

Pasi Riissanen

Remote Firmware Updating

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

30 November 2016

 Abstract

Author
Title

Number of Pages
Date

Pasi Riissanen
Remote firmware updating

40 pages + 1 appendix
30 November 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded Systems

Instructor

Keijo Länsikunnas, Principal Lecturer

The objective of this final year project was to develop a device to gather measurement data
from an air quality sensor in a database over the Internet. The device was to be an add-on
for the already existing sensor without having to change any components of it. The sensor’s
firmware was also required to be updated remotely. This thesis and the application that was
developed is a part of a larger project including a database server for gathering data and a
web application for displaying the gathered data.

The platform for the device was an Atmel microcontroller with a Debian Linux operating
system. One part of the project was enabling a secure connection between the sensor client
and the server. When sending measurement data over the Internet security aspects regard-
ing data integrity and authenticity had to be taken into consideration. Another part of the
requirements of this project was updating the sensor’s firmware remotely. A program was
developed for this purpose. Converting the firmware file from Intel Hex into binary form and
utilizing the sensor’s proprietary communication protocol were the challenges faced when
writing the software.

The developed device met the set requirements and is able to communicate securely and
to upload new firmware to the sensor. This project was a good learning experience regarding
information security and autonomously functioning embedded devices.

Keywords IoT, SSH, Linux, socket, public-key authentication, Diffie-
Hellman, Intel Hex

Tekijä
Otsikko

Sivumäärä
Aika

Pasi Riissanen
Laiteohjelmiston päivittäminen etäyhteydellä

40 sivua + 1 liite
30.11.2016

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Sulautetut järjestelmät

Ohjaaja

Lehtori Keijo Länsikunnas

Insinööriyön tavoitteena oli kehittää laite, jolla kerätä ja lähettää ilmanlaatuanturin tuottamaa
mittausdataa palvelimelle Internetin välityksellä. Laitteen tuli olla lisättävä osakokonaisuus
jo olemassa olevan anturin yhteyteen, ilman että anturin kokoonpanoa tarvitsee muuttaa.
Anturin ohjelmiston etäpäivittäminen oli myös yksi vaatimuksista. Tämä insinöörityö oli osa
isompaa projektia, jossa osakokonaisuuksina on palvelin, jolle mittausdata kerätään, sekä
verkkosivusto mittaustulosten esittämistä varten. Laitteen alustana toimii Atmelin valmis-
tama mikrokontrolleri, johon asennettiin Debian Linux -käyttöjärjestelmä. Yksi osa projektia
oli yhteyden luominen anturin ja palvelimen välille. Mittausdataa lähetettäessä Internetin vä-
lityksellä piti ottaa huomioon tietoturva-asioita datan eheyden ja luotettavuuden suhteen.

Toinen osakokonaisuus tässä projektissa oli anturin ohjelmiston päivittäminen, jota varten
kirjoitettiin ohjelma ohjelmistotiedoston formaatin muuttamiseksi ja anturiin lataamiseksi.
Ohjelman luomisessa oli haasteena Intel Hex -tiedostomuodon ymmärtäminen, ja anturin
oman tiedonsiirtoprotokollan käyttäminen.

Projektin päättyessä laite vastasi sille asetettuja vaatimuksia ja kykenee tietoturvalliseen lii-
kennöintiin ja lataamaan anturille uuden ohjelmiston. Projekti oli hyvä oppimistilaisuus tieto-
turvaan ja itsenäisesti toimivien sulautettujen laitteiden toimintaan liittyvistä asioista.

Avainsanat Esineiden Internet, SSH, Linux, socket, julkisen avaimen auten-
tikointi, Diffie-Hellman, Intel Hex

Contents

Abbreviations

1 Introduction 1

2 Internet of Things 2

2.1 New Network Technologies for IoT 2

2.2 Security Concerns 3

2.3 Secure Boot 3

3 Security and Cryptography 5

3.1 Confidentiality with Encryption 5

3.2 Integrity 6

3.3 Authentication and Certificate Authority 7

4 System Description 8

4.1 Hardware and Operating System 9

4.2 Air Quality Sensor 9

4.3 Development Tools 11

5 Secure File Transfer over an Insecure Network 13

5.1 Cryptography and Authentication 13

5.2 Establishing a Secure Connection 14

5.3 Data Transfer during Normal Operation 15

5.4 File Integrity Considerations 17

5.5 Key Sharing Protocol 18

5.6 Possible Vulnerabilities 20

6 Intel Hex File Format 21

7 Description of Armupdate 23

7.1 Using Socket API for Network I/O 25

7.2 Firmware Conversion Classes 27

7.3 Conversion From Intel Hex to Binary 29

7.4 Update Protocol Packet Structure 32

8 Future Development 33

8.1 Key Revocation 34

8.2 Implementing a Secure Boot 34

9 Conclusion 36

References 37

Appendices

Appendix 1. Bash Script key_upload.sh

Abbreviations

NB-IoT Narrowband Internet of Things, a new NB radio technology to address the

requirements of the IoT

LTE Long-Term Evolution, mobile phone communication standard

GSM Global System for Mobile Communications, mobile phone communication

standard

Nelix Unit that polls the air quality sensor for measurement data locally through

ModBus. Running Linux OS

TCP Transmission control protocol

USB Universal serial bus

JSON JavaScript Object Notation

SSH Secure Shell

SCP Secure copy, a tool provided with SSH

ASCII American Standard Code for Information Interchange

1

1 Introduction

The goal of this project was to add network connectivity to a sensor that measures quan-

tity and mass of particles in air. The sensor can be interfaced with a PC, but only locally.

This project started from the need to remotely and wirelessly gather data from the sensor

to a remote database with an integrated device. Wireless connectivity provides ability to

form a network of sensors to monitor air quality on multiple measure points over a wide

area. By gathering the measurement data to a database, a comprehensive analysis can

be made of the air quality in that area.

During the sensor’s operational lifetime, its settings, calibration values and firmware need

to be updated. The most convenient way to achieve this is remotely over an Internet

connection. Wirelessly transferring data over an insecure network produces challenges

with data security and integrity. To solve this, the security aspects needed to be evalu-

ated and appropriate security measures implemented in the system.

This thesis focuses on two topics, creating a secure connection between the sensor and

the database server and the program Armupdate that updates the sensor’s firmware.

Armupdate also handles a file format conversion from Intel ASCII Hex into binary. An

Atmel SAMA5D4 series microcontroller was used to interface the already existing sensor

through a ModBus/TCP interface. A 3G radio modem was installed in the microcontroller

to gain reliable internet connectivity. A Linux Debian operating system was installed in

the microcontroller for a practical way to handle files and to utilize the connection pro-

vided by the modem. This microcontroller unit is later referred to as Nelix. Reading the

measurement data from the sensor is not one of the main topics in this thesis.

2

2 Internet of Things

The Internet of things, or IoT, is a fairly recently popularized term used to describe a

network that does not require human interaction to gather data or send messages. In

automotive industry sensor networks have been commercially available since the 1980’s

but only fairly lately data from these networks is sent over the internet for failure statistics

and optimized maintenance plans [1]. The growth of IoT is thought of to be able to pro-

vide new services and new features on top of existing ones. Examples of IoT are being

implemented in building automation and logistics services improving effectiveness and

thus reducing costs.

2.1 New Network Technologies for IoT

Most IoT applications only need a small amount of bandwidth but require to have low

power consumption in operation. As millions of IoT devices are expected to be in opera-

tion during the next ten years, new technologies are being developed solely for IoT ma-

chine-to-machine type operations [2].

Members of the Third-Generation Partnership Project decided in September 2015 to

standardize a new radio technology narrowband Internet of Things, NB-IoT, also referred

to as LTE-M2. It is targeted towards enabling the connectivity of machine-to-machine

devices over a Wide Area Network. NB-IoT is designed to improve indoor coverage,

support a massive amount of connected devices and to reduce end device power con-

sumption. One major benefit of NB-IoT is the ability to utilize existing LTE and GSM

frequency bands which should ease the deployment of the technology. In September

2016 Nokia together with Sonera tested the NB-IoT network technology in Finland trans-

ferring temperature, humidity and barometric pressure sensor data. [2;3.]

A French company called Sigfox utilizes its own proprietary low power wide area network

technology for low power and low data throughput devices. The Sigfox network operates

on unlicensed frequency ranges employing Ultra Narrow Band, UNB technology. Maxi-

mum bandwidth with Sigfox at 100 bits per second is even lower than with NB-IoT but is

still enough for applications where the amount of data to be transferred is minimal. Low

bandwidth allows for minimal power consumption with standby times which can be tens

of years. [4;5.]

3

2.2 Security Concerns

With devices affecting and monitoring physical surroundings, potential attacks are no

longer targeted solely on data or services but also privacy and physical security. [6] Baby

monitors and digital video recorders with Internet access have often times poorly pro-

tected access control. One cause is the end user not changing the default password for

their account but also the audio and video stream can be without any sort of encryption,

resulting in a major privacy breach. [7.]

Some attacks benefit from the interconnectability of devices. If one of the devices in a

Local Area Network or Controller Area Network has access to the internet and is

breached through that connection, it should not provide access for the attacker to the

rest of the devices on the network. A prime example of this is remotely controlling a Jeep

Cherokee described in the paper Remote Exploitation of an Unaltered Passenger Vehi-

cle by Charlie Miller and Chris Valasek. Through the car entertainment unit that is con-

nected by a CAN bus to the rest of the on board computers, Miller and Valasek were

able to control the cars accelerator, brakes and steering. [8.]

IoT devices having access to the Internet and therefore having an IP address have be-

come a target for bot net creators. Bot net is a network of devices infected with software

that is most often used for denial-of-service attacks. With thousands of infected devices,

the bot net is able to attack a host by creating massive amount of service requests,

overloading the target’s resources and thus denying the service for even the legitimate

users. For example, the Mirai malware infected hundreds of thousands IoT devices in

2015 by scanning for devices with factory default user name password combinations.

[9;10.]

2.3 Secure Boot

One main topic in IoT security is the ability for the system to autonomously check for

unauthorized software modifications. Secure boot is a procedure that enables a device

to verify the authenticity of the application code before execution. Verifying the applica-

tion before execution provides protection against a large amount of security breaches.

Malware infected or otherwise modified software will not be launched. The application

4

code is verified by a root-of-trust program that is stored on a read-only-memory and ex-

ecuted on start up before starting the application. This operation takes place each time

the device is powered on and thus does not protect from changes in the application that

could happen during run time. The root-of-trust program must be stored in a non-modifi-

able memory such as ROM or internal flash memory that can be by other means assured

to be modifiable only by an authorized party. [11.]

For the root-of-trust program to be able to verify the application code, the code must be

digitally signed by the issuer of the application. The signature consists of a hash calcu-

lated from the application code which is encrypted using the private key of the signing

party. The root-of-trust program verifies this signature by decrypting the hash from the

signature with the public key of the signing party and calculating a hash from the appli-

cation code. These two hashes must match for the application code to be considered

valid. The public key of the signing party must be stored on the device in a non-modifiable

memory so that it cannot be modified by any unauthorized party. The public key should

also be protected by a checksum for integrity verification. Updating the software on a

root-of-trust based system requires the new software to be also signed appropriately with

the private key of the signing party. [11.]

5

3 Security and Cryptography

For a network to be considered secure it must guarantee confidentiality and that only

known users are able to send and receive messages without anyone else accessing the

content of the messages. The network must guarantee integrity of messages, making

sure that they are free of alteration by unauthorized users or by technical malfunction.

Users of the network must be able to prove their authenticity so that their messages can

be proven to be from a certain origin and it must be impossible for unauthorized users to

masquerade themselves as someone else. [12.]

3.1 Confidentiality with Encryption

Confidentiality in practice is achieved with encryption, which is a process where the con-

tent of the message is converted into a ciphertext. Even if a third party has access to the

media and therefore to the message, they are unable to determine its content from the

encrypted message. The algorithm used in the conversion process is known as a cipher.

The secrecy lies in what algorithm is used and this information must be somehow shared

between endpoints through another secure channel. Maintaining different ciphers unique

for each user is practically impossible with any larger networks. To overcome this down-

side most ciphers use keys to encrypt and decrypt messages. With keys the secrecy is

transferred from knowing the cipher to knowing the correct key. A single algorithm can

be used but the key is the shared secret between endpoints. Symmetric key ciphers use

the same key for encrypting and decrypting the message. Both endpoints must know this

key before being able to communicate and thus again creating the need of sharing the

key through an alternative secure channel beforehand. [12.]

Asymmetric key ciphers use two keys, one to encrypt and another to decrypt the mes-

sage. Encrypting and decrypting with different keys is usually done by utilizing a trapdoor

one way function where the outcome of the function for a chosen value is easy to calcu-

late but reversing the operation is difficult. In cryptographic context difficult means that it

takes an unfeasible amount of computing time to reverse the operation. In theory any

encryption can be decrypted without knowing the key if given infinite resources and time.

As asymmetric keys use two keys, the encryption key can be public. Only the decryption

key must be kept secret. This again leads to the dilemma of sharing the decryption key

but in most cases this only needs to be done once. When initializing a connection with

6

the aim of using a symmetric key cipher, within the first steps information of the cipher

or key must be sent before the channel is secured. This enables any potential attacker

to also know what cipher or key will be used. With asymmetric keys, the first message

sent can be encrypted with the public encryption key. Only the targeted recipient of the

message has the correct decryption key; therefore, the attacker is unable to determine

any contents of the message. Asymmetric ciphers are also referred to as public key ci-

phers as the encryption key can be public. [12.]

3.2 Integrity

If a third party has access to the media and is able to send and receive encrypted mes-

sages, they cannot access the content but can still modify the messages. This way se-

curity is not compromised but the service is most likely unusable depending on the out-

come of the modification after the message has been decrypted. One-way hash functions

are used in cryptography to ensure message integrity. Typical for a one-way hash func-

tion is that it takes a variable length input and the result after conversion has a fixed

length. The function’s output is a hash that is used as a checksum when sent along with

the message. By agreeing what hash function to use, both endpoints can calculate the

hash from the message and come to the same end result.

Properties of a good hash function include that it is unfeasible to invert, meaning that it

is next to impossible to recreate the message from the hash by trying all possible results.

It is also desirable that a small change in the message leads to a big change in the hash

to protect against transfer errors. In most scenarios a potential attacker would want to

change only a small part of the message. Another desirable feature is that two different

messages should never result in the same hash. This to ensure that an attacker cannot

completely change the message and still being able to maintain a correct hash. If an

attacker is able to modify the whole message, they are most probably also able to create

a totally different hash. This situation then becomes an authentication issue which is

described in chapter 2.3 Authentication and digital signatures. It is also possible to cal-

culate the hash not only on the message content but also including the shared secret

between the sender and receiver. As the attacker does not have the key, they cannot

create a hash for the message. [12.]

7

3.3 Authentication and Certificate Authority

Authentication is a concept that ensures that a node in the network is who they claim to

be. There are two main approaches in cryptography to ensure authentication, digital sig-

natures and challenge response queries, both of which utilize asymmetric encryption

with public keys. Challenge response queries consist of a random number that is sent to

the node that is requesting authorization. The receiving node signs this random number

with its private key and sends the signed response back to the other node. The other

node can then decrypt this signature with the according public key and authenticate the

node. This challenge can be repeated the other way round so that both nodes are certain

of each other’s identity. With digital signatures, a part of the message is encrypted with

the private key. The receiver can decrypt this signature with the claimed sender’s public

key and confirm its authenticity. This method differs from public key encryption by the

fact the encryption is done with the private key instead of the public key. Digital signa-

tures are also often used with file transmissions to prove that the file is the same unal-

tered version as the provider claims it to be. [12.]

In the usual scenarios where public keys are used to authenticate nodes in the network,

the public key is presented and proven to be authentic with challenge response queries.

This does prove that the node has the correct private key and thus is the owner of the

said public key, but there is no certain link between the identity of a user or node in the

network and their key pairs. Public key authentication has a possibility for man-in-the-

middle attacks if Node A does not know the identity of Node B and is unknowingly com-

municating with node X. Certificate authority is a third party whose only task is to keep a

record which public key belongs to whom. The certificate authority issues a certificate

which proves that the target of a certificate is known by the certificate authority. When

Node A in the network wants to connect to Node B, it requests the target node’s public

key from certificate authority. Certificate authority returns the public key encrypted with

its own private key. Node A can be certain that the public key for Node B is authentic as

long as the certificate authority is trusted. All nodes in the network need only to know the

public key of the certificate authority instead of knowing all keys for all other users in the

network. [12;13.]

8

4 System Description

The key hardware components used in this thesis are the particle sensor and the Atmel

SAMA5D4 series ARM based embedded microprocessor unit illustrated in figure 1, with

a 3G modem. The Atmel microprocessor unit was used with an evaluation platform that

had all the necessary connections and interfaces for application development. The

server into which the measurement data was gathered and the web application for dis-

playing the data is not described in this thesis.

Figure 1. Atmel SAMA5D4-XULT evaluation kit. Copied from Atmel [14].

The air quality sensor unit has two interfaces for communication, a USB and an Ethernet

port. The USB port utilizes the proprietary USB protocol for communicating with a pro-

prietary software on a PC made for interfacing the sensor. With this software, all the

sensor unit's functionalities are accessible, including reading measurements, setting new

calibration values and uploading new firmware. In this project’s application, the sensor

was interfaced through the Ethernet port as illustrated in figure 2. The air quality sensor’s

Ethernet port supports both ModBus/TCP and the proprietary packet protocol. The Mod-

Bus/TCP bus is used for reading the sensor’s holding registers which holds all the meas-

urement data and possible error and status codes. The proprietary packet protocol over

TCP is used for firmware updating. The Atmel microprocessor unit together with Linux

operating system is later referred to as Nelix.

9

Netta
Pegasor Urban Air

Quality Sensor

ModBus for reading measurement data

Nelix
Atmel Embedded

Microprocessor

3G Module Server with database

Internet

Proprietary packet protocol for firmware

uploading

TCP

USB

EthernetEthernet USB

Figure 2. System layout diagram

4.1 Hardware and Operating System

The Atmel SAMA5D4-XULT is an evaluation kit for the Atmel SAMA5D4 series ARM-

based embedded microprocessor units. The evaluation kit includes all required inter-

faces for this project. The Ethernet interface was used for opening an SSH connection

locally to the board for development and debugging purposes and in a later stage to

communicate between the Atmel board and the air quality sensor. The USB interface

was used for connecting the 3G modem. The modem provides wireless internet access

for data transfer from the microprocessor to the database server.

A Debian Linux operating system was installed to the Atmel Embedded Microprocessor

to manage the hardware and software resources. Having an operating system enables

the handling of the firmware image as a file and also running different programs simulta-

neously automated with scripts. All the functionalities of Nelix are driven by the main

bash script Nelix_main.sh.

4.2 Air Quality Sensor

A part of the system is an air quality sensor which is designed for combustion engine

emission monitoring and outdoor and indoor air quality monitoring. The sensor measures

the amount of particles and mass concentration in gas. It can detect particles with size

10

ranging from a few nanometers up to 2.5 micrometers, depending on the sensor’s con-

figuration. The sensor itself requires clean and dry compressed air feed to function

properly. At the beginning of the project, the sensor was installed in a laboratory at

Metropolia University of Applied Sciences (UAS) with external air and moisture filters.

Later, an all-in-one package, was installed at school premises as illustrated in figure 3.

The unit has an air compressor and filters internally installed.

Figure 3. Air quality sensor unit in operation at Metropolia UAS premises

11

4.3 Development Tools

Development of Armupdate software was carried out in Windows environment with Vis-

ual Studio development environment. Visual Studio offers a graphical user interface for

code editing and a debugger tool. Initial compilations and tests were run on Windows

environment. Later the code was compiled on a target processor. A quicker way of com-

piling and testing would have been to have a cross-compiler that can compile for another

kind of processor than the compiling host. Without a cross-compiler, the source needed

to be transferred to the target processor and compiled there. Small modifications to the

code were simple enough to be done on a/the target processor with a simple text editor

such as the Unix native Vi. Bigger modifications were done on Windows for practical

reasons and also to be able to upload the source code to Git version control.

Valgrind is a wrapper around a collection of tools and it functions similarly to a virtual

machine. It utilizes just-in-time compilation techniques which means that the compilation

is done during run time. The target program is translated to a form called Intermediate

Representation and in that form it can be analyzed with Valgrind tools. After any analysis

or modification is done to the Intermediate Presentation form, it is translated back into

machine code and executed on the host processor. [15.] All software that was developed

for this thesis was analyzed with MemCheck, which is a memory mismanagement de-

tector that can detect memory leaks and misallocation errors. It was used to verify that

there are no memory leaks in the programs. A memory leak could be fatal in a system

that is supposed to be running continuously possibly in a remote location.

Most of the code debugging needed to be executed on the target processor. GNU Project

Debugger (Gdb) was used for this purpose. Gdb requires both the source code and the

compiled binary to enable the user to step through the source code while executing it.

Program progression and variables and their values can be examined and the program

can be executed line by line or until a set breakpoint is reached. There are graphical user

interfaces for Gdb but they were not an option as the only way of interfacing the Nelix

was with command line through a network interface.

12

Wireshark is a network traffic analyzing tool that can display the data being transferred

over a network interface. It was used to investigate what kind of commands and re-

sponses the sensor’s data interface transferred and to ensure that the software running

on Nelix was sending the data in the right format. Wireshark can decode and identify

most of the common communication protocols and display the headers and other fields

of the protocols. The air quality sensor is running a proprietary protocol over the standard

Modbus/TCP and Wireshark made analyzing and debugging this interface easy. Firstly,

the sensor was interfaced with a desktop PC running Windows operating system and the

proprietary configuration software. With Wireshark running on this computer it was pos-

sible to see what commands were sent from the PC and how the sensor responded.

Later when the sensor was interfaced with the Atmel SAMA5D4 with the Debian operat-

ing system, running Wireshark was not feasible. Tcpdump is a program that is included

as a standard package in most Linux distributions and it can save the raw data passing

through the Atmel’s network interface to a file. The file can then be transferred to a PC

and analyzed with Wireshark in the same manner as a locally captured log.

13

5 Secure File Transfer over an Insecure Network

The sensor clients connect to the measurement database server over internet. To ensure

that data that the server receives is valid, the connection needs to be encrypted and the

sender needs to be proven authentic. This is achieved with Secure Shell (SSHl). SSH is

a suite of tools that enables an encrypted connection between hosts. It utilizes public-

key cryptography for authentication and a symmetric shared secret for encryption. All

traffic between the sensor and the measurement data server is initiated by the sensor

client. This way the sensor clients do not need to respond to any potentially malicious

inbound connection requests.

5.1 Cryptography and Authentication

Public-key cryptography is a cryptographic protocol system that the SSH protocol utilizes

for client and server authentication, a proof that both parties are what they claim to be.

Public-key encryption is also known as asymmetric cryptography as it uses a combina-

tion of two separate keys to encrypt and decrypt messages. One key is called public key

as it is shared with the recipient of the message. The other is called private as it is kept

secret and stored only locally on the client. The client signs a message with its private

key and the recipient server decrypts it with the client’s public key. These two keys are

mathematically linked, in a way that it is practically impossible to deduce the private key

from the public key. These key pairs are only used for authentication and cannot be used

for encrypting the connection. [12;13;16.]

SSH utilizes symmetric encryption in order to secure the transmission of information.

When a client initializes an encrypted connection to a server, the connection is encrypted

with a shared secret created using Diffie-Hellman key exchange algorithm, after the client

has verified the server’s authenticity with public-key authentication. Typical for a Diffie-

Hellman is that both parties participate in generating the key without allowing one end to

control the outcome of the process. Also with Diffie-Hellman, the shared secret is gener-

ated without the need of sharing the secret over an insecure connection. The generated

key is a symmetric key, as it used to both encrypt and decrypt messages. After the con-

nection has been encrypted, the client can be authenticated to access the server.

[12;13;16;17.] In the application described in this thesis, the authentication is accom-

plished with both public-key and a password.

14

5.2 Establishing a Secure Connection

Establishing an SSH connection starts with the client opening a TCP connection to port

22 on the target server. Port 22 is the default and an officially assigned port for SSH [16].

The connection process is illustrated in figure 4. During the first two steps, the client and

the server exchange SSH version information and lists of supported encryption protocols.

The encryption protocol is agreed on, based on what the client is able to support. If none

of the protocols is supported by both parties, the connection is closed. The server also

sends information about its identity in the form of a public key. If the host’s public key is

not found in the client’s list of known hosts, a warning message is displayed, to inform

that the host is previously unknown or its identity has been changed since the last con-

nection. During the fourth step, a shared secret is negotiated between hosts. The algo-

rithm used to calculate the shared secret is selected from the lists of supported ciphers

sent at steps one and two. [12;13;17.] An encrypted communication channel is estab-

lished after step four. It is safe to send a password and other login credentials through

this encrypted channel.

3. Verify that

 <Server public key>

is found in:

list_of_known_hosts

Nelix
Data

server

1.

Client Hello
<Version information>

<supported protocols>

Server Hello
<Version information>

<supported protocols>

<Server public key>

2.

5. Verify signature and

that <Client public key> is

found in:

authorized_keys
strict-host-key-checking

[ON]

Exchange shared secret
Diffie-Hellman algorithm4.

Encrypted transmission channel

Signature
<Signed with private key>

Password
”Admin123"

Figure 4. SSH connection initialization. Data gathered from Chandra and Bauer [12;13.].

On step five, the client creates a signature with its private key that is sent to the server.

With the client’s public key, the server can decrypt that signature, and verify that the

client is the actual owner of the said public key. In addition to public key authentication,

15

a password is also required. The password can be sent as cleartext as the connection is

already encrypted by the transport layer. Both the client and server must be running

SSH version 6.2 or newer to be able to utilize multiple authentication methods. [13.]

5.3 Data Transfer during Normal Operation

During normal operation Nelix retrieves measurement data from the sensor and uploads

it to the measurement data server. Nelix_main.sh bash script calls the measurement

data reading program modbuspoller, which polls measurement data from the sensor

through a TCP/ModBus interface. The script then uploads the gathered data as a JSON

file to the measurement database server. After each upload, a new configuration file is

retrieved from the server. This process is illustrated in figure 5. Handling the new config-

uration file is not implemented yet. The current implementation is an example of how the

server is able to inform the Nelix unit if any new calibration parameters or a firmware

update is available.

16

/netta_interface /netta_interface/data

ModBusPoller

Creates a measData file

measData

jsonFileMaker.py

Parses measData into a

.json file

Measurement

.json

Make a copy of

measData
measDataTemp

SCP

Send every .json

measurement file from

/data to server

Measurement

.json

Measurement

.json

Measurement

.json

Server with

database

If send

succeeded

Remove

file from

/data

For

every file

in

/data

YES

Sleep 60(s)

Wait for ppp to establish

Read device ID from file

NO

SCP

Retrieve new config file

from server

Config

.json

Sleep 500(s)

Wait for values to

change on Netta’s

holding registers
ModBusPoller

Creates a new

measData file replacing

the previously madeCompare measData and

measDataTemp

If different
NO Sleep 15(s)

Wait for values to

change

YESReturn to loop beginning

Loop start

Start program

Figure 5. Flowchart diagram of bash script Nelix_main.sh

The JSON file is uploaded to the server with Secure Copy (Scp). Scp is a tool that comes

with SSH and it is used to remotely copy one file from one host to another [18]. When

running the scp command, an encrypted connection to the target host is created auto-

17

matically, as described in chapter 3.2 Establishing a secure connection. Multiple authen-

tication methods are used. The target server will require public-key authentication and a

password.

By design, SSH requires that the password is typed by an interactive keyboard user. This

drawback that causes a challenge in automating the process is avoided by using sshpass

to run the scp command. Sshpass makes the situation appear to SSH so that the pass-

word is typed from a keyboard instead of an automated script. [19.] Scp is used this way

for all data transfer from Nelix, to both upload the measurement data to the server, and

to download new configuration files or firmware.

5.4 File Integrity Considerations

Scp runs over the TCP transport layer protocol which employs a cyclic redundancy check

for each packet’s integrity verification. While it does catch most errors, it cannot be con-

sidered a guarantee for file integrity. The file is transmitted as separate packets and a

missing packet could go unnoticed resulting in a corrupted file. A corrupted firmware

image could render the sensor inoperable. The worst case scenario would be if the sen-

sor’s communication interface would stop responding. This would have the immediate

effect of the sensor not being able to serve measurement data to Nelix as well as causing

Nelix to have no chance of uploading another firmware onto the sensor.

Currently there is no extra file integrity verification implemented to the system. One way

to overcome this risk of file corruption during transfer would be to calculate a checksum

of the original firmware file and compare that against the downloaded file’s checksum.

Md5sum is a program installed by default with most Linux distributions. It can calculate

and verify 128-bit MD5 checksums of files. A 128-bit MD5 checksum is considered a

reliable way to verify that the file transferred correctly and intact. For verifying that the

file was downloaded from an authentic source, the MD5 has become obsolete and

should not be used for that purpose. [12.]

18

5.5 Key Sharing Protocol

With public key authentication there is always the dilemma of knowing who in the network

has which key and which identity matches which key. Implementing a certificate authority

as described in chapter 3.3 would be one solution but would require one extra instance

the only function of which would be key management. In this project the network and the

relation between sensor clients and the server is simple and straightforward. Sensor cli-

ents only need to communicate to one host as opposed to some other application where

sensors would communicate with each other as well. In such a simple network as this it

is easier to implement key management within the measurement data server. The meas-

urement data server holds a list of all the sensor clients and their public keys. Only the

keys that are present in that list can be used to authenticate with the server.

Each sensor node’s public key is introduced to the measurement data server before the

actual secure connection is established. The public key itself is not required to be kept

secret. Introducing sensor clients to the measurement data server acts as a certificate

registration function as in the certificate authority implementation. This eliminates the

need for the data measurement server to accept inbound connections from previously

unknown hosts over the Internet. Sensor nodes have a private key that corresponds to

the public key and can prove their identity with it. Public keys of sensor nodes are added

to the measurement data server’s list of known hosts. During the development of the

application described in this thesis, a local area network was used for key sharing, but

any secure network would suffice.

Nelix has a cronjob that is set to run on the first boot and it runs the shell script key_up-

load.sh (see Appendix 1) that handles the key sharing procedure. After the key uploading

is successful, the cronjob is deleted to ensure it will not be executed again as it reserves

several resources by constantly trying to connect to the key server. With this design,

after the Nelix unit has been programmed in production it can automatically generate

and upload SSH keys through a local network connection as illustrated in figure 6.

19

List of known

hosts

Data

server

Key

Server
Ethernet LAN connection

Public-key
MAC address

Key_upload.sh

Nelix
Atmel Embedded

Microprocessor

Figure 6. SSH key pair sharing over LAN

Key_upload.sh script starts with the generation of the public and private SSH key pairs.

ssh-keygen -f /home/user/.ssh/id_rsa -t rsa -N ''

This command generates the key pairs with default settings and with an empty pass-

phrase. The private key is saved to /home/user/.ssh/id_rsa and the public key in

/home/user/.ssh/id_rsa.pub.

The device’s MAC address is assigned to a variable with the following command:

MAC_ADDRESS=`cat /sys/class/net/eth0/address`

The target IP address where the keys will be uploaded to can be configured by modifying

the IP_ADDRESS variable in the script. The script sends a ping request to the target

server. When the ping request is successful, the generated public key is uploaded to the

key sharing server as request parameters of the wget command. The device’s own MAC

address is also sent to pair sensor units and keys accordingly.

wget –spider –S "http://$IP_ADDRESS/index.php?key=$PUB_KEY"

The key sharing server handles saving of the key and MAC address into a list as a pair.

In this project, the MAC address was initially used to differentiate different sensor nodes

20

from each other but the sensor clients are also given a device ID which is used for client

identification within the measurement data server. With this ID number, the measurement

data server can maintain a list of clients, their configuration and firmware versions. Con-

nection between the key sharing server and the measurement data server is not de-

scribed in this document.

5.6 Possible Vulnerabilities

How the measurement data server’s identity in the form of a public key is given to Nelix

is not defined. With this approach the client does not have a way of making sure it is

communicating with the authentic host. Any malicious third-party could pose as the host

to the sensor client. The client would accept this previously unknown host without any

verification. One simple way to avoid this situation would be to introduce the measure-

ment data server to the clients during production, the same way as sensor nodes are

introduced to the measurement data server. SSH configuration parameter StrictHost-

KeyChecking could be set to “yes” on the sensor client as well which would cause the

sensor clients to automatically abort connections to servers that do not appear on the

client-side list of known hosts.

In this project’s application both public-key authentication and a password are required

for server access. Public-key authentication alone results in a man-in-the-middle attack

becoming somewhat impossible. The shared secret is calculated by the peers when ini-

tializing the connection, and as mentioned before, no peer can determine alone what this

secret will be. This shared secret also includes a session identifier. In case of a man-in-

the-middle attack, the attacker has two connections and two shared secrets, one to the

client and one to the server. In case of public-key access authentication, the client will

send a signature to the server using its private key. This signature includes among other

things, the session identifier. As the attacker does not have the public key necessary to

decrypt this signature, it cannot relay it to the server. The session identifier mismatch

between the client and the server will lead to authentication failure. [20.]

21

6 Intel Hex File Format

Intel Hex is a file format used to present binary data as an ASCII text file. The Hex file

consists of records, each of which contains six fields as illustrated in figure 7. The Intel

Hex file format defines also six different record types:

• Data Record (8-, 16-, or 32-bit formats)

• End of File Record (8-, 16-, or 32-bit formats)

• Extended Segment Address Record (16- or 32-bit formats)

• Start Segment Address Record (16- or 32-bit formats)

• Extended Linear Address Record (32-bit format only)

• Start Linear Address Record (32-bit format only)

For the application described in this thesis, only necessary record types required are

Start Segment Record, Extended Segment Address Record, Data Record and End of

File Record. Start Segment Record defines the starting address of the object file's exe-

cution. Extended Segment Address Record contains a 16-bit segment base address that

is multiplied by 16 and summed to the Data Record’s address to form the starting ad-

dress for the data. This allows addressing up to one megabyte of address space. Data

Record holds the data bytes that form a piece of the image to be loaded into the target

device’s memory. End of File Record specifies the end of the object file. [21.]

Figure 7. Intel Hex data record format. Copied from Intel [21].

Each of the above mentioned records consists of six fields as illustrated in figure 7. Each

line starts with a 1 byte long RECORD MARK field, character ":". The second field LOAD

RECLEN defines the length of the information or data field in bytes. This field is 1 byte;

22

thus, the maximum length for the data field is 255 bytes. The third field OFFSET is only

used for data records and is 2 bytes long. It defines the address offset that is summed

to the most previous Segment Address Record to form the complete address for the data.

On other than data records, this field should be "0000". The fourth field RECTYP speci-

fies the record type of the current line and is 1 byte long. The fifth field INFO or DATA is

interpreted according to the RECTYP field. This field is the only one with variable length.

LOAD RECLEN being only 1 byte long restricts the INFO or DATA field length to 255

bytes. The last field is CHKSUM and it contains the checksum for the current record. The

checksum is calculated by summing together all the bytes in the line excluding the check-

sum and the RECORD MARK character in the beginning of the record. The final check-

sum is formed by taking a two's complement from that sum. [21.]

23

7 Description of Armupdate

Armupdate is a program written for Nelix to handle the air quality sensor firmware update

process. It is written in the C++ language as it offers a higher level of abstraction than C.

C++ enables easier error handling, memory management and container classes that

automate many of the otherwise manual operations in C. The program consists of three

classes: ByteLine, ImageHandler and TcpConnection. Each of these classes performs a

part of the whole process. Distributing a complex program into smaller subprograms

helps in the development process by enabling the developer to concentrate on one small

task instead of a whole program.

The firmware to be updated on the air quality sensor is received to Nelix as an Intel Hex

file. The sensor's uploading protocol requires the firmware image as binary. The hex file

is converted to binary on Nelix before starting the uploading process. Converting Intel

Hex file to binary is one of the operations included in the Armupdate program. Figures 8

and 9 give an example of the firmware image before and after conversion. Note that

figure 9 is with hexadecimal encoding which represents the numeric binary values as

hexadecimal numbers as the actual binary data would not be human readable.

Figure 8. Example of a part of firmware image in ASCII hex file format in text editor

Figure 9. Example of a part of converted binary firmware image in text editor with hexa-
decimal encoding

Armupdate is started with three arguments that define the target address (hostname),

target port (port) and the name of the firmware image file (file name). Three different

instances of three classes are created within the program as illustrated in figures 10 and

24

11. The first object created is ImageHandler which handles the firmware image conver-

sion from Intel Hex to binary. ImageHandler receives the name of the Intel Hex file as an

instance call parameter and converts the addresses and data from that file into variables

in dynamic memory. To convert a single data record into binary data, ImageHandler uti-

lizes an instance of ByteLine class. File format conversion is described in more detail in

chapter 5.2 Conversion from Intel Hex to binary. TcpConnection is the object that han-

dles all the TCP connection operations necessary for communicating with the sensor’s

interface. It receives the target connection address and port as instance call parameters

and opens a connection with the given parameters. TcpConnection also includes mem-

ber functions which are used to send commands to the sensor.

Argument list:

 hostname

 port

 file name

Create new object

ImageHandler

 parameter: file name

Create new object

TcpConnection

 parameter: hostname

 parameter: port

Dynamic storage:

Vector container

storing the binary

image data as vectors

Convert Intel

Hex file to

binary

Open TCP

connection

Figure 10. Flowchart diagram of the first steps in Armupdate main function

25

7.1 Using Socket API for Network I/O

Connection from Nelix to the air quality sensor unit is established with the Socket appli-

cation program interface. Originally developed as a part of the BSD UNIX operating sys-

tem, socket has become a de facto standard with adding network connectivity to UNIX

and Linux based systems. Socket defines an interface for network input and output that

loosely resembles the UNIX file I/O open-read-write-close paradigm. When a program

requests a socket to be created, the operating system returns a handle to the socket that

can be referenced by the program. [22.] A socket is created with the function socket,

which takes three arguments as illustrated in listing 1.

Listing 1. Creating a socket

The first argument defines how to interpret the target address as IPv4 and IPv6 ad-

dresses differ from each other. The second argument specifies the type of communica-

tion. In this case the type of communication is SOCK_STREAM which corresponds to a

reliable stream delivery service. The third argument specifies the protocol but can be left

empty as TCP is the only protocol that supplies reliable stream delivery service. At this

point the socket is created without defining a destination address or port. Connecting the

socket is not necessary for connectionless protocols such as UDP. With TCP, socket

must be connected before it can be used. [22.] To connect the socket, function connect

is used, as illustrated in listing 2.

Listing 2. Opening a socket

The first argument sockfd is the handle of the socket to be connected. The second argu-

ment is a pointer to sockaddr which defines an address to which the socket will be bound.

The third argument specifies the length of the destination address in bytes. When creat-

ing a socket to utilize the TCP protocol, the connect function returns an error if opening

a connection was unsuccessful. If using the UDP protocol, a connection is not opened

at this point and the destination address is only saved to be used when reading or writing.

Utilizing UDP also enables specifying the destination address on each input and output

26

operation separately. [22] Sending data to a destination address is done with the write

function, illustrated in listing 3.

Listing 3. Writing to socket

The first argument for the write function defines the socket to be used. In this application

the TCP protocol is used so the socket has to be connected before writing as previously

described. The second argument buffer is a pointer that points to the data to be sent to

destination. The third argument is the length of the buffer. The armupdate program has

a method writeTcp that utilizes the write function. Listing 4 illustrates how different con-

tent is appended to auxString, which is an instance of a C++ String class container. The

write function takes the buffer as a c-string, which is a pointer to an array of characters.

The String class has a member function copy that is used to copy the contents of a C++

string into an array of characters. The buffer is then passed to the write function as illus-

trated in listing 3.

Listing 4. Appending different fields to buffer array

After each write operation, a response is also read from the socket as illustrated in listing

5. The response is not used for anything but verifying that the sensor responded with a

length more than zero bytes. No response would result in an error.

27

Listing 5. Reading from socket

After all necessary communication with the sensor is over, the socket is closed with the

close function. The handle for the socket to be closed is the only argument for this func-

tion.

7.2 Firmware Conversion Classes

ImageHandler receives a file name as an instance call parameter and opens the ASCII

hex file for reading and reads through the file line by line. As a line is read, ImageHandler

creates an instance of ByteLine and passes the line read as an instance call parameter.

ByteLine parses through the received string and checks the record's type, converts and

saves the data to the appropriate public variable. Converted addresses are saved as

numeric values in unsigned char variables and data records are saved to a vector con-

tainer. How ImageHandler operates with ByteLine is illustrated in listing 7.

28

ByteLine

Read line from file

ImageHandler

 parameter: file name

Dynamic storage:

Vector container

storing the binary

image data as vectors

 parameter: file name

 parameter: line from file

Create new object

 line from fie
Calculate

line

checksum

Check line

data type

Datatype == ?

Save

address to a

variable

 Address

Convert hex

line to binary

 line from file (hex)

 line from file (bin)

Push converted

hex line to

a vector

 line from file (bin)

Data

Push the converted

vector to a vector

container

Vector line (bin)

Vector line (bin)

Figure 11. Flowchart diagram of ImageHandler and ByteLine objects

29

ImageHandler can access the ByteLine object’s data members that are set to public,

such as start and segment address and the data vector. Another way of accessing an-

other object’s data members would be to define the “set” and “get” methods inside the

class that would allow modifying or retrieving the variables. After a data line is read and

processed, ImageHandler saves the data vector formed by ByteLine as a new element

in the vector container listVector. Each data line of the converted binary image is then

held in a vector container as a single vector as illustrated in listing 7. When the whole

ASCII hex file is processed, a checksum of the image is calculated and written to offset

1C in the firmware image. This image checksum is mandatory as it is required by the air

quality sensor’s firmware loader.

Listing 7. Snippet from Image_Handler.cpp source code

7.3 Conversion from Intel Hex to Binary

The Intel Hex file is an ASCII text file. Each record's data field is converted into numeric

values and their checksum is verified before conversion. Each pair of characters repre-

sents one 8-bit value (0 - 255). Both characters are first converted into 4-bit values (0 -

15). The most significant character's numeric value is bitwise shifted left four times before

summing the most and least significant values together forming a single 8-bit value in

binary format. The object ByteLine handles the single record format conversion. It re-

ceives a record read from the Intel Hex file as a string in its instance call parameters. A

checksum of the record is calculated with the calculateChksum function and then com-

pared to the record’s last two characters as illustrated in listing 8.

30

Listing 8. ByteLine object and single record checksum verification

All different record types are converted in the same way. Different record types are stored

to different variables after conversion. This variable selection is done inside a switch

case structure in which the record’s data type functions as a selector. After conversion,

data records are saved as a vector to a vector container and addresses are saved as

numeric values in unsigned char variables. Data record’s converted values are saved in

a vector container using a vector class member function push_back which adds a new

element to the end of the vector after its current last element. Push_back also increases

the container’s size within the limits of its capacity. [23.] Selecting into which variable to

save the converted value and passing pointers to the characters is illustrated in listing 9.

31

Listing 9. Target variable selection and passing a pointer to conversion function con-

vertCharToHexDigit

As the Intel Hex file uses two characters as a pair to present a single 8-bit value, a pointer

to the first character is passed to the convertCharToHexDigit function. Inside this function,

the received pointer is incremented by one to reach the following character. The first

character’s value is shifted left eight times because it presents the most significant bits

in the final value. The second character presents the least significant bits. Function con-

vertCharToHexDigit utilizes another function convertAlphabeticalHexDigitToNumeric to

resolve numeric values represented by the hexadecimal characters. This process is il-

lustrated in listing 10.

Listing 10. Converting two ASCII characters into their respective numeric values

Worth noticing is that as can be seen in listings 9 and 10, records are not converted to

binary in full length. Each pointer passed to the conversion function has an offset of eight.

32

This is exactly the length of the RECLEN, OFFSET and RECTYP fields as previously

described in listing 7, excluding the RECORD MARK byte that was removed before pass-

ing the record to ByteLine object illustrated in listing 7.

Initially, C-type arrays were to be used in this project to store the binary-converted data

but were later replaced with vectors. A vector is a container class type in C++ that offers

many useful member functions. The most useful property of a container class is that its

size can be dynamic and automatically increased whereas C-type arrays require manual

memory reallocation and resizing. Using vectors enables an easy way of accessing the

container's size and adding new elements. [23.]

7.4 Update Protocol Packet Structure

The air quality sensor utilizes another proprietary packet structure on top of TCP for

communication through the Ethernet interface. When armupdate opens a TCP connec-

tion and sends a message to the sensor, the TCP related headers and other content

necessary for the protocol are created automatically into the packet. Inside a TCP packet

there is another packet with three fields, a header, a payload size and a payload. The

packet has a 12 byte long header which consists of a 9 byte long static identification field

and two bytes for expressing the payload size. The content of the proprietary packet is

created in a separate method for each command. All commands are sent with a common

writeTcp method. For security reasons the content or structure of the packet is not de-

scribed in this document. The payload can be one of the various commands that are

used to communicate with the air quality sensor. When uploading new firmware to the

sensor, the payload is a piece of the firmware image.

After the firmware image conversion, TcpConnection starts the firmware loader on the

sensor by sending the appropriate command. The flash memory on the sensor is first

erased and then overwritten. TcpConnection then assembles the binary image from the

vector into 1024 byte sized packets, and uploads them one at a time to the sensor’s

firmware loader with the write flash command. After the flash is written, a restart com-

mand is sent to the firmware loader with the first and last addresses of the new firmware

image to let the firmware loader know at which memory area the program is. While the

communication link to the sensor is open, a keepalive command is sent every 10 sec-

onds to prevent automatic closing of the connection.

33

8 Future Development

In its current functioning condition, the system is able to gather measurement data from

the sensor and upload it to the server. Nelix also has a proven ability to upload new

firmware to the sensor. After each measurement data packet is uploaded to the meas-

urement data server, a new configuration file is downloaded. This way the server has a

way to transmit information to Nelix even though all traffic is initiated only by Nelix. The

file downloaded is a JSON file, although with a small modification to the nelix_main.sh

script it could be any other file format. A convenient way would be to replace the down-

loading of a JSON with a bash script file that when executed would download the firm-

ware file and run the armupdate program to update the sensor’s firmware.

Using a digital signature could be a way to ensure that the firmware file was received

from the authentic host. This could be implemented using GnuPG, which is a program

that can be used to encrypt and sign data. GnuPG, as well as SSH, uses public-key

encryption for encryption and signatures. The server would generate a signature of the

firmware file with its private key. The client receiving the file decrypts the signature with

the server’s public key. GnuPG uses its own set of private and public keys. [24.] These

keys could also be used for SSH authentication but using the same keys for both au-

thentications would invalidate the benefit of the file signature.

In a paper called Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice, the

authors describe the weaknesses of Diffie-Hellman key exchange algorithm against a

Logjam attack. They describe that with nation state resources it is possible to break a

1024bit cipher and recommend that keys with a bit length of less than 2048 bits not to

be used. In the application described in this thesis, changing the key length would require

modifying the server’s SSH configuration to only support key exchange algorithm diffie-

hellman-group14-sha1 which uses a 2048 bit long key. [25.] The key exchange method

is selected from a list of supported methods provided by the client and server. Both ends

must support the same method. The client must support this key exchange algorithm in

order to be able to establish a connection to the server. Longer keys also require more

calculation time and they are calculated in the beginning of each connection. This would

most likely not result in any loss of performance on the system as new measurement

data can be received from the sensor only once every ten minutes. Another recommen-

dation is using the Elliptic Curve Diffie-Hellman algorithm for key exchange to avoid any

feasible attacks on the key.

34

8.1 Key Revocation

In the case of one of the sensor clients being stolen or their private keys being otherwise

compromised, a procedure for denying them access to the server must be defined. Ap-

plications where a certificate authority is used, a list of revoked keys is published at de-

fined intervals. Any application using a certificate must check within this list whether or

not to accept a certificate as trusted. In this project there is no certificate authority imple-

mented in the traditional sense, as a similar service is implemented in the measurement

data server as a list of known hosts as described in chapter 5.5. If the security of one of

the sensor client becomes compromised, its access to the measurement data server can

and must be denied by removing their entry from the list of known hosts. Along with the

authentication keys the sensor clients also contain the address, username and password

used to access the measurement data server. These alone do not suffice to access the

server as long as the server denies access for the revoked public key.

If the security of the measurement data server would be compromised the sensor clients

would need to generate new keys as their current ones provide access to the measure-

ment data for whomever has access to the private key of the measurement data server.

The only way to generate new keys on the sensor clients is to access them locally and

reprogram them and use the same key sharing procedure as in production to gather the

new public keys manually. If the sensor nodes are operating at volumes of hundreds or

thousands, the time it takes to access all of them to manually generate new keys would

be disastrous. An automated process for sensor client key revocation and regeneration

would greatly reduce the down time in this sort of worst case scenario.

8.2 Implementing a Secure Boot

A root-of-trust implementation as described in chapter 2.3 is possible to achieve with the

existing SAMA5D4-XULT hardware. A secure boot loader is embedded in the ROM that

can be used to prevent loading or running unauthentic or unauthorized application soft-

ware. Implementing secure boot would improve overall security and mitigate the chance

of a third party being able to use the hardware and network connection of the device.

35

SAMA5D4 also includes TrustZone, which is an architecture extension that allows for the

resources to be partitioned for two operating systems. Both secure and non-secure op-

erating system share the same the hardware resources and peripherals. With TrustZone,

the secure operating system can monitor and control the non-secure operating system’s

resources. The secure operating system can be small and simple and the non-secure a

fully functioning operating system with network access and other peripheral functions.

TrustZone also includes separate Advanced Interrupt Controllers and DMA controllers

for both secure and non-secure access. [26.]

36

9 Conclusion

The project described in this thesis started as wireless connection functionality to be

added to a standalone air quality sensor. Methods and tools changed along with the

requirements and when the device was specified to be running an operating system, the

ability to update the sensor’s firmware became feasible. At first, writing a program to

convert a file from a format to another seemed very difficult but ended up being quite a

straightforward operation. Understanding the structure of the Intel Hex file format was

challenging with all its complexity. Another goal of this project was to create a way to

securely send data from a remote location to a server over the internet. This proved to

be very challenging considering all the security related topics that needed to be investi-

gated. A lot of the data sent over the internet needs to be somehow private and secure.

This need has helped develop many advanced encryption techniques, SSH tunneling

being one of the most popular methods today.

Along with the development of increased secrecy come the techniques built to break

these encryptions. The Logjam paper that raised awareness about the probable security

issues of Diffie-Hellman key exchange was released on May 2015 [25]. The development

of Nelix was already finished then, and during development the 1024bit Diffie-Hellman

key exchange algorithm was thought to be practically unbreakable. This example demon-

strates how every developer has to stay with the newest trends and news in the industry.

The current state of Nelix leaves a lot of room for improvement and new features. One

key part of keeping the system secure was the requirements for Nelix not responding to

inbound connections. This is proven possible with Nelix with its method of actively polling

the server for new information and being able to retrieve it autonomously.

37

References

1. Westerman George. The Internet-Connected Engine Will Change Trucking

[online]. Harvard Business Review; November 2014.

URL: https://hbr.org/2014/11/the-internet-connected-engine-will-change-trucking.

Accessed 25 October 2016.

2. IDG News Service. NarrowBand IoT Atandard for Machines Moves Forward

[online]. Computer World; September 2015.

URL: http://www.computerworld.com/article/2984928/mobile-wireless/narrowband-

iot-standard-for-machines-moves-forward.html. Accessed 17 September 2016.

3. Lehto Tero. Nokia ja Sonera testasivat uutta verkkoa: nopeus ei päätä huimaa,

mutta laitteen akku kestää jopa 10 vuotta [online]. Tekniikka & Talous; September

15 2016.

URL: http://www.tivi.fi/Kaikki_uutiset/nokia-ja-sonera-testasivat-uutta-verkkoa-no-

peus-ei-paata-huimaa-mutta-laitteen-akku-kestaa-jopa-10-vuotta-6590915. Acces-

sed 16 September 2016.

4. Poole Ian. SIGFOX for M2M & IoT [online]. Radio-Electronics.com.

URL: http://www.radio-electronics.com/info/wireless/sigfox/basics-tutorial.php. Ac-

cessed 17 September 2016.

5. Morris Anne. Sigfox Rolls out IoT Network in Finland [online]. Fierce Wireless; June

3 2016.

URL: http://www.fiercewireless.com/europe/sigfox-rolls-out-iot-network-finland. Ac-

cessed 17 September 2016.

6. SRI Consulting Business Intelligence. Disruptive Technologies Global Trends 2025

[online]. National Intelligence Council (NIC); April 2008.

URL: https://fas.org/irp/nic/disruptive.pdf. Accessed 16 September 2016.

7. Goodin Dan. 9 Baby Monitors Wide Open to Hacks that Expose Users’ Most Pri-

vate Moments [online]. Ars Technica; September 2015.

URL: http://arstechnica.com/security/2015/09/9-baby-monitors-wide-open-to-hacks-

that-expose-users-most-private-moments/. Accessed 23 October 2016.

38

8. Miller Charlie, Valasek Chris. Remote Exploitation of an Unaltered Passenger Vehi-

cle [online]. August 2015.

URL: http://illmatics.com/Remote%20Car%20Hacking.pdf. Accessed 24 September

2016.

9. Bonderud Douglas. Leaked Mirai Malware Boosts IoT Insecurity Threat Level

[online]. Security Intelligence; October 4 2016.

URL: https://securityintelligence.com/news/leaked-mirai-malware-boosts-iot-insecu-

rity-threat-level/. Accessed 24 September 2016.

10. Zeifman Igal, Bekerman Dima, Herzberg Ben. Breaking Down Mirai: An IoT DDoS

Botnet Analysis [online]. Imperva Incapsula; October 10 2016.

URL: https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html. Ac-

cessed 24 October 2016.

11. Loisel Yann, di Vito Stephane. Securing the IoT: Part 2 - Secure Boot as Root of

Trust [online]. Maxim Integrated; January 11 2015.

URL: http://www.embedded.com/design/safety-and-security/4438300/Securing-the-

IoT--Part-2---Secure-boot-as-root-of-trust-. Accessed 10 Sepember 2016.

12. Praphul Chandra. Bulletproof Wireless Security. Newnes; 2005.

13. Bauer Michael D. Linux Server Security, Second Edition. O’Reilly Media Inc; 2005.

14. Atmel. Picture of SAMA5D4 Xplained Ultra Evaluation Kit.

URL: http://www.atmel.com/tools/ATSAMA5D4-XPLD-ULTRA.aspx. Accessed 27

November 2016.

15. Seward J, Nethercote N, Weidendorfer J. Valgrind 3.3 - Advanced Debugging and

Profiling for Gnu/Linux Applications. Network Theory Ltd; 2008.

16. MSDN. Public Key Infrastructure [online]. Microsoft;

URL: https://msdn.microsoft.com/en-us/library/windows/desktop/bb427432. Ac-

cessed 16 September 2016.

39

17. Ylönen T, Lonvick C. The Secure Shell (SSH) Transport Layer Protocol [online].

The Internet Engineering Task Force; January 2006.

URL: https://www.ietf.org/rfc/rfc4253.txt. Accessed 9 May 2016.

18. Rinne Timo, Ylönen Tatu. Secure Copy, Linux Man Page [online]. April 2013.

URL: https://linux.die.net/man/1/scp. Accessed 17 November 2016.

19. Sshpass Linux man page [online].

URL: http://linux.die.net/man/1/sshpass. Accessed 9 May 2016.

20. Bezroutchko Alexandre. SSH Man-in-the-Middle Attack and Public-Key Authentica-

tion Method [online]. Gremwell.com; 25 December 2010.

URL: http://www.gremwell.com/ssh-mitm-public-key-authentication. Accessed 9

May 2016.

21. Hexadecimal Object File Format Specification Revision A [online]. Intel; January 6

1988.

URL: http://microsym.com/editor/assets/intelhex.pdf. Accessed 17 November 2016.

22. Comer Douglas E. Internetworking with TCP/IP Volume One, Fifth Edition. Pear-

son; 2005.

23. Vector C++ Reference [online]. Cplusplus.com;

URL: http://www.cplusplus.com/reference/vector/vector/. Accessed 17 November

2016.

24. Copeland Matthew, Grahn Joergen Grahn, A David. The GNU Privacy Handbook

[online]. The Free Software Foundation; 1999.

URL: https://www.gnupg.org/gph/en/manual.html. Accessed 9 May 2016.

25. Adrian David, Bhargavan Karthikeyan Bhargavan, Durumeric Zakir, Gaudry Pier-

rick, Green Matthew, Halderman J. Alex, Heninger Nadia, Springall Drew, Thomé

Emmanuel, Valenta Luke, VanderSloot Benjamin, Wustrow Eric, Zanella-Béguelin

Santiago, Zimmermann Paul. Imperfect Forward Secrecy: How Diffie-Hellman Fails

in Practice [online]. CCS '15 Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security; 16 October 2015.

40

URL: https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf. Accessed 9 May

2016.

26. Introduction to ARM TrustZone [online]. Atmel; October 2014.

URL: http://atmel.force.com/support/servlet/fileField?id=0BEG000000002Ur. Ac-

cessed 20 November 2016.

Appendix 1

 1 (2)

Bash Script key_upload.sh

#!/bin/bash

Pasi Riissanen 2015
For Nelix, particle sensor project.
rsa key uploader to local server
Designed to be ran as a daemon.
Generates a new key pair and tries to upload it
until succesful.
All stdout outputs saved in /var/log/key_upload.log

IP_ADDRESS=10.10.10.1 #Address of the local server
LOG_ENTRY=/var/log/key_upload.log

rm /var/log/key_upload.log
echo "Log started at: " `date` >> $LOG_ENTRY

#Remove older key pairs
rm /home/user/.ssh/id*
echo "Removed old key pairs" >> $LOG_ENTRY

#Create ssh keypair
ssh-keygen -f /home/user/.ssh/id_rsa -t rsa -N ''
echo "Identification saved in /home/user/.ssh/id_rsa" >> $LOG_ENTRY
echo "Public key saved in /home/user/.ssh/id_rsa.pub" >> $LOG_ENTRY

#Find out eth0 HWaddr
MAC_ADDRESS=`cat /sys/class/net/eth0/address`
echo "This device has a mac address: $MAC_ADDRESS" >> $LOG_ENTRY

#Read public key from file id_rsa.pub
PUB_KEY=$(</home/user/.ssh/id_rsa.pub)
echo "Generated public key: $PUB_KEY" >> $LOG_ENTRY

#Test connection to local server
#Loop until connection successful
echo "Trying to connect to $IP_ADDRESS" >> $LOG_ENTRY
while ! ping -c 1 $IP_ADDRESS; do echo "- timeout :(" >> $LOG_ENTRY;

done; {
 echo "$IP_ADDRESS responds to ping" >> $LOG_ENTRY
 HTTP_RESPONSE_OK=200
 CHECK_VALUE=0
 while ["$CHECK_VALUE" -ne "$HTTP_RESPONSE_OK"]
 do
 echo "Sending public rsa key.." >> $LOG_ENTRY
 CHECK_VALUE=`wget --spider -S "http://$IP_ADDRESS/in-

dex.php?key=$PUB_KEY" 2>&1 | grep "HTTP/" | awk '{print $2}'`
 echo "HTTP returned: $CHECK_VALUE" >> $LOG_ENTRY
 done

 CHECK_VALUE=0
 while ["$CHECK_VALUE" -ne "$HTTP_RESPONSE_OK"]
 do
 echo "Sending HWaddr.." >> $LOG_ENTRY

Appendix 1

 2 (2)

 CHECK_VALUE=`wget --spider -S "http://$IP_ADDRESS/in-

dex.php?mac=$MAC_ADDRESS" 2>&1 | grep "HTTP/" | awk '{print $2}'`
 echo "HTTP returned: $CHECK_VALUE" >> $LOG_ENTRY
 done
}

#Remove the cronjob that runs this script on boot
#Must be ran as root :|
crontab -l -u root | grep -v key_upload | crontab -u root

