jamk.fi

Teach9

Teaching Application

James Pearce

Bachelor’s thesis

December 2016

Technology, communication and transport
Degree Programme in Software Engineering

Jyvaskylan ammattikorkeakoulu
JAMK University of Applied Sciences

jamk.fi

Author(s) Type of publication Date
Pearce, James Bachelor’s thesis December 2016
Language of publication:
English
Number of pages Permission for web publi-
28 cation: (X)

Title of publication
Teach9
Teaching Application

Degree programme
Degree Programme in Software Engineering

Supervisor(s)
Lappalainen-Kajan, Tarja

Assigned by
Ukkonen, Sirkku

Abstract

There is already existing software to assist teachers with their teaching; however, compro-
mises usually must be made when creating software, and the software cannot do every-
thingevery userrequires. The assigner of the thesis, Sirkku Ukkonen, astudent at the Uni-
versity of Jyvaskyla, needed anew teaching application to fulfill her specificneeds.

The task was to create a teaching application forthe assignerto use in her Master’s thesis.
The objective of the teaching application was to allow increased student participationin
the planning of lessons and courses.

Django was chosen as the framework forthe application. It was intended to facilitate fast
development; however, learning Django and its tools was more time consuming than ex-
pected. Ittherefore took more time than originally planned to create an application that
performedthe basicfunctions requiredin ateaching environment; this leftlittle time to
focus on improvingthe existingtools and adding more to allow better student and teacher
interaction.

The resultisan application allowing the assignerto create, update and display teaching
materials with enough communication between studentand teacher; however, the appli-
cation could be developed further.

Keywords/tags (subjects)
Python, Django, software development, software architecture, software

Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb
https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb

jamk.fi

Tekija(t) Julkaisun laji Pdivamaara

Pearce, James Opinnaytetyo, AMK Joulukuu 2016
Sivumaara Julkaisunkieli
28 Englanti

Verkkojulkaisulupa
myénnetty: (X)

Tyén nimi
Teach9
Ohjelmisto opetukseen

Tutkinto-ohjelma
Ohjelmistotekniikan koulutusohjelma

Tyon ohjaaja(t)
Tarja Lappalainen-Kajan

Toimeksiantaja(t)
Sirkku Ukkonen

Tiivistelma

Opetuskayttoon tarkoitettuja ohjelmistojaonjoolemassa, mutta usein on varaa parantaa
tai tayttaa erityistarpeita ohjelmistolla. Toimeksiantajana toimi Sirkku Ukkonen, Jyvaskylan
yliopiston maisteriopiskelija, pddaineenaan englannin kielen aineenopettajaopinnot. Han
halusi ohjelman maisterin tutkintonsa osaksi englanninkielisen opetusmateriaalin luomista,
paivitystajatoteuttamistavarten.

Ohjelmiston tehtavana oli opetusymparistona luoda paremmat yhteydet opettajanja
oppilaan vilille. Oppilaiden oli tarkoitus pystya osallistumaan oppituntien suunnitteluun.
Kaikkia toivottuja ominaisuuksia ei pystyttytekemaan, mutta oppilaat pystyvat
danestamaan ohjelmaakayttden, mitd opettajan ehdottamista opetustavoista he toivoivat
tunneilld tehtdavan. Taman tarkoituksena oli motivoida oppilaita antamalla heille
mahdollisuudet vaikuttaa tunnilla tehtaviin aktiviteetteihin ja kadsiteltaviin sisaltoihin.

MVC-mallia kdyttava Django valittiin ymparistoksi. Django on kehitetty Pythonia kayttaen.
Djangon keskeisin ominaisuus on helppo janopea kehitys. Uuden ohjelmointikielen ja
ymparistén oppiminen oli hankalampaa kuin alussa ajateltiin. Koska aikaa meni oletettua
enemman valittujen tydkalujen opetteluun, ohjelmiston kehitys jai vahaisemmaksi.

Ohjelmisto, joka pystyy toteuttamaan opetusympariston vaatimukset, onnistui, mutta
opettajanjaoppilaan valista keskustelua parantavat ominaisuudet jaivat vahaiseksi.

Avainsanat(asiasanat)
Python, Django, ohjelmistokehitys, ohjelmistoarkkitehtuuri

Muut tiedot

http://www.finto.fi/

Table of Contents

A 1114 4o T ¥ Tt o T T o T 5
72 oY« T £ - T 6
2.1 Microsoft Visual STUdIOoovuiiiiiiiiiiiieiie e 6
B D T -1 1= Lo T 6
2.3 PYERON e e naes 7
2.4 SQOLITE ettt et aeeereas 7
2.5 Other TOOIS...co it 8
3 ReqUIrEMENES...ccccceiiiiniiiiniiiinnininntiiineiisninisnesisssesssseissssssssssesssssssssssssssssssssssneses 8
20 A O 14 =41 = P UPPRRPN 8
3.2 What Was USEQ...c.eiiiiiiiiiiiesiee ettt 9
I 1 T o) = o N 9
O R O 141 =4 10 1 W - | o F OSSP SUPPPRRIORPR 9
4.2 Components of the Project........cccceeieciieeeiiiieee e 11
4.3 HOW the ProjeCt WENT ...cceiieeieeeee et e 16
S =TT 1 N 17
TNt o o = o 17
5.2 An eXxample Of @ COUISE. .ttt ee et e e e crrree e e e ee e e e e eanes 21
TG T 1= o] [0 V700 =Y o | S 23
5.4 SUCCESSES....eeiiiiiiitiiice ittt bbb 24
5.5 ShOMCOMINGS .eveiiieiiiieieciiiee ettt s e e e saae e e e s sareeeeseanns 24
[N 0 1Y oL V3 o T o R 25
6.1 What was [earned........cooviiiiiiiiiiiiie e 25
6.2 Future developPmMENTccveeeeiieiiecccireeeee e e e e e e e e e s e 26

(ST TR 00 1 (o] [V Y [o] P OUTTUPPPRRN 26

References

Acronyms

API Application Programming Interface

ARGS Arguments

KWARGS Keyword arguments

CSS Cascading Style Sheets

CRUD Create, Read, Update, Delete

HTML Hyper Text Mark-up Language

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

MVC Model, View, Controller

(01 Operating System

UML Unified Modelling Language

URL Uniform Resource Locator

FIGURES

Figure 1. First version of the UML diagram for the project.cccccouvveeeiiieeicciieeee e, 10
Figure 2. UML Diagram of the project with Django fields.cccecevvvreeiieeiiiiciiiirieeeee e, 11
Figure 3. Create COUrSe fOMMuiiiiiiiiei ettt sare e s s e e e s sabae e e s s annees 12
Figure 4. Create [€SSON fOrMoiii i e e e s et e e e e aae e e e e anaes 13
Figure 5. Create Assignment form for teachers.......ccccuvveiicciie e 14
Figure 6. Create Assignment form for StUdENTS........cccceiivieeiee i 15
Figure 7. Create ACTIVITY TOMM c...uiiiiiec e e e e s s 16
Figure 8. LESSON MOUE! ..cccceeeeeeeeeeeee e e e s e e e e e e e e e eareraeeeeaeaeeeeennnnes 17
Figure 9. get_absolute_url function for a lesson Modelcooevviveeeeiiiiiiiiiiiiiiieeeeeee e, 17
Figure 10. Create |@SSON VIEWciiiiuiiieeiciieee e erietee e st e e e st e e s st e e e s saaaee s s sasaeeeesnsaeeasesnnees 18
Figure 11. DiSplay |ESSON VIEWciiiiiuiiiiiiiiiiee ettt eee et e e st e e s stre e e e s aaae e s s e areeesssnnaeeesssnnens 18
Figure 12. Delete COUINSE VIEW....uuuiiiieiiei ittt e e e eecttee e e e e e e e s et e e e e e e e e e e senntaeaeeeeeesesnnnnnes 19

Figure 13. LayoUt KNEA> ...ttt e ee st e e e e e e seaabbeeeeeeeeeseesnnnnes 20

Figure 14. Layout KDOTY>coi ittt et e e e s ree e s et e e e e snaaee e e e ennnees 20
Figure 15. Create course templatecooceiiiiieiie e e e e e 21
Figure 16. AdmMin COUISE VIEW .. .uuiiiieiiei ittt ee e e e e eecctteee e e e e e e s esnstee e e e eeeseessennssasaneeeeesesnnnnes 22

Figure 17. EXample Of @ 1@SSON....uuuuiiiiiiiiciiiiieeeie et eeseetrrer e eeee e e s seaabaeeeeeeeeeesennnnes 23

1 Introduction

This thesis deals with the requirements of the assigner to allow creating, displaying and up-
dating teaching materials. The assigneris another student who studies at the University of

Jyvaskyla. The project is a part of the assigner’s Master’s thesis. The teaching material was

created in the form of a course.

The purpose of the project was to create a web application that the assigner can use to fulfil
their personal teaching requirements. As an additional requirement, to give the application
added value, it was decided to make the application flexible and allow any teacher to use it

to create and update courses as well as display the courses to their students and peers.

There are many applications that perform similar functions; however, the assigner required
one to use in their Master’s thesis and to have an application that allows students more op-
portunities to be able to be a part of the course planning. Communication between the

teacher and their students was to be the focus of the application’s features.

The tools used were: Python, Django (a Python Web framework) and for the database
SQLite. Python was chosen for the opportunity to learn and practice how to use it and be-
cause itis commonly used in applications. Django was a natural choice for the framework

due to its ease of use and quick development methods.

The initial plan for the project was to allow students to have a forum within the application
to allow communication with the teacher and other students on the course. Students could
share their views of the course and its subjects on this forum; either privately with the

teacher or publicly with everyone participating in the course.

"Three ways to foster autonomy, or self-regulated learning, are (1) allowing choice of mate-
rials, (2) changing teacher and learner roles, and (3) developing learner networks” (Candling
and Byrnes 1995, quoted in Andrade and Evans 2013:51). Thus, the intention of allowing

students to have more control on how they learn was to increase their motivation for learn-

ing and to improve the content of the course.

The time allotted for the project left the polishing of the application to a minimum and

some “nice to have” features had to be cut. The key features were successfully imple-

mented and no serious bugs were detected when the assigner tested the application.

2 Tools Used

2.1 Microsoft Visual Studio

Microsoft Visual Studio is an IDE from Microsoft. It has useful built-in functions and features
that, for example allowed the easy creation of the virtual environment for the testing and
development of the project. The tool’s other notable useful features were its refactoring ca-

pabilities and IntelliSense.

“IntelliSense describes APIs as you type and uses auto-completion to increase speedand ac-
curacy. Quick Info tool tips let you inspect API definitions, and squiggly lines let you know

about issues, often showing them as you type.” (Ref -Microsoft Visual Studio)

When creating the project with Microsoft Visual Studio it could be created directly into a vir-
tual environment supported by the IDE. Not having the need of finding a suitable virtual en-
vironment was a great help at the beginning of the project. The virtual environment was dif-
ficult to activate if Microsoft Visual Studio was installed on the computer, this causedissues

when developing the project on computers that didn’t have itinstalled.

2.2 Django

Djangois based on a MVC model. In Django, the names of some of the parts differ from

those used in MVCs; however, they have the same function. Models are still called models in

Django, a MVC view is called a template and the Controller is called a view.

“Django s a high-level Python Web framework that encourages rapid development and
clean, pragmatic design. Built by experienced developers, it takes care of much of the hassle
of Web development, so you can focus on writing your app without needing to reinvent the

wheel. It’s free and open source.” (Ref -Django project)

Using Django was simple to start with and with some experience it could be a very powerful
tool. The learning curve was slightly steep to get more out of Django and Python if you had
no previous knowledge. After becoming more familiar with the tools getting the project to

the required quality was quite simple.

Microsoft Visual Studio’s support of the version of Django used (1.1.0) was not optimal.
Django’s commands were only partially supported. Some of the newer commands were

missing and there were deprecated commands listed. All the deprecated commands that

were listed caused errors or did nothing when executed.

2.3 Python

“Python is an interpreted, interactive, object-oriented programming language. It incorpo-
rates modules, exceptions, dynamic typing, very high level dynamic data types, and classes.
Python combines remarkable power with very clear syntax. It has interfaces to many system
calls and libraries, as well as to various window systems, and is extensible in C or C++. It is
also usable as an extension language for applications that need a programmable interface.
Finally, Python is portable: it runs on many Unix variants, on the Mac, and on Windows 2000

and later.” (Ref -General Python FAQ)

Getting familiar with using Pythons syntax did not take long and the user experience was
pleasant after a while but getting the most out of it required some work. Having a high-level

programming language was useful and gave a lot of options when solving the problems.

There is plenty of room for improvement in the application and Python supports this.

Python is considered by users of www.quora.com to be slower than equivalent compiled

languages (Ref -Python speeds). This should not be an issue with the application.

2.4 SQlite

SQLite version 3; also, known as SQLite3, was used for the projects database because Py-
thon 2.7 supports it without additional work and it did everything required for the proto-
type. If the project were to be used in production, then swapping to a more robust database
should be easy with Django and it should be upgraded to a PostgreSQL database or some-

thing similar.

“SQLite is a C library that provides a lightweight disk-based database that doesn’t require a
separate server process and allows accessing the database using a nonstandard variant of

the SQL query language. Some applications can use SQLite for internal data storage. It’s also

possible to prototype an application using SQLite and then port the code to a larger data-

base such as PostgreSQL or Oracle.” (Ref -Python documentation on SQLite)

2.5 OtherTools

Other tools used were: Pip, Bootstrap, JQuery and Git. Pip is a Python package installation
tool and soit had little to do with the development of the project; however, it made it a
great deal simpler to get and update other tools installed. For example, Bootstrap and
Django. One canalso use it to get specific versions of Python packages to guarantee com-
patibility. Pip was installed by default in the virtual environment used by Microsoft Visual

Studio and there was no reason to use another tool instead of it.

Bootstrap was used to give the project a better-looking appearance without having to spend
a lot of time doing it and makes the application more mobile friendly. Being mobile friendly
was not a focus of the project, however having the option that one could access the applica-

tion with a mobile device successfully is a great feature.

JQuery is used for scripting minor tools on the HTML side of the project. The use of JQuery
outside of what itis usedin Django’s admin tools was limited to the date picker for the

courses and lessons.

Git is a version handling tool. The use of version handling tools is vital in software develop-
ment and was luckily well used during the development of the project because it saved time
near the end of the project after a hard drive failure. Had there not been any version han-

dling a lot of the work would have been lost.

3 Requirements

3.1 Original

At first the requirements for the project were a bit vague and required some time to obtain
full details of what the assigner wanted the application to do. This was the assigner’s first
time working with software development and it caused a lot of problems when conveying

the strengths and limitations of the different tools that could be used.

The requirements boiled down to the assigner being able to create a single course with the
application and then being to be able to present the course to her potential students using

it. The main goal was to understand how her course would be set up and to make an appli-

cation that can be used to create it.

Implementing features to allow students and the teacher to communicate within the appli-
cation were planned; however, most of these features were removed because they would

take too much time to implement.

3.2 What was used

Because the project is more of a proof of concept and not a final product the easiest to use
tools were selected for the project. The assigner would be able to create her course and the
requirements for that course would be the most important ones. As an additional require-
ment, to give the application more value, it was decided to make the application usable by
other teachers and not to hardcode the functionality of the application to suit only her

course.

“Nice to have” functions would be added if time allowed for it. Most of these were dropped
because of time constraints. These functions were mostly usability upgrades or related to

the communication between the student and the teacher. If the assigner’s Master’s thesis

requires it, they canthey can be implemented later.

4 The Project

4.1 Original plan

The plan was originally; one week of testing the tools (about 40 hours of work), two weeks
getting the project going (about 80 hours of work), three more weeks working on the pro-
ject (about 120 hours of work) and finishing the application at a slower pace of three weeks
finalizing the project and writing the project thesis (about 40 hours of work). This would
have brought the total time for the project and thesis to about 280 hours, however, unex-

pected changes delayed the project.

10

The idea was to create six components for the application. To save time Django’s built-in au-
thentication was used for User and Administration needs and two of the six components

were removed (Personal Forum and Public Forum).

Django’s authentication and administrative tools are great and can be modified to suit the
projects needs. Creating new user and administration tools would have been too much work
and not worth the investment of time for the prototype. The first version of the UML dia-
gram with the originally planned forums can be seenin Figure 1. The components usedin
the project were: Courses, Lessons, Assignments and Activities can be seen in Figure 2 with

their Django fields.

Personal Forum

Lesson Assignment

Lesson Activity

Figure 1. First version of the UML diagram for the project.

11

owner(Foreignkey,User)
name(CharField)
slug(SlugField)

content(TextField) [- \
start_date(DateField) Activity |
end_date(DateField) \

attendees[ManyToManyField, User) II name(CharField)
deleted{BooleanField) | content{TextField)
delete_date(DateField)

esson({ForeignKey, Lesson)
votable{BooleanField)

I votes(ManyToManyField, Uzer) L
vizible[BooleanField)

\ slug[SIugFleld}

Assignment

name(CharField)
content(TextField)
notes{TextField) r LESSO"’FWEEI{
owner{Foreignkey, User
(s | name(CharField)
I I

F K C
e content{Textfield)
¥ ¥ summary(CharField)

lug(slugField
Zugfcuuegd;:j'lsiLIE[BDDIean Field) =2 | FETEL A, s
- slug(SlugField)

lesson_date(DateField)
vizible(BooleanField)

Figure 2. UML Diagram of the project with Django fields.

The fields in the model are mostly Django’s built-in ones that allow Django to support multi-
ple database architectures without having to make changes to the models, which was one of

the reasons Django was selected for the project. More information on the fields can be

found in the references.

4.2 Components of the project

The largest components in the application are users and courses. The other components are
either linked directly to one of the larger ones or are part of a larger one. The user compo-
nent uses Django’s builtin authentication and it was used as is with no modifications. One
could have implemented custom functions in it; however, this was not required in the pro-

ject.

Users can be students, teachers or administrators. Students can only attend courses. Teach-

ers can create student accounts, attend courses, create courses and manage their own

12

courses. Administrators can see and manage all courses and create any type of user account

using Django’s administrative tools.

Courses are what teachers create and maintain, they are meant to encompass all the teach-

ing material for one course. Courses have a name, starting date, ending date, attendees and

content that explains what the course is about. The next two parts of a course are the les-

sons and assignments. Because all courses are different, the elements composing a course

must be flexible.

Courses [Create Course

Back

Form

Name:

Content:

Start date:

Finish date:

Attendees:
. Elina
« [Tarja
. Jouko

Figure 3. Create Course form

MName of the course

Main information about the course

o

Starting date of the course

Ending date of the course

13

Lessons are used to create a rhythm for the learning and to manage when and what is on
the agenda. Lessons; like courses, have a name and content. They additionally have a sum-
mary of the content that is shown on the list of lessons, an optional lesson date for when
the lessonis and finally the option of is it visible to attendees of the course. Lessons that are

not set to be visible to attendees can only be seen by the teacher.

Hello Admin!

Cancel

Create Lesson

Name: Name of the lessan

Content: Details of what will be done at/for the lesson
)

Summary: A short summary of what will be done at/for the lesson

Lesson date: Optional date of the lesson

Visible: ¥/ Can Altendees see this lesson

Create lesson

Figure 4. Create lesson form

Assignments are used to create tasks and homework for students that they canreturn using
the application. The assignment model is used also for the returning of assignments. The
form presented to the user when creating and editing is tied to the relationship of the user
to the course. The teacher created assignments are tied to the course and can be assigned
to lessons to be displayed. Student created assignments are tied to lessons and are only visi-

ble to the teacher.

14

Courses / | History of World War 2/ |/ Assignment List/ /| Create Assignment

Back

Create Assignment

Name: Mame of the assignment
Content: Main information about the assignment
4
Notes: Write additional information about the assignment separate from the main content
e
Lessons:

«) Week 1 Assignments

. Lesson 2

Select the lessons where this assignment is visible.

Visible to attendees : [Tick to make the assignment visible on the selected lessons.

Figure 5. Create Assignment form for teachers

15

Courses/ | History « War2/ | Assignment List/ | Create Assignment

Back

Create Assignment

Name: Marmne of the Assignment, please follow your teachers naming conventions

Content: Here you give you assignment answer and/or give links to the source of your answer

A

Lesson: | Week 1 Assignments » | Select the lesson this assignment is tied to

Create Assignment

Figure 6. Create Assignment form for students

The final implemented component in the application are activities. They are tied to lessons
and are meant to be used as themes or events for the lesson. A voting functionality allows
the teacher to see what the students want to do during the lesson or how they want to

learn a subject. To allow voting the teacher needs to activate it.

16

Courses / | History of World War 2 / Lesson 2 / Create Activity

Back

Create Activity

Name: Mame of the activity

Content: Main information about the activity

o

Votable:) Will the students be able to vote for this activity

Visible: ¥ Can Attendees see this activity

Create activity

Figure 7. Create Activity form

4.3 How the project went

Not being able to do the originally planned eight hours of work a day caused the project to
take longer to complete. The work hours it took to complete the project were quite close to
the originally planned hours. Getting to know the tools and understanding how they can be
used was the only part that took a great deal more time than expected and during the pro-

ject new ways of doing the required work were learnt.

In the beginning of the project videos were the main source of possible tools to use in the
project and learning those tools. Once the tools were chosen their respective wikis were a

great source of learning and tips.

17

5 Results

5.1 Project

The applications database is created using a Python file called Models and in it the models

n

for “Courses”, “Lessons”, “Activity’s” and “Assignments” is defined using Django’s model
fields. With these fields Django creates the database for the project automatically with the
set parameters allowing simple and quick database creation and management. Models can
also be given functions and some functions are used by default, like get_absolute_url that
returns the URL of the model object. For a snippet of the Lesson model and its functions see

Figure 8. and Figure 9.

class Lesson(models.Model) :

name = models.CharField{max length = 100
content = models.TextField()
summary = models.CharField(max length = 200

course = models.ForeignKey(Course, on delete=models.CASCLDE)

sluy = models.5lugField(unique = True)

lesson date = models.DateField(autc _now = False, auto now add = False, null=True, blank=Trus)
visible = models.BooleanField{default = True)

Figure 8. Lesson model

def get absolute url(self):
return reverse("courses:lezzon detail™, kwargs = {"course":self.course.slug, "lesson":self.slug})

Figure 9. get_absolute_url function for a lesson model

The controller of Django’s MVC model is confusingly called a view and in it the backend of
the application is defined. There is plenty of built in functionality that comes with Django

helping to speed up development and improves the quality of the software.

Because the models of the application follow the CRUD method each one of them has a sep-
arate view to handle creation, reading, updating and deletion of the objects in question, for
examples see Figure 10. for creation of the lesson objects, Figure 11. for displaying lessons

and Figure 12. for deleting lessons.

18

- = mm

[Tw]

course object = get object or 404 (Course, slug=course)}
if course object.deleted and not reguest.user.is superuser:
#If the course has been deleted raise 404
raise Http404
if not authenticate owner (request.user, course_ object):

$#If the user does not have permission to create courses raise 404
raise Http404
form = CreatelessonForm(reguest.PO5ST or NHone)
if form.i=s walid(}:
les=son = form.save (commit=False)
lesson.course = course object
lezson.save ()
return HotpResponseRedirect (course object.get_absolute url())

context = {

urse"icourse object,
"course url": course cobject.get_absolute url,

return render (request, "lesson create.html”, context)

Figure 10. Create lesson view

1 {reguest, course=None, lesson=None):

coursze object = get_object_or 404 (Coursze, =lug=course)
lesson_object = get_object_or_404(Lesson, slug=lesson)
if not authenticate attending(request.user, course_object):
#If the user is not attending the course raise 404

raise Http404

if authenticate owner(reguest.user, course object):

#If the user is the course owner or an admin grant show all lessons and grant editing permission
permission=True
activity list = Activity.objects.filter(lesson = lesson object)

else:

$El=ze show only allowed lessons and do not grant editing permissions
permission=False

activity list = Activity.objects.filter(lesson = lesson object).filter(visible=True)
context = {

rapplication title,
n lesson_object,
=":course_object,
1 ist": actiwvity list,
list": Assignment.objects.all().filter(lessons = lesson object).filter (approved=True) ,
"permission":permi=ssion,

return render (reguest,

1", context)

Figure 11. Display lesson view

19

def course delete{request, course=None):

authenticated (request.user)

#If the user i= not logged in authenticated() will raise 404

course_object = get object_or 404 (Course, slug=course)

if course_object.deleted and not reguest.user.is superuser:

#If the course has been "deleted" and the user is not an admin raise 404
raise Http404

if authenticate_owner (reguest.user, course_object):

#If the user is the owner or admin of the course fake deletion
course_object.deleted = True
course_cbject.delete_date = datetime.now()
course_object.save()

else:
raisze Http404

if reqguest.user.is superuser:

$#If the user i= an admin actually delete the course
course_object.delete()

return redirect("courses:icourse_list")

Figure 12. Delete course view

The delete course view is special forit only fakes deleting the course if the teacher of the
course deletes it. This is to prevent accidental deletion of courses. Fake deleted courses ap-
pear different to admins viewing the course list page. Admin can simply restore these fake

deleted courses. All other deletion is permanent in the application.

In the views user authorization is also performed by functions that first check if the user has
logged in and then compares the HTTP requests logged in user to users who have access to
the course. These would generally be either the teacher of the course or students attending
the course. Users who have not logged in will always receive a ”404 page not found” error

when trying to access pages other than the main page.

Templates are displayed to the user. Within this application this is done with a HTML file.
The way the models and the views was setup there is a template for each model and its cre-
ation, displaying and updating. There is one Layout HTML that all the other templates ex-
tend as a base. The extending templates contain blocks that will be placed into the Layouts
empty blocks. The Layout also contains the navigation bar and loads the static files. The Lay-
out can be seen in Figure 13. and Figure 14. Using the Layout more dynamically or having
more similar files is possible and would reduce the total amount of HTML files required in

the project.

20

qcheadb

<msta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{{ title }} - {{ application }}</title>

{% load staticfiles %}

<link rel="stylesheet" type="text/css" href="{% static 'app/content/bootstrap.min.css' %}" />
<link rel="stylesheet" type="text/css" href="{% static 'app/content/site.css' %}" />

<link rel="stylesheet" type="text/css" href="{% statiec 'ess/jquery-ui/smoothness/jquery-ui.min.ess' %}"/>
<script sroc="{% static 'js/jquery.js' %}"></script>
<script src="{% static 'js/jquery-ui.js' %}"></script>

{% load static %}

F</head>

Figure 13. Layout <head>

J<body>

1

1
1
1

<div class="navbar navbar-inverse navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<pbutton type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ccllapse">

</button>
{{ application }}
</div>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav">
Home
{% if request.user.is_authenticated %}
<li¥Courses
{% endif %}
{% if request.user.is authenticated %}
<lizMy Profile
{% endif %}
{% if request.user.is_staff %}
«Create Student Profile
{% endif %}
{% if request.user.is superuser %}
<lirAdmin</1i>
{% endif %}

{% include 'app/loginpartial.html' %}
</div>
<div class="navbar-collapse collapse">

</div>
</div>
</div>
{% leoad djange bootstrap breadcrumbs %}
{% block breadecrumbs %}
{% endblock %}

<div class="container body-content">
{%¥ render breadcrumbs %}

{% block content %}

{% endblock %}

<footer>

</footer>
</div>

{% bleock scripts %}{% endbleock %}

-</body>

Figure 14. Layout <body>

21

{% extends "layout.html™ %}

{% load djangc bootstrap breaderumbs %}

{% block breadcrumbs %}

{% breadcrumb "Courses" "courses:course list" %}
{% breadcorumb "Create Course" "" %} -

{% endblock %}

{% block scripts %}
|<script>
1% (document) . ready (function() {
$(".datepicker') .datepickez () ;
-1
-</=script>
{% endblock %}
{% block content %}
l<div class="col-mdl">
<p> Back </p>
</div> - -
<hr />
]|€div class="container-fluid">
<hl>Form</hl>
1 <form method="POST" action="" enctype="multipart/form-data"> {% c=srf token %}
{1 form.as_p i3 -
<input type="submit" class="btn btn-primary" value="Create course" />

</ form>
</diwv>

{% endblock %}

Figure 15. Create course template

5.2 Anexample of a course

An example of a course would be a course of teaching ninth graders, which was the original
intention, and thus the name of the project is Teach9. The subject of the course was to be
history and the course details would reflect this with information on what part of history the
course will be about, e.g. World War 2. The example course will last eight weeks and have
three contact lessons each week. The next taskin the example was be to create a lesson for
each contact period of the course. In addition to the contact lessons there will be additional
entries to represent each week of the course. Thus, these week-long entries will have the
assignments and homework for each week attached to them. Because most of the infor-
mation of the courses and lessons is text, teachers can create courses that reflect their

teaching methods.

22

Courses

Create Course

Admin Course view

Wars and conflicts CLIL

History:Understanding the causes and effects of different
wars, including Ww1 and WW2, Cold War and conflicts
caused by it. Emphasis will be on American and English
history, but a student may choose any nation or any
conflict for their own project keeping in mind that the
short-term and long-term effects of that conflict have to
be reflected according to the goals of the course. CLIL:
learning to learn languages through deepening one's
understanding of self-regulation and it's six dimensions:
motive, methods of learning, time, physical environment,
social environment and performance.

Jan_ 1, 2017

Feb. 19, 2017

Figure 16. Admin Course View

Assignments for lessons could be, for example, learning journals where students must write
what they have learned each week of the course because assignments can be referred to as

a part of many lessons as the teacher sees fit; the teacher must only write one assignment

about writing a learning journal and can then link it to each applicable lesson.

Now that the course, the lessons and the assignments for the course are completed the ac-
tivities for each lesson can be focused on. As mentioned earlier, lessons will be created for
each contact period it makes the most sense to have the activities assigned to them. The ex-
ample lessons will have one or two activities that the students cannot vote on and will re-
flect what the teacher shall lecture about during that lesson. Some of the lessons will have
activities that will consult the students on how they want to learn, for example: doing a
group project and presenting it to the rest of the class, doing a project in pairs or some
other way of studying that the teacher might come up with. See Figure 5. for an example of

what a lesson could look like.

23

Courses/ /| History of World War 2/ / Week 1 Assignments

. Create Activity

Week 1 Assignments

Assignments for week 1 Edit Lesson
Delete Lesson

Activities for this Lesson:
Group tasks

Do a presentation as a group

You can vote for this activity!

voted for this activity

Mo votes

Presentation as pairs

Create a presentation with a buddy
You can vote for this activity!
voted for this activity

No votes

Assignments for this Lesson:
Learning Journal
Create a leaming journal about what you learned this week

The journal can be a video or written

Figure 17. Example of a lesson

5.3 Deployment

Deploying the project to a server to allow hosting the application and grant external access
to it was more challenging that initially expected and revealed flaws in the product. Most of
the issues came from Django and changing from development to production, since moving
from development to production was not high on the priority list and was done at the last

minute to allow testing from anywhere with an internet connection for the assigner.

The server chosen to host the application was from a cloud computing company. The OS on

the server was the Linux distribution Debian 8.6. Working with Django in a Linux environ-

24

ment was not that much more different than working with it in a Windows environment. Af-
ter installing PIP the procedure was pretty much the same, only few of the commands were

different between Linux and Windows.

To properly deploy using Django the product should be more complete and have better se-
curity functions including a custom made 404 error page and handling. Handling the errors
and issues that were part of the deployment are outside the scope of the project because
part of the requirements Django wants is an external hosting tool and the IP of the hosting
server. Separating the application server and the database would be another stepin moving

to a properly deployed application.

5.4 Successes

Delivering a functioning product was the definite goal and it was achieved: Although the ap-
plication was deployed at the last moment and not to the best standards, it works and can

be upgraded later.

Commenting inthe project’s code is adequate and is present where it is required. With thor-

ough commenting of the code later development will be easier.

The project was not polished much; however, it still has decent performance and there were

no complaints from the testers about implemented features, only about missing features.

5.5 Shortcomings

Learning the tools was more work than expected and caused issues with the flow of the pro-
ject. The project’s security is questionable and using the built-in admin tools to perform ad-
ministration is less than desirable. The last-minute changes to allow deployment of the ap-
plication were a hassle and when starting on the next project, even if the goal was not to
create a deployable version, researching on what must be done before deployment would

be carried out earlier in the development stages.

Using Pythons *args and **kwargs in the project’s functions was lacking, however, the built-
in functions for Django used them effectively and gave a glimpse on how they can be used

and that they are very useful. There is minimal user input error correction, mainly on the

25

dates of the course and lessons. Courses, for example, can end before they start; however,

the work required to implement this was more than the value it would bring.

The templates would have been more useful with better ingenuity and smarter construction
of the models: there could be less templates per model and CRUD action. Most of Django’s

functionality could have been improved upon by doing everything again with the insight

that was gained during the project.

Not exactly a shortcoming automated testing would have been something that would be in-

teresting to implement and see how it would affect the development of the application.

Removing most of the functionality that was supposed to bring the project uniqueness and

value was a major shortcoming.

6 Discussion

6.1 What was learned

This project being my first solo project development a great deal was learned on how much
work creating an application takes and how much can go wrong. It was, additionally, the
first time creating an application for someone who has never had experience with software

development.

Most of the learning on how to create software using Django was gained from inspecting
the original functions of Django. It was inspiring and gave something to strive for seeing how

software developers with more experience have created a framework for others to create

on.

The lacking of exception handling was eye opening and will be a learning focus for future
projects. Additionally, one cannot emphasise the importance of having the program validate

all data from the user, some of it was left out of the project and it is evident how detri-

mental this was to the application.

26

6.2 Futuredevelopment

Future development of the project will be continued as required to allow the successful in-
tegration of the application into the assigner’s Master’s thesis. The next updates would be
aimed at increasing validation of data and improving the help page for the application giving

the application easier usability for new users.

The implementation of the “nice to have” functions that were cut because of time restraints
is possible if long term updates are carried out. From the “nice to have” functionalities that

were cut the most important one that would bring the work additional uniqueness is im-

proving the communications between the students and teachers with the forum.

Working on the overall look of the project, adding pagination, adding options to filter
through the different fields, a custom made 404 error page that redirects to the main page
are also things that could be added. In its current state the application does what is required

of it, which is good and can be worked on to implement additional features.

6.3 Conclusion

"The idea is very good but it's a shame that some of the planned features were not de-

ployed." (Toni, Pudas. 2016)

The object of the project was to create a functioning tool for the assignerto allow a way to
create and display teaching material and this was achieved. The application will add value to

the assigner’'s Master’s thesis and was a good learning experience to all parties involved.

“It is a good prototype that can hopefully inspire similar projects in the future.” (Sirkku,

Ukkonen. 2016)

Teachers can create their courses with adequate flexibility. There are no obvious problems
with the application; however, there are “nice to have” functions missing that would have
to be implemented to give a reason to use the application in a school, for example, filtering
of users when adding attendees to a course. The lack of a filtering option while adding at-

tendees to a course will not be anissue while the number of users in the application is low.

27

The goal of the project was never to create an application for actual production. Thus, cor-
ners were cut to gain as many unique features as possible. Cutting corners is always a terri-

ble idea in software development; however, in this project it was deemed worth it because

the value lost to this was small and more value not gained.

The concept of the project is sound and although the project did not achieve much the ex-

ploration of giving students the tools to communicate with each other and their teachers is

something worth doing.

"The project has some good ideas and should be developed further - especially the teacher -

student interaction. That is something lacking in other applications." (John, Pearce. 2016)

28

References

Andrade, M. S. and N. W. Evans P.2013. Principles and practices for response in second
language writing. Developing self-regulated learners. New York, NY: Routledge.

More on Django fields. Accessed on 8 November 2016. Retrieved from
https://docs.djangoproject.com/en/1.10/ref/forms /fields

Microsoft Visual Studio. Accessed on 11 November 2016. Retrieved from
https://www.visualstudio.com/vs/ide/

Information about Django. Accessed on 8 November 2016. Retrieved from
https://docs.djangoproject.com/en/1.10/faq/

Django project. Accessed on 28 November 2016. Retrieved from
https://www.djangoproject.com/

General Python FAQ. Accessed on 28 November 2016. Retrieved from
https://docs.python.org/3/faq/general.html

Python documentation on SQLite. Accessed on 28 November 2016. Retrieved from
https://docs.python.org/2/library/sqlite3.html

Pythons speed. Accessed on 1 December 2016. Retrieved from

https://www.quora.com/Why-is-Python-so-popular-despite-being-so-slow

Toni, Pudas. 2016. Student at JAMK.
Sirkku, Ukkonen. 2016. Assigner and student at University of Jyvaskyla.
John, Pearce. 2016. Teacher at SeAMK.

https://docs.djangoproject.com/en/1.10/ref/forms/fields
https://www.visualstudio.com/vs/ide/
https://docs.djangoproject.com/en/1.10/faq/
https://www.djangoproject.com/
https://docs.python.org/3/faq/general.html
https://docs.python.org/2/library/sqlite3.html

