terveys- ja hyvinvointipalvelut, paikannus, mobiilipalvelut,
palvelukeskeinen arkkitehtuuri, Android

3

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology

Author: Alexander Smirnov
Title of the Master Thesis: Mobile Terminal Framework Software for Supporting
Safety Navigation
Supervisors: Timo Vainio, Markku Korhonen
Term and year of completion: Autumn 2016 Number of pages: 113

This Master’s Thesis was done as a continuation of the ideas originally outlined
during the Ryhti project, performed in the Pehr Brahe Software Laboratory back
in 2011. One of the aims of the Ryhti project was to create ubiquitous and
intelligent home environments for elderly people, while this Thesis was aimed at
creating a special software framework for enabling mobile well-being services
on Android terminals, such as smartphones and wearables.

Keeping that task in mind, the author introduces the concepts of mobile health-
care and well-being services to the reader. The examples of real-life mobile
health-care products and services are presented and reviewed. The author
describes the benefits and challenges of applying mobile technologies to the
health-care domain, especially in the scope of enabling access to health-care
services in developing countries.

A number of smartphone-based health-care equipment and applications are
also presented to the reader. The results of in-field testing of such equipment
are also discussed, together with reviewing the modularity of such solutions.

The concepts of Safety Navigation system are presented to the reader, and the
main functionality of the Mobile Terminal Framework Software (MTFS) is
described. The most important use-cases of the Safety Navigation system are
presented and a number of similar real-life products are reviewed, comparing
their benefits and drawbacks.

Some end-user’s privacy issues are also reviewed, helping the reader to
understand the decisions and compromises that the author made within the
MTFS framework regarding data security.

The following chapters describe all technical details about implementing, testing
and improving the components in the MTFS framework, including other mobile
applications that could be developed with the MTFS framework.

Keywords: health-care, well-being, geographic information system, SOA,
Android

4

PREFACE

The Mobile Terminal Framework Software (MTFS) described and discussed in
this Master’s Thesis was supposed to extend some well-being services outlined
and developed in a research project Ryhti at Pehr Brahe Software Laboratory
back in 2011. At its core the developed mobile framework is an attempt to bring
some of Ryhti's well-being services to Android-based mobile terminals.

While this thesis work was primarily targeted at mobile terminals and wireless
communications, the corresponding back-end system was also developed and
discussed as a part of the final solution.

The original aims for this Master’s Thesis were outlined by researches at Pehr
Brahe Software Laboratory, namely Vadym Kramar, Markku Korhonen and Yury
Sergeev. However, due to the prolonged Thesis work, the original Ryhti project
ended without the creation of the MTFS framework. The developments of the
MTFS framework were continued on author’s own time schedules and
resources.

The author is thankful to all above mentioned researches at Pehr Brahe
Software Laboratory for the subject of this Master’s Thesis and for getting a full
freedom to turn these ideas into reality.

The author is also thankful to Timo Vainio and Kaija Posio for their supervision
and valuable comments which helped to considerably improve the Thesis.

Jyväskylä, 29.11.2016
Alexander Smirnov

5

TABLE OF CONTENTS

 TIIVISTELMÄ 3

 ABSTRACT 4

 PREFACE 5

 TABLE OF CONTENTS 6

 VOCABULARY 8

1 INTRODUCTION 15

1.1 The original goals 15

1.2 Enabling mobile health-care 16

1.3 From open modular software to open modular hardware 27

1.4 The network of smart things 30

1.5 The network of services 32

1.6 The Safety Navigation system 34

1.7 Solutions similar to Safety Navigation system 36

1.8 Privacy and awareness 40

1.9 Primary aims for the MTFS framework 41

2 THE WORK ENVIRONMENT 42

2.1 Service-oriented approach 43

2.2 Android platform 44

2.3 Back-end environment 45

2.4 Data repository 46

2.5 The middleware 48

2.6 Front-end technologies 49

2.7 Cloud-oriented solution 50

3 DEFINITION 51

3.1 The main use-cases in the system 51

3.2 End-users 55

3.3 Mobile Safety Navigation application 55

3.4 Back-end system 56

4 IMPLEMENTATION 58

4.1 Main components of the system 58

4.2 MTFS implementation 61

6

4.3 MTFS service architecture 62

4.3.1 Location Service 65

4.3.2 Geofence Service 67

4.3.3 Device Service 72

4.3.4 Accelerometer Service 73

4.3.5 HTTP Service 74

4.3.6 Camera Service 76

4.3.7 Securing the mobile traffic 78

4.4 The Safety Navigation application 79

4.5 Back-end system 86

4.5.1 Data repository 86

4.5.2 Front-end 87

4.5.3 Integrity with the third party systems 90

5 TESTING 92

5.1 Improving the location detection 92

5.2 Adding robustness to the HTTP Service 95

5.3 Orchestration of the services 96

6 POSSIBILITIES OF FURTHER DEVELOPMENT 98

6.1 Guiding Service 98

6.2 Supporting other sensors 98

6.3 Reading user’s emotional state 99

6.4 The 112 volunteering application 99

7 CONCLUSION 103

7

VOCABULARY

AI – Artificial Intelligence – The intelligence exhibited by software or hardware

systems

Android – Open-source operating systems developed by the Google company

Apache HTTP Server – Popular web server software used to build Internet

servers and proxies

ASCII – American Standard Code for Information Interchange – A character

encoding standard for presenting electronic text symbols in computers,

communication networks and other devices

AU – Aware User – Member of the family or a relative to a mobile terminal user

Authentication – the process of verifying identity of end-user or a system by

checking their credentials; most commonly authentication is a process of

logging of end-users to some system with given user-name and password

Authorization – the process of verifying that an end-user or a system have right

to access some functionality of other systems; most commonly authorization is

associated with checking rights and privileges for accessing some system

resources and services

Base64 – A group of binary-to-text encoding algorithms that allow represent

electronic binary data in ASCII string format by translating such binary data into

radix-64 representation

Biosensor – An analytical device that is able to trace and convert biological

processes into electronic signals

Bluetooth – A wireless technology for exchanging digital data over short

distances, commonly within a few meters long ranges

CSS – Cascading Style Sheets – A style sheet language for describing look and

feel of web-based documents, pages and user interfaces

8

Dalvik – Process virtual machine in Android operating system

EXIF – Exchangeable Image File Format – A standardized set of tags used for

describing metadata about multimedia files

GNU – GNU is Not Unix – A free software collaboration project aimed at giving

computer users full freedom in use of their computers and software

Go – or Golang – An open-source, general-purpose programming language

originally developed by Google in attempt to resolve complex issues with C++

systems inside their infrastructures. Golang is compiled, statically typed and

garbage collected language which also has built-in support for concurrency and

many Internet protocols

GPS – Global Positioning System – A space-based satellite navigational system

that provides location and time information to its end-users on Earth

GPX – The GPS Exchange Format – A light-weight XML exchange format for

the interchange of GPS data between applications and Internet services.

GUI – Graphical User Interface – A type of interface that allows users to interact

with electronic device or software application through graphical elements and

visual indicators

HTML – Hyper Text Markup Language – The standard markup language for

creating web pages and web-based user interfaces

HTML5 – The fifth revision of the HTML standard markup language aimed at

best possible support for digital interactive multimedia while keeping readable

by humans

HTTP – Hypertext Transfer Protocol – is an application protocol for distributed,

collaborative and hypermedia information systems. The HTTP protocol is the

foundation for the World Wide Web

HTTPS – HTTP over TLS (also known as HTTP Secure) – is an application

protocol for secure data communications over unsecured computer networks.

HTTPS uses HTTP for data communications with TLS used for data encryption

9

IDE – Integrated Development Environment – A set of software applications,

tools and utilities that provides developers with comprehensive facilities to

software development and testing

IoT – Internet of Things – Interconnection of uniquely identifiable computing

devices within the existing Internet infrastructure.

Java – General-purpose programming language and software platform originally

developed by the Sun Microsystems Inc. and aimed at maximal source code

and binary portability across a range of hardware platforms and computing

environments

JavaScript – A dynamic programming language originally aimed at enriching

functionality of the web pages

JVM – Java Virtual Machine – An abstract computing machine able to execute

computer programs compiled into Java byte-code

JSON – JavaScript Object Notation – A open standard format for representing

JavaScript objects in textual form, which was also adopted by many other

computing environments as language and system independent format for

representing electronic data

LAMP – An architectural solution stack, formed from open-source components,

typically suitable for web applications. The LAMP is an acronym from the names

of its four components: the Linux operating system, the Apache HTTP server,

the MySQL database system and PHP programming language. Currently the

LAMP model has absorbed many other open-source components, but still

keeping the same functional idea

Leaflet – An open-source JavaScript library for creating mobile-friendly

interactive maps

Linux – Open-source operating system kernel compatible with Unix and POSIX

APIs

10

M2M – Machine-to-machine – A broad term that refers to technologies enabling

communication between different devices of the same type

MQTT – MQ Telemetry Transport – A machine-to-machine and Internet of things

lightweight connectivity protocol based on “publish-subscribe” pattern

MT – Mobile Terminal – A mobile device used by the end-user of described

system

MTFS – Mobile Terminal Framework Software – A special software library for

mobile devices that enables creation of mobile health-care and well-being

applications

MTU – Mobile Terminal User – A user of the mobile terminal or device

MySQL – Popular open-source relational database management system

NFC – Near Field Communication – A set of technologies that enable mobile

devices to establish radio communications with each other by bringing them into

proximity or close to each other

NDK – Native Development Kit – A toolset for Android platform that enables

creation of applications with native-code languages such as C and C++

OAuth – An open protocol for allowing secure authorization of users in a simple

and standard method from web, desktop and mobile applications

OGS – Open Geospatial Consortium – An international industry consortium of

commercial companies, government agencies and universities participating in

developing public interface standards for geographical and geospatial

technologies.

ORDBMS – Object-relational Database Management System – A database

management system similar to relational database, but with additional support

of objects, classes and inheritance in the database schemes

PC – Personal Computer – A term for describing any commonly available

desktop or laptop computer

11

PostgreSQL – A popular open-source object-relational database management

system with emphasis on extendability and compliance with the standards

Publish-subscribe – A messaging pattern where “publishers” are sending

messages to dispatchers, while “subscribers” are retrieving such messages only

after a notification from the dispatcher, based on message topic, meta-data or

contents as examined by the dispatcher

QR Code – Quick Response Code – A two-dimensional graphical bar-code

used for machine-readable optical labels

RDBMS – Relational Database Management System – A database

management system based on the relational model

REST – Representational State Transfer – A software architectural style used in

the World Wide Web systems and a way to offer network APIs over HTTP

protocol

SDK – Software Development Kit – A set of software development tools that

enables creation of applications for certain software or hardware platform

SFTP – Secure File Transfer Protocol (also known as SSH File Transfer

Protocol) – is a file access, management and transfer network protocol over

reliable and secured data streams, like provided by the TLS or SSH protocols

SMS – Short Message Service – A text messaging service available for GSM

networks end-users

SOA – Service-Oriented Architecture – A set of principles and methodologies for

designing and developing complex software in form or interoperable services

SP – Service Person – A worker of the public or commercial company that offer

monitoring and rescue services to the mobile terminal users

Spring Framework – A Java software platform that provides infrastructure

support for developing enterprise applications

12

SQL – Structured Query Language – A special-purpose programming language

designed for manipulating and extracting data stored in database systems.

SQLite – An embeddable relational database management system provided as

a C programming library

SSH – Secure Shell – is a cryptographic network protocol used for operating

securely network services over totally unsecured networks. SSH provides a

secured data channel over unsecured network in a client-server architecture

TLS – Transport Layer Security – is a set of cryptographic protocols that provide

secured data communications over computer networks and Internet

UHE – Ubiquitous Home Environment – A user-centric system deployed to

user's home living environment or area

Unicode – An international standard for encoding and representation of

electronic texts and symbols expressed in most of the world's writing systems

Unix – A family of multitasking and multi-user operating systems that have been

originally developed by Ken Thompson and Dennis Ritchie at the AT&T Bell

Labs research center back in 1970 and has pioneered many of today's OS and

application programming technologies

UPnP – Universal Plug and Play – A set of networking protocols that allow

networked devices to seamlessly discover each other and establish functional

network services for data sharing and communications

URI – Uniform Resource Identifier – is a string of characters used for unique

identification of electronic resource

URL – Uniform Resource Locator – is a reference to a web resource that

specifies its location on a computer network together with a mechanism for its

retrieving. URL is a specific form of the URI

UTF-8 – A character encoding standard for encoding Unicode code points in

variable-length 8-bit code units

13

Wi-Fi – A local area wireless technology that allows electronic devices to

exchange data or connect to the Internet

Wi-Fi Direct – A Wi-Fi standard that enables easy connectivity between devices

without creating a wireless access point

WPA – Wireless Access Point – A device that allows wireless devices to connect

to a wired network using the Wi-Fi wireless communication technology

WSG84 – World Geodesic System 1984 – A standard coordinate system for the

Earth used in cartography, geodesy, and navigation including by GPS.

WWW – World Wide Web – is an electronic information space where

documents and other web resources are identified by URLs and can be

accessed by the Internet

XML – Extensible Markup Language – A standardized format for representing

self-describing documents and data in textual form

14

1 INTRODUCTION

The Mobile Terminal Framework Software (MTFS) described and discussed in

this Master’s Thesis was supposed to extend some well-being services outlined

and developed in the research project Ryhti at Pehr Brahe Software Laboratory

back in 2011 (1).

At its core the developed mobile framework is an attempt to bring some of

Ryhti's well-being services to Android-based mobile devices, such as

smartphones and wearables. While this work was primarily targeted at

extending the functionality of the mobile terminals, the supportive back-end

system was also developed as a part of the final solution.

1.1 The original goals

Scientists and demographers are predicting that the European Union will have a

demographic aging challenge in near decades. An average European now lives

longer than one's predecessors 100 years ago and by 2050 the number of

people aged 65 and more is expected to raise sharply by more than 50%,

making about 30% of the total population of the Europe (2).

Such diversity in population will definitely bring additional challenges to health-

care and well-being domains where significant increase of patients and

customers of senior ages will demand more human and financial resources in

order to provide at least the same amount of services of affordable quality.

The utilization of advanced information technologies in health-care and well-

being domains, including smart monitoring systems, mobile medical equipment

and even robotics, could help with ensuring the availability of some medical and

well-being services to the grown number of patients, while at the same time

preserving the efforts of medical personnel and keeping involved costs at

reasonably low levels.

The information and knowledge obtained from such intelligent medical

equipment and smart monitoring systems could help doctors and nursing staff

to get a better view of cared-for patients, possibly leading to improved

15

treatments and faster patient recoveries. That, in its turn, could prevent disease

complications and make medical treatments more effective and less costly.

At the same time patients could start benefiting from a better knowledge about

their health state, and make better efforts in disease treatments and in turning

down bad habits of unhealthy lifestyle.

If health-care and medical resources will be cutting under ever growing number

of patients, such intelligent medical systems could start playing a significant role

in saving and increasing the efforts of medical personnel. At the same time

patients could start benefiting from automatic nursing services, based on more

extensive and broader personal data.

It is worth to mention that any automation of medical data processing or

information analyzing will not replace a doctor or a nurse from the decision

making process, but rather will enrich their awareness about the situation and

thus it will help them to make better decisions about cared-for patients. And in

much the same way, doctors and nurses could get better insights of outlined

treatment plans, based on a much broader and detailed view of the patient’s

data.

Such approach, when medical staff can get some insights of patient’s data from

the artificial intelligence systems, has already become an accepted practice, like

in various cases from the IBM Watson Health portfolio (3).

Therefore, from much similar point of view, this Thesis work is aimed to study

how easy it would be to offer mobile health-care and well-being services

through commonly available mobile devices, such as smartphones, with the

support from intelligent back-end systems and ubiquitous home environments.

1.2 Enabling mobile health-care

The quite rapid expansion of mobile computing technology and mobile networks

that we have seen during the last decades has enabled the access to the

mobile Internet and data services for a quite vast amount of human population

(4).

16

Such rapid expansion of mobile technology is giving the opportunity to apply it

also to the health-care and well-being domains, where mobile technology could

bring medical services closer to patients and increase the productivity of

medical personnel.

It is quite important to mention that most of the mobile technology expansion is

currently happening in the developing countries of Latin America, Asia and

Africa (5), while large portions of population in these countries still have limited

access to medical services due to economical, social or geographical factors.

Probably the most interesting aspect of this mobile expansion is that quite often

the mobile device, such as a smartphone, is becoming the first computing

device that a person actually has access to in the above mentioned regions.

Later on, that smartphone starts serving as the only de-facto hardware and

software platform for accessing the Internet and exchanging data. This makes

smartphones a quite important computing platform in terms of enabling personal

health-care services and providing well-being applications.

The smartphones of today are quite powerful computing and communication

devices that can run rich multimedia applications and access wireless networks

at quite impressive data rates. The pace for more powerful mobile devices and

faster wireless networks has never actually slowed down, as presented in the

Figure 1.

Instead, the mobile devices has a tendency to integrate into more computing

and connectivity technologies while constantly reducing the cost and difficulty of

their production.

17

FIGURE 1. Overall increases in smartphone performances (6)

All this enabled a growing utilization of smartphones in the health-care system

and well-being domains (7). And while currently mobile devices are most

commonly used by doctors and carrying personnel as interactive terminals to

the hospital information systems and electronic data records, there is also a

growing trend towards mobile medical equipment running on smartphones.

Such trend is strengthened not only with a wide availability of the smartphones,

but rather because of their extendability through custom software applications

and hardware add-ons.

For example, the ViSi Mobile device in Figure 2 could read a wide range of

medical parameters from the patient and instantly deliver that information to

hospital information systems over a Wi-Fi connection (8).

18

FIGURE 2. The ViSi Mobile device installed on a patient (8)

But despite all advantages of such mobile equipment, its utilization is requiring a

proper infrastructure around them, such as special supportive appliances,

carefully preconfigured wireless networks and vendor-specific back-end

information systems.

In addition to that, such devices are usually representing closed products and

solutions that are not aiming at supporting extension or customization from the

third-party developers. One of the reasons for such restrictions are in vendors'

business models that are typically relying on selling such products and related

supportive systems to end-users on exclusive rights.

The other limitation, which is also partly affecting smartphone-based

appliances, is in costly and quite often prolonged certification processes that

specialized medical devices have to pass in order to be allowed for utilization at

hospitals and medical centers (9).

There is, however, a technology trend towards wearable fitness and well-being

electronics. For example, Sony's SmartWatch 3 and Fitbit's Surge wearable

devices (presented in Figures 3 and 4 correspondingly) can measure pulse

rates, read geographical position and deliver that information for further

processing through the standard wireless communication protocols to a mobile

phone or local PC (10, 11).

19

FIGURE 3. The Sony SmartWatch3 wearable (12)

And while the features offered by these wearables could vary from model to

model, quite noticeable here is that they can share obtained health and location

data though the standard communication protocols such as Wi-Fi, Bluetooth

and NFC, and so enable further processing of such data by the third party

applications.

FIGURE 4. The Fitbit Surge wearable (13)

Some vendors, e.g. Sony, are developing their wearables on top of open

software platforms, such as Android Wear – the open source initiative from

Google regarding the wearable devices (14).

Such approach enables the further customization of device functionality by the

third-party applications and even through custom hardware extensions. The

openness at the system and application level enables users to integrate such

devices into other environments, such as smart homes or hospital information

systems in a much interoperable and less costly manner, thus avoiding many

inconveniences related to the integration of closed systems.

20

Another technological trend is driven by special mobile hardware and software

appliances that extend smartphone's basic functionality and turn it into mobile

medical equipment. One example of such mobile medical extension is the

Mobile Colposcope presented in Figure 5.

FIGURE 5. The Mobile Colposcope from MobileODT company (15)

The Mobile Colposcope enables colposcopy through the standard smartphone

and special add-on hardware. With the specially developed mobile application it

turns a smartphone into a fully functional colposcopy tool that could also be

easily integrated into hospital information systems and patient electronic record

facilities.

Another example of such add-on solution was developed by the Peek Vision

company. It turns Android and Apple smartphones into fully functional

ophthalmoscope devices, as presented in Figure 6.

21

FIGURE 6. Mobile camera enhancement from the Peek Vision (16)

Such extension allows to perform eyesight tests and take high quality retinal

images by a smartphone virtually anywhere in the world (16).

In addition, such retinal images could be remotely examined by experts all

around the world, virtually bringing ophthalmology services to the places where

access to basic medical services is limited or challenging due to economical or

geographical circumstances (see Figure 7 below).

FIGURE 7. Example of taking retinal image by a smartphone with the Peek

Vision appliances (16)

Another prominent example of turning smartphones into medical equipment is a

special dongle for performing blood tests and diagnosis developed in the

Columbia University by Samuel Sia's research group and presented in Figure 8.

22

FIGURE 8. The lab on chip dongle developed by Samuel Sia's research group

(17)

According to Sia’s report (17), this hardware accessory was intensively used in

hospitals and villages of Rwanda and has enabled fast and reliable HIV and

other disease diagnostics through the 15-minute blood tests. A schematic

process of taking such blood tests with the developed dongle is presented in

Figure 9.

23

FIGURE 9. Process of taking blood tests with the Sia’s diagnostic dongle (17)

The results show that “a full laboratory-quality immunoassay can be run on a

smartphone accessory” (18). At the same time Samuel Sia is estimating that the

dongle's production will cost only $34, which is much cheaper than the price of

$18.450 for a typical enzyme-linked immunosorbent assay equipment used to

perform similar blood tests (19).

As an additional benefit, such simple equipment has required only 30 minutes of

training for local medical personnel, while 97% of patients were pleased with the

simplicity, speed and reliability of the provided diagnostics in quite challenging

environments where access to medical services was very limited.

24

Further developments of the dongle by Samuel Sia's group has lead to a

solution where digital data about blood tests was transferred into a smartphone

application through the standardized audio jack interface, thus enabling the

utilization of the dongle in smartphones across multiple vendors in a simple

plug-and-play manner.

Some smartphone health-care applications, however, do not require any special

hardware extensions at all.

For example, the HemaApp mobile application can measure human blood

hemoglobin concentration without invasions using just a smartphone camera,

as presented in Figure 10.

FIGURE 10. Example of measuring hemoglobin level using the HemaApp

application (20)

The HemaApp application was developed by a research group in University of

Washington and tested in Seattle Children's Hospital of Washington state (20).

The core idea behind HemaApp is to obtain estimations of users hemoglobin

level by taking an image of their finger with a smartphone camera and LED

25

flash, and studying the color of the blood by a special algorithm (as presented in

Figure 11).

FIGURE 11. Obtaining hemoglobin levels in the HemaApp application (20)

While these are just a few examples of creating medical equipment from the

smartphones, these examples show a few aspects that are making such

solutions very promising.

First of all, the smartphones may offer a truly extendable computing platform for

mobile medical equipment in much the same manner as portable computers in

the 1990s. The hardware capabilities of the smartphones may be extended

through the standard audio jack or micro-USB interfaces, which could supply

add-on hardware modules with electronic data communications and power

supply.

Secondly, the creation and production of medical add-on modules for the

smartphones could be a much cheaper option than the creation of full-scaled,

but similar medical tools. Moreover, the medical add-ons for smartphones could

be produced faster and in much larger quantities than their typical full-scaled

analogues. That could be very helpful when medical equipment must be quickly

produced and delivered to areas of natural or environmental disasters,

especially due to war conflicts or epidemics.

Thirdly, the smartphone’s system software is quite often based on open-source

components and runtime environments, for example GNU/Linux and Android.

These software environments could be easily extended by custom applications

written in high-level programming languages, such as Java and Python.

By accessing the Internet and communicating over standard Wi-Fi, Bluetooth or

cellular network interfaces, such custom applications could be relatively easy

26

integrated with other medical systems and infrastructures, be it a hospital

information system or some worldwide health-care organization’s data systems.

Additionally, the smartphone-based medical equipment may offer a reasonable

option for diagnostics and preventive health-care, especially in the developing

countries or at some disaster location. Moreover, such solutions would not

require any expensive or proprietary infrastructure around them, thus their

integration into local infrastructures will be much simpler and cheaper.

In addition to that, most of the potential end-users of such smartphone-based

medical equipment are quite familiar with smartphones and the concepts of

mobile applications. This can also significantly simplify and shorten the training

requirements for medical personnel and speed up the utilization of such medical

equipment when it is necessary.

All these above mentioned aspects turn mobile technology into a quite

promising tool and platform in health-care and well-being domains, especially in

attempts to bring much needed health-care services closer to patients in

developing countries or challenging environments.

1.3 From open modular software to open modular hardware

Quite interestingly the ideas behind openness and modularity in the software

have been recently applied to the hardware systems as well, including the

smartphones. For example, one of such ideas was that the mobile phone

should be made of interchangeable and replaceable hardware modules which

could be easily added or replaced in the phone for obtaining some new or

improved functionality without replacing the whole device.

The idea behind the mobile hardware modularity is not quite new and it may be

dated back to the year 1999 when Palm Inc. released Springboard Expansion

Slot for its PDAs for extending the default PDA functionality with various

hardware modules (21).

Quite soon similar ideas were also applied to the smartphones, like in case of

Phonebloks (22), that originally tried to enable the upgrades of mobile hardware

for decreasing amounts of electronic waste in the world.

27

Some mobile vendors, such as Google, have taken these ideas even further

and planned to create and standardize a hardware and software platform for

producing truly modular mobile devices (23).

The idea behind Project Ara is to create a highly modular hardware and

software platform that enables to create, extend and modify mobile devices to

any particular need or use-case in a dynamical and highly customized manner.

FIGURE 12. An example of Project Ara's endoskeleton with various modules

(23)

The Project Ara hardware platform consists of replaceable hardware blocks –

the modules – that could be put in a common frame – the endoskeleton,

presented in Figure 12. Combined together, the modules start to co-work with

each other through a special communication protocol, thus building a fully

functional mobile device, as presented in Figure 13.

28

FIGURE 13. A functional prototype of Project Ara smartphone (23)

Such approach indeed enables to create highly customized mobile devices, and

since the Project Ara's modules are supposed to be fully functional and

replaceable hardware blocks with all the necessary software on-board, it would

also be possible to create a hardware module for reading some medical

parameters from the end-user of the phone.

For example, the Project Ara's mobile phone could be turned into a pulse

oximeter if it will be equipped with the proper hardware module, as presented in

Figure 14.

FIGURE 14. An example of Project Ara device with the pulse oximeter module

(23)

With the data processing and communication modules on-board, such mobile

devices may represent a similar, but more adaptable and even cheaper version

of the smartphone extensions that we have reviewed in the previous chapter.

29

Moreover, customizing mobile devices through various medical hardware

modules could enable the creation of highly dynamic and adjustable mobile

medical devices that could provide health-care services and diagnostics more

economically and exactly as it was demanded.

For example, a patient may be tracked for blood oxygen, heart rates and other

parameters instantly through such modular mobile device without the need to

stay in hospital all the time. Or for example, various disease diagnostic modules

could be freely distributed in the location of disaster for some preventive

actions.

With the medical diagnostics obtained from artificial intelligence systems over

the Internet or through a health organization’s data systems, such modular

medical hardware may indeed bring health-care services much closer to

patients than it was possible before.

In its turn, the medical data obtained through such modular solutions could

provide health-care organizations and companies with an instant view of the

situation in the region or location, thus helping to respond to the health-care

challenges more adequately, much faster and efficiently than before.

In addition to that, such modular solutions would enable to create truly

personalized, well monitored and more affordable treatment plans for the

patients. Medical staff would also obtain a much better insight of the patients

and of the efficiency of the applied medicine.

1.4 The network of smart things

Probably one of the most interesting aspects of current information systems is

in their accelerated integrity and interoperability with other information systems

over the Internet in so-called “cloud-based” and service-oriented architectures.

The “cloud” in fact is nothing more than a buzzword for various computing

facilities accessible from the network, be it just a faster and more powerful

computer, a larger storage for electronic data or a software environment

suitable for one's needs. In the simplest way, the “cloud” may be described as a

30

preconfigured and fully functional computing environment accessible over the

Internet (24).

The service-oriented architecture (SOA) is simply a way to create a software

system which is offering its functionality in the form of the services –

distinguished and self-contained business and data processing activities –

rather than in the form of a single monolithic application (25).

The SOA-based approach allows the decoupling and encapsulation of an ad-

hoc functionality inside self-contained software components, i.e. subdividing

complex problems and knowledge domains into much simpler and manageable

software modules.

The main benefit of SOA-based architectures and systems is the possibility to

combine, intermix and reuse their services in various ways, thus enabling the

creation of much more sophisticated data processing applications from a much

simpler computing and functional base.

From this point of view, SOA could be considered as a continuation of the Unix

philosophy (26), but at much higher levels, where different systems may reuse

services from each other for achieving some complicated goals in cooperation.

And just like in the Unix philosophy, where each of the programs was supposed

to perform a single task (and perform it well) and be able to cooperate with the

other programs through a universal text-based interface, in the SOA-based

systems each service is supposed to provide some clearly defined functionality

and be ready for cooperation with other services by messaging or through

clearly defined interfaces.

Such loose coupling of services and systems presented in the SOA-based

solutions has been already widely adapted by the mobile software technology,

where mobile applications were typically backed up by the data processing

services running somewhere else on remote systems.

In fact, such approach has simplified mobile applications and allowed increasing

their scalability, flexibility and interoperability on the constantly changing mobile

markets. Also, it has laid the path for smooth improvements in the functionality

31

of mobile and back-end sides without large re-investments, maintenance costs

or breaks in the operation.

Therefore, for example within the SOA approach, a mobile application could

take care of GUI and the interactivity with the user, while the back-end services

would take care of all tasks related to the mobile data analysis and information

processing.

Such division of functionality between mobile applications and back-ends has

also been recently adapted in the mobile health-care domain, where mobile

devices were utilizing the same back-end APIs of medical expert systems as

other medical systems.

One of the quite interesting examples of such solution is the mobile gadget that

helps to tackle diabetic patients by using glucose monitors and insulin pumps

with the data obtained from the IBM's Watson Health system (27).

In the Medtronic and IBM's project the intelligent back-end system was instantly

studying the obtained medical parameters and adjusting patient’s mobile

medical equipment according to the person’s lifestyle, habits and daily activities.

In this approach, much like in the system consisting of inter-networked

intelligent components, each company and system could concentrate on the

tasks that they do better, obtaining together much better results than they would

apart.

1.5 The network of services

While the back-ends may indeed offer quite impressive computing and data

processing capabilities and simplify the creation of mobile applications, the

development of mobile software applications still remains a quite challenging

and time and budget consuming process (28).

Additionally, due to the fragmentation in mobile ecosystems, mobile developers

could meet even more challenges than developers of classical desktop or web-

based applications.

32

Developing complex and monolithic mobile software applications in such

circumstances is not just the best possible way to enrich the mobile device

functionality, since developers will have to predict all possible use-cases and

supply well-implemented and tested software beforehand.

Apart from the development challenges, such approach is also raising concerns

about application's maintenance, support and portability issues across multiple

mobile platforms and vendors, which indeed could simply drain development

resources without much of benefits or returns in investments.

From this point of view, moving the complex data processing and functionality

from a mobile device to the networked services can bring some critical

advantages over a classical monolithic software approach.

For example, such separation of functionality may significantly simplify

developments and testing of a mobile application and speed up its delivery to

the end-users. As an additional benefit, keeping data processing services inside

the SOA-based system allows the company or developer to reuse such services

in other applications or business activities, thus decreasing total development

costs and ensuring the system interoperability.

And with the utilization of cloud-based computing facilities, such service-

oriented systems could be deployed in a much scalable manner, meeting up live

demands and workloads from the real end-users.

By utilizing services and applications over a network, mobile devices could be

integrated into various intelligent environments as interactive remote controls,

like for example in case of home intelligent environments (29), cars infotainment

systems (30) or just as a remote control for a person's electronic devices (31).

But today's smartphones have become quite powerful computing platforms

which could work as service providers, too. For example, the BOINC mobile

application (32) can dedicate some of mobile phone's computing resources to

medical research and investigating such diseases as AIDS, Zika, tuberculosis

and many others (33).

33

And while such smartphone-based computing nodes are used in addition to

classical computing clusters based on PCs and supercomputers, it is very

interesting to see that today's mobile platforms may offer enough computing

power to medical research and computationally intensive tasks, such as

defining the user's emotional state (34).

From this perspective, we can just see that it becomes possible to create

heterogeneous systems that may utilize a mix of data processing and

computing services, available both from the back-ends and from mobile

devices.

Such heterogeneous systems, based on powerful mobile devices and

networked back-end systems, allow the creation of highly customized,

personalized and intelligent surroundings around mobile users which could

bring ideas and concepts of the Internet of Things and ubiquitous computing

much closer to reality (35, 36).

All this could lead to the creation of smart and dynamic medical environments at

hospitals and patient's home, bringing health-care and medical data processing

services virtually anywhere where it will be needed.

1.6 The Safety Navigation system

The Safety Navigation system is aimed at producing a tool for monitoring,

nursing and helping people suffering from dementia and other mental diseases,

such as disseminated sclerosis or light forms of amnesia.

In normal circumstances such patients are not required to stay at hospitals or

nursing houses all the time, therefore they may keep just their usual lifestyle,

being visited by nurses or supervisors on a timed basis for medical checks and

some small talks.

A person-to-person communications is quite important for helping and curing

such patients (37), but if the local nursing services are limited or somehow

restricted, such patients are simply getting phone calls from the nurses or

supervisors and thus being checked in that way.

34

Such remote calls could probably be considered as the simplest solution to the

problem of lacking nursing services, but it stops working when the patient is not

answering the phone or ignores the calls from supervisors.

An additional problem may come after the person’s amnesia strike, occurred

mental handicaps or wandering. In such cases the patient may simply get lost

somewhere without any note or simply forget where to they were actually going.

If the patient does not answer the phone or is not able to describe their current

location, nurses and supervisors will have to search that person in the streets,

either by guessing their current location or by invoking the police.

The Safety Navigation concept, originally outlined in the Ryhti project, is aimed

at addressing these problems by allowing such patients to keep their usual

lifestyle, while at the same time enabling instant multi-channel communications

with their supervisors or nurses whenever and wherever it will be needed.

Technically speaking, the whole idea is to enable and provide such

communicating, supervising and nursing services through Android-based mobile

devices, such as smartphones and wearables.

In the Safety Navigation system any patient would be able to get in touch with a

personal supervisor through a special mobile application, just when they might

need it, and thus become less dependent on the physical presence of nursing

staff in the place.

At the same time such mobile application could track the person's location and

possibly measure some other medical and environmental parameters, such as

movements, heart beat rates, weather conditions, for their further analysis in the

intelligent back-end system and thus preventing accidents.

Such solution could automate at least some part of nursing and supervising

work and it would supply patients with an accident prevention system, while real

nurses and medical staff would just get a better view of patients and their

activities.

35

The Safety Navigation systems should consist of a dynamic set of self-

contained mobile and back-end services, each responsible for its own clearly

defined task.

The mobile components of the Safety Navigation system are combined into a

single software library called the Mobile Terminal Framework Software, or

MTFS. The MTFS components should enable a further research and study of

mobile health-care and well-being services at Oulu University of Applied

Sciences, possibly in combination with other already developed systems.

As an additional requirement, the mobile Safety Navigation application should

be portable to Android-based wearable devices, since wearables may have

some benefits over smartphones, for example their availability to the end-users

almost in all situations, and their possibility to deliver critical notifications

virtually any moment when it will be necessary.

1.7 Solutions similar to Safety Navigation system

The tracking and supervising solutions, similar to the Safety Navigation system,

are not actually something new in the world, and there are various applications,

gadgets, appliances and systems developed for similar purposes.

For example, the King Pigeon Communication Co. Ltd. produces various elderly

care products which the company describes as GSM “tele-care” and “tele-

health” helpers. Some of such products might be described as interactive and

automatic terminals that could track a person's environment and provide an

easy tool for the communication with relatives over the GSM network (38).

One of such products is the T3 Senior Telecare System, presented in Figure 15.

36

FIGURE 15. Functional description of the T3 Senior Telecare System (38)

The T3 Telecare System may also be supplied with accessories for detecting

fire, smoke, gas or water leakages, door contact sensors or a wearable SOS-

button, presented in Figure 16.

FIGURE 16. King Pigeon's EM-70 wearable SOS-button (39)

The wearable SOS-button works as an appliance to the T3 Telecare System

and communicates with it over a wireless interface. The working range for such

button is from 30 to 100 meters, thus a person could utilize it only near the

home (39).

37

With the mentioned equipment from King Pigeon Ltd. a person could get a safer

living environment with the possibility to get in touch with relatives or

supervisors more easily when it is needed, and to get better chances of

surviving in accidents or at disease attacks.

Additionally, the T3 Telecare System could be configured and administrated

through a special application on a local PC, thus enabling the customization and

tuning of the Telecare device. For example, a supervisor may set phone

numbers and emails for notifications regarding blood pressure and glucose

tests, as well as acceptable parameter ranges for such tests, as presented in

the Figure 17.

FIGURE 17. King Pigeon T3 configuration application (38)

But despite all benefits that such solution is bringing, it comes at quite a price,

and for example a simplified tele-care product from King Pigeon Ltd. could cost

more than 200 euros in the Finnish Internet shop Verkkokauppa (40).

As an additional limitation, such solution is offered as a closed product, thus

limiting its integration and adaptation into other health-care or well-being

38

systems and making monitoring of wider user groups quite challenging and

expensive.

Opposite to such products, numerous mobile and smartphone-based health-

care, well-being and health tracking solutions were created (7), including the

iWander mobile application from the Florida State University (41).

The iWander mobile application allows supervisors and relatives to monitor and

nurse dementia patients through Android-based smartphones in a cost effective

way. The various data collected from the mobile device is evaluated using the

Bayesian network, thus estimating the probability of wandering behavior.

Up on evaluation results, based on the user's profile, the current situation or

probability of accident, the supervisors may take various actions. For example,

the audible prompts to the patient could be issued, offering directions to

navigate the patient home; or the patient's location could be detected and a

phone line could be established between the patient and the supervisor; or a

party call may be performed, invoking help both from supervisors and from local

emergency services.

Quite noticeable is that the iWander solution was targeting at and relying only

on commonly available Android smartphones, making such solution much more

affordable by a wider range of people. The data about mobile users' activities

and actions was used to teach the system and to improve its performances

when considering the real-life situations and patient behaviors.

Developing the Android-based smartphones has also allowed Sposaro's team

to port the iWander application to wearable devices, thus combining both the

SOS-button functionality and the real-time patient tracking.

The Safety Navigation system shares some similarities with the iWander

solution, but its primary goal is to provide a common framework for creating

other mobile health-care and well-being services in a simple and modular way.

Therefore, the iWander application could be considered as just one example of

the mobile applications that Safety Navigation should make possible.

39

1.8 Privacy and awareness

As the correct diagnosis and treatments are heavily relied on the valid and

sensitive personal data, thus the automatic gathering and processing of medical

data brings some questions regarding medical ethics and confidentiality

between cared-for patients and medical personnel involved in this.

In most cases there is an agreement between the patient and doctors about

nondisclosure of any details related to that patient's health state or its dynamics

without any clear allowance from the patient. However, with the use of

automatic medical data gathering and processing systems, it is possible to

unintentionally violate such nondisclosure agreements due to improper system

configurations or security breaks.

Regarding the Safety Navigation system, it is planned to obtain a clear

agreement from end-users or their relatives about what type of data is allowed

to be gathered, processed and under which circumstances. These agreements

should also be made available to the involved personnel, thus avoiding any

potential misunderstandings or privacy violation claims.

Additionally, just like in any other situation that rises ethical questions, any

possible confrontation between the mobile patient's privacy and the awareness

of carrying personnel in the Safety Navigation system should be probably

solved with just the same medical treatment principles that were proposed by

the ancient Greek physician Hippocrates in the 5th century BC in his famous

Oath, sometimes simplified to a phrase: “Don't harm more than it is truly

necessary” (42).

Keeping such principles in mind, the carrying personnel should simply get as

much information about their patients as it would be necessary from medical

perspectives or the person's well-being, but without breaking anyone’s privacy

or minimizing the risks of such breaks.

40

1.9 Primary aims for the MTFS framework

The major task settled for this Thesis work was the creation of a mobile toolkit –

the MTFS framework – that would enable the creation of various well-being and

health-care services and applications from the same basic functionality.

This requirement has settled a few primary aims for the MTFS, such as the

modularity of software components, employment of SOA concepts, loose

coupling between mobile and back-end services, interchangeability of service

implementations and possibilities for an easy integration with the third-party

data systems.

41

2 THE WORK ENVIRONMENT

One of the personal aims that the author settled for this project was developing

all the required functionality exclusively with the open-source technologies, tools

and applications. Such aim arose from the author's personal work experience

where many successful commercial projects were performed and implemented

in similar environments (43).

The commercially available tools and technologies were not particularly bad in

the sense of provided features or functionality, but the open-sourced ones

seemed to be more suitable for research and developing needs. Additionally,

the open-sourced technologies are usually well accepted by academia and

research communities, and they typically provide a better foundation for

creating well integrated and solid products, which is a common goal for

successful commercial projects, too.

For just the same reasons many successful commercial software solutions and

products are fully or partially based on open-source technologies, for example

the RedHat's portfolio (44) that is a mix of various tools and software

components initially developed by the GNU/Linux, JBoss (45) and Apache

Software Foundation communities (46).

However, it is worth to mention that an open-source technology is not by any

mean a “silver bullet” solution to software creation issues, but rather a very

fruitful foundation that could save time, budgets and development efforts,

especially in the research and academy domains.

At the same time it is good to notice that such software foundation is coming

with the price, and depending on the applied open-source licenses, the resulting

source code and improvements might be obligated for sharing with the

development communities and end-users (47).

Additionally, the openness of source code and technologies are not the

guarantee for a successful product, functionality, documentation, performance

and reliability of the final solution. While indeed, “giving enough eyes, all bugs

42

are shallow” (48), there are still many other issues to be considered while

picking up open-sourced solutions in favor of commercial ones especially in a

sense of producing commercial products and tools.

For example, sometimes the technology simply cannot be made open due to

legal, security or dual-use issues. This is quite often the case with firmware and

drivers for the medical equipment, but such closed-source approach has its

drawbacks and it simply cannot protect its end-users from design and security

flaws in mission critical applications and devices (49).

The design and security flaws may also as well appear in the open-source

projects and products, but due to openness and public availability, there are

better chances that such defects will be fixed rather than hidden from their end-

users.

In the scope of this work the author selected a number of technologies, tools

and techniques that were quite popular and well accepted both by open-source

development communities and in the commercial world. Such choices were

made in a hope that the developed solution would be useful both for the

research and for the needs of practical business.

2.1 Service-oriented approach

The core idea behind service-orientation is building complex systems out of

self-constrained, loosely coupled and interactive functional modules – the

services. Such approach is usually described as the SOA-based approach.

However, it is worth to mention that SOA is not a particularly well defined

specification for implementing systems but rather an architectural style in which

systems could evolve (25).

The Safety Navigation system utilizes the SOA-based approach as a tool for

managing the complexity and decoupling functionality of developed

components.

The service-oriented approach is used on both sides of the Safety Navigation

system: the mobile framework (MTFS) and in the back-ends.

43

The mobile application is designed as a bunch of independent services running

on a mobile terminal and being responsible for specific tasks, such as e.g.

tracking the end-user’s current geographic location, checking network and

battery states, reading data from acceleration sensors and interacting with the

user.

The back-end system is designed as well as a set of independent and self-

constrained services, supplying the MTFS mobile application with all necessary

data over the REST interfaces.

Such approach has enabled an incremental development and testing of the

system, when the most critical services, such as the geographical location

tracking, user authentication and basic end-user interactivity were developed

first, while the rest of services were added later, thus enriching the system’s

functionality incrementally.

As an additional benefit of the SOA-based approach, dividing the whole system

into independent and loosely coupled services has simplified implementations

and enabled many improvements in the system in an evolutionary and almost

seamless manner.

2.2 Android platform

The Android platform was selected as a foundation of the mobile framework for

a number of reasons. First of all, Android is the open-source OS that originally

aimed at mobile phones and tables. Since its first public versions released in

2007, the Android has gained more than 80% of the smartphone market shares

globally (50) and it has been expanded to TV, automotive infotainment and

wearable devices.

Based on the Linux kernel, the Android platform offers developers a standard

runtime and programming environment on various device classes and domains,

such as smartphones, tablets, wearable devices, TVs, or car infotainment

systems (51).

Secondly, the Android platform offers various Java, C and C++ programming

interfaces, covering all aspects of creating and managing mobile applications.

44

The Android platform's functionality is divided across modules and provided

through Android's standard API and system frameworks. One of the most

important aspects of these APIs is their compatibility with the previous versions

of the Android platform. Thus, developers might be sure that the functional

changes in the new versions of the platform will not break the existing code

(52).

Also, the Android platform offers a seamless integration with Google's Internet-

services, such as the support for Google Maps, location detection, messaging

between users, analysis, reporting (53).

And finally, all Android functionality comes with free and open-sourced SDKs

and IDE tools, making the creation of Android applications quite an easy task

(54).

The Android platform selected as a primary runtime for the MTFS framework

was of Android’s release 4.4 (55).

2.3 Back-end environment

The back-end environment for the Safety Navigation system was also based on

commonly available open-source tools. Due to its proven modularity, the back-

end took the same approach as in the so-called LAMP software stack,

consisting of various open-source components (56).

The basic idea was to create a runtime that anyone could reconstruct on a

commodity hardware without much of investments.

In accordance to the LAMP approach the default hosting OS was selected from

the GNU/Linux Debian family: namely, the Debian 8.6 and Ubuntu 14.04. The

final solution, however, has not used any functionality exclusively specific to

GNU/Linux OS and thus it could be as well hosted on other operating systems,

e.g. Windows or Unix families.

The services forming a SOA system are usually running behind a properly

configured HTTP proxy, such as Apache or Nginx. For the needs of this project

the Nginx HTTP server was selected due to its easy reconfiguration, small

45

system requirements. Also it provides load balancing and reverse-proxy

functionality out of the box (57).

However, none of Nginx-specific functionality was added to the final solution,

therefore it might be considered as a useful but not critical part of the back-end

system.

2.4 Data repository

Like any other information processing system, the Safety Navigation system

relies on its data repository. Due to its critical role, the data repository had to

meet a few requirements as presented in the following list:

 Support for geospatial data types and operations on them

 Support for transactions in data modifications

 Support for hashing and encryption functions

 Support for role-based access to data entries

 A sufficient set of tools for administrating and debugging data repository

A need for a native support of geospatial data types quite naturally come from

the concepts of Safety Navigation. While it is possible to represent a geographic

location as a set of numbers (e.g. latitude and longitude), the database’s

support for geospatial data types could give some significant benefits, e.g.

querying geographical locations on some criteria or modifying them according to

some location-specific rules.

In addition to that, some other geospatial functionality could be useful to the

project as well, e.g. measuring distances between geographical points or

verifying coordinates against specified geographical fences and borders.

Since the data in the repository is quite sensitive in nature (such as personal

geographic location, medical sensors readings, personal geofences), the

repository should be able to restrict and authorize access to such data based on

users roles and their responsibilities in the whole system.

46

For example, the repository should prohibit supervisors from changing and

altering geographical locations or medical data obtained from mobile users,

while at the same time relatives or carrying personnel should get all necessary

details regarding the state and location of mobile users.

Since the Safety Navigation system aims at supporting multiple mobile users at

the same time, the repository should support concurrent modifications of the

data, avoiding any possible corruptions. Therefore, the data repository should

support transactions.

And since such multiple-user data repository most probably will work as an

independent software component on the remote computer, it should provide all

necessary tools and facilities for the administration, management and data

archiving.

Based on the mentioned criteria, a number of free and open-source database

systems were reviewed for implementing this work. At the time of writing this

thesis, the most popular among such database systems were the MySQL,

MariaDB and PostgreSQL.

All these systems are well known and accepted in the research and business

communities and they have also their benefits and drawbacks (58), but the

author's personal experiences led to choosing PostgreSQL as the back-end's

database system.

The main reasons of picking up PostgreSQL over other systems were in the

PostgreSQL's conformance to the SQL standards and its functional

extendability by add-on packages (59).

Additionally, PostgreSQL provides support for user roles and privileges on its

core level thus ensuring the application-level security and strict access to its

data. The roles could be altered and assigned to database users on the fly

without disturbing the running components of the system (60).

PostgreSQL is an object-oriented RDBMS which supports custom data types in

parallel to the SQL's standard ones. Comparing with MySQL, PostgreSQL has

much striker checks against data validity and integrity. And due to optimizations

47

of the single database engine used inside PostgreSQL, most of table joints,

unions and indexes usually work much faster than in MySQL (61).

From the very beginning of its development, the PostgreSQL focused on the

data integrity on the transaction level, which lead to a very optimal solution in

terms of computing resources required for a table, row or column locking.

In addition to that, PostgreSQL supports various constraints related to table,

table attribute or data uniqueness checks that are very useful in distributed and

multi-user systems (62).

The basic functionality of PostgreSQL system could be enriched by installing

additional functional packages. For the needs of the Safety Navigation

framework, the PostgreSQL system was equipped with an open-source

PostGIS spatial package that added support for the geographic functionality and

objects in the PostgreSQL databases (63), and the open-source pgRouting

package that added a geospatial routing functionality to the PostgreSQL

database (64).

The PostGIS and pgRouting packages are the world-class projects that are

used in such well known open-source project as OpenStreetMap (65).

Additionally, these packages are following the Simple Features for the SQL

specification from the Open Geospatial Consortium (OGS), making the data and

functionality integrity on the level of the SQL code (66).

2.5 The middleware

The middleware is supposed to provide a sufficient runtime and programming

environments for the back-end services. Moreover, it had also the task of gluing

things together, e.g. providing decision making processes with the information

from data repositories, as well as enabling the connectivity with the outside

world, such as integration and system users.

With such priorities in mind, two technologies were primarily reviewed for

implementing the middleware functionality: the Java-based Spring framework

(67) on top of OpenJDK 8 (68), and the Golang programming language and the

corresponding runtime from Google (69).

48

Since each of them could be used as a solid foundation for the SOA system,

there were no bigger contradictions between them. Both provided enough of

tools and functionality for implementing the REST services, and both were well

known and accepted by developing communities at the time of writing this

thesis.

However, after a few initial trials, the author decided to utilize exclusively the

Spring framework. The reason for that was the quite dramatic time saving that

the Spring framework offered to the project through its features and available

modules.

Additionally, the utilization of Java programming language on both end-points of

the system has significantly simplified the implementation of mobile and back-

end services, since they could share common data models and libraries.

The Golang, at the same time, was an excellent experience and had all the

necessary components for implementing the back-end system, but comparing

with Java and the Spring framework it felt much like a lower-level technology

which was aimed at solving the efficiency and manageability problems of some

very large projects rather than simplifying the developments of a SOA solution.

2.6 Front-end technologies

Although the primary task of this thesis was in the development of the MTFS

framework, it was still quite necessary to visualize obtained data and possibly

edit mobile application configurations from the GUI.

For such developments the operator's GUI was implemented by utilizing HTML5

and the map visualizing JavaScript library Leaflet (70).

The web GUI was provided by utilizing the standard HTML template engine

called FreeMarker, which was provided by the Spring framework out of the box

(71).

However, the author should note that despite all easiness of today’s web

developments, the original aim was just to visualize the obtained data rather

than to create a fully scaled web GUI.

49

2.7 Cloud-oriented solution

The overall architecture of final solution was constantly reviewed for its

suitability in the cloud computing environments, such as Amazon AWS and

Google Cloud Platform.

From such perspective the only requirement for the MTFS mobile part was in

the utilization of the HTTP and HTTPS protocols and avoiding any hard-coded

end-point URLs. That was handled through the mobile application

configurations.

On the back-end side configurations were handled through the Spring

framework’s environment profiles so that all involved components could be

integrated through URIs.

50

3 DEFINITION

The primary aim of the Thesis work was to design and implement the MTFS

framework as a set of reusable and self-sufficient mobile software components

– the services – that in their turn would enable the creation of other mobile

health-care and well-being applications for Android-based terminals.

The term “self-sufficiency” in this case means that each of such software

service would provide a domain-specific set of functionality, for example a

location detection, networking and sensors, while the “reusability” stands for the

possibility to utilize these services in other applications without too much of

refactoring or modification.

The software components developed for the MTFS framework should be tested

in an example mobile application, called the Safety Navigation, that would

provide its end-users with remote monitoring and support services.

The most critical facilities provided by the Safety Navigation application would

be location detection and telemetry data services, therefore it should utilize the

location detection capabilities of the mobile device, available sensors and

networking.

The application should also provide its mobile users with a very simple

graphical user interface (GUI), sufficient both for the elderly and for the young

people.

The mobile Safety Navigation application should be able to work independently

from the back-end services utilizing some embedded intelligence when a mobile

device is offline or when back-end services are not responding.

3.1 The main use-cases in the system

The most important feature of the system is to let mobile users to contact their

supervisors in case of accident or after getting lost. At the same time the

supervisors should know exactly where the cared-for people are located and

what is their condition.

51

This particularly implies that all required information about mobile users, such

as their current locations and sensor data, should be tracked with a sufficient

precision and delivered in some form to the supervisors.

Since there could be many mobile users in the system, possibly with unique

behaviors and habits, the MTFS framework should be able to identify each user

and supply them with personal settings and configurations to enable a better

tracking and supporting.

All together, it should form a robust and dynamic system where many users

could be served over the network by the supervising professional in a seamless,

but precise manner (see Figure 18).

FIGURE 18. Schematic presentation of the core idea behind the whole MTFS

system

The MTFS system should allow its end-users to interact with their supervisors

when a dangerous situation will be detected. This could be done either by

initiating an automatic phone call with the supervisors or by some other means,

e.g. through utilizing multimedia and communication applications presented on

the mobile device.

The MTFS system should be able to detect when the end-user is leaving or

entering some predefined geographical locations or areas. Also, the so-called

geofencing functionality should be provided by the system.

Moreover, since possible end-users of the MTFS system could be actually

suffering from memory and dementia diseases, the mobile MTFS application

52

should warn the users up on the detected leave of such geofenced location, as

schematically presented in Figure 19.

FIGURE 19. Supporting end-user’s and supervisor’s awareness in the MTFS

system

At the moment of leaving some preconfigured safe location, a warning message

should be presented to the end-user, possibly asking some questions regarding

the situation. The warning message could also be made interactive to confirm

the end-user’s consciousness and awareness of the situation. This could be

done either by presenting a special confirmation dialog or by automatically

initiating a direct phone call with the supervisor.

Regardless to the end-user’s responses, the up-to-date information about the

user’s location and activities should be automatically delivered to the

supervisors for a further review and confirmation. In this case the carrying

personnel could decide what to do about the situation if some anomalies in the

end-user’s behaviors will be detected.

In addition to location tracking, the MTFS mobile application should supply the

supervisors with all necessary information about the end-user’s environment

and surroundings, taken through pictures from the mobile camera or obtained

by recording audio samples or by reading data from available sensors, as

presented in Figure 20.

53

FIGURE 20. Automatic extraction of information about end-user’s environment

at accidents

These features should be used with great care and only be activated when the

user will be in some dangerous situation or if an accident is detected.

The automatic extraction of information about the end-user’s environment could

be activated either by obtaining permissions from the back-ends or

independently, after detecting some events or anomalies in the user’s behavior.

Such dynamic functionality will require that all involved MTFS components will

support the reconfiguration on the fly, either by receiving customized

configurations from the network or from the mobile application’s internal service

orchestrating component.

Since the connectivity of a mobile device is always challenged by environments

and network covering issues, the MTFS components should be able to work

independently from the back-end services during offline periods, still providing

the most critical services to the end-user, such as geofencing and accident

detection functionality.

The mobile Safety Navigation application may utilize multiple components and

sub-systems presented on the mobile device, but it should be made sustainable

against software and hardware failures, thus preserving its functionality over the

time.

This also implies that MTFS components should utilize available mobile

components quite wisely, for example, avoiding quick drains of the device

battery or minimizing the communication expenses in cellular networks.

54

The resulting system should be both modular and flexible, thus enabling its

future improvements and reuse in other systems and applications.

3.2 End-users

The primary end-users of the MTFS mobile application are elderly and younger

people who are suffering from memory or dementia diseases or having some

wandering behaviors. Such people may live quite independently for most of the

time, but they could need some help when their disease strikes back.

The other user group is formed by the actual supervisors and caregivers, who

are simply interested in receiving up to date information about cared-for people,

such as mentioned before, and make sure that they are just fine. This group of

users may be called the “operators”, and it may also include professionals who

are offering medical, guidance or pick-up services to cared-for people on a

commercial or volunteering basis.

The third group consists of technical supervisors of the system, who are

performing various technical tasks and making sure that the system is running

as supposed.

3.3 Mobile Safety Navigation application

The mobile Safety Navigation application should run on commonly available

Android smartphones. The mobile end-user should keep such smartphone on a

chest, with the main camera pointed outwards.

The mobile end-user should be able to pick up that smartphone at any time, and

use it for receiving phone calls or getting help and guidance from the Safety

Navigation system.

The Safety Navigation application should rationally utilize all required features

and resources of the smartphone, such as its sensors, networking capabilities

and battery, it should also reconfigure mobile services according to the device

state and its capabilities.

55

In case of a hardware or software failure, e.g. a battery drain or an insufficient

memory on the device, the mobile Safety Navigation application should notify

supervisors about the situation and supply a back-end system with all

necessary information about the person's current location.

The mobile Safety Navigation application should provide and perform the

following functionality:

 Authenticate the mobile user to the Safety Navigation system

 Keep track on the user's location and activities by utilizing sensors and

location detection services of the mobile device

 Keep track of the mobile terminal's state, such as its battery and network

status, and possibly other parameters for a better awareness of

supervisors and involved personnel

 Alarm the mobile user about any dangerous situation, e.g. leaving safe

locations or entering dangerous areas

 Read and apply configurations, guidance and updates from the back-end

system for adjusting performance and changing working modes of the

mobile software

 Guide the mobile end-user back to a safe location or home by utilizing

the GUI and multimedia capabilities of the mobile device, including a

direct phone call with the supervisors

The overall architecture of the mobile Safety Navigation application should be

modular and support extending the functionality without a complex refactoring.

The developed solution should support portability to other Android-based

terminals, such as wearables and infotainment devices.

3.4 Back-end system

The back-end system works primarily as a data processing and decision making

system, offering various services for the mobile Safety Navigation application.

56

The most critical services that the back-end is offering to mobile end-users are

geofencing functionality, mobile user tracking and supplying the mobile Safety

Navigation application with updated configurations.

In addition to that the back-end system should provide the following

functionality:

 Enable a reliable alarming of mobile end-users and their supervisors in

case of accident

 Provide support for user-specific geofences and personalized

configurations for mobile services

 Enable the tracking of end-user activities and habits for preventing

possible accidents

 Provide a data repository for a further information processing, analysis

and study

 Provide authentication and authorization services for mobile end-users

and supervisors

 Secure the data communication between mobile terminals and back-end

services

In addition to the above mentioned objectives the back-end system should keep

all its functionality in the form of self-constrained and loosely coupled services

and enable an easy integration of the third party tools and components for

extending its functionality.

57

4 IMPLEMENTATION

The MTFS framework and corresponding back-end system were implemented

with a number of open source technologies and tools that at the time of thesis

writing were well accepted by developing communities and software

developers.

The primary aim behind all developments was to create a reliable and flexible

architecture for the MTFS framework and Safety Navigation system that would

be easy to use, maintain and improve over the time.

4.1 Main components of the system

The whole system is subdivided into mobile components, running on Android

terminals, and the back-end components, executing on a dedicated application

server. The mobile part of the solution is formed by the MTFS framework,

executing inside the mobile Safety Navigation application. The back-end

components are running independently from the mobile part and they are

offered as a bunch of loosely coupled RESTfull services. Both above mentioned

parties are interacting with each other by invoking HTTP methods and

exchanging JSON data messages, as presented in the Figure 21.

FIGURE 21. Overall architecture of the Safety Navigation system

58

In the RESTfull approach (72) the services are talking to each other by invoking

the corresponding HTTP methods over application specific URIs. The actual

logic behind HTTP request processing is hidden from the caller, thus there

could be many services and sub-systems involved into handling a single

RESTfull API call, just like in any other remote procedure call system.

The MTFS framework is composed of various mobile services running on an

Android device and performing specific tasks, such as detecting the end-user’s

current location, checking geofences, reading sensors, keeping track of mobile

device resources, and communicating with back-ends.

The mobile Safety Navigation application is using the MTFS framework as a

library, it performs the orchestration, tuning and control of used MTFS services

through its Main Service, as presented in the Figure 22.

FIGURE 22. The overall structure of MTFS framework and Safety Navigation

application

The Main Service is part of the mobile Safety Navigation application and it is

independent from the MTFS implementations.

All MTFS services are producing, exchanging and consuming information

through messages, implemented as special Java objects. The Java objects may

represent a distinguished event in the system or a change in the application’s

activity, for example a new sample from the accelerometer sensor, a new

detected location of a mobile user, or just an HTTP call performed by the HTTP

Service.

When MTFS service detects a new event or change in its environment, it

creates a new Java message object and broadcasts it across the whole system

through Android’s information bus, called the intent system (73).

59

In Android’s intent system any software component, subscribed to some specific

type of the MTFS messaging object will receive a copy of that object

immediately after it was generated and broadcasted by the corresponding

MTFS service.

This simple, yet powerful mechanism is utilized by the MTFS framework for

decoupling mobile services and components from each other in a quite elegant

way, allowing to extend the MTFS functionality without breaking the existing

services and components.

Moreover, the MTFS service configurations are also delivered to the services by

Android’s intent system inside Java messaging objects. That turns the service

reconfiguration into a simple process of receiving configuration objects from the

intent system and applying received configuration parameters to the service

functionality.

The data messages between mobile and back-end services are transferred in

the form of JSON objects. These JSON objects are just simple text

representations of the mentioned Java objects generated by the MTFS

services. The JSON format for a message representation was chosen for its

simplicity, easy extendability and quite outstanding support in the world of web-

based data systems.

While most of gathered data is transferred to the back-end services over

network, some data is first processed locally.

For example, signals from accelerometer sensors are first compared inside the

mobile application against preconfigured threshold values, thus helping to

determine the person’s activities and tune the mobile application’s functionality

accordingly.

Another example of such local data pre-processing is in the Geofence Service

functionality, where the end-user’s locations are studied first to determine if the

user has left some preconfigured geofences.

Such preliminary local data processing is helping to solve two major problems

of the MTFS framework: at first, it helps to detect dangerous situations much

60

faster than if it would be done through the back-end systems; and secondly, it

helps to protect end-users while the mobile device is offline or when back-ends

are not responding.

4.2 MTFS implementation

The MTFS framework was implemented in the Java 8 programming language

on top of the standard Android 4.4 APIs. The framework's functionality was

subdivided into independent packages, each representing a number of related

services together with their supplementary objects.

Each implemented service played a distinguished role in the system and

supplied back-ends with its own kind of information. All implemented services

were subdivided into the following functional categories:

 Device monitoring – the software components in this group are notifying

the Safety Navigation system about all events related to device

resources and its capabilities, e.g. changes in the network connectivity,

battery levels, mobile storage capacity, or the end-user's presence to the

mobile system

 Sensing – the services in this group are reading data from available

mobile sensors and obtaining information about the user’s activities and

their environment

 Location – the components in this group are detecting the end-user's

current location and interacting with Android’s geopositional subsystems

 Networking – the services in this group are communicating with remote

systems over the HTTP or TCP/IP based protocols

 Geofencing – the services in this group are providing the geofencing

functionality and keeping track of the user’s presence at geofence

locations

61

 Utilities – the components in this group simplify and automate some

MTFS-specific tasks, such as creating Android intents or putting data into

the HTTP methods

All the components in the above mentioned functional groups were developed

to work independently from each other, so that MTFS services and related

components could be easily picked up and reused in other mobile applications

without any heavy refactoring.

4.3 MTFS service architecture

All developed MTFS services share some similarities in their architecture and

internal structure. Such similarities in the service structure were figured out after

some reviews and refactory, based on testing in real-life circumstances.

Originally many of MTFS services were based on Android's

android.app.IntentService class. However, although that simplified service

implementations and automated service activation up on some events in the

system, the performances and reliability of such services were quite far from

ideal.

For example, the HTTP method objects for network communications could be

buffered by the Android system at some point without a notice, therefore it was

hard to predict when the HTTP method will be executed and how long it will

remain in the buffering queue.

Additionally, intensive communications and object exchanges between such

IntentService-based components were getting into similar troubles. Therefore,

for example the events detected by the accelerometer sensor could not be

delivered to and handled on time by other services.

All this lead to a re-implementation of all MTFS services on top of Android's

standard android.app.Service class. In this case the MTFS services took more

responsibilities for their life-cycle and resource management, but that was

basically the only requirement for their utilization.

62

The Android’s standard android.app.Service class provided enough of basic

functionality for the MTFS framework services, thus the author could

concentrate more on their MTFS-specific functionality.

Quite right from the beginning of developments, it came clear that probably the

most beneficial aspect of developing services and applications in the Android

environment was the rich infrastructure that Android APIs were offering for

implementing inter-process and inter-service communications.

The utilization of Android's intents as the base for the MTFS framework's inter-

service communications significantly simplified the implementations and logic of

the services and helped to spend more time on the domain-specific

developments, rather than on the environment in which mobile MTFS services

were supposed to be running.

A schematic description of the Android intent-based communications between

MTFS services is presented in Figure 23 below.

FIGURE 23. Utilization of Android's intent broadcasting system in the MTFS

framework

As you can see in Figure 23, the Android's intent broadcasting system takes

care of all technical aspects of the communication between the processes and

services, leaving developers only to decide what type of objects should be

exchanged between the services.

63

The working principles behind Android's intent broadcasting system are similar

to the ones used in the publish-and-subscribe system.

In the example presented in Figure 23 Service A subscribes to objects from the

Service B by issuing a special request to Android's intent broadcasting system.

Such request contains a description of objects that Service A is willing to

receive, without actually telling which component should produce it, and a link to

a callback function which will be invoked up on delivery of requested objects.

When Service B will send its objects through Android's intent broadcasting

system, the broadcasting system will automatically notify Service A through a

specified callback function, supplied with a copy of object generated by Service

B.

Such simple yet powerful publish-and-subscribe system helps to decouple

almost all services and software components in the Android system. Probably

the best aspect of such approach is that Service A and Service B do not have to

be aware of each other’s implementation, internal activities or even presence in

the system. The only thing that a consuming component needs to be aware of is

simply the data models that a producing component is generating.

As an additional benefit, the Android intent broadcasting system may transfer

custom Java objects of virtually any complexity, thus allowing an adaptation of

service data models for any particular need.

For these reasons all data objects generated by the MTFS services were made

compatible with the Android intent broadcasting system. This virtually enabled

the utilization of MTFS functionality in any other Android-based environment, be

it a mobile phone, wearable or some embedded system.

Quite naturally after the MTFS data objects were made exchangeable between

Android-based components, the configurations for the MTFS services were also

adapted to Android’s intent broadcasting system.

Since the MTFS service configurations are merely sets of parameters in the

form of name-value pairs, it was quite easy to turn them into a special type of

Java objects that make the reconfiguration of the MTFS services an easy task.

64

The MTFS services, in their turn, were made ready to listen and accept such

Java-based configuration objects from Android’s intent broadcasting system,

and update their functionality accordingly. Such feature enabled the dynamic

orchestration and tuning of MTFS services on the fly, making them adaptable to

the current state of device or changes in the end-user’s environment.

For example, the frequency of location detections in the MTFS Location Service

was made adjustable to the events detected by the Accelerometer Service and

thus, the number of location queries and updates was increasing after a person

started walking or running, and it was decreasing when no end-user’s motions

were detected for some time.

All this allowed producing a quite dynamic and flexible system where each part

could be improved or modified without breaking the other components.

After adding support for the JSON serialization to all MTFS data and MTFS

service configuration objects, it became possible to transfer and retrieve such

objects over the network, thus enabling the remote configuration and tuning of

MTFS services on mobile devices.

4.3.1 Location Service

The location detection functionality might be considered as the core part of the

MTFS framework, thus its implementation involved a signification portion of

development and testing.

The MTFS Location Service is defined in the

fi.oamk.mtfs.service.location.LocationService class. Just as all the other MTFS

services, the location service was made reconfigurable on the fly, therefore its

performances could be adjusted according to the user activities or state of the

mobile device.

The configuration of Location Service is wrapped into the

fi.oamk.mtfs.service.location.LocationServiceConfiguration class and supports

the following parameters:

65

 The minimal distance change to be tracked by Android’s Location

Manager, in meters

 The minimal update interval to be used by the Location Manager, in

milliseconds

 The battery power consumption plan for Location Manager, defined by

accuracy and power criteria

The Location Service interacts directly with Android's standard Location

Manager, which communicates with geopositional hardware presented on the

mobile device.

The location data obtained from Android's Location Manager is wrapped into the

android.location.Location objects, containing latitude, longitude, speed, bearing,

accuracy and other parameters. The latitude and longitude coordinates are

represented within the standard WGS84 datum, usually called simply as the

GPS coordinate system.

The Android’s standard location objects are turned by Location Service into

MTFS-specific fi.oamk.mtfs.service.location.Location objects and broadcasted

across all subscribers by Android’s intent broadcasting system.

The primary consumers of these location objects are the Safety Navigation

application’s Main Service and MTFS Geofence Service.

The default configuration for Location Service is set to 10 meters of

geographical accuracy and to 15 seconds between each location update. The

power consuming plan is set to the most rational utilization of the battery.

The Safety Navigation application automatically updates the Location Service

configurations when it detects that device (and also, most probably, a person

too) is moving. In such case the Safety Navigation application sets the

geographical accuracy to 2 meters and the location update interval to 5

seconds.

66

Later on, when the application will detect that the device is not moving for more

than 30 seconds, the Location Service configurations are restored back to

defaults.

4.3.2 Geofence Service

The Geofence Service keeps track on the user’s presence in the specified

geofences. The geofences are special locations and areas related to end-user’s

interests or activities, such as for example, home, work or hobby.

The geofences in the MTFS framework are defined by the

fi.oamk.mtfs.service.geofence.Geofence objects. Such geofence object

contains the geographical location of place, the radius of geofencing circle in

meters, the name of a Wi-Fi network presented in place, or an emergency

contact associated with the geofence location.

This simple set of properties allows defining geofence as a circle on the map,

thus simplifying its utilization and processing inside both the mobile application

and back-end system. An example of a geofence location is displayed in Figure

24.

67

FIGURE 24. A geofence location associated with author’s work office

Each user of the Safety Navigation system could be supplied with a dynamic

and personalized set of geofences. The user-specific geofences are delivered

to the Geofence Service inside the configuration object, defined in the

fi.oamk.mtfs.service.geofence.GeofenceServiceConfiguration class.

Once the geofences have been provided, the Geofence Service will start

checking them up on each location update. They are obtained either by listening

to notifications from the Location Service or by receiving such updates directly

from some component in the mobile application.

When the Geofence Service receives a new location update, it starts comparing

it against all specified geofences. It simply calculates the geographical distance

between the obtained location and geofence position, and if the new location

will be within the geofence circle, the end-user will be considered as located

inside that geofence area.

68

In the MTFS context all geofences are interpreted as safe locations, thus if the

end-user is not detected in one of them this will be considered as an alarming

event for both the end-user and their supervisor.

At the same time the MTFS Geofence Service is able to track events of

entering, leaving and staying within the geofence location. If such an event is

detected, it will be broadcasted by the Geofence Service in the form of the

fi.oamk.mtfs.service.geofence.GeofenceEvent object.

The generated geofence events will have all attributes of the related geofence

and the corresponding event ID describing what has happened. Currently,

MTFS supports four types of such geofence events:

 fi.oamk.mtfs.service.geofence.GeofenceEvent.UNKNOWN – is assigned

by default and tells that the end-user is most probably outside the

geofence location

 fi.oamk.mtfs.service.geofence.GeofenceEvent.ENTER – tells that the

end-user has entered into the geofence location

 fi.oamk.mtfs.service.geofence.GeofenceEvent.STAY – tells that the end-

user is still present in the geofence location

 fi.oamk.mtfs.service.geofence.GeofenceEvent.EXIT – tells that the end-

user has left the geofence location

A schematic description of the geofence event generation is presented in the

Figure 25. The circle around the house in Figure 25 represents the home

geofence location. When the end-user enters into that geofence circle, the

mobile application interprets it as a geofence entering event, notifying the back-

end system and supervisors that the user is now in safety.

When the end-user is still presented at the geofence location, it is considered as

the user’s stay in safety. Only when the user moves away from the geofence

location, the geofence exiting event will be generated, telling the back-end and

supervisors that from now the user could be in danger.

69

FIGURE 25. Schematic description on generated geofence events

Depending on the Safety Navigation application’s configuration, the geofence

exiting event will be processed either loudly or silently, leading to a notification

send to the supervisors or an alarm dialog present to the end-user, as shown in

Figure 26.

The MTFS geofence could be also associated with some emergency contact,

representing a person or an organization that might help the end-user in case of

an accident or some challenge. Such contacts are defined by the

fi.oamk.mtfs.service.identity.EmergencyContact class and they could be

uniquely specified for each available geofence location.

In the current implementation the details of geofence’s emergency contact are

presented in an alarm dialog which is activated when the user leaves from a

safe location or when a possible accident is detected inside the geofenced area.

70

FIGURE 26. An example of the alarm dialog presented to user after leaving

geofence location

The MTFS geofences could also be optionally associated with the Wi-Fi

network presented at the geofence location. Thus, the end-user’s presence in

the geofence area could also be tracked by a connectivity with the associated

Wi-Fi network. Such feature helps to amend the location detection inside the

buildings where the satellite-based location detection could be quite

challenging.

If the end-user will connect to the Wi-Fi network associated with the geofence

location, it will be considered as a geofence entering event, while disconnecting

from the associated Wi-Fi network will be automatically interpreted as a

geofence leaving event.

71

4.3.3 Device Service

The Device Service, implemented by the

fi.oamk.mtfs.service.device.DeviceService class, keeps track of all system

events related to the resources of a mobile device and notifies about them.

The most important events that the Device Service is tracking are changes in

the network connectivity, obtaining current battery levels, checking the presence

of the end-user to the mobile system and receiving notes about upcoming

reboots or shutdowns of the mobile device.

The Android-specific list of tracked event IDs is presented in the following list:

 ConnectivityManager.CONNECTIVITY_ACTION – issued up on changes

in the network connectivity

 Intent.ACTION_USER_PRESENT – issued on the end-user’s presence

to the mobile system

 Intent.ACTION_BATTERY_CHANGED, Intent.ACTION_BATTERY_LOW

and Intent.ACTION_BATTERY_OKAY – issued on changes in the

capacity of a mobile battery

 Intent.ACTION_POWER_CONNECTED and

Intent.ACTION_POWER_DISCONNECTED and

Intent.ACTION_DOCK_EVENT – issued on connecting an external

power supply, or a docking station to the mobile device

 Intent.ACTION_DEVICE_STORAGE_LOW – issued when the device

storage will have not enough of free space required for a normal function

of the Android system

 Intent.ACTION_REBOOT, Intent.ACTION_SHUTDOWN,

Intent.ACTION_BOOT_COMPLETED,

Intent.ACTION_LOCKED_BOOT_COMPLETED – issued at various

stages of a device reboot and shutdown

72

 Intent.ACTION_CALL, Intent.ACTION_NEW_OUTGOING_CALL,

Intent.ACTION_ANSWER, Intent.ACTION_PROVIDER_CHANGED and

Intent.ACTION_AIRPLANE_MODE_CHANGED – issued during phone

calls and at various events during the end-user’s activities in a cellular

network

All these detected events are wrapped into MTFS-specific Java objects and

propagated across all the Android system. For example, the network

connectivity events are wrapped into the

fi.oamk.mtfs.service.device.NetworkEvent objects, while battery events are

transformed into the corresponding fi.oamk.mtfs.service.device.BatteryEvent

objects. All other events are carried inside the

fi.oamk.mtfs.service.device.DeviceEvent objects.

4.3.4 Accelerometer Service

The data from a mobile accelerometer sensor is processed by an independently

running Accelerometer Service, defined in the

fi.oamk.mtfs.service.sensor.accelerometer.AccelerometerService class. The

main task of this service is to detect whenever a mobile device, and thus, a

person, is moving, running or has fallen.

For determining such events, the service reads device acceleration values from

three axes: X, Y and Z, and compares them against user-specific threshold

values. The values coming from the accelerometer sensor are represented in

the standard SI m/s² units.

The threshold values for the service are provided in the configuration objects,

defined by the

fi.oamk.mtfs.service.sensor.accelerometer.AccelerometerServiceConfiguration

class. In the current implementation the following configuration parameters are

supported:

 Move detection threshold – a float number telling a typical acceleration

value that a mobile device will have when a person is walking. The

73

default value for such a move threshold is selected as 0.3 m/s², picked

up after some trials and testing

 Run detection threshold – a float number telling a typical acceleration

value that a mobile device will have when a person is running. The

default value for such a run threshold is selected as 2.5 m/s²

 Fall detection threshold – a float number telling a typical acceleration

value that a mobile device will have when it is dropped by a person, or

has fallen with the person. The default value for such a fall threshold is

selected as 8.5 m/s²

The Accelerometer Service configuration has also a special time window

parameter, declaring the minimal time period during which accelerometer

samples should be read and studied before the Accelerometer Service event

will be generated.

The default value for this parameter is set to 5 seconds, which means that a

person must walk or run for at least 5 seconds before such activity will be

considered as walking or running. The fall detection routine does not use this

time parameter due to quite high acceleration values, typically presented at the

device or person’s fall, and forces immediate a generation of the corresponding

events out of the service.

All detected accelerometer events are propagated across the Android system

inside the corresponding

fi.oamk.mtfs.service.sensor.accelerometer.AccelerometerEvent objects. The

accelerometer event objects have a time parameter, describing when exactly an

event was detected, and a set of three Boolean parameters, clearly identifying if

the end-user was walking, running or has fallen.

4.3.5 HTTP Service

The HTTP Service performs all HTTP method calls issued by the MTFS

components. The HTTP Service is defined by the

74

fi.oamk.mtfs.service.http.HttpService class and runs independently from all

other services and application’s components.

It listens to and processes the HTTP method call objects, defined by the

fi.oamk.mtfs.service.http.HttpMethod class, containing all information required

to make an HTTP call to some end-point.

For each HTTP method call object the HTTP Server creates a special

asynchronous handler, defined in the fi.oamk.mtfs.service.http.HttpMethodCall

class. The HttpMethodCall is based on Android’s so-called AsyncTask type,

which allows its execution as an independent thread, thus avoiding any blocking

in the mobile application and other MTFS services.

Up on a successful HTTP call to a specified end-point, the results are put back

into the original HttpMethod object and forwarded back to the issuer of the

HTTP call through a callback method, defined in the

fi.oamk.mtfs.service.http.HttpMethodCallResponse interface.

Each HttpMethod object may specify a number of trials which can be taken

before the HTTP call will be considered unsuccessful. Such trials could be

taken when the mobile device will have some HTTP failures due to a poor

network coverage, or because of some limitations in the provider’s network.

In case of an unsuccessful HTTP call the HttpMethod object will be processed

one more time by the HTTP Service, until its trial limit will be exhausted. In such

case the HTTP call will be supplied with an occurred error description and

forwarded back to the issuer.

The HTTP Service keeps track of the current network state, thus if the mobile

device will go offline, the HTTP Service will start buffering HTTP calls without

their execution. When the device will go online, all the buffered HTTP calls will

start executing one by one in the received order, thus helping to utilize the

network when it is actually available.

75

4.3.6 Camera Service

The Camera Service takes pictures from the mobile device cameras. Up on its

startup the service studies how many cameras are presented on the mobile

device and what are their properties, such as supported resolutions and image

formats.

For avoiding any device storage exhausting the Camera Service chooses the

smallest available resolution and the JPEG format for all taken pictures.

The Camera Service is defined in the

fi.oamk.mtfs.service.camera.CameraService class, while a single request for

taking a picture is encoded by the fi.oamk.mtfs.service.camera.CameraAction

object. The Camera Service runs in the background and takes pictures up on

received CameraAction objects.

A single CameraAction contains all the parameters required for taking a single

picture. By default, it contains the name of the folder where an image file should

be stored, the name of the image file, the ID of the camera to be used for taking

an image, and the last detected location of the user.

By default, all taken images are stored in the public /Documents/MTFS/images/

folder, while image files are automatically given the name in the format <UNIX

timestamp of shooting moment>.jpg, as presented in Figure 27.

76

FIGURE 27. A list of images taken by the Camera Service

If details of the user’s location are provided with the CameraAction object, the

Camera Service will automatically update image file’s location metadata, stored

in the EXIF format. This helps to supply the taken images both according to the

date and time of the shooting moment and according to the details about a

location where the image was taken (see Figure 28).

77

FIGURE 28. An example of EXIF meta-data stored with image file

The taken images are kept on the mobile device as files and they could also be

sent to back-end repositories over the HTTP Service. During the image

transmission over HTTP, the binary contents of the image file are encoded into

a Base64 string representation. Such approach allows easily to envelope

images into JSON and XML messages, to transfer them over the network and

store them in the platform-independent format inside the data repositories.

4.3.7 Securing the mobile traffic

The back-end services were developed with the Spring framework, which also

included the support for the secured authentication and authorization

functionality out of the box through its security module (74).

78

As the usual practice, the traffic between the mobile Safety Navigation

application and back-end services was protected by the HTTPS (HTTP over

TLS) connections, although with a self-signed certificate.

This simple technique enabled secured communications between the mobile

application and the back-end services, virtually preventing hijacking of end-

user’s data, such as location and telemetry by so-called “men in the middle”

security attacks.

At the same time access to mobile end-user’s data in the back-end’s web GUI

was also secured by HTTPS and enhanced by the role-based authorization,

thus enforcing application-level security in a typical enterprise application

manner.

4.4 The Safety Navigation application

All the earlier mentioned MTFS services were used in a mobile application

called the Safety Navigation. The Safety Navigation application is supposed to

keep track on the end-user’s activities and location and notify supervisors if

something suspicious will happen.

The mobile Safety Navigation application was designed to work in both the

online and offline modes and support the end-user in various circumstances.

Even if the user will turn off network and GPS module on the mobile device, the

Safety Navigation is still capable of doing some work and gather some

information about the end-user and their surrounding.

Most of the Safety Navigation’s functionality is coming from the MTFS

framework and its application’s Main Service just performs tuning and

orchestrating of MTFS services according to the current situation and end-

user’s activities.

For example, the Accelerometer Service never stops to track the user’s

movements and supplies the Safety Navigation with all information about their

activities. The Camera Service is configured by the Safety Navigation for

automatically taking a picture about the end-user’s environments each hour

79

while the device is not moving. And the Location Service is tuned by the

application to increase location detections when the user walks or runs.

All this is done through configuration objects send to the MTFS services and the

corresponding events detected by the MTFS components.

When the mobile Safety Navigation application starts, it checks that the network

and GPS modules are enabled on the mobile device. If they are switched off, it

asks the mobile user to enable them for a proper work, as presented in the

Figure 29.

FIGURE 29. Startup dialogs in the mobile Safety Navigation application

When everything is properly initialized, the Safety Navigation application starts

running in the background and gather all information that could help the end-

user to prevent accidents or to support them when something has happened.

80

The end-user may keep their usual daily activities and move freely at their

location, while the Safety Navigation system will be silently checking their

locations and verify them against all specified geofence locations.

When the Safety Navigation detects that the end-user’s has left from the

geofence location, it will present the user an alarm dialog as shown in Figure

30.

FIGURE 30. Alarm dialog presented to end-user after leaving geofence location

Although such dialog may seem unnecessary or too excessive, it should be

remembered that the primary user target for the mobile Safety Navigation

application are people suffering from the dementia and memory diseases, thus

it could just happen that they will leave their locations without any idea where

they are actually going or what they are doing.

81

The alarm dialog, presented in Figure 30 has a short description of the detected

event and three buttons, colored as semaphore lights.

By clicking the first button, called “Everything is OK”, the user is confirming that

they just know what they are doing. If the user has some doubts, then the

supervisor might be called by clicking the button in the middle. The supervisor’s

contact information is obtained either from the default emergency contact

encoded into the mobile Safety Navigation application, or extracted from the

geofence where this accident has occurred. As the third option, the user may

simply invoke the local 112 emergency service.

Whatever button is clicked, the corresponding message will be delivered to the

supervisors to be examined and verified.

The information about the user’s current location and mobile device resources

is also automatically delivered to the back-end services, or stored into a special

log file on the mobile device for later processing if the device is offline. All this

information may be easily seen from the supervisor’s UI, handled by the back-

ends and presented in Figure 31.

FIGURE 31. User’s activities presented on supervisor’s web page

The supervisor’s view represents the most important information about the

corresponding end-user and their activities, such as the current location,

82

obtained tracks, geofence events, network connectivity, as well as the user’s

walks and runs during the day and changes in other mobile device resources or

capabilities.

All this helps the supervisor to determine if the user is just fine or if the user

needs some help. With the latest location available to the supervisor, the

caregivers could coordinate their efforts to find the user if they get lost.

The end-users’ movements are also detected and studied by the mobile Safety

Navigation application, be it online or in offline mode. When the mobile

application detects that the user has fallen, it will activate another alarm dialog

shown in Figure 32, asking about what has happened.

FIGURE 32. Alarm dialog presented to the user when falling is detected

Just like in the geofence alarm dialog, the end-user may pickup three options by

clicking on the corresponding buttons. The processing logic behind this alarm

83

dialog is exactly the same as described earlier, except that in addition to a

mandatory notification message for supervisors, the back-end will draw a

vertical red line on the user’s physical activity bar at the bottom of the

supervisor’s UI.

The mobile Safety Navigation application may also work in so-called “stealth”

mode, when no alarm dialogs are presented to the user and all information

about their activities will be silently forwarded to the supervisors. In this case all

estimations about the end-user’s health state and conditions will be totally in the

responsibility of the supervisors.

The configurations for the mobile Safety Navigation application could be

encoded directly into the application or obtained from the network. The

configurations might include the following parameters:

 Application’s working mode

 MTFS back-end URL

 User contact information

 Default emergency contact for the user

 Location Service settings

 Accelerometer Service settings

A detailed view about all current Safety Navigation settings is presented in

Figure 33.

84

FIGURE 33. The Safety Navigation application settings

After the Safety Navigation application has been installed, the supervisor should

go through the application settings and change them accordingly. However, with

the settings obtained directly from the network, the Safety Navigation could

immediately get some very optimal parameters created for each user in a

personalized manner.

In both cases the two most important Safety Navigation settings should be

currently defined manually: the MTFS back-end’s URL, which defines an entry

point for all back-end API calls, and the user ID, which uniquely identifies each

user in the MTFS system.

In the current version users’ phone numbers are used as unique identifiers.

However, the user identifier in the Safety Navigation system could just be any

unique set of URI-friendly characters, be it a phone number, an email address

or some universally unique identifier (UUID).

If the MTFS back-end’s URL will be left unspecified or will have an invalid

address, the Safety Navigation application will automatically switch to the back-

end offline mode, where all end-user’s activities and location updates will be

stored into a log file on the mobile device, created in a public directory under the

85

/Documents/MTFS/MTFS_year.month.day.log path. In this case the log files will

be automatically created for each day that back-ends are offline.

Such log files could help to preserve quite critical data about user activities

when the device goes offline or has some connectivity issues. These log files

may also work as the backup copies of user’s data in case of a device failure or

during accident investigations.

4.5 Back-end system

As it was said earlier, the back-end system was not a part of the original plan

but due to the need to store, view and debug data, obtained from the mobile

Safety Navigation application and MTFS framework, the author decided to

create one with the Java 8 programming language and the Spring framework.

The back-end’s services were quite simple Spring controllers, offering their

functionality through RESTfull APIs and offering means to store, update,

retrieve and delete the MTFS and Safety Navigation entities with the standard

HTTP method calls.

4.5.1 Data repository

The Spring framework’s CRUD repositories, available out of the box, have

significantly simplified the interactivity with the database, allowing to

concentrate more on the REST-based implementation of back-end services for

the Safety Navigation system.

The PostgreSQL database instance used to store the Safety Navigation and

MTFS data was provided by a stand-alone server and accessed by the back-

end services through the Spring framework’s CRUD repositories, backed up by

Hibernate entity managers.

For the sake of the author’s technical interests, the back-ends were also

configured for the utilization of so-called in-memory H2 database, running

purely inside the hosting Java Virtual Machine in PostgreSQL-compatible mode

(75).

86

Such solution allows deploying the database functionality inside the Safety

Navigation back-end’s binaries without a need to install dedicated PostgreSQL

servers, thus virtually allowing an easy installation of back-end instances in

cloud-based or other platform-as-a-service hosting environments.

The role-based access to database entries and back-end’s functionalities was

also enabled through the Spring framework’s standard security configurations.

The back-end supports the same roles as were outlined in the Safety

Navigation concept, namely the USER and the SUPERVISOR. The ADMIN role

was created especially for the back-end’s specific technical tasks.

4.5.2 Front-end

Although most of the back-end’s data could be obtained through RESTfull API

calls, the author decided to create a very simple UI for supervisors, just to

display all important data obtained from mobile user activities.

Since the back-end services were implemented with the Spring framework,

there were a few HTML template engines bundled with Spring and available out

of the box. Therefore, a generation of dynamic HTML pages was enabled at the

back-ends without any additional libraries or web runtime environments.

After a short review and trials, the author selected the Apache FreeMarker

template engine for generating a dynamic HTML content (71). The FreeMarker

engine provided enough of capabilities for representing all mobile user’s

activities and location updates on a relatively simple supervisor’s UI.

For representing the end-user’s location updates on a map and enabling some

interactivity, the author selected the Leaflet JavaScript library (70). The Leaflet

library allowed a direct utilization of MTFS and Safety Navigation location data,

converted to JSON objects, so that the user’s location history, geofences and

last known location were seamlessly integrated into the interactive map view.

The map view’s layers, tiles and location features were provided by the

OpenStreetMap (65) and the MapBox servers (76), selected up on the viewer’s

preferences.

87

FIGURE 34. Supervisor’s UI in the Safety Navigation system

As can be seen in Figure 34, the most important elements of the supervisor’s UI

are an interactive map, activity bars and event descriptions. The map view

scales according to the user’s location history and their current location on the

map. The end-user’s location tracks are presented as green-colored paths,

while geofence locations are presented by blue circles and the user’s current

location is represented by the orange marker in the same map view.

The most important events are displayed on the supervisor’s UI on the right

side. There the supervisor can find the latest geofence events, such as entering

or exiting safe locations. The next are the device events, describing what has

happened to the end-user’s mobile device, e.g. if the GPS module has been

switched on or off. Below are the networks events, showing connections or

disconnections from the wireless networks. The last block shows battery events,

describing when was the last time the user has charged the mobile battery.

At the bottom of the supervisor’s UI there are two histograms, showing the end-

user’s physical activity and device battery levels during the day.

The end-user’s walks are presented on a histogram as vertical green lines,

positioned exactly at the time when these walks were detected. The light green

lines are drawn at the moments when the user was running, and red lines are

drawn at the moments when the user’s falls were detected. Such histogram can

88

easily show if some anomalies in the user’s physical activities were presented,

possibly speeding up the supervisor’s decisions.

The map view may display both the locations obtained from the GPS system

and the ones obtained from the wireless and cellular networks. The locations

obtained from the networks could be of less precision compared to those from

the GPS system, but they could help to trace the end-user if the GPS module

on the mobile device were switched off.

The “Show markers” option helps to display markers on the map view, showing

some more details about each location update. An example of such marker is

presented in the Figure 35.

FIGURE 35. Marker detailed view

By clicking on the marker, the supervisor may see more details regarding that

particular detected location, such as its longitude and latitude, time stamp, the

user’s speed, accuracy and how the location was obtained. Such details may

89

help the supervisors to verify the quality of location data and review the end-

user’s behaviors.

4.5.3 Integrity with the third party systems

Just being too curious about the integration capabilities of both the mobile

application and back-end services, the author decided to integrate the Safety

Navigation with the Telegram messaging system (77).

The Figure 36 shows some messages issued by the Safety Navigation system

to the author’s Telegram’s account through the MTFS Telegram’s bot.

FIGURE 36. Safety Navigation notifications delivered through Telegram API

Such integration with the messaging systems could bring some benefits to the

supervisors and end-users, since it virtually shortens the links between people

and systems, and allows communicating over messaging clients rather than

through custom made communication systems.

90

In such case both parties could benefit from the rich infrastructure that

messaging systems are offering and, for example, minimize the need to use

special web sites or clients to review the end-user’s state and location.

91

5 TESTING

Right from the very beginning all developed software components were tested

on real Android devices and in real-life circumstances. The author’s aim was to

develop reliable, flexible and battery efficient software which other mobile

applications could benefit from.

The mobile Safety Navigation application was tested primarily by the author and

his 8-year old son. Although originally the Safety Navigation application was

aimed at elderly users, the author’s experience showed that there are quite a lot

of behavioral similarities between the elderly and young people, leading to a

conclusion that the testing coverage was intensive and sufficient.

5.1 Improving the location detection

The testing of the Safety Navigation application and MTFS components in the

real circumstances almost immediately started by supplying a project with an

important feedback on the reliability and performance of developed software.

The obtained results helped to significantly improve the most critical MTFS

services right from the very beginning, namely the Location, Accelerometer and

the HTTP Services.

For example, the location detection was not always of sufficient precision,

leading to error-prone results due to various factors, such as weather, network

coverage or the structure of the building where the end-user was located. Such

erroneous location detections might be easily seen in Figure 37, where the GPS

coordinates obtained from the Android’s Location Manager were quite

disturbed, leading to a fuzzy overall picture.

92

FIGURE 37. Quality of location detection in MTFS framework at the earlier

stages of the project

Such disturbance came from the lack of GPS signal inside the buildings, thus

the Android’s location detection subsystem tried its best to guess where the

device was actually located. At the same time the location detection was

significantly better outside the buildings, especially when the end-user was

moving, leading to a smooth track between two locations on the map.

Realizing that, the precision of location detection in the MTFS framework was

improved by activating the GPS module only when the device was actually

moving. The detection of device movements was performed by the

Accelerometer Service, which could identify when a person with the device was

most likely walking, running or staying at some place.

Each time the Accelerometer Service was detecting the movement of the

device, the corresponding signal was propagated across all MTFS services,

including the Safety Navigation application’s Main Service. After receiving such

93

signal, the Main Service was reconfiguring the Location Service to an increased

frequency of location detections, thus obtaining a much better precision in

detected locations.

Soon after the person had stopped walking or running, the Accelerometer

Service was broadcasting another corresponding signal, and the application’s

Main Service was reconfiguring the Location Service to a decreased frequency

of location detections, thus significantly minimizing the amount of erroneous

location detections.

As a result, such approach lead to a much better quality of detected locations,

as presented in the example in Figure 38. Additionally, the Location Service was

activated at right time and in right situations, helping thus to prolong the battery

life and significantly decreasing the amount of incorrect data about the user.

FIGURE 38. Improved quality of location detection after proper MTFS service

orchestration

94

At the same time it is worth to mention that the subject of GPS accuracy is just

too wide and depends on many factors, ranging from the GPS chip-set of the

mobile device and the quality of system software, to the environmental

circumstances and the default accuracy of civil services in the GPS system,

which is typically around 5-8 meters (78).

5.2 Adding robustness to the HTTP Service

The HTTP Service was originally implemented as the Android’s intent service

(79), but quite soon it became obvious that such implementation was not

sufficient for MTFS needs.

For example, while being an easy tool for performing tasks in parallel to the

application’s main thread, the intent-based HTTP Service lacked a required

robustness and could not perform multiple simultaneous HTTP requests, thus

prolonging and sometimes even blocking communications with the back-end

services.

Additionally, the intent-based HTTP Service could not properly buffer HTTP

tasks, sometimes leading to an improper order of HTTP requests send to the

back-end services.

As an improvement, the HTTP Service was just re-implemented as a stand-

alone service, accepting and performing HTTP tasks in an asynchronous multi-

threaded manner. This way each HTTP task was enveloped into Android’s

standard AsyncTask, keeping all other requests unblocked and independent

from each other.

Additionally, the HTTP Service was made aware of the network state by

accepting the corresponding network state notifications from the Device

Service. When the network was not available, the HTTP Service could simply

start buffering HTTP tasks and execute them later when the mobile device was

online again.

However, even when the network was available to the application’s needs,

some HTTP calls were failing due to various reasons, ranging from the quality

95

of the provider’s network services in some geographic locations, to some data

processing issues at back-end services.

These issues were solved with the number of trials that the HTTP call could

take before it was considered unsuccessful. Such simple solution allowed

retrying HTTP calls inside the HTTP Service without disturbing the application’s

Main Service or end-user.

As the real testing showed, it helped to overcome some network issues,

typically presented at the moments when the device switches between the

mobile and Wi-Fi network or when GSM towers are switching frequently while

the user is driving in the car.

5.3 Orchestration of the services

Quite soon after the beginning of implementation, it became clear that services

should be made re-configurable on the fly.

For example, the Accelerometer Service was supposed to compare the values

from the accelerometer sensor to the user-specific threshold values, which were

identifying the walking or running of that particular person. The Geofence

Service had to support a dynamic set of geofences, updated either by the back-

end services or obtained from mobile application configurations.

The solution to this problem quite naturally came from the Android’s information

bus system, called an intent broadcasting system, which was also utilized by

the MTFS framework.

Since MTFS services were exchanging information with each other over

specially composed Java objects, the configurations could be made

exchangeable if wrapped into similar Java object structures.

With this simple approach all the critical parameters of each reconfigurable

service were encoded into the corresponding configuration Java class.

Additionally, such classes were made marshable into their JSON

representations, allowing an easy transferring of such configurations over the

network.

96

This simple solution allowed both the reconfiguration of the services on the fly

and obtaining such configurations from the back-ends and configuration files,

thus leveraging the true power of service decoupling and user-specific tuning of

the MTFS services.

97

6 POSSIBILITIES OF FURTHER DEVELOPMENT

Probably the most important property of the MTFS framework is its modular

architecture which enables an easy extension and improving of the MTFS

functionality without loosing the already developed features.

Practically, it was just impossible to create a fully scaled framework that would

fulfill absolutely all use-cases and needs in the mobile health-care or well-being

domains inside a single project. However, anyone can grasp simple ideas

behind the MTFS framework will be able to add more functionality to the

framework up on some real practical needs.

6.1 Guiding Service

According to the author the most important missing feature of the current MTFS

framework is a guiding service, which could help a person to return to a safe

location by following a visual and acoustical guidance offered by some Guiding

Service.

Just presenting a map view with the path to a destination point might be quite

sufficient for the ones who are familiar with the digital maps and who can easily

orient on location, but users from the Safety Navigation’s target group – the

elderly and young people suffering from dementia or wandering behaviors – are

not necessarily capable of orienting themselves in the street just by looking at

some map.

In this sense an intelligent Guiding Service, which can speak to end-users in a

natural language and orientate them to a destination, could be simply the best

possible option.

6.2 Supporting other sensors

Although the Accelerometer Service has provided most of the required

functionality for MTFS basic use-cases, supporting other types of sensors could

enable other functionality and use-cases.

98

For example, tracking an environmental temperature through the corresponding

sensors from a large user group may enable to create live and dynamic

temperature maps of the city. Such temperature maps could help in preventing

insults and heart attacks, which are usually increasing in hot weather (80).

Similar benefits could be obtained from the humidity sensors, since humidity

could as well quite dramatically affect human well-being.

The utilization of the magnetic field sensor could also be useful. Although strong

magnetic fields are not that common in rural areas, they are quite common in

urban locations, and their presence could dramatically affect such vital devices

as artificial heart pacemakers. By reading the surrounding magnetic field, a

mobile device could alarm its user just before it will start affecting the user’s vital

electronic devices.

6.3 Reading user’s emotional state

The smartphones of today could provide face recognition services either

through an embedded functionality or through some external services, such as

Google’s Mobile Vision (81). This could give a chance to track the user’s

emotional state, which might be useful in case of people suffering from mental

diseases.

Simply by viewing at the patient’s face, the specialist could detect if they have

some mental disorder, such as panic attack or anxiety. Maybe a face

recognition system could also be taught to perform similar tasks and thus,

detect such disorders preemptively. This would help a suffering person to get

professional help just on time and possibly avoid any unfortunate consequences

of such disorders.

6.4 The 112 volunteering application

While the MTFS framework and Safety Navigation application were developing,

the author figured out another possible application for the MTFS functionality –

the 112 volunteering mobile application.

99

The core idea of such 112 volunteering mobile application is to create a virtual

network for medical professionals or otherwise properly trained people who may

offer first aid to nearby people before an ambulance or police is arriving at the

scene of accident.

Although ambulances can truly save lives, unfortunately sometimes they simply

cannot arrive just on time to rescue people. In such situation the emergency

center could simply check if some properly trained people are near the scene of

accident or suffering person and thus invoke them for offering first aid before it

will be just too late.

In the 112 volunteering mobile application each such first aid person would

specify their contact details, and possibly other medical skills. The mobile

application should allow a volunteer to specify when they are available for

supporting local emergency centers, so that it would be a truly volunteering

experience.

After all preparations, the 112 mobile application would be regularly checking

the volunteer’s availability and their current location and updating special

database in the local emergency center.

When something unfortunate happens, e.g. a heart attack or some injury, the

operator at the emergency center will be able to check if there are any 112

volunteers near the scene of accident and ask them to offer first aid before an

ambulance or police arrives to the place.

The emergency center’s operator could see the location of 112 volunteers

through the special map view, as presented in the Figure 39.

100

FIGURE 39. The 112 volunteering application based on MTFS framework

In the example presented in Figure 39, an emergency call about a man

suffering from a heart attack has arrived together with a description about his

location (presented in Figure with the red-colored marker in the center). The

emergency operator sends an ambulance to the scene and also queries in the

volunteering database for anyone who may just offer first aid before the medical

team is there.

Fortunately, there are three volunteers who may offer such help, presented in

Figure 39 by the red-crossed markers around, thus the operator can negotiate

with the closest one and send him to the suffering person before the ambulance

will be there.

Such 112 volunteering mobile application could also help in other cases, where

for example a relatively large amount of people should be organized and

coordinated on the scene of accident for some rescuing or searching operation.

101

Thus, in a much similar way some MTFS functionality could be reused for

enabling different use-cases, but with the same simple aim of rescuing people

and saving human lives.

102

7 CONCLUSION

The mobile technology is truly offering some opportunities for the health-care

and well-being domains. As the mobile devices become the only de-facto

computing devices that people are carrying around, they are representing a

truly promising platform for enabling mobile medical services.

With the modular hardware and software such mobile devices could be

relatively easy to turn into full-functional medical equipment. The intelligent

medical systems, accessible from the Internet, could indeed enable much of the

expertise and interactivity in such mobile medicine tools, e.g. providing

diagnostics and preventive and monitoring services. Therefore, the combination

of mobile computing, medicine and the Internet could indeed bring health-care

services virtually to any place on the Earth.

The concepts of the Safety Navigation system were outlined and developed

from just similar views. Much of the Safety Navigation’s properties were

obtained by using modular and interoperable components which were relying on

the cooperation between services and systems.

The utilization of the SOA-based approach and information bus concepts in the

mobile Safety Navigation application and back-ends has significantly simplified

their developments, bringing flexibility and robustness to the whole solution.

Choosing the Android platform as the primary target for the developed solution

was the right choice, since it has enabled many features in the MTFS

framework with a less development effort.

The resulting system showed enough of flexibility and reliability in some real-life

testing, thus proving the right architectural and technological choices made

during the project. Hopefully it has also obtained enough of critical features to

be reused in other mobile health-care and well-being projects at Oulu University

of Applied Sciences or other research companies.

103

REFERENCES

1. Pehr Brahe Software Laboratory, 2011. Cited 25.02.2013,

http://pbol.org/fi/index.jsp?link=projektit

2. Carone, G., Costello, D. 2006. Can Europe Afford to Grow Old? Finance

and Development magazine of the International Monetary Fund,

September 2006, Volume 43, Number 3. Cited 14.06.2011,

http://www.imf.org/external/pubs/ft/fandd/2006/09/carone.htm

3. IBM, Watson Health, 2016. Cited 22.11.2016,

https://www.ibm.com/watson/health

4. Smartphone historical sales figures in millions of units, Wikipedia, 2015.

Cited 05.01.2014,

http://en.wikipedia.org/wiki/Smartphone#Historical_sales_figures_.28in_

millions_of_units.29

5. TechCrunch, 1.2B Smartphones Sold In 2014, Led By Larger Screens

And Latin America. Cited 21.02.2015,

http://techcrunch.com/2015/02/16/1-2b-smartphones-sold-in-2014-led-

by-larger-screens-and-latin-america/

6. ARM, System IP, 2015. System IP For 2016 Premium Mobile Systems.

Cited 14.02.2015,

http://community.arm.com/groups/processors/blog/2015/02/12/system-ip-

for-2016-premium-mobile-systems

7. Ventola Lee C., Mobile Devices and Apps for Health Care Professionals:

Uses and Benefits, 2014. Cited 21.02.2016,

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029126/

8. Sotera Wireless, ViSi Mobile 2015. Cited 24.01.2015,

http://www.visimobile.com/visi-product-info

104

9. Makower, J., Meer, A., Denend, L. 2010. FDA Impact on U.S. Medical

Technology Innovation: A Survey of Over 200 Medical Technology

Companies. Advanced Medical Technology Association, November 2010.

10.Sony, SmartWatch 3 User Manual 2015. Cited 14.02.2015,

http://support.sonymobile.com/global-en/swr50/userguide

11. Fitbit, Surge Product Manual 2015. Cited 14.02.2015,

https://help.fitbit.com/resource/manual_surge_en_US

12.Sony, SmartWatch 3 2015. Cited 10.01.2015,

http://www.sonymobile.com/global-en/products/smartwear/smartwatch-3-

swr50

13.Fitbit, Surge 2015. Cited 21.01.2015, https://www.fitbit.com/uk/surge

14.Google, Android Wear 2015. Cited 14.02.2015,

http://www.android.com/wear/

15.MobileODT, 2015. Cited 22.04.2015, https://www.mobileodt.com/mobile-

colposcope.html

16.Peek Vision 2016. Cited 01.05.2016, http://www.peekvision.org

17.Sia, S. 2015. A smartphone dongle for diagnosis of infectious diseases at

the point of care. Science Translational Medicine. Vol. 7 (273).

18.Columbia Engineering 2015. Cited 21.02.2016,

http://engineering.columbia.edu/smartphone-finger-prick-15-minutes-

diagnosis%E2%80%94done-0

19.ELISA Biocompare 2016. Cited 21.02.2016,

http://www.biocompare.com/Immunochemicals/7185-ELISA/

20.Wang E. J., Li W., Hawkins D., Gernsheimer T., Norby-Slycord C. N. Patel S., 2016. Cited

01.10.2015, http://homes.cs.washington.edu/~ejaywang/documents/HemaApp.pdf

21.Wikipedia, Springboard Expansion Slot, 2016. Cited 31.07.2016,

https://en.wikipedia.org/wiki/Springboard_Expansion_Slot

105

22.Phonebloks 2016. Cited 31.07.2016, https://phonebloks.com

23.Project Ara, Google, 2015. Cited 09.01.2015, http://www.projectara.com

24.Armbrust M., Fox A., Griffith R., Joseph A., Katz R., Konwinski A., Lee

G., Patterson D., Rabkin A., Stoica I., Zaharia M., 2009. Above the

Clouds: A Berkeley View of Cloud Computing. Berkeley Technical Report

No. UCB/EECS-2009-28. Cited 31.07.2016,

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

25.The SOA Source Book, The Open Group, 2016. Cited 31.07.2016,

http://www.opengroup.org/soa/source-book/intro/

26.Unix Programming Environment, Kernighan B., Pike R., 1984. Prentice-

Hall Software Series

27.Medtronic Inc. and IBM Watson, 2016. Medronic and IBM Watson Health

partner to develop new ways to tackle diabetes. Cited 06.08.2016,

http://www.medtronic.com/us-en/about-3/medtronic-ibm-watson-

health.html

28. IBM Center for Applied Insights 2015. Star qualities: What it takes for

mobile development projects to succeed? Cited 31.07.2016,

http://ibm.com/ibmcai

29.Samsung, SmartThings 2016. Cited 28.02.2016,

https://www.smartthings.com

30.Volvo, Volvo on Call 2016. Cited 28.02.2016,

http://www.volvocars.com/intl/own/owner-info/volvo-on-call

31.Wi-Fi Alliance, Wi-Fi Direct 2015. Cited 07.01.2015, http://www.wi-

fi.org/discover-wi-fi/wi-fi-direct

32.Berkeley, BOINC, 2016. Open-source software for volunteer computing.

Cited 31.07.2016, http://boinc.berkeley.edu

106

33. IBM, World Community Grid 2016. Cited 31.07.2016,

https://www.worldcommunitygrid.org

34.Samsung, U.S. Patent 20130316684, 2013. Method for providing phone

book service including emotional information and an electronic device

thereof. Cited 31.07.2016, http://google.com/patents/US20130316684

35.Weiser, M. 1991. The Computer for the 21st Century. Scientific American

265 (3), 94–104.

36.Friedemann, M., Floerkemeier, C. 2010. From the Internet of Computers

to the Internet of Things. Informatik-Spektrum 33 (2), 107–121.

37.Lauerma, H. 2002. Dissosiaatiohäiriöt ja niiden hoito. Lääketieteellinen

aikakausikirja Duodecim. Vol. 118 (21), 2199–2205. Cited 08.10.2014,

http://www.terveysportti.fi/xmedia/duo/duo93238.pdf

38.King Pigeon Communication Co. Ltd., T3 Senior Telecare System

Manual, 2016. Cited 07.08.2016,

http://www.gsmalarmsystem.com/UploadFiles/20150627/T3%20GSM

%203G%20Telehealth%20User%20Manual%20V1.2.pdf

39.King Pigeon Communication Co. Ltd., EM-70 wearable SOS-button's

description, 2016. Cited 07.08.2016,

http://www.gsmalarmsystem.com/EnproductShow.asp?ID=278

40.Verkkokauppa, King Pigeon A10 GSM-vanhusvahti, 2016. Cited

07.08.2016,

https://www.verkkokauppa.com/fi/product/34722/dkmvx/King-Pigeon-

A10-GSM-vanhusvahti

41.Sposaro, F., Danielson, J., Tyson, G., 2010. iWander: An Android

Application for Dementia Patients, Engineering in Medicine and Biology

Society (EMBC), 2010 Annual International Conference of the IEEE, pp.

3875-3878

107

42.Wikipedia, Hippocratic Oath, 2016. Cited 07.08.2016,

https://en.wikipedia.org/wiki/Hippocratic_Oath

43.FifthElement, Products 2016. Cited 31.07.2016,

http://www.fifthelement.fi/tuotteet

44.RedHat Products, 2015. Cited 14.01.2015,

http://www.redhat.com/en/technologies/all-products

45.JBoss Projects 2015. Cited 14.01.2015, http://www.jboss.org/projects

46.Apache Projects, 2015. Cited 14.01.2015, http://projects.apache.org

47.Open Source Initiative, Licenses & Standards, 2016. Cited 14.08.2016,

https://opensource.org/licenses

48.Raymond, E. 1999. The Cathedral and the Bazaar. O'Reilly Media, 30.

49. ICS Alert 2013. Industrial Control Systems Cyber Emergency Response

Team, Alert 13-164-01. Cited 19.01.2015, https://ics-cert.us-

cert.gov/alerts/ICS-ALERT-13-164-01

50.Strategy Analytics 2014. Android Captures 84% Share of Global

Smartphone Shipments in Q3 2014. Cited 09.12.2014,

http://blogs.strategyanalytics.com/WSS/post/2014/10/31/Android-

Captures-84-Share-of-Global-Smartphone-Shipments-in-Q3-2014.aspx

51.Android, 2016. Cited 13.08.2016, https://www.android.com

52.Android Device Compatibility, 2016. Cited 13.08.2016,

https://developer.android.com/guide/practices/compatibility.html

53.Google Cloud Platform, 2016. Cited 13.08.2016,

https://cloud.google.com

54.Android Tools, 2016. Cited 21.02.2016,

https://developer.android.com/sdk/index.html

108

55.Android KitKat, 2016. Cited 13.08.2016,

https://developer.android.com/about/versions/kitkat.html

56.LAMP Software Bundle, Wikipedia, 2016. Cited 13.08.2016,

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

57.Nginx, 2016. Cited 14.08.2016, https://nginx.org/en/

58.SQLite vs MySQL vs PostgreSQL, DigitalOcean 2016. Cited 14.08.2016,

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-

postgresql-a-comparison-of-relational-database-management-systems

59.SQL conformance, PostgreSQL 2016. Cited 14.01.2016,

http://www.postgresql.org/docs/current/static/features.html

60.SQL Role Privileges, PostgreSQL 2016. Cited 14.08.2016,

https://www.postgresql.org/docs/current/static/ddl-priv.html

61.PostgreSQL, Migration from MySQL to PostgreSQL 2015. Cited

07.01.2015,

https://wiki.postgresql.org/wiki/How_to_make_a_proper_migration_from_

MySQL_to_PostgreSQL

62.PostgreSQL, Why PostgreSQL instead of MySQL 2015. Cited

07.01.2015,

https://wiki.postgresql.org/wiki/Why_PostgreSQL_Instead_of_MySQL_20

09

63.PostGIS 2016. Cited 06.01.2016, http://postgis.net

64.PgRouting 2016. Cited 06.01.2016, http://pgrouting.org

65.OpenStreetMap 2015. Cited 07.01.2015,

http://www.openstreetmap.org/about

66.OSG, Simple Features 2015. Cited 07.01.2015,

http://www.opengeospatial.org/standards/sfa

67.Spring Project, 2016. Cited 06.10.2016, http://www.spring.io

109

68.OpenJDK 8 2015. Cited 19.01.2015,

http://openjdk.java.net/projects/jdk8/features

69.Golang, 2016. Cited 13.08.2016, https://golang.org

70.Leaflet 2015. Cited 07.01.2015, http://leafletjs.com

71.Apache FreeMarker, 2016. Cited 06.11.2016, http://freemarker.org

72.Wikipedia, Representational state transfer 2016. Cited 29.10.2016,

https://en.wikipedia.org/wiki/Representational_state_transfer

73.Android Intents, 2016. Cited 16.11.2016,

https://developer.android.com/guide/components/intents-filters.html

74.Spring Security, 2016. Cited 06.11.2016, http://projects.spring.io/spring-

security

75.H2 Database Engine, 2016. Cited 20.11.2016,

http://www.h2database.com/html/main.html

76.MapBox, 2016. Cited 06.11.2016, https://www.mapbox.com

77.Telegram API, 2016. Cited 19.11.2016, https://core.telegram.org/api

78.GPS Performance Standard, 4th Edition, 2008. Cited 06.11.2016,

http://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf

79.Android Services, 2016. Cited 06.10.2016,

https://developer.android.com/guide/components/services.html

80.British Heart Foundation, 2016. Hot weather and your heart. Cited

20.11.2016, https://www.bhf.org.uk/heart-health/living-with-a-heart-

condition/weather-and-your-heart

81.Google, Mobile Vision, 2016. Cited 20.11.2016,

https://developers.google.com/vision

82.Android Jelly Bean, 2016. Cited 13.08.2016,

https://developer.android.com/about/versions/jelly-bean.html

110

83.Android Lollipop, 2016. Cited 13.08.2016,

https://developer.android.com/about/versions/lollipop.html

84.Android Wi-Fi Peer-to-Peer, 2016. Cited 28.02.2016,

http://developer.android.com/guide/topics/connectivity/wifip2p.html

85.Bastawrous, A. 2014. Get your next eye exam on a smartphone. Cited

01.05.2016,

https://www.ted.com/talks/andrew_bastawrous_get_your_next_eye_exa

m_on_a_smartphone

86.CIA, Long-Term Global Demographic Trends 2001. Cited 08.10.2014,

https://www.cia.gov/library/reports/general-reports-

1/Demo_Trends_For_Web.pdf

87.Chin, C. Linder, V. Sia, S. 2012. Commercialization of microfluidic point-

of-care diagnostic devices. The Royal Society of Chemistry, Lab on a

Chip, 2012.

88.Finlex, Laki potilaan asemasta ja oikeuksista 2015. Cited 11.02.2015,

http://www.finlex.fi/fi/laki/ajantasa/1992/19920785

89.Google, Android 2015. Cited 05.01.2015, http://www.android.com

90.Google, Eddystone Protocol Specification 2016. Cited 28.02.2016,

https://github.com/google/eddystone/blob/master/protocol-

specification.md

91.Google Firebase Android Packages, 2016. Cited 13.08.2016,

https://firebase.google.com/docs/reference/android/packages

92.Google, Gson Library, 2016. Cited 30.10.2016,

https://github.com/google/gson

93.Google, Physical Web 2015. Cited 06.01.2015,

https://google.github.io/physical-web

111

94.Google, Physical Web Cookbook 2016. Cited 28.02.2016,

http://google.github.io/physical-web/cookbook/

95.GPX, 2016. Cited 14.02.2016, http://www.topografix.com/gpx.asp

96. IBM, Quarks Project 2016. Cited 13.03.2016, http://quarks-edge.github.io

97. IDC 2014. Smartphone Market Share, Q3 2014. Cited 05.12.2014,

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

98. Intel, Intel Curie Module 2015. Cited 14.01.2015,

http://www.intel.com/content/www/us/en/wearables/wearable-soc.html

99.JCP 2015. Cited 19.01.2015, https://jcp.org/en/introduction/overview

100. Mann, S. 1997. Wearable computing: A first step toward personal

imaging. Computer, Vol. 20, No. 2, February 1997.

101. Mieli, Finnish Mental Health Association 2015. Cited 11.02.2015,

http://www.mielenterveysseura.fi/en

102. MQTT, 2016. Cited 18.09.2016, http://mqtt.org

103. OAuth 2.0 Authorization Framework, 2016. Cited 31.07.2016,

https://tools.ietf.org/html/rfc6749

104. Oljaca, N. 2014. Advances in bio-inspired sensing help people lead

healthier lives. Worldwide Medical Business Development, Texas

Instruments. Cited 20.08.2014.

105. Pananek, J. 2015. How wearable startups can win big in the

medical industry. Cited 21.02.2015,

http://techcrunch.com/2015/02/19/how-wearable-startups-can-win-big-in-

the-medical-industry

106. Preventice, Remote Patient Monitoring Solutions 2015. Cited

21.02.2015,

http://www.preventice.com/mobilehealthsolutions/remotemonitoringsoluti

ons

112

107. Sia Lab, A smartphone dongle to diagnose sexually transmitted

infections. Cited 11.02.2015, https://www.youtube.com/watch?

v=TC9XNqSgj4w

108. Simon, M. 2015. The Incredible Hospital Robot Is Saving Lives.

Also, I Hate It. Cited 10.02.2015,

http://www.wired.com/2015/02/incredible-hospital-robot-saving-lives-also-

hate

109. Sony, Open Devices 2016. Cited 21.02.2016,

http://developer.sonymobile.com/knowledge-base/open-source/open-

devices/

110. Sotera Wireless, Wi-Fi in Healthcare 2011. Cited 28.01.2015,

http://www.visimobile.com/wp-content/uploads/2011/11/wp_Wi-

Fi_in_Healthcare_20110217-2.pdf

111. Strack, R. The work force crisis of 2030 – and how to start solving

it now. Cited 02.12.2014,

https://www.ted.com/talks/rainer_strack_the_surprising_workforce_crisis

_of_2030_and_how_to_start_solving_it_now

112. Universal Plug and Play Forum 2015. Cited 07.01.2015,

http://www.upnp.org

113. Ubiquitous Home Environment 2015. Cited 14.01.2015,

http://fruct.org/sites/default/files/files/conference12/UbiHomeServer

%20Front-end%20to%20the%20Ubiquitous%20Home%20Environment

%20slide%20set.pdf

114. Mobile Augmented Teleguidance-based Safety Navigation concept

for seniour Citizens 2015. Cited 14.01.2015,

https://arkisto.uasjournal.fi/uasjournal_2012-2/1392-2946-1-CE.pdf

113

	TIIVISTELMÄ
	ABSTRACT
	Preface
	TABLE OF CONTENTS
	VOCABULARY
	1 introduction
	1.1 The original goals
	1.2 Enabling mobile health-care
	1.3 From open modular software to open modular hardware
	1.4 The network of smart things
	1.5 The network of services
	1.6 The Safety Navigation system
	1.7 Solutions similar to Safety Navigation system
	1.8 Privacy and awareness
	1.9 Primary aims for the MTFS framework

	2 The work environment
	2.1 Service-oriented approach
	2.2 Android platform
	2.3 Back-end environment
	2.4 Data repository
	2.5 The middleware
	2.6 Front-end technologies
	2.7 Cloud-oriented solution

	3 Definition
	3.1 The main use-cases in the system
	3.2 End-users
	3.3 Mobile Safety Navigation application
	3.4 Back-end system

	4 Implementation
	4.1 Main components of the system
	4.2 MTFS implementation
	4.3 MTFS service architecture
	4.3.1 Location Service
	4.3.2 Geofence Service
	4.3.3 Device Service
	4.3.4 Accelerometer Service
	4.3.5 HTTP Service
	4.3.6 Camera Service
	4.3.7 Securing the mobile traffic

	4.4 The Safety Navigation application
	4.5 Back-end system
	4.5.1 Data repository
	4.5.2 Front-end
	4.5.3 Integrity with the third party systems

	5 Testing
	5.1 Improving the location detection
	5.2 Adding robustness to the HTTP Service
	5.3 Orchestration of the services

	6 Possibilities of further development
	6.1 Guiding Service
	6.2 Supporting other sensors
	6.3 Reading user’s emotional state
	6.4 The 112 volunteering application

	7 Conclusion

