
Cyber Security Exercise Modeling &
Tracking
Building RESTful Service and MVC Web Application for
Visualization and Tracking of Cyber Security Exercise
Execution using Modern Web Techniques and Standards

Joonas Greis

Bachelor’s thesis
May 2016
Software Engineering
Bachelor's Degree in Software Engineering

Description

Author(s)
Greis, Joonas

Type of publication
Bachelor’s thesis

Date
May 2016
Language of publication:
english

Number of pages
33

Permission for web
publication: x

Title of publication
Cyber Security Exercise Modeling & Tracking
Building RESTful Service and MVC Web Application for Visualization and Tracking of Cyber
Security Exercise Execution using Modern Web Techniques and Standards

Degree programme
Bachelor's Degree in Software Engineering

Supervisor(s)
Luostarinen, Hannu
Hämäläinen, Raija
Assigned by
JYVSECTEC
Silokunnas, Marko
Niemelä, Ant
Abstract

JYVSECTEC has a cyber range where cyber defense exercises are held. Presently there was
no graphical interface for participating teams to visualize CDX networks for tagging threats
to them in the exercises. This visualization system was designed to meet that requirement
and be used as a part of the reporting process.

The objective was to develop for visualizing the range a web based system to which the
teams could enter information and metadata on threats they think they notice during the
exercise. Each team would have their own perspective and view of the cyber range and
they should be able to modify the network to look like they think it would look. Changes on
one team's view should propagate to other clients's views in real time.

The System was implemented using modern web techniques and the newest standards.
RESTful API was written with Golang using Go-Json-Rest package and the visualization
framework was built using Vis.js graph visualization library on top of MVC architecture
backbone.js library. PostgreSQL was selected as database.

Keywords/tags (subjects)
Cyber Security, Cyber Range, Cyber Exercise, Network, Modeling, Tracking, Visualization,
Simulation, REST, RESTful, Web Service, Web Application, Model-View-Presenter, MVP

Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5B%5D=format%3A%220%2FDatabase%2F%22&lng=en-gb

Kuvailulehti

Tekijä(t)
Greis, Joonas

Julkaisun laji
Opinnäytetyö, AMK

Päivämäärä
May 2016
Julkaisun kieli:
Englanti

Number of pages
33

Verkkojulkaisulupa
myönnetty: x

Työn nimi
Cyber Security Exercise Modeling & Tracking
Building RESTful Service and MVC Web Application for Visualization and Tracking of Cyber
Security Exercise Execution using Modern Web Techniques and Standards

Tutkinto-ohjelma
Ohjelmistotekniikka, AMK

Työn ohjaaja(t)
Luostarinen, Hannu
Hämäläinen, Raija
Toimeksiantaja(t)
JYVSECTEC
Silokunnas, Marko
Niemelä, Ant
Tiivistelmä

JYVSECTEC:illä on kybertoimintaympäristö jossa järjestetään kyberturvallisuusharjoituksia.
Mitään valmista tai käytössä olevaa graafista käyttöliittymää, johon osaaottavat joukkueet
voisivat luoda kuvaa harjoituksen tietoverkosta ja merkitä tapahtumia ja hyökkäyksiä, jotka
he luulevat havaitsevansa. Visualisointijärjestelmä kehitetin täyttämään tämä tarkoitus.

Tarkoitus oli kehittää www-pohjainen järjestelmä kybertoimintaympäristön tietoverkon
visualisointiin, minne joukkueet voisivat täydentää tietoja ja uhkia mitä he luulevat
huomaavansa. Jokaisella joukkueella olisi oma näkymä kybertoimintaympäristöstä, jota he
muokkaisivat mielensä mukaan sellaiseksi, kuin he verkon näkevät. Muutokset jonkin
joukkueen näkymään pitäisi päivittyä muihin kytkeytyneisiin näkymiin reaaliajassa.

Järjestelmä toteutetin käyttäen uusimpia www-tekniikoita ja standardeja. RESTful
sovellusrajapinta kirjoitetin Golangilla käyttäen Go-Json-Rest paketa ja visualisointi
rakenne toteutetin integroimalla Vis.js kaavioiden piirtokirjasto MVC arkkitehtuurin
toteuttavan backbone.js kirjaston päälle. Tietokannaksi valikoitui PostgreSQL.

Avainsanat (asiasanat)
Kyberturvallisuus, kyberharjoitusalue, kyberharjoitus, tietoverkko, mallinnus, seuranta,
visualisointi, simulointi, REST, RESTful, Web-palvelu, Web-sovellus, MVP

Muut tiedot

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5B%5D=format%3A%220%2FDatabase%2F%22&lng=en-gb

1

Content

 Terminology...4

1 Visualization and Reporting System for Cyber Exercises...5

2 Background..5

2.1 Cyber Security...5

2.2 Locked Shields...6

2.3 JYVSECTEC...7

2.4 JYVSECTEC – RGCE...7

3 Cyber Security Exercise..8

3.1 Teams..8

3.1.1 Exercise Control Group..9

3.1.2 White Team..9

3.1.3 Red Team...9

3.1.4 Blue Team..9

3.1.5 Green Team...9

3.2 Planning..10

3.3 Execution...10

3.4 Post Exercise...11

4 Project Objectives and Requisites...11

4.1 Team View...12

4.2 Customer Requirements...12

5 Related Work...13

6 Design..14

6.1 Issues and Questions..14

6.1.1 WebGL, Canvas or SVG?..14

2

6.1.2 Architectural Patterns..15

6.2 Visualization Layer Back-end...16

6.3 Visualization Layer Front-end..16

6.4 Networking...17

6.4.1 RESTful Service..17

6.5 Database...18

6.6 Data Import...19

6.7 Standards..19

7 Implementation...19

7.1 Nodes..19

7.2 Zones...20

7.3 Visualization Layer..20

7.3.1 Visualization Framework Directory Structure.....................................21

7.3.2 Session Handling and Local Storage..21

7.3.3 Data Relations..21

7.3.4 Rendering View...22

7.4 Backbone...23

7.5 RESTful API..24

8 Conclusions..24

8.1 JavaScript Frameworks & Libraries...25

8.2 Golang & Packages..25

 References...26

 Appendices..28

Appendix 1. Visualization Framework Directory Structure............................28

Appendix 2. RESTful Service Directory Structure..29

3

Figures

 Figure 1. Exercise Flow...11

 Figure 2. Architectural Model...15

 Figure 3. Node History Storing Model..18

 Figure 4. Prototype Application..21

 Figure 5. Data Relations..22

Codes

Code 1. Model..19

Code 2. Listening Events...21

Code 3. Render Function..22

Code 4. Using CORS Middleware..23

4

Terminology

AAR After Action Report

CDX Cyber Defense Exercise

CIDR Classless Inter-Domain Routing

Cyber Range Cyber Exercise Environment

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

FPC Final Planning Conference

Global Event Disaster, etc.

Hotwash Debrief conducted immediately after an exercise

HTTP HyperText Transfer Protocol

HTTP Hypertext Transfer Protocol

IMAP Internet Message Access Protocol

Incident Violation or threat of violation of computer security policies

Inject Specific activity executed as part of a MSEL

IoT Internet of Things

IPC Initial Planning Conference

ISP Internet Service Provider

MitM Man in the Middle

MPC Main Planning Conference

NTP Network Time Protocol

POP3 Post Office Protocol 3

SMTP Simple Mail Transfer Protocol

UI User Interface

XMPP Extensible Messaging and Presence Protocol

5

1 Visualization and Reporting System for Cyber Exercises

In this thesis a visualization and reporting system was developed. The project was

assigned by JYVSECTEC.

JYVSECTEC has a cyber range where cyber defense exercises are held. There is

presently no graphical interface for participating teams to visualize CDX networks for

tagging threats to them in the exercises. This visualization system is designed to meet

that demand and be used as a part of the reporting process.

2 Background

Cyber security is a fast growing industry at the moment. According to

MarketsandMarkets’ report from 2014 the global cyber security market revenue will

double in the next five years. With the IoT becoming more common the cyber

security will play a more significant role in the society. (Baxter, A. 2014)

Finland wants to invest in the cyber security industry now and Central Finland is

taking part in this with JYVSECTEC's cyber range for research, development, training

and exercise. (Limnéll, J. 2016)

Cyber security industry needs more talent and creative development as it grows and

this thesis will try to provide both of those.

2.1 Cyber Security

There is no universally accepted definition of Cyber Security, even though term may

seem self-explanatory. Cyber Security can be seen as protection of information

systems from all kinds of malicious actions against them, like theft or damage to the

hardware, the software, or to the information, regardless of the type of action being

intentional or accidental. (Refsdal,Solhaug & Stølen 2015, 29-30.)

6

There are backdoors, DDOS, MitM, spoofing, tampering, phishing, priviledge

escalation and more ways to do harm as well as all the natural disasters from broken

hard drive to earthquakes. (Mt.)

2.2 Locked Shields

Locked Shields is the largest global cyber defence exercise, organised annually since

2010 by the NATO Cooperative Cyber Defence Centre of Excellence. It is held in the

Estonian Cyber Range with new attack vectors and technologies being introduced

every year. Locked Shields uses realistic technologies, networks and attack methods.

In addition to technical and forensic challenges, Locked Shields also includes media

and legal injects providing insight how complex a modern cyber defence crisis can be,

and what is required from nations in order to be able to cope with these threats.

(After Action Report 2013)

After Action Reports from Locked Shield events give great amount of information on

the general state of nations cyber defense. Each year the Blue Teams have become

more skilled and better prepared competing in the exercise. More complex and

scenario specific technical environments are needed to reflect more closely to real

world challenges. (Mt.)

It gives a great picture of the whole scope of exercise and feedback from areas where

improvement is needed and what are the key points in defeating cyber attacks. Good

monitoring skill was the key capability required to defeat the Red Team as well as

good teamwork and communicating skills. Good understanding of the cyber range

network helps to convey the big picture. With good communication channel it helps

also coordinating defensive operations and measures. (Mt.)

This thesis tries to answer some of those challenges creating a tool for visualizing the

cyber range network and using that visual model to tag and share information

between the essential personnel.

7

2.3 JYVSECTEC

Jyväskylä Security Technology project was started in JAMK University of Applied

Sciences in September 2011 to meet the growing needs of cyber security research

and development. The motivation was to build the most advanced research and

development and training centers to Central Finland and bring national and

international actors together and form a co-operation network with them. (About us

n.d.)

The main product of JYVSECTEC is Realistic Global Cyber Environment (RGCE), a

cyber range for research, development, training and exercise. Jyväskylä Security

Technology also creates, maintains and cares for up-to-date and impartial cyber

security information, as it polishes the image of Finnish cyber security expertise.

(Cyber Environment n.d.)

2.4 JYVSECTEC – RGCE

Realistic Global Cyber Environment (RGCE) is an isolated and controlled environment

that mimics the Internet. It functions just like the Internet and simulates real network

traffic from emails to video-streaming. Cyber environment is used to research and

development as well as training the target audience in exercises. (Mt.)

The environment can model multiple ISPs of different sizes, and with public IP

addresses and real geographic locations. The modeled ISPs implement Internet core

services like DNS, NTP, and of course the web-services. (Mt.)

The network traffic is mostly produced with bots that can be controlled via web

based UI. Bot themselves work like a botnet and each bot has its own role and

functionality. Fox example, there is a web crawler bot that simulates internet

browsing and HTTP requests, a mailer bot, that sends and receives emails using IMAP

or POP3 and SMTP, and a communication bot, that simulates chatng over different

protocols, like Jabber or Facebook (XMPP). Bots are launched against target services

where traffic is generated. There are several ready targets included in the RGCE. All

8

the main web services are covered from email- and time services to controlled

update repositories and social media. (Mt.)

The JYVSECTEC cyber range was implemented as a so called hybrid model, where

some parts of the network are virtualized and some parts are built with real physical

devices. Using hybrid model gives more flexibility over building the environment

compared to full physical model and having some physical devices also makes the

exercise feel more genuine that it would be if only virtualized. With realistic

implementation of customer's organization environment it is possible to test and

evaluate real threats, vulnerabilities and network attacks when faced. (Mt.)

3 Cyber Security Exercise

Cyber security exercise is an event where attacks and vulnerability threats against the

trainable audience are put to test and evaluated. It consists months of planning and

implementing the environment, as it accumulates to the few days' long exercise itself.

(Kick 2014)

3.1 Teams

A full size cyber security exercise consists of five teams, White Team (WT), Red Team

(RT), Blue Team (BT), Green Team (GT), and an Exercise Control Group (ECG).

However, team usage differs with organizers. JYVSECTEC and Locked Shields do not

use ECG at all. The role of the ECG has been moved to WT and GT is more like the

team responsible holding the range infrastructure together. They fix network

problems and make sure that all the network devices run smoothly. While ensuring

that the cyber range functions correctly GT may also be responsible for background

noise and normal network traffic. This is usually automated. Locked Shields also use a

Yellow Team, that maintains the situational awareness and is overlapping with the

White Team role. (After Action Report 2013; Kick 2014)

9

3.1.1 Exercise Control Group

Exercise Control Group (ECG) works as a controller of the exercise as they are the only

ones that have the event manuscript, Master Scenario Event List (MSEL) that contains

all planned attacks and injects to be executed. ECG drives the execution by giving

tasks to Red Team and injects global events that are scheduled to happen. (Mt.)

3.1.2 White Team

White Team collects information as the exercise progresses and provides feedback to

the control group and Red Team. They work as observers and solve possible conflicts

that may arise between the red and blue teams as well as answers questions that

may arise during the exercise. White Team also evaluates the team progression by

assigning scores to teams. (Mt.)

3.1.3 Red Team

Red Team is the perpetrator that executes planned injects and attacks against the

Blue Teams. Its objective is to improve the target company cyber assurance by

demonstrating the impacts of cyber-attacks on defenders enterprise system. (Mt.)

3.1.4 Blue Team

Blue Team is the most important actor in cyber exercise as it consists the training

audience. Their role is to be the defenders in the exercise and keeping the enterprise

information systems secure. There can be multiple Blue Teams that form together the

company network. (Mt.)

3.1.5 Green Team

There are two common definitions for Green Team. In some exercises the Green

Team represents normal network traffic and background noise, and some exercises

use it as a technical team, who are responsible for preparing and maintaining the

cyber range technical infrastructure. Green Teams that represent common user

10

traffic are usually automated. JYVSECTEC uses Green Team for ensuring the cyber

range infrastructure is operational. (Kick 2014; Silokunnas 2016)

3.2 Planning

The structure and planning of a cyber exercise are similar across different

organizations. Every exercise starts with planning across the participants. Exercise

scenario is formed where the strategic and operating environment are described in

sufficient scope and detail. The expected reactions of training audience are also

included in the exercise scenario. In practice, it is the storyline or plot for the entire

exercise, utilized by all planners and participants. (Mt.)

There are three types of exercises. Table top exercise is the least complex and fastest

to execute. It is a paper-driven exercise where injects and attacks are scripted via

paper. Hybrid exercise uses some realism in the attacks while leaving some injects to

be delivered with pen and paper. Full Live is delivered fully with real injects in real-

like environment. These are the most complex and largest exercises to be held and it

takes a year to plan a full live exercise. (Kick 2014)

3.3 Execution

After months of planning and environment building the exercise is ready to be

started. The exercise is usually divided in phases or sessions. Each session has a

different portion of scenario flow, so training audience can focus on one ensemble at

the time. (Cichonski, Millar, Grance & Scarfone 2012)

ECG drives the execution according the MSEL and tasks RT who is the perpetrator of

the exercise. WT observes and solves possible conflicts that may arise during the

exercise. (See Figure 1)

11

Provided the planning was thorough, the execution is merely about following the

exercise plan and monitoring the training audience responses. (Kick 2014)

3.4 Post Exercise

Immediately after the exercise a hotwash is held. Hotwash is a debrief conducted

with staff and participants. More profound retrospective analysis is done later for the

After Action Report (AAR). These can be used to improve the training audience

company security policies and ability to respond to different cyber threats. Reports

are also used to improve the cyber exercise itself. (Kick 2014)

4 Project Objectives and Requisites

Before this thesis, the exercise tracking and reporting were done with text based

chat. Thus there was a great need for cyber range visualizing system for tracking

actions and incidents in the network and reporting them.

Team View reporting tool would be a great aid in collecting the exercise data and

synchronizing different teams' reports. It could also be used as a part of AAR in

Figure 1. Exercise Flow

12

analyzing the exercise progression and Blue Teams responsiveness to Red Teams

actions.

4.1 Team View

There was a need for a system, where each team could visualize their own

perspective of the network, map metadata and report incidents. Each team should

have its own view of the cyber range network, where they could easily add elements

and connections of choice.

Blue Teams would have their own company networks mapped with few elements

from outside the company network as well. And because companies are usually

compartmentalized, each Blue Team would have its own separate view of the related

part of the network with possibly overlapping regions with others.

Red Team view would be a bit larger subset of the network as it usually contains all

the blue team views as well as the red team's own devices and interfaces.

The largest network perspective would be seen by White Team and ECG as they both

should be able to monitor the exercise progression.

4.2 Customer Requirements

Now that the project subject was developing a visualization system for cyber security

exercise tracking and reporting, it was time to define the customer requirements.

System should be cross-platform and use modern web techniques and standards.

There should be different views for Red Team, White Team and Blue Teams so the

changes that blue team will make will show up on Red Teams view, but the changes

on Red Team view will nott appear on the Blue Team View. Changes should also be

propagated to the other views almost in real time.

All changes should have a timestamp for network history implementation and

network should be able to be viewed in any state and time wanted.

13

BasicAuth will be enough for user validation. There is no need for more secure and

more complex authentication method, because the system will be run only on

isolated cyber range.

The system should also produce a base network map from network data given in

JSON format for teams to use as a template in visualizing their own perspective.

There should be three different topology view modes implemented, physical

topology, logical topology and a hybrid of these two topologies, which seems to be

the most popular choice of these three. Different topologies should be able to be

toggled as the metadata bound to elements and views stays the same.

There is also a need for icons and highlighted elements for different meanings, like

marking some node as "vulnerable" or "infected".

And as it will be a reporting tool, reporting must be also possible and the final report

should be able to export from the system to be used in exercise after review.

5 Related Work

There are few similar cyber security related systems, but this is the only web-based

cyber range network visualization and reporting tool there is.

Most of the systems found on public search engines are complex and comprehensive

state-funded systems. They require to be installed in very specific cyber ranges.

The lack of these kinds of systems and applications is strange when reviewing the

Locked Shield After Action Reports where many of them state the fact that there is lot

to improve in cyber range network awareness and communication and delegation

channels. (After Action Report 2012; After Action Report 2013)

14

6 Design

6.1 Issues and Questions

There were many things to be considered during the preplanning phase. For being a

first web-based cyber exercise visualizing and reporting tool few issues and thoughts

first had to be solved. For example, how to present different topology views and bind

the metadata to elements in the views? Or how to tag Cloud DDOS, BGP MitM, ARP

Spoofing, and other attacks that utilize outside the cyber range view, as well as to

display information on clouds, social media, factories, natural disasters and other

non-generic elements and data?

Requirements define the techniques needed to use. The graphic visualization would

be the bottleneck of the system so information about lightweight visualization

libraries and techniques was needed.

6.1.1 WebGL, Canvas or SVG?

The initial idea was to use WebGL for graphics, so it would support ridiculously large

networks. However, after learning that usual exercise network has only under 100

nodes, doing WebGL graphics started to feel like overkill.

SVG, on the other hand, is bound to DOM, so even with the network of just few

nodes, the web application comes a bit slow and jerky. SVG has its advantages though

in CSS styles and -animation, that offer a powerful way to modify the SVG elements.

HTML5 Canvas was selected. It has enough power for medium-sized networks and

custom elements can be easily drawn to container. It is also much simpler to use than

WebGL graphics.

15

6.1.2 Architectural Patterns

What would be the best approach in developing this kind of visualizing and reporting

web application? How will the data be moved across the application network? What

kind of application architecture would work best?

The basic picture started to form fast. A database would be needed to hold all the

network data. An API that works as a controller between the application back-end

and the database was needed as well. The application needed its own structure also.

(See Figure 2)

The database should be document-oriented database or some other NoSQL database

because of the data structure.

And since there must be multiple simultaneous clients connected with different views

RESTful service was chosen to be implemented between the application layer and the

database.

Figure 2. Architectural Model

16

Because a web-based visualization system with different views on the same data was

to be built, the only viable options for application architecture were MVVM, MVC,

MVP and similar patterns. It really was not a major decision because the main point

was to have separate views from same data with different logic, so all the mentioned

patterns would do just fine.

6.2 Visualization Layer Back-end

The choice of back-end became easy after the criteria were defined. A light and

modular JavaScript framework was needed that would support MVC or MVP

application design paradigm with a RESTful JSON interface. There was no need for a

complete stack, like Node.js or Done.js. Also frameworks like React and Ample SDK

were way too heavy for to be suitable for this kind of use. Two frameworks stood out,

backbone.js and Ambersand.js, both lightweight and modular frameworks.

Backbone.js was selected due the integrated RESTful JSON syncing.

Backbone.js is a MVP (or MVC) style architecture Java-Script library with integrated

RESTful JSON interface. It is created by Jeremy Ashkenas, who is also known for

CoffeeScript and Underscore.js fox example. And Underscore.js is one (and only)

dependency of Backbone.js. (Ashkenas 2016)

6.3 Visualization Layer Front-end

As well as all the other libraries used the graphic library should also be open source.

The first choice was Sigma.js that has superior performance in drawing network

graphs compared to other libraries because it uses WebGL for rendering. It was also

the most modular and lightweight library from the choices of mine.

The reason Sigma.js was dropped was that it would be so much easier to customize

Canvas graphics than WebGL graphics, now that it was known that there was no need

for thousands of nodes. Sigma.js also supports HTML5 Canvas but after some testing

it was realized that the Canvas renderer was not as fast as Canvas renderer in Vis.js,

17

the second option for network graph visualizing library. Vis.js was also slightly more

advanced and had more predefined functionalities like clustering and grouping.

(Almende 2016)

There are also several more powerful visualization libraries, like Vega and D3 for

example, however they are too powerful for this kind of a project. (Bostock 2015)

Vis.js is a JavaScript visualization library designed to be easy to use, to handle large

amounts of data, and enable data manipulation. In consists of five different

components but only DataSet and Network components are used to create the

network visualization. (Almende 2016)

6.4 Networking

Again, the most significant factor is how much static and dynamic data has to be

handled, and how often information have to be exchanged between the client and

the server. Because only an update of the views is needed when someone pushes a

change to data, there is no need for continuous TCP connection like in WebSockets.

The fastest way would have been to implement custom Server Side Events with

XMLHttpRequests, where SSE would have updated the client views when server was

changed and HTTP XHR would have been used to send data to the server. However,

Backbone.js uses jQuery.ajax to make a RESTful JSON request by default and returns a

jQuery XMLHttpRequest (jqXHR) object, which is a superset of the browser's native

XMLHttpRequest object. Ajax requests pursue their case, so there was no need to

override the functionality. If the application networking needs will grow, the

communication method can easily be changed to more efficient one. Like if there was

a need for real live syncing with the views, WebSocket or SSE would be only viable

option. (jQuery API Documentation 2016; Sheiko 2012)

6.4.1 RESTful Service

Golang seemed like a good programming language of choice for building RESTful API.

It is easy to write concurrently running code by using goroutines. Also there is a

18

golang package Go-Json-Rest which is a thin layer on top of net/http package that

helps building RESTful JSON APIs easily. (Effective Go 2016; Imbert 2016)

6.5 Database

The initial candidate was MongoDB, an open-source document-oriented database,

however,- JYVSECTEC uses PostgreSQL with their systems so they wanted to use it

with this as well. PostgreSQL is, instead, an object-relational database and not an

NoSQL database at all. Both of them support JSON documents with key - value pairs.

The reason to choose MongoDB over PostgreSQL is scalability. MongoDB is

horizontally scalable and PostgreSQL is vertically scalable, so MongoDB could easily

be scaled out if needed, -however, data integrity might be weaken. (Mohammed

2015)

Every data-node must contain the time of creation field and a new record of the node

must be created when updating any of the nodes key - value pairs, so the state of the

network can be queried and displayed according the elapsed time. (See Figure 3)

Figure 3. Node History Storing Model

19

6.6 Data Import

Data import should be possible in JSON format with RESTful API straight to the

database. Imported data could then be used to create the base network for team's

view.

6.7 Standards

Because newest standards should be followed, the application should use

ECMASCRIPT 2015 (ES6) in JavaScript logic and HTML5 in web elements. Also network

Icons should be simple and recognizable, so Cisco network topology icons should be

used. They are globally recognized and generally accepted as a standard for network

icon topologies. (Network Topology Icons – Doing Business With Cisco 2016)

This thesis is also written according academic standard and Raija Hämäläinen

supervises the process.

7 Implementation

7.1 Nodes

Nodes hold the element information and metadata bound to it. They are extended

backbone.Models with element data and visualization setngs and hold at least the

key-value pairs in vis.js Network component (See Code 1)

20

Nodes usually belong to a zone, however it is not mandatory.

7.2 Zones

Zones are logical segments of network. They may base on logical or physical topology,

but not necessarily. They help the layout and displayi the nodes in the network and

visualize the connections between the nodes. Zone can have multiple parent zones

and vice versa.

7.3 Visualization Layer

Visualization system is an easy to use web application where users can edit network

structure and elements, add metadata to them and toggle threats without having the

need to write long descriptive texts to reporting chat.

Chat functionality is nonetheless integrated in the web interface.

Code 1. Model

var Node = Backbone.Model.extend({
defaults: {

Id: null,
Name: null,
IPv4: null,
Label: null,
type: 'node',
image: 'img/cisco/Host.png',
shape: 'image',
font: {

face: 'Arial',
color: '#000'

},
shadow: {

enabled: true,
color: '#000'

},
title: null,
group: null,
x: null,
y: null,

}
});

21

A working prototype was built first. (See Figure 4)

7.3.1 Visualization Framework Directory Structure

(See Appendice 1)

.config.cfg file that is found from the root directory is used to define credentials for

the RESTful API and some basic configurations about the graph physics and looks.

7.3.2 Session Handling and Local Storage

Because using the newest and most modern techniques, HTML5 Local Storage is used

for storing user- and session variables, so when restarting browser session and

navigating back to visualization site, the network layout remains the same as it was

before exiting.

HTML5 Session Storage is similarly used in storing session variables that are required

only during the current session.

7.3.3 Data Relations

Persistent data is stored to PostgreSQL database and is accessed over HTTP via

RESTful interface.

Figure 4. Prototype Application

22

Runtime data is stored in backbone.Collection that consists of extended

backbone.Models customized for network graph drawing and metadata handling.

(See Figure 5)

backbone.Views are used define the visible elements for each teams perspective.

Data from the view is bound to vis.Network element where vis.View filters are used

to display the network state at given time. The timeline moving logic was preferred to

be kept on the client side with local data, so moving along the timeline will be fast

and smooth.

7.3.4 Rendering View

Rendering function is as simple as possible. It is set to run every time the network

data changes or data is fetched from the server. (See Code 2)

Figure 5. Data Relations

Code 2. Listening Events

this.listenTo(network, 'change', this.render); //event listener
this.listenToOnce(network, 'sync', this.render); //event listener

23

Rendering function updates the vis.js network graph, and the view it is bound to,

automatically populates itself. (See Code 3)

Function generateEdges is custom function that parses and calculates node relations

and generates a map of relations between the nodes using the CIDR and Zone

defined in each node. Generated edge-set is used to simulate network graph physics.

For example the nodes on the same zone are bound together and when dragging one

of them, the others will follow in accordance with the physics model.

Zone drawing and zone relation computations are done on beforeDrawing function

thus giving more performance to the graph visualizer, when not calculating zone data

every time the scene is rendered.

Custom drawing and visualization is done with extended and highly customized Vis.js

library.

7.4 Backbone

Backbone.js works as a backbone for the application.

It implements functionalities for adding and modifying the nodes, edges and zones.

Every time when user submits a change, the backbone launches jQuery.ajax request

to RESTful API for updating the network data.

Code 3. Render Function

render: function() {
network.forEach(generateEdges);
network_graph.setOptions(options.View);
network_graph.setData({
nodes:network.toJSON(),
edges:generated_edges
});
return this;

}

24

7.5 RESTful API

RESTful API was build with Golang and it uses Go-Json-Rest package in implementing

the RESTful service. It uses Golang default workspace structure and can be build with

golang build tools. (See Appendix 2)

It uses golangs default syslog output method, so the implementation works only on

linux for now.

One of the biggest advantages of using Go-Json-Rest package is ability to easily setup

and configure CORS middleware around the API endpoints. (See Code 4)

Basic Auth was also setup as a pre-routing middleware.

The service implements basic CRUD operations.

Golang package pq was used to connect RESTful API to PostgreSQL database. it is a

pure Go PostgreSQL driver for the default database/sql package.

8 Conclusions

There are many different views on cyber exercises how they should be executed.

However, they all rely on similar principles on attacking, defending and observing.

There is still research and development to do in finalizing the visualization system and

tweaking it up to work with the JYVSECTEC operation environment and package

management. Keeping the produced system modular and extendable will help it

Code 4. Using CORS Middleware

api.Use(rest.DefaultDevStack...)
api.Use(&rest.CorsMiddleware{

RejectNonCorsRequests: false,
OriginValidator: func(origin string, request *rest.Request) bool {

return origin == host
 },
 AllowedMethods: []string{"GET", "POST", "PUT"},
 AllowedHeaders: []string{"Accept", "Authorization", "Content-Type",
"X-Custom-Header", "Origin"},
 AccessControlAllowCredentials: true,
 AccessControlMaxAge: 3600,
 })

25

adapt to JYVSECTEC's cyber operation environment, as well as in keeping up with the

changes in other systems. Resorting to standards also makes it more approachable.

It seems like the cyber security as an industry is in a constant change and lots of new

approaches are invented on daily basis.

8.1 JavaScript Frameworks & Libraries

There are hundreds of JavaScript visualization frameworks and web application

architecture libraries to be used in web development. They also evolve with

technology and other techniques. There are open source and proprietary software

with all kinds of licenses and there is suitable visualization framework and application

structuring library for every project.

8.2 Golang & Packages

Golang is still quite unused language but it was well suited to building RESTful service.

Using packages made it easy to implement the middleware and no stumbling was

required to configure CORS headers and user authentication.

26

References

About Us. N.d. Jyväskylä Security Technology. Accessed 24.5.2016. Retrieved from
http://jyvsectec.fi/en/about-us/

After Action Report 2012. Locked Shields. Accessed 24.5.2016. Retrieved from
https://ccdcoe.org/publications/LockedShields12_AAR.pdf

After Action Report 2013. Locked Shields. Accessed 24.5.2016. Retrieved from
https://ccdcoe.org/publications/LockedShields13_AAR.pdf

Antikainen, J. 2014. Model for national cybersecurityresilience and situation
awarenessimprovement - An information quality -centric approach leveraging fusion
of established practitionerand academic disciplines. Accessed 24.5.2016. Retrieved
from www.theseus.fi/handle/10024/86179

API Documentation. N.d. jQuery. Accessed 24.5.2016. Retrieved from
http://api.jquery.com/jquery.ajax/

Ashkenas, J. 2016. Backbone.js. Accessed 24.5.2016. Retrieved from
http://backbonejs.org/

Baxter A. 2014. Cybersecurity: The Industry That Keeps on Growing. Accessed
24.5.2016. Retrieved from http://www.educause.edu/blogs/vvogel/cybersecurity-
industry-keeps-growing

Cichonski, Millar, Grance & Scarfone 2012. Computer Security Incident Handling
Guide - Recommendations of the National Institute of Standards and Technology.
Accessed 24.5.2016. Retrieved from
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

Concurrency. N.d. Effective Go. Accessed 24.5.2016. Retrieved from
https://golang.org/doc/effective_go.html

Cyber Environment. N.d. Jyväskylä Security Technology. Accessed 24.5.2016.
Retrieved from http://jyvsectec.fi/en/cyber-environment/

Cybersecurity - Situation Awareness. N.d. Mitre Corporation (?). Accessed 24.5.2016.
Retrieved from https://www.mitre.org/sites/default/files/publications/pr_14-3929-
cyber-exercise-playbook.pdf

Data-Driven Documents. N.d. D3. Accessed 24.5.2016. Retrieved from
https://d3js.org/

DataSet. N.d. Vis.js. Accessed 24.5.2016. Retrieved from
http://visjs.org/docs/dataset/

DataView. N.d. Vis.js. Accessed 24.5.2016. Retrieved from
http://visjs.org/docs/dataview/

27

Imbert A. 2016. Go-Json-Rest. Accessed 24.5.2016. Retrieved from
https://github.com/ant0ine/go-json-rest

Limnéll, J. 2016. Kyberturvallisuuden tulevaisuus ja kybersodankäynti. Helsinki
Engineers HI Association Kyberturvaa! -seminar 6.4.2016. Retrieved from
https://www.youtube.com/watch?v=_bIjOTvAltg

Limnéll, J. 2016. Suomesta kyberturvallisuuden tulevaisuus. Accessed 24.5.2016.
Retrieved from http://www.aalto.fi/fi/current/news/2016-05-04-002/

Mohammed J. 2015. Is Postgres NoSQL Better Than MongoDB? Accessed 24.5.2016.
Retrieved from http://www.aptuz.com/blog/is-postgres-nosql-database-better-than-
mongodb/

Network. N.d. Vis.js. Accessed 24.5.2016. Retrieved from
http://visjs.org/docs/network/

Package pq. N.d. GoDoc. Accessed 24.5.2016. Retrieved from
https://godoc.org/github.com/lib/pq

Sheiko D. 2012. WebSockets vs Server-Sent Events vs Long-polling. Accessed
24.5.2016. Retrieved from http://dsheiko.com/weblog/websockets-vs-sse-vs-long-
polling/

Silokunnas, M. 2016. Opparista. Sähköpostiviesti 25.5.2016.

28

Appendices

Appendix 1. Visualization Framework Directory Structure

network_visualization/
.config.cfg # hidden config file
public_html/

css/
common.min.css # application css
vis.min.css # vis.js css

img/
cisco/ # cisco network topology icons
..
favicon-XXxXX.png # favicons for tablets etc.
...
favicon.ico # favicon

js/
app/

app.js # application main logic
common.js # common functions
controls.js # ui controls, edit node etc.
render.js # rendering function
view.js # view handler for different views

backbone.js/
backbone-min.js # backbone js
backbone.basicauth.js # basic auth plugin

jquery/
jquery-2.2.0.min.js # jquery js

underscore.js/
underscore-min.js # backbone dependency

vis.js/
vis.min.js # vis js

index.html # index html

29

Appendix 2. RESTful Service Directory Structure

bin/
rest # command executable
config.cfg # configuration file
.password # password example

pkg/
linux_amd64/

jyvsectec.fi/csemtt/rest-go/rest/
crud.a # package object

src/
jyvsectec.fi/csemtt/rest-go/rest/
.git/ # Git repository metadata
crud/

crud.go # package source
crud_test.go # test source

rest/
main.go # command source
main_test.go # test source

	3.1.1 Exercise Control Group
	3.1.2 White Team
	3.1.3 Red Team
	3.1.4 Blue Team
	3.1.5 Green Team
	6.1.1 WebGL, Canvas or SVG?
	6.1.2 Architectural Patterns
	6.4.1 RESTful Service
	7.3.1 Visualization Framework Directory Structure
	7.3.2 Session Handling and Local Storage
	7.3.3 Data Relations
	7.3.4 Rendering View

