
 

 

 

 

 

 

 

 

 

Recommendation systems in the context of tourism 

 

 

Joni Kämppä 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.12.2016 



    Abstract 
 

Date 
 
 

 

Author(s) 
Joni Kämppä 

Degree programme 
Business Information Technology 

Report/thesis title 
Recommendation systems in the context of tourism 

Number of pages 
and appendix pages 
27 

 
Tourism industry has grown despite recent different global issues, like economic crisis. The 
industry is steadily growing each year globally. Lot of travelling related information is avail-
able for the travelers in form of blogs, travelling sites and applications. The search for po-
tentially interesting sights to visit, during the trip, might become tedious task. The infor-
mation sources are extensive, and the number of different establishments and tourist at-
tractions are noteworthy. Whilst travelling abroad, the tourists don’t have good information 
available, data roaming costs make the use of smartphones avoidable, and access to relia-
ble and fast wireless internet-connections might vary between countries and cities. There 
are mobile applications available to be used as tour guides, with offline-access to location 
specific information, but these usually require one application per city or country. These 
applications are also lacking the intuition with their recommendations, and knowledge of 
their user, and can offer only static, predefined content. 
 
This thesis focuses on the research for the benefits of using machine learning techniques 
and recommendation systems to simplify the trip planning process for the end user. Vari-
ous methods could be utilized to find patterns in given user’s past behavior or to find simi-
larities and correlations between known points of interest. These smart systems could be 
used to give personally tailored experience and recommendations for user. These recom-
mendations could be dependent on their schedule, preferences and budget. Machine 
learning would also automate the travel planning process and make the finding of the new 
interesting places easier for wider audiences. 
 
The research contains background study about the tourism industry, technological aspects 
and describes the general idea behind machine learning. Background study is followed by 
closer look at the different machine learning techniques and discusses their potentiality to 
be used in the given context. Suitability of different machine learning algorithms is ana-
lyzed in the empirical stage of the process 
 
The last parts of this thesis describe the process of gathering sample data.  Sample data is 
analyzed to find the best ways to use it as training data. Three different machine learning 
models were constructed to find out how well the test data could be classified. Predictions 
would be done in context of user’s preferences for places worth of visit.  
 

Keywords 
Machine learning, recommendation systems, data science 

 



 

 

 

Table of contents  

1 Introduction ................................................................................................................... 1 

2 Objectives and scope .................................................................................................... 3 

2.1 Objectives ............................................................................................................. 3 

2.2 Scope ................................................................................................................... 4 

3 Background study ......................................................................................................... 5 

3.1 Statistics on basis of machine learning ................................................................. 5 

3.2 Machine learning ................................................................................................... 5 

3.2.1 Unsupervised learning ............................................................................... 6 

3.2.2 Supervised learning ................................................................................... 6 

3.3 Machine learning Algorithms ................................................................................. 6 

3.3.1 Naïve Bayes ............................................................................................... 7 

3.3.2 Decision tree learning ................................................................................ 8 

3.3.3 Support Vector Machine (SVM) .................................................................. 8 

3.3.4 Principal Component Analysis (PCA) ......................................................... 9 

3.4 Recommendation systems .................................................................................... 9 

3.4.1 Collaborative systems ................................................................................ 9 

3.5 Things to Consider .............................................................................................. 10 

4 Empirical study ............................................................................................................ 11 

4.1 Qualitative research ............................................................................................ 11 

4.1 Deductive research ............................................................................................. 11 

4.2 Empirical methods .............................................................................................. 12 

4.3 Methodology implementation .............................................................................. 12 

4.4 Limitations with the collected data ....................................................................... 13 

5 Design ......................................................................................................................... 14 

5.1 IPython notebooks as basis of the design ........................................................... 14 

5.2 Local notebooks .................................................................................................. 14 

5.3 Hosted notebooks ............................................................................................... 14 

5.4 Design of item-based collaborative filtering ......................................................... 15 

6 Implementation............................................................................................................ 16 

6.1 Naïve Bayesian Classifier model ......................................................................... 16 

6.2 Decision Tree Classifier ...................................................................................... 19 

6.3 Item-Based Collaborative System ....................................................................... 22 

7 Results and discussion ................................................................................................ 26 

References ...................................................................................................................... 28 



 

 

Figure 1 Screenshot from Azure Machine Learning Workspace ....................................... 15 

Figure 2 Test dataset for Multinomial Bayesian Classifier ................................................ 16 

Figure 3 Calculating distance vectors .............................................................................. 17 

Figure 4 Preprocessed sample data ................................................................................ 18 

Figure 5 Bayesian classifier's accuracy metrics ............................................................... 19 

Figure 6 Encoding the place type feature into numerical values ....................................... 20 

Figure 7 Decision Tree classifier outputted as image ....................................................... 21 

Figure 8 Predictions for place candidates with Decision Tree-classifier ........................... 22 

Figure 9 Correlation matrix for Item-Based Collaborative Filtering ................................... 23 

Figure 10 Extracting the test user, with id 1000, from the entire dataset and boosting the 

rating scores .................................................................................................................... 24 

Figure 11 Showing potential locations for visiting ............................................................. 24 

  



 

1 

 

1 Introduction 

Despite the global instability in general safety and in overall economic situation, tourism 

industry has continued to grow. In 2015 it grew by 4.3% globally. Yearly number of out-

bound travels reached as high as 1,024 million trips by approximately 1.2 billion interna-

tional tourists arrivals worldwide (IPK International, 2015). Average tourist visits 38 travel 

sites 45 days prior booking, where roughly seven percent of these visits are for journey 

planning and reviews (Expedia Media Solutions, 2013). When users are looking for poten-

tial activity in the travelling location, they are facing large number of possibilities, even for 

single category of interest. For example, there were 5,658 eating establishments around 

Brooklyn area in 2014 (Kuusisto, 2014), which makes manual search for potential eating 

places time consuming.  

 

A context-aware mobile application, for travelling purposes, would simplify users access 

for relevant information. The application, that would recommend points of interest for the 

user according his or her past interests, would automate information seeking process. 

Searching up-to-date information for possible activities before the trip is not as trouble-

some, as it becomes while being abroad. Regulations in data-roaming costs have been 

made for EU citizens travelling inside the Union (Herrmann, Kundisch, Nicolau, & 

Zimmermann, 2014), but the maximum cost for data-roaming is still relatively high, 0.20€ 

per megabyte (Your Europe, 2016). Taking these facts into consideration, the main func-

tionalities of the application, would be used while being abroad and out of continuous ac-

cessibility to Internet connections.  

 

To build an application, that would-be context aware and assistive for the user, the con-

cept of machine learning and predictive algorithms are needed. The application would up-

date its recommendations, when it detects that the user is in foreign country and con-

nected to Wi-Fi-network. The current location and date would be used as a context, and 

automatically suggested activities would be given, based on the past interests. More the 

user travels, more attractive the recommendations should be for the user. The chosen 

machine-learning algorithm should recognize patterns in users’ preferences and use these 

patterns, as base for the suggested points of interest.  

 

In this thesis, there is literature review where basic concepts of machine learning is stud-

ied. To find out the most suitable machine-learning algorithms, to recognize these patterns 

in user’s preferences, a review of different online-sources for up-to-date travel information 

about various activities are researched. The testing of final concept with sample data and 

its process is described in greater detail at the end of this research. 



 

2 

 

 

The research will be conducted as thesis project in HAAGA-HELIA UAS located in Pasila, 

Finland. 



 

3 

 

2  Objectives and scope  

In the following chapter, the objectives and scope of this research are described more 

closely. The machine-learning field is complex field of data science; therefore, the scope 

of the research must be kept relevant to bachelor level research. Sorting out the infor-

mation sources and analysing their suitability is major part of the research. The final ob-

jective is to research different machine learning techniques, and evaluate their conven-

ience to be utilized in the given context. 

 

2.1 Objectives 

When the user is abroad, the access for the information is harder to reach due to the high 

data-roaming costs (Your Europe, 2016), therefore being dependent on public wireless 

networks.  As the average length of stay being 7.3 nights (IPK International, 2015), user 

has limited time to use for information searching purposes, while travelling. For these rea-

sons, the final production level implementation would update the recommendations, based 

on the user’s current location. Detecting that the user is abroad there is an API to access 

the SIM-card’s information about the service provider. Application could be set to use only 

Wi-Fi-connections.  

 

One of the most important objectives, is to be able to give recommendations that user 

would find personally interesting. This can be achieved using effective machine-learning 

algorithm for pattern recognition. The patterns would be user’s general areas of interest, 

based on his or her past interest on any specific activities abroad. To effectively find out 

patterns, one option could be using other users’ interests as a correlation matrix. The ma-

chine-learning service would be maintained on server side, where it must be able to han-

dle a large amount of user data. Predictions would be done in remote server, partly for 

heavy processing needs. After analysing the data, the service must present accurate and 

meaningful suggestions for the end user. 

 

To be able to make any suggestions based on the found patterns, 3rd party service would 

be used to search for possibly interesting activities for the user. The objective is to find out 

service, which has open API for their database, consisting up-to-date information about 

local activities. For the suggestions to be as precise as possible, the user should be pre-

sented detailed information about the interesting sights, in the current location. For exam-

ple, user might be interested in contemporary art, but especially in Andy Warhol. Then the 

application should see this as pattern and make the most suitable suggestions, using as 

many variables as possible to give specific enough results. 



 

4 

 

 

These suggestions should be presented in attractive way, which would be easy to access 

for the user, even when the Internet access is not possible. The final objective is to form a 

predictive model, which could be used later in the implementation of the actual applica-

tion. 

 

2.2 Scope 

The scope of this research is to find out data source and web service, to be used to get 

test data. This test data is then analysed and pre-processed as needed, to be able to find 

patterns in the data. These patterns can be used to offer relevant suggestions for tourist 

activities. This can be later taken into use, in the production application. The performance 

and accuracy could be tested more easily with actual application. In this research the ac-

curacy is evaluated with available software library metrics and empirical evaluation. 

  



 

5 

 

3 Background study 

The next chapter describes the main concepts of the machine learning. These concepts 

are researched in more detail and evaluated before continuing the research process. Ma-

chine learning and recommendation systems are extensive field, and there is lot of issues 

to be dealt with (Brownlee, 2013) , before any the implementation phase could be fol-

lowed. Decisions for the later steps in the research process will be based on this back-

ground study.   

 

3.1 Statistics on basis of machine learning 

General knowledge on statistics is crucial in Machine learning, which is heavily based on 

statistics and probability theory (Lane, 2003). Statistics is the science of data-analysis, 

and learning from it (Davidian & Louis, 2012). Statistics can be used to analyse probabili-

ties, and Machine learning is very probabilistic sub-field of computer science. In the heart 

of statistics, lies data in its various forms, which can be categorized to: 

 

 Numerical Data – integer based discrete continuous data, e.g. how many cloudy 

days are in any given year? 

 Categorical Data – qualitative with no inherent mathematical meaning, e.g. how 

long did checkout-process, in e-commerce website, take? 

 Ordinal Data – mixture of numerical and categorical data, with mathematical 

meaning, e.g. movie ratings. 

 

Types of data might influence on what algorithms are most suitable for Machine learning 

purposes. This should be considered before the data model is formatted. Familiarity of the 

key statistical terminology is expected to understand the concepts behind machine learn-

ing.  

 

3.2 Machine learning  

Machine learning is one of the subfields of computer science, where various methods are 

used to create sort of an artificial intelligence, that can ultimately learn new things inde-

pendently (Ham, Dirin, & Laine, 2016). Machine learning was evolved, by using the 

knowledge on cognitive science (Goldberg & Holland, 1988), to utilize statistics and prob-

ability theory (Lane, 2003). Machine learning algorithms can recognize patterns in the in-

put data and learn to make predictions for unknown future values, based on the sample 

data. Machine learning is based on supervised or unsupervised learning.  

 



 

6 

 

3.2.1 Unsupervised learning 

In unsupervised Learning, the prediction model has no predefined answers to learn from. 

The algorithms analyse the given input data, and try to find patterns and natural clusters 

of data (Michie, Spiegelhalter, & Taylor, 1994). Unsupervised learning is practical, when 

the goal is to find regularity in the data, that has been previously unrecognized. These var-

iables are called latent variables in statistics (“Wiktionary,” 2016). One use case for unsu-

pervised learning, could be an e-commerce store, where product descriptions are ana-

lysed to find the most meaningful terms for a certain category.  

 

3.2.2 Supervised learning 

Compared to unsupervised learning, in supervised learning, the machine learning algo-

rithms are given examples as expected outcome (Michie et al., 1994). The machine learn-

ing model, that is created, is used to predict the answer for new, unknown values. One ex-

ample could be, where the price of a new car is predicted, based on historical car prices 

for cars with similar attributes.  

 

Evaluating supervised learning is relatively straightforward. The training data, that is used 

to train the machine learning model, for predicting new values can be split into either two 

or more randomly assigned data-segments (Sarwar, Karypis, Konstan, & Riedl, 2001). 

One segment is always reserved as test data, to evaluate it against the training-set’s per-

formance. The model is trained using training-set only. These data-segments need to be 

big enough, to contain representatives of all the variations and outliers in the data. In or-

der to avoid overfitting, that is where the model captures more unnecessary outliers and 

inconsistencies from the data (Michie et al., 1994) that is needed, some validations meth-

ods can be used. One option is K-Fold Cross Validation. 

 

In K-Fold Cross Validation the sample data is divided into K- randomly assigned seg-

ments. One segment is reserved as test data, and others are used to train the model. The 

performance of the remaining K-1 segments is measured against the test-set, and aver-

age of the K-1 R-Squared scores is taken (Brownlee, 2016b).  

 

3.3 Machine learning Algorithms 

Various algorithms can be used in machine learning. Finding out the most suitable algo-

rithm, can be achieved only by testing different algorithms and choosing the most suitable 

one to any specific case. The form of data influences slightly on what methods should be 



 

7 

 

used. If data is continuous in its nature, regression analysis is used, whereas categorical 

data is classified (Ham et al., 2016).  

 

Regression analysis is statistical process of statistical modelling, that is used to estimate 

the relationships between given input variables (Prokhorov, 2012). In machine learning 

context, a line is fitted to a data set of observations, and this line is used to predict new 

values. Least-squares method can be used to minimize the squared-error between each 

point and the line. Regression analysis can be linear, polynomial or multivariate regres-

sion, based on how well the line should fit, straight line or curved. Multivariate regression 

is used, when more than one variable influences on the predicted value (Beylkin, Garcke, 

& Mohlenkamp, 2009).  

 

Classification is used for nominal labels, where the data is not continuous (Ham et al., 

2016). Whereas multivariate regression analysis could be used, for example to predict car 

prices based on its brand, model and other meaningful attributes, classification is used 

usually for recommendation systems, where similarity scores are computed using ordinal 

data.  

 

Some of the machine learning algorithms were studied, before making initial test runs with 

the fake data, and they are described in more detail below. 

 

3.3.1 Naïve Bayes 

Naïve Bayes is related on the general Bayes’ Theorem (Michie et al., 1994). The Bayes’ 

Theorem, or Bayes’ Law, is part of probability theory and is an example of conditional 

probability. Bayes’ Theorem is stated mathematically as the equation presented below: 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 

Bayes’ Theorem is used, for example in a medical study (Peter Armitage,Geoffrey Berry, 

2002), where probability of x, given y, is studied. A classic example is a drug test, where 

probability of false positives, can be calculated using Bayes’ Theorem. In Bayes’ Theorem 

probability of A given B, is highly dependent on probability, that is known as base or prior 

probability, of B and A.  

 

Naïve Bayes is approaching the probability theory, from little different perspective. Com-

pared to Bayes Theorem, where variables are dependent on each other, Naïve Bayes al-

gorithm assumes that all input variables are independent and, that the outcome is not 

product of those variables influencing on each other (Ham et al., 2016). Naïve Bayes is 



 

8 

 

effective for handling unknown and/or missing values (Michie et al., 1994). Naïve Bayes is 

rather simple, but effective and scalable machine learning algorithm (Ham et al., 2016).  

 

3.3.2 Decision tree learning 

Decision tree learning is a classification method in machine learning, that forms a predic-

tive model for mapping the input data into a predicted new value, based on its initial attrib-

utes (Gershman et al., 2010).  The “tree” is divided into a nodes and branches, where a 

node represents potential decision to be made and branches are options, that might lead 

to it (Ham et al., 2016). Decision trees fall into supervised learning category, since it re-

quires sample data, with the resulting classifications. 

 

Decision trees are run through, from top to bottom, and each step is trying to minimize the 

data entropy on its way through the tree (Gershman et al., 2010). This makes it a greedy 

algorithm, where the tree picks the decision point, where it reduces the entropy the most, 

at that stage (Ham et al., 2016).  

 

Decision trees suffer severely from overfitting (Michie et al., 1994), and ensemble learning 

techniques can effectively reduce the overfitting issue. Ensemble learning, in the context 

of decision trees, is achieved using multiple trees, instead of single tree. This technique is 

known as Random Forrest –concept, where alternative trees are formed and they “vote” 

on the final classification. The input data can be re-sampled randomly and subsets of the 

tree’s attributes are randomized for each stage. This technique is called bootstrap aggre-

gating or bagging (Brownlee, 2016a).  

 

3.3.3 Support Vector Machine (SVM) 

Support Vector Machine is another technique of data classification. This technique is eas-

ily subject to unsatisfactory results, amongst beginners (Chih-Wei Hsu, Chih-Chung 

Chang, 2008a). Whereas Naïve Bayes’ rely on probability theory, SVM is a non-probabil-

istic binary linear classifier (Ham et al., 2016). In SVM, data is also separated into training 

and test sets. Training sets contain one target value each, i.e. the class labels, and sev-

eral attributes, the goal being producing a model to predict the target values of the test 

data. The model is based on the training data and it makes the predictions with the attrib-

utes of the test data.  

 

Cross-validation is important in SVM, to find the most suitable parameters (Chih-Wei Hsu, 

Chih-Chung Chang, 2008b) and previously described K-Fold cross validation –method is 

one way to achieve that. 



 

9 

 

 

3.3.4  Principal Component Analysis (PCA) 

Principal Component Analysis is a dimensionality reduction method, that mathematically 

transforms several possibly correlated variables into a smaller number of variables. These 

variables are called principal components (Jolliffe, 2005). 

 

Human brains are bad to process more than three dimensions (Groleau, 2003) and di-

mensionality reduction is used to distil higher-dimensional data, down to smaller number 

of dimensions, while preserving as much of the variance in the data as possible.  

 

PCA finds “eigenvectors” in the higher dimensional data, that will define hyper planes that 

split the data, while preserving its variance. The data is then projected to these hyper 

planes, that represent the lower dimensions. One of the implementations of PCA is Singu-

lar Value Decomposition (SVD). (Jolliffe, 2005) 

 

3.4  Recommendation systems 

Recommendation systems are subset of machine learning, where various statistical and 

neural network algorithms can be used to recommend items and services for the user, 

based on their past behaviour. Recommendation systems are mostly divided into two, 

based on the approach they make to compute similarity and how they make recommenda-

tions for users. These two main methodologies are user-based or item-based collabora-

tive filtering. These approaches are described in further detail, below.  

 

3.4.1 Collaborative systems 

User-based collaborative filtering differs from item-based collaborative filtering, on how the 

similarity scores are computed. In user-based collaborative filtering, this similarity is com-

puted based on user-user similarity, whereas in item-based it is the relationships between 

items (Sarwar et al., 2001). 

 

The problems with user-based collaborative filtering are the very nature of people. Peo-

ples’ tastes are constantly evolving, therefore it’s hard to make precise similarity computa-

tions. Another problem is performance issue (Sarwar et al., 2001), which is due to the fact, 

that many times there are more users than items, e.g. total number of users of Netflix ser-

vice vs. number of movies in Netflix movie catalogue. User-based collaborative filtering 

system can also be gamed, where fake users are made to create false sense of similarity 

between users. This is also called as shilling attack (Chirita, Nejdl, & Zamfir, 2005).  



 

10 

 

 

Another approach in recommendation systems is item-based collaborative filtering. Where 

people’s changing personalities was an issue, items and things have more static nature. 

Star Wars -movie will always remain Star Wars -movie, therefore the similarity is relatively 

easier to compute. By common sense, there are usually fewer things to recommend than 

users to recommend for. This leads to less computation needs. If item-based collaborative 

filtering were used to movie recommendation system, one way to achieve meaningful rec-

ommendations would be: 

 

 Finding every pair of movies that were watched by the same person  

 Measuring the similarity of their ratings across all users who watched both movies 

 Sorting by the movie, then by the similarity 

 

Today there are also hybrid approaches, where the recommendation system is based 

partly on both methods, to avoid possible limitations in both item-based and user-based 

collaborative filtering techniques (Adomavicius & Tuzhilin, 2005).  

 

3.5  Things to Consider 

To effectively achieve the best results, different machine learning algorithms should be 

tested and evaluated. The nature of the data will tell, whether it is classification or regres-

sion issue. Different methods can be used to evaluate how well the model fits to the train-

ing data, including cross-validation methods (e.g. K-Fold), R-Squared. Methods like boot-

strap aggregating or boosting can be used to avoid overfitting. 

  



 

11 

 

4 Empirical study 

In the following chapter the basic methodology to collect and analyse the test data is de-

scribed. The implementation of the predictive modes will be based on this research. 

 

4.1 Qualitative research 

The machine-learning algorithm will use qualitative data of the real and/or imaginary user 

and his past behavior. Statistical methods like data normalization, are used to scale the 

continuous data to be more efficient to predict with the algorithm. 

 

The source of the test-data is Google’s Places Web Service API. It has several different 

endpoints to request place related data. Test data was based on both real past visits to 25 

different locations around Europe and generated randomly, by mass queries using Google 

Places Radar results. Google’s Radar search returns basic identification data of 200 near-

est places, by given query word. More detailed information can be asked for these places 

individually, using their Place Detail’s endpoint. For the test purposes, around 800 individ-

ual place details were fetched from Google Places API. Fake users and their reviews were 

generated using normal distribution, to be used later in the item-based collaborative sys-

tem.  

 

Qualitative data was used to find trends and natural patterns in user’s past behavior. This 

was utilized to build a predictable model for new unseen data. Basic classification problem 

for this concept, was whether certain location or place of interest could be recommended 

to the end user, based on the data the application already knows about him.  

 

4.1 Deductive research 

Even though the test data was collected in more qualitative way, the research continued in 

deductive form. The experimental nature of this research required combination of different 

research methods.  

 

The collected data was used to create a predictable model for any given user and his or 

her travel preferences. The end goal was to test out the given theory or machine-learning 

model with the new unseen data and real world values. 

 



 

12 

 

4.2 Empirical methods 

Test data and initial machine-learning predictions were empirically analyzed for their valid-

ity. Machine learning is, in its very nature, very statistical science, but the results must be 

reviewed closely, to verify that the used model was feasible enough to produce trustwor-

thy predictions. 

 

4.3 Methodology implementation 

The initial, smaller and more precise dataset, was collected with the information from past 

visits to various sightseeing locations around Europe. The data was fetched from Google 

Places API (Google, 2016). This initial dataset of 25 different locations, were used as ba-

sis for machine learning methods that require smaller dataset to begin with. The predic-

tions can be accurate with less data than in some of the more complex approaches. This 

data was saved as comma separated value (CSV) -files. Creating a database and re-

quired database schemas were out of the scope of this research.  

 

Second test dataset was collected programmatically, with few different simple Python ap-

plications.  These applications were programmed to fetch Google Radar results from 

given latitude, longitude locations with query word “tourist attraction”. Google’s Radar API 

(Google, 2016) returns maximum 200 results from given area. 5 km radius was used, to-

gether with coordinate and query parameters.  

 

Google Radar results contains only very basic information about the places, e.g. place id. 

These place ids were stored in csv-file, to be used in other Python programs. Place ids 

were then used, to fetch all the information, for every place that Google Radar returned 

from original queries. This data was stored in different csv-file, with the most meaningful 

features, like opening times, user rating averages, and price ranges.  

 

There was need for a large set of user ratings, for item-based collaborative recommenda-

tion system. These ratings were generated, with another Python program, for fake user 

set of 500 users. The reviews were randomly either null valued or generated in range from 

one to five, including half-integers. The randomized reviews were generated, centered on 

the Google’s average of all their ratings, with standard deviation of 1.5. This was done to 

simulate natural distribution of the reviews, and make the original average rating stay rela-

tively same.  

 



 

13 

 

4.4 Limitations with the collected data 

 The data, that was collected in the early stages of research, had some limitations in it. 

The choice for source of location and sights data, was difficult one to make. The differ-

ence in the level of detail was quite small, but accessibility and ease of use, varied.  

 

Some sources like OpenStreetMap (OpenStreetMap, 2016) have their data available free 

of charge. OpenStreetMap provides the entire database as downloadable comma-sepa-

rated file. The problem with OpenStreetMap was the level of detail they had about the lo-

cations. The information was very low in detail; mostly only the name of the location and 

the amenity. Their API is not as well documented, as Google’s equivalent.  

 

Google’s Places API (Google, 2016) is very well documented and easy to use in general. 

They have different options for different platforms, but for simple Web Service, HTTP-re-

quests were also possible. Places API has very detailed information about the places, in-

cluding average rating information, as well as variable amount of individual user reviews. 

The problem with Google Places, place details, is ambiguous place type categorization. 

For potential user, there would be a big difference between e.g. contemporary art muse-

ums and classical art museums. Google knows these places only by categories museum, 

place of interest and establishment. Latter two types were useless, in that sense that they 

occurred in every place details, that were observed in the test data.  

 

Other options were reviewed, but there were availability problems. It was also questiona-

ble, whether they were up-to-date. 

  



 

14 

 

5 Design 

In the following chapter the design process before the implementation process is briefly 

described. At this stage of the research the design is relatively simple and the solutions 

are not adjusted to be used in production level. The goal is to test out the machine learn-

ing algorithms, evaluate their performance and test them with new unseen data. 

 

5.1 IPython notebooks as basis of the design 

Interactive python notebooks are part of Jupyter (Jupyter, n.d.) , and they are simple way 

to write small Python programs that can be written and executed in the browser. They are 

used in some of the hosted machine learning platforms like Microsoft Azure (Mortazavi, 

2015) and therefore powerful way to build initial test models. 

 

5.2 Local notebooks 

The models were originally build in local development environment before searching for 

potential hosting solutions. Enthought Canopy (Enthought Inc., 2016) was used to quickly 

create new notebooks for slightly variable solutions. Enthought Canopy has package man-

ager which makes it easier to download necessary Python libraries.  

 

5.3 Hosted notebooks 

Some testing with hosted machine learning models were done using Microsoft Azure Ma-

chine Learning solutions. Azure has machine learning workspaces (Ericson, Gyger, 

Whitlatch, Nevil, & Franks, 2016) that can be used to host a model in the Azure platform. 

This option was tested for the Decision Tree and Bayesian -classifiers. Azure Machine 

Learning Workspaces support IPython Notebooks, and the process of teaching the model 

and making it publicly available is relatively simple. The process how the implemented De-

cision Tree model was published is shown below. 

 



 

15 

 

 

Figure 1 Screenshot from Azure Machine Learning Workspace 

 

The figure above shows the process that is done after the model is taught as it would in 

local IPython notebooks. The model is published with azureml-pyhton library’s “services”- 

module methods. The module has helper methods to show how it’s possible to access the 

service as Restful-API to predict new classifications.  

  

5.4 Design of item-based collaborative filtering  

To efficiently use the item-based collaborative filtering techniques in production environ-

ment, better solutions would be needed that with Decision Tree and Bayesian -classifiers. 

The amount of location and user review data would be large in production application and 

the need of an actual database and architecture around it would be necessary. For testing 

purposes, even item-based collaborative filtering used the notebooks and csv-files for 

data when efficiency and maintainability were not a concern. 

  



 

16 

 

6 Implementation 

In the following chapter, the three possible machine learning predictions models are de-

scribed. Their performance and main problem areas are analysed and discussed. For 

every model, there are excerpts from the code, to show together with the description of 

the model.  

 
6.1 Naïve Bayesian Classifier model 

Bayes Theorem and Naïve Bayes are simple, but efficient classification methods in ma-

chine learning. In some cases, it has outperformed more complex algorithms. One exam-

ple, where Bayes Theorem is used, is spam-mail filtering, where pre-classified collection 

of emails is labeled as spam or ham. Bayes Theorem is used to calculate probability of an 

appearance of a word in either one of them. In the case of this research, few different ver-

sions of Bayesian classifier were tested.   

 

In the dataset, that was collected for this research, the calculated word counts were place 

types, e.g. museum, bar or clothing store. Multinomial Bayesian classifier can count the 

probability of a certain place category to belonging to certain classification. Other parame-

ters for the model were distance, from the original location of the user to the visited loca-

tion, and average rating score in Google’s service, from where the data was fetched. The 

picture below show the structure of the test data that was used.  

 

 

Figure 2 Test dataset for Multinomial Bayesian Classifier 

 

As with any other Scientific Python’s machine-learning algorithm, the Bayesian classifiers 

does not work directly with the categorical data, here the type field, and it must be con-

verted to meaningful numerical form. One of options, would be using the textual feature 

extraction method, from Sklearn-library, called CountVectorizer. It calculates each word 

and converts the word count, into a Python dictionary of key-value pairs. In the final model 

the DictVectorizer-method, from same feature extraction library, was used to turn the type-

feature into dictionary, where textual names were mapped as zeros and ones.  

 



 

17 

 

Rating-feature data came from Google Places API. It is an average of all the individual re-

views, that are added to the Google. Every place does not have the rating information. In 

the dataset of 25 place details, their overall average was quite high, being 3.768. There-

fore, variance was quite low in the test dataset.  

 

The distance-feature was manually counted for the test dataset. The idea was, to store 

the distance from the user’s original location to the visited location. Hypothesis was, that 

there could be some correlation between the distance user was ready to go to visit some 

locations during his or her trip, and whether the same place was liked by that person. 

Given the fact that average trips are rather short, as found in the literature overview, this 

could be a significant factor, when user is planning his or her stay abroad. Below here, is 

a table from the original excel, where distance vectors were calculated from original loca-

tion from where the visit to the location started. 

 

 

Figure 3 Calculating distance vectors 

 

In machine learning, there is sometimes issue with numbers with different weight or scale. 

In this dataset, there was a scale difference between rating, ranging from one to five, and 

distance which was continuous with no upper limit. Sklearn- libraries have functions for 

data preprocessing, like normalizing data in the same range, e.g. -1 to 1. The data frame 

including number encoded type features, was normalized and the train/test scores were 

compared before and after normalizing the fields. With the data that was used for training 

and testing the model, there was no significant difference between normalized and unnor-

malized data. With the normalize function there was also unwanted effect of encoded type 

fields becoming normalized in the same scale, if the normalization function was applied in 

the wrong time. Normalization also adds complexity to predicting new values, where the 

scale must match the original normalized scale. The following table shows the variance in 

the distance values in test dataset.  

 

Average of distances Maximum distance Minimum distance Standard deviation 

5,596783833 12,52983285 0,160706477 3,552431351 

Table 1 Data variation figures of test data 

 

Visited Place lat long lat2 long2 Distance From Starting Location (km)

Museum of Contemporary Arts Kiasma 60,1720037 24,9366797 60,235996 24,874721 7,90

Ateneum 60,1701774 24,9440924 60,235996 24,874721 8,26

Kunsthal 51,9107250 4,4730894 51,927722 4,47307 1,89

Louvre Museum 48,8606111 2,3376440 48,849893 2,400216 4,73

Taidehalli 60,1721694 24,9309753 60,235996 24,874721 7,75

The Centre Pompidou 48,8606420 2,3522450 48,849893 2,400216 3,71

Starting locationLocation



 

18 

 

For the classification, there was tests for Boolean and multi-class classifications. The 

Boolean classification was “Liked/Not Liked” classification for user’s likelihood for being 

interested about the location. The multi-class alternative included third option, falling be-

tween two extremes, “Not Liked/Ok/Liked”. The classification features had to be encoded 

with sklearn- method LabelEncoder. Below is a screenshot of the data, that was prepro-

cessed in the form where the used Python libraries would work. 

 

 

Figure 4 Preprocessed sample data 

 

As seen above, categorical textual data was mapped into zeros and ones, where number 

zero meant absence of the corresponding place type value in that index of the array. 

Looping the dictionary would be the only way to find out the correct index, if the model 

was used as a Web Service.  

 

The multinomial Bayesian classifier resulted in a relatively good result, having accuracy of 

80%. The accuracy was counted with Sklearn metrics-library. Results are presented in the 

figure below. 

 



 

19 

 

 

Figure 5 Bayesian classifier's accuracy metrics 

 

Precision here, is so called positive predictive value indicating the fraction of the instances 

that were relevant and recall is sensitivity or fraction of relevant instances retrieved 

(“Precision and recall,” 2016). 

  

The accuracy of 80% could be good, but the model failed empirical tests with new data. 

Classifications looked mostly correct, but there was strange phenomenon, where place 

types that were the most liked in the test set, were classified as “Not Liked”. At the same 

time, the new place type with distance of 120km could be classified as “Liked”. The rea-

son behind this, could be the fact that there was too little variance in the test data, espe-

cially in average rating scores.  

 

With bigger training dataset and good test set, the performance could be more accurately 

evaluated and the strange misclassifications could become rarer.  

 

6.2 Decision Tree Classifier 

Another option for small initial dataset, and quicker learning curve for the machine learn-

ing system, was Decision Tree Classifier. In the case when R-language would be used as 

programming language, decision trees would naturally support categorical data, like here 

the place categories, but in Scientific Python -libraries, these had to be converted to nu-

merical values.  

 

Simple conversion to numbers could not be done, since the Scientific Python’s decision 

tree classifier treats numbers as continuous data. If the mapping of place types were done 

as converting them into an array from 0 to the total count of different place type catego-

ries, would this lead to a model, where some numerical value in the range would be 

treated as dividing line for classification. Which means if museum type was present the 



 

20 

 

most and it had value of 63, numbers smaller than 63 could be treated as they belong for 

“Not Liked” -classification. This issue was faced in the first tests, where place categories 

were mapped like this. Scientific Python has its own preprocessing library for these con-

versions, where the numbers are converted into arrays or dictionaries, that will not lead to 

same behavior in the model. Below is the figure showing the conversion functions used to 

preprocess the data. 

 

 

Figure 6 Encoding the place type feature into numerical values 

 

The decision tree classifier used same dataset for training as the Bayesian classifier. The 

decision tree tried to classify given feature array using an entropy as its evaluation crite-

rion. Below is the figure showing the picturized tree-model.  



 

21 

 

 

Figure 7 Decision Tree classifier outputted as image 

 

The used model was suffering from severe overfitting, where the accuracy score was in-

accurately 100%. This could have been due to too small dataset, which could not be di-

vided into meaningful enough train/test -sets.  

 

Even though the accuracy score was 100%, the model was giving classifications for new 

data, that made more sense that with the Bayesian classifier. With the tree model, candi-

dates for places to visit, that were like previously liked places, were classified more cor-

rectly, as the figure below shows. 



 

22 

 

 

Figure 8 Predictions for place candidates with Decision Tree-classifier 

 

In the above case place candidate was almost seven kilometers away from original loca-

tion, had average rating of 4.3 and was type of cemetery. 

 

With a different programming language, like statistical programming language R, decision 

tree classifier would be ideal solution if the most meaningful feature is categorical data 

type. Google’s Places data had the largest number of potential candidates to be used as 

features for the model, but the problem was the low variance in ratings, missing data and 

inconsistence in the results. For example, in bigger cities, place details included price-

range information, but it appeared in the test data so rarely, that it would not be good fea-

ture. Other data sources were missing ratings and didn’t have any other good feature can-

didates. Place type on its own, would have been too little for the model to be based on. It 

wasn’t clear, whether the accuracy score was due to too small number of features to base 

the tree on, or small size of the dataset, having only 25 rows of visit data. 

 

With the decision tree classifier, the random forest classifier was also tested, but the prob-

lem with unrealistic accuracy score didn’t go away. Ideally random forest, with n-number 

of trees, would be better option than using a single tree. Since the accuracy score didn’t 

change to more realistic one, random forest classifier was not used.  

 

6.3 Item-Based Collaborative System 

As the research was done for recommendation system type of use case, item-based and 

user-based collaborative systems would be the most ideal ones for good recommenda-

tions. Collaborative filtering algorithms are known for example from Netflix Prize  (“Netflix 

Prize,” 2016). 

 

To get the best results out of the collaborative filtering technique, this solution required 

larger dataset to test the concept. The used technique calculated correlation scores for 

sparse matrix of every place and rating pair in the dataset. This solution, and item-based 

collaborative filtering in general, require more data to give meaningful results. Total of al-

most 800 place details, were programmatically fetched from Google Places API. Since the 

solution required also n-number of fake users, and their ratings for another n-number of 



 

23 

 

random places, these ratings were also programmatically generated. To simulate realistic 

behavior, the average rating from Google Places API was used to center the randomized 

user ratings around it, with standard deviation of 1.5. All ratings were rounded to closest 

half integer, and randomly some ratings were skipped completely. Range from 0 to 500, 

was used as user IDs. Every user either “gave” rating to any single place in the places 

data or not. Overall, the test dataset had 150 000 user ratings for each of the roughly 800 

places. 

 

For these place-rating pairs, initial correlation score was calculated to use as the basis of 

the later recommendations. The figure below shows the correlation matrix of test data. 

 

 

Figure 9 Correlation matrix for Item-Based Collaborative Filtering 

 

The correlation method takes parameters, like the used correlation method, here being 

Pearson, and min-periods which dropped rating-place -pairs with less than 100 occur-

rences from the dataset. This would remove potential skews in the correlation scores, oc-

curred when places with very few ratings, would be falsely highly correlated.  

 

One of the user was chosen to represent the imaginary test user, and all his ratings were 

extracted from entire dataset. Then the ratings were boosted, with lambda-function, to 

make more variance in the correlation scores. The figures below represent this process. 

 



 

24 

 

 

Figure 10 Extracting the test user, with id 1000, from the entire dataset and boosting the 

rating scores 

 

The screenshot from the code above, shows how all the place ratings for test-user with id 

1000, are extracted from all the place ratings. Then for every similar place in correlation 

matrix, the correlation score is scaled accordingly to how well the test user had rated the 

place. This will add more weight to places that have higher correlation/similarity score. 

These scores are then grouped together to calculate sum of correlation for places, that 

correlate with more than one place. The figure below shows the final list of candidates for 

potential locations, that could be recommended for user 1000. All the places that user 

have already visited are dropped from the result. 

 

 

Figure 11 Showing potential locations for visiting 



 

25 

 

The tested item-based collaborative filtering approach gave the most meaningful results, 

but the problem with it is the need of large amount of data to make it precise enough. 

Some of the other potential problems, with this approach, are the possibility of users that 

want to game the system and distort the results. For some e-commerce sites, that might 

use item-based collaborative filtering for their product recommendations, it is logical to 

count in only those items, that were bought by the user. For place recommendations, it 

would be harder to ensure that user visited the place, without making it mandatory to 

check in at the place to validate the visit.  

 

For the item-based collaborative system, it would be beneficial to host the place and rating 

data, as part of the system. All the known places should be found from the system, even 

though there were no ratings given by the users yet. This would remove the issue, that the 

current solution had, that user could request recommendations in the locations that are 

not known by the system. For missing ratings, some fake ratings could be used, like tak-

ing the mean of all the ratings for places with same category. 

 

Other feature that was missing from the item-collaborative system test case, was the 

user’s ability to get recommendations for only currently nearby places. The longitude and 

latitude values were forgotten, when the place data was programmatically fetched from 

Places API. The proximity calculations would also be out of the scope of this research so 

they weren’t the focus point.  

 

If these limitations of item-based collaborative system, in the tourism context would be 

overcome, this approach is very flexible in various ways. For example, the place type cat-

egories could be used, e.g. compute ratings for places that are missing them and used as 

a base for correlations. At the same time, these categories would not be treated in that 

sense, that similarities for places with different categories could not be found. These facts 

would help for places, that have too ambiguous category. This was the reality that oc-

curred in all the researched sources of place and point of interest related data.   

  



 

26 

 

7 Results and discussion 

Finding feasible solution for the given context turned out to be extremely difficult. Choices 

for source of data were hard to find. Some of them were poorly documented or unreliable 

in terms of continuous accessibility.  

 

OpenStreetMap had the option to download their entire database of location data, but they 

had very few data-attributes for places. Only the category attribute would have qualified as 

a feature for the machine learning model. Google Places API, on the other hand, had 

more choices for feature candidates, but there were lot of inconsistencies in the presence 

of these values, especially in smaller cities. With Google Places the system would also be 

reliable on third-party service, which is a downside in longer run.  

 

Overall, it was hard to come up with the feature candidates, since the most of the location 

related data would not be meaningful in recommendation service. Longitude, latitude infor-

mation was available in every data source. But when the goal is to present the user poten-

tially interesting places, the past location-coordinates will not matter. Opening hours could 

be one feature, but people are generally more flexible to variable opening hours, during 

their holidays. Price information wasn’t directly and consistently available in any of the ser-

vices. The only potential features, that were left, were calculating the distances from start-

ing point to visited place, known rating scores and place types.  

 

Categorical data found out to be difficult one to deal with Scientific Python libraries, and 

after preprocessing those values to numerical representatives, it would be complex opera-

tion to find those numerical mappings from remote service, like using a smartphone to re-

quest classification for n-places, with given feature parameters. Maintaining all the train 

data locally, would take too much storage space from the smartphone and computing 

complex machine learning algorithms, would dry the smartphone batteries in no time. For 

these reasons, a remote machine-learning server, would be almost mandatory, for good 

user-experience. 

 

Some more complex ensemble learning techniques, could solve the problem of overfitting 

and skewed classification results. That could reduce the need of initial data to produce 

meaningful predictions. Given the scope of this research, ensemble learning techniques 

and other potential improvements, there would be a need for more resources to achieve 

better results.  

 



 

27 

 

The research gave good insight in the world of machine learning and data science. This 

field of information technology, is very difficult to master in short time. Building the models 

and using different statistical methodologies to manipulate raw data, forced to evaluate 

the system requirements and architecture aspects from early on. The research could have 

been more successful one, if some of the models, that could work with smaller initial da-

taset, would have turned out to be more reliable. These models could have been used as 

basis for the proof-of-concept application, to taken into further development. Now the re-

sults support item-based collaborative filtering, which requires lot of data to become part 

of accurate recommendation system.  

 

  



 

28 

 

References 

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of 

recommender systems: A survey of the state-of-the-art and possible 

extensions. IEEE Transactions on Knowledge and Data Engineering. 

Beylkin, G., Garcke, J., & Mohlenkamp, M. J. (2009). Multivariate Regression and 

Machine Learning with Sums of Separable Functions. SIAM Journal on 

Scientific Computing, 31(December), 1840–1857. 

https://doi.org/10.1137/070710524 

Brownlee, J. (2013). How to Evaluate Machine Learning Algorithms - Machine 

Learning Mastery. Retrieved December 11, 2016, from 

http://machinelearningmastery.com/how-to-evaluate-machine-learning-

algorithms/ 

Brownlee, J. (2016a). Bagging and Random Forest Ensemble Algorithms for 

Machine Learning - Machine Learning Mastery. Retrieved December 11, 2016, 

from http://machinelearningmastery.com/bagging-and-random-forest-

ensemble-algorithms-for-machine-learning/ 

Brownlee, J. (2016b). Evaluate the Performance of Machine Learning Algorithms in 

Python using Resampling - Machine Learning Mastery. Retrieved December 

11, 2016, from http://machinelearningmastery.com/evaluate-performance-

machine-learning-algorithms-python-using-resampling/ 

Chih-Wei Hsu, Chih-Chung Chang,  and C.-J. L. (2008a). A Practical Guide to 

Support Vector Classification. BJU International, 101(1), 1396–400. 

https://doi.org/10.1177/02632760022050997 

Chih-Wei Hsu, Chih-Chung Chang,  and C.-J. L. (2008b). A Practical Guide to 

Support Vector Classification. BJU International, 101(1), 1396–400. Retrieved 

from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf 

Chirita, P.-A., Nejdl, W., & Zamfir, C. (2005). Preventing shilling attacks in online 

recommender systems. Proceedings of the Seventh ACM International 

Workshop on Web Information and Data Management WIDM 05, 55(2), 67. 

https://doi.org/10.1145/1097047.1097061 

Davidian, M., & Louis, T. A. (2012). Why Statistics? Science, 336(6077), 12–12. 

https://doi.org/10.1126/science.1218685 



 

29 

 

Enthought Inc. (2016). Welcome to Enthought Canopy — Canopy 1.7.4-final 

documentation. Retrieved December 11, 2016, from 

http://docs.enthought.com/canopy/ 

Ericson, G., Gyger, A., Whitlatch, K., Nevil, T., & Franks, L. (2016). Create a 

Machine Learning workspace | Microsoft Docs. Retrieved December 11, 2016, 

from https://docs.microsoft.com/en-us/azure/machine-learning/machine-

learning-create-workspace 

Expedia Media Solutions. (2013). The Traveler’ s Path to Purchase. Retrieved from 

http://cdn2.hubspot.net/hub/149354/file-271132325-

pdf/docs/Path_to_Purchase_Expedia_Media_Solutions_MillwardBrown.pdf?t=1

458338275763 

Gershman, A., Meisels, A., Lüke, K.-H., Rokach, L., Schclar, A., & Sturm, A. 

(2010). A Decision Tree Based Recommender System. Iics, 170–179. 

Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Decision

+Tree+Based+Recommender+System#0%5Cnhttp://scholar.google.com/sch

olar?hl=en&btnG=Search&q=intitle:A+Decision+Tree+Based+Recommender

+System.%230 

Goldberg, D., & Holland, J. (1988). Genetic Algorithms and Machine Learning. 

Machine Learning, 3, 95–99. https://doi.org/10.1023/A:1022602019183 

Google. (2016). Place Search  |  Google Places API Web Service  |  Google 

Developers. Retrieved December 11, 2016, from 

https://developers.google.com/places/web-service/search 

Groleau, R. (2003). Imagining Other Dimensions. Nova. Retrieved from 

http://www.pbs.org/wgbh/nova/physics/imagining-other-dimensions.html 

Ham, N., Dirin, A., & Laine, T. H. (2016). Machine learning and dynamic user 

interfaces in a context aware nurse application environment. Journal of 

Ambient Intelligence and Humanized Computing, 23. 

https://doi.org/10.1007/s12652-016-0384-1 

Herrmann, P., Kundisch, D., Nicolau, V., & Zimmermann, S. (2014). Mobile Data 

Roaming Regulations. Twenty Second European Conference on Information 

Systems, 1–11. 

IPK International. (2015). ITB WORLD TRAVEL TRENDS REPORT 2015 / 2016. 



 

30 

 

Retrieved from http://www.itb-

berlin.de/media/itbk/itbk_dl_all/itbk_dl_all_itbkongress/itbk_dl_all_itbkongres

s_itbkongress365/itbk_dl_all_itbkongress_itbkongress365_itblibrary/itbk_dl_al

l_itbkongress_itbkongress365_itblibrary_studien/ITB_World_Travel_Trends_R

eport_2015_ 

Jolliffe, I. T. (2005). Principal component analysis. Applied Optics, 44(May), 6486. 

https://doi.org/10.1007/SpringerReference_205537 

Jupyter. (n.d.). Jupyter and the future of IPython — IPython. Retrieved December 

11, 2016, from https://ipython.org/ 

Kuusisto, L. (2014). New York City Restaurants Multiply, Despite High-Profile 

Closures - WSJ. Retrieved March 20, 2016, from 

http://www.wsj.com/articles/new-york-city-restaurants-multiply-despite-high-

profile-closures-1412816142 

Lane, T. (2003). On the Origin and Destiny of Inductive Machine Learning. Journal 

of Machine Learning Gossip, 1, 21–27. https://doi.org/10.1.1.59.8430 

Michie, E. D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine Learning , 

Neural and Statistical Classification. Proceeding. 

https://doi.org/10.2307/1269742 

Mortazavi, S. (2015). Introducing Jupyter Notebooks in Azure ML Studio | Cortana 

Intelligence and Machine Learning Blog. Retrieved December 11, 2016, from 

https://blogs.technet.microsoft.com/machinelearning/2015/07/24/introducing-

jupyter-notebooks-in-azure-ml-studio/ 

Netflix Prize. (2016). Retrieved December 1, 2016, from 

https://en.wikipedia.org/wiki/Netflix_Prize 

OpenStreetMap. (2016). Planet OSM. Retrieved December 11, 2016, from 

http://planet.openstreetmap.org/ 

Peter Armitage,Geoffrey Berry, J. N. S. (2002). Statistical Methods in Medical 

Research. (Fiona Pattinson, Ed.) (4th ed.). Cornwall: Blackwell Science Ltd. 

Retrieved from 

https://books.google.fi/books?hl=fi&lr=&id=OevV49Dhn_YC&oi=fnd&pg=PR5

&dq=Bayes%27+Theorem+Medical+field&ots=3JqhFs3mdn&sig=oCJYybwFV

wMSa-YK7UtfBgkRjxo 

Precision and recall. (2016). Retrieved December 1, 2016, from 



 

31 

 

https://en.wikipedia.org/wiki/Precision_and_recall 

Prokhorov, A. V. (2012). Regression analysis. Retrieved from 

https://www.encyclopediaofmath.org/index.php/Regression_analysis 

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative 

filtering recommendation algorithms. Proceedings of the 10th …, 1, 285–295. 

https://doi.org/10.1145/371920.372071 

Wiktionary. (2016). Http://en.wiktionary.org/wiki/latent. Retrieved from 

https://en.wiktionary.org/wiki/latent 

Your Europe. (2016). Mobile roaming costs - Your Europe. Retrieved March 20, 

2016, from http://europa.eu/youreurope/citizens/travel/money-

charges/mobile-roaming-costs/index_en.htm 

 


	1 Introduction
	2   Objectives and scope
	2.1 Objectives
	1.
	2.2 Scope

	3 Background study
	3.1 Statistics on basis of machine learning
	3.2 Machine learning
	3.2.1 Unsupervised learning
	3.2.2 Supervised learning

	3.3 Machine learning Algorithms
	3.3.1 Naïve Bayes
	3.3.2 Decision tree learning
	3.3.3 Support Vector Machine (SVM)
	3.3.4  Principal Component Analysis (PCA)

	3.4  Recommendation systems
	3.4.1 Collaborative systems

	3.5  Things to Consider

	4
	4 Empirical study
	4.1 Qualitative research
	4.1 Deductive research
	4.2 Empirical methods
	4.3 Methodology implementation
	4.4 Limitations with the collected data

	5 Design
	5.1 IPython notebooks as basis of the design
	5.2 Local notebooks
	5.3 Hosted notebooks
	5.4 Design of item-based collaborative filtering

	6 Implementation
	6.1 Naïve Bayesian Classifier model
	6.2 Decision Tree Classifier
	6.3 Item-Based Collaborative System

	7 Results and discussion
	References

