
Marika Salakari

MEMORY MANAGEMENT IN EPOC

Final Year Project
Kajaani Polytechnic
Faculty of Engineering
Information Technology
Autumn 2000

.$-$$1,1
$00$77,.25.($.28/8

,16,1gg5,7<g
7,,9,67(/0b

Osasto Tekniikka Koulutusohjelma
Tietotekniikka

Tekijä(t)
Marika Salakari

Työn nimi
EPOCin muistinhallinta

Vaihtoehtoiset ammattiopinnot
Ohjelmistotekniikka

Ohjaaja(t)
Heimo Kampman,
Harri Korhonen-Kosonen (NMP)

Aika
24.1.2001

Sivumäärä
52

Tiivistelmä

Tämä lopputyö on tehty Nokia Matkapuhelimet Oy:lle. Työn tarkoituksena oli koota yhteen

perustiedot liittyen EPOCin muistinhallintaan käytettäväksi opetusmateriaalina.

EPOC on Symbianin kehittämä ja hallinnoima käyttöjärjestelmä, joka on suunniteltu

erityisesti pieniin kannettaviin laitteisiin, kuten matkapuhelimiin.

Muistinhallinta on yksi tärkeimmistä asioista suunniteltaessa sovelluksia kannettaviin

laiteisiin, esimerkiksi matkapuhelimiin. Matkapuhelimissa on rajallinen määrä muistia ja

matkapuhelin voi olla päällä yhtäjaksoisesti päiviä tai jopa kuukausia. Tästä syystä

muistivuodot ovat hyvin kohtalokkaita ja voivat aiheuttaa paljon harmia ellei asiaa ole otettu

huomioon jo suunnitteluvaiheessa.

Työssä käsitellään EPOCin perusrakennetta, muistia ja muistinhallintaan liittyviä asioita.

Lisäksi käsitellään yhtä muistinhallinnan piirrettä, trap harnessia, tarkemmin. Lopuksi on

katsaus testauksesta.

Luottamuksellinen

Kyllä
Ei X
Hakusanat
 EPOC, Muistinhallinta

Säilytyspaikka
–

.$-$$1,
32/<7(&+1,&

$%675$&7
),1$/�<($5�352-(&7

Faculty Faculty of Engineering Degree programme Information
Technology

Author(s)
Marika Salakari
Title
Memory Management in EPOC

Optional professional studies
Programming technology

Instructor(s) / Supervisor(s)
Heimo Kampman,
Harri Korhonen-Kosonen (NMP)

Date
24 January 2001

Total number of pages
52

Abstract

This final year project was done for Nokia Mobile Phones. The aim of the project was to

congregate basic issues about EPOC Memory management. One part of EPOC memory

management, called trap harness, is dealt with in more detail. Finally, testing tools suitable

for testing in the EPOC environment are reviewed.

EPOC is a product of Symbian consisting of an operating system, core software, application

frameworks, applications and development tools for WIDs.

Memory management is one of the most important items in applications which are designed

for handheld devices, such as mobile phones. Mobile phones have limited memory and they

run for days or months without rebooting. That is why memory leaks are very crucial and can

cause considerable harm if the situation is not taken into consideration in the design phase.

Confidential

Yes
No X
Keywords
 EPOC, Memory Management

Deposited at
–

PREFACE

This final year project was done for Nokia Mobile Phones Ltd., Oulu,

Finland. The work for the project was carried out between June 2000 and

January 2001.

I would like to thank Heimo Kampman, my supervisor in the project from

Kajaani Polytechnic, for his guidance and constructive comments. I also

would like to thank my Section Manager Sauli Hietakoste, who made the

work possible and Harri Korhonen-Kosonen, my supervisor in the project

from Nokia Mobile Phones, for advises and encouragement.

I would also like to say word of thanks to my colleagues in EPOC

Applications section for their support and good working atmosphere, and

all the other people within Nokia, who have helped me and given me

valuable information for the project. I owe my warmest thanks to my son,

to my parents and to my friends for the support they have given me

throughout my studies.

Oulu, 24th January, 2001

Marika Salakari

TABLE OF CONTENTS

1 INTRODUCTION 9

1.1 EPOC OS 9
1.2 Background of the Symbian Consortium 12
1.3 EPOC from the user’s point of view 13
1.4 EPOC from the programmer’s point of view 13
1.5 EPOC SDK 14
1.6 EPOC programming principles 15
1.7 EPOC Programming Framework 17

2 MEMORY MANAGEMENT 18

2.1 General description 18
2.2 Memory 19
2.3 C++ exception handling 25
2.4 Panics 25
2.5 Memory Leaks 26
2.6 Cleanup Stack 28
2.7 One-phase construction 31
2.8 Two-phase construction 34
2.9 General rules for cleanup 36

3 TRAP HARNESS 38

3.1 Purpose of the trap harness 38
3.2 Leave functions 38
3.3 Leave Mechanism 39
3.4 Nested Traps 41
3.5 Error notification 42
3.6 Use of the trap harness 44

4 CODE TESTING 46

4.1 Purpose of code testing 46
4.2 Testing tools 46

4.2.1 EPOC SDK testing tools 47
4.2.2 Commercial testing tools 49

5 SUMMARY 50

6 REFERENCES 51

LIST OF FIGURES

Figure 1. EPOC’s major components [2]. 10
Figure 2. Base components [5]. 11
Figure 3. T class object lifetime. 23
Figure 4. Object lifetime. 25
Figure 5. Use of a stack and a heap when a memory leak happens. 28
Figure 6. Object pushed onto the cleanup stack. 31
Figure 7. Object popped from the cleanup stack. 31
Figure 8. Stack pointer construction. 35
Figure 9. Class diagram. 37

 Figure 10. EPOC heap failure tool [13]. 47

LIST OF EXAMPLES

Example 1. T class object lifetime [7]. 22
Example 2. Object lifetime [7]. 24
Example 3. Memory leak [7]. 28
Example 4. Cleanup stack [7]. 30
Example 5.CSimple class definition [4]. 32
Example 6. CCompound class definition [4]. 32
Example 7.Function implemented using one-phase construction. 33
Example 8. Heap pointer construction [7]. 34
Example 9. Stack pointer construction [7]. 34
Example 10. Function implemented using two-phase construction. 35
Example 11. NewLC() function. 36
Example 12. CCompound’s constructor in two-phase construction [4]. 36
Example 13. Using TRAPD [7]. 40
Example 14. Using TRAP [7]. 40
Example 15. TRAP example [4]. 41
Example 16. Return of a value [4]. 41
Example 17. Specialised cleanup [3]. 42
Example 18. Example of a Draw() function [3]. 43
Example 19. Useless trap code [3]. 43
Example 20. Substitute function [3]. 43
Example 21. Error notification by a subsequent leave [4]. 44
Example 22. Error notification by an error code [4]. 44

GLOSSARY

$3, Application Programming Interface

&21(CONtrol Environment

'// Dynamic Link Library

(32&��� EPOC32 operating system

*&& GNU C++ Compiler

*8, Graphical User Interface

+70/� HyperText Markup Language

0$50 Multi-process ARM

008 Memory Management Unit

22 Object Oriented

220 Out-Of-Memory

26 Operating System

3& Personal Computer

3'(Page Directory Entry

3,0 Personal Information Management

5$0 Random Access Memory

520 Read Only Memory

6'. Software Development Kit

7&3�,3 Transmission Control Protocol/Internet Protocol

9*$ Video Graphics Array

:,1& WINdows Connectivity

:,' Wireless Information Devices

:,16 WINdows Single process

9

1 INTRODUCTION

Designers developing handheld devices face many challenges. There is

limited amount of memory available in handheld devices, power

management is important, and critical situations should be handled

without losing user data, just to mention a few things that make the

developing process more demanding than the developing process for a

standard PC. The EPOC operating system was developed for the needs

of wireless, handheld information devices (WIDs).

This thesis deals with the EPOC32 operating system and some special

features in it, especially memory management. EPOC is Symbian’s

technology for mobile, ROM-based computing devices. Nokia has

decided to use EPOC as the operating system in 3rd generation mobile

phones. The first Nokia mobile phone with EPOC is Communicator 9210,

which was introduced to the public some time ago.

The aim of this work was to gather basic issues about EPOC memory

management. This document is suitable for acquainting new EPOC

programmers with the basic principles of EPOC memory management.

First, some basic information about EPOC is given in section 1. Section 2

focuses on memory management, and in section 3 the basic issue is the

trap harness. Testing and finding memory leaks are covered in section 4.

1.1 EPOC OS

EPOC is a fully 32-bit, ROM-based operating system developed, licensed

and supported by Symbian. It was developed for the needs of wireless

information devices, such as smartphones and communicators. [1]

10

EPOC’s basic architecture is shown in figure 1. Core components provide

APIs and a runtime environment on which all other components are built.

A GUI and system components provide an environment and a

programming framework for applications. The GUI provides standard

controls and dialogs for programmers, a dialog framework, an application

and object embedding framework, and many utilities. Communication

components provide the APIs, drivers, link and higher-level protocols for a

wide range of communication and data interchange requirements.

Applications include the engines and GUIs, which directly implement end-

user applications. [1] [2]

)LJXUH��� (32&
V�PDMRU�FRPSRQHQWV�>�@�

One of the most important components in EPOC OS is the base. Figure 2

shows that the base may be divided into two parts: E32 and F32. E32

consists of a kernel and a user library, which provides classes, types,

functions and services. F32 is a file server that provides file systems for

ROM, RAM and removable media. F32 also provides an interface for

dynamically installable file systems and an object-oriented client API for

writing new file systems. [3] [4]

11

.HUQHO

'HYLFH
'ULYHUV

8VHU�/LEUDU\
)LOH�6HUYHU
&OLHQW�$3,

)LOH�6\VWHPV

)LOH�6HUYHU

+DUGZDUH��5$0��520��3&�&DUGV

+LJKHU�OHYHO�SURJUDPV

)LJXUH��. %DVH�FRPSRQHQWV�>�@�

The kernel manages the machine’s hardware resources, such as system

RAM and hardware devices. The kernel is fully privileged, so it can provide

and control the way all other software components access resources. The

user library, euser.dll, is the lowest-level user mode code, which offers

library functions to other user-mode codes and controlled access to the

kernel. [3]

In EPOC, the fundamental unit of protection is a process and the

fundamental unit of execution is a thread. Each process has its own

address space and each process has one or more threads. Threads run

independently within the same address space, so it is possible that a

thread can change memory belonging to another thread in the same

process. [3]

12

EPOC is a portable runtime operating system with three major

implementation families: target machines, a windows-based emulator and

windows-based tools. EPOC target machines comprise a full operating

system that boots on a ROM-based device and manages all aspects of

that device – memory, scheduling, power, timers, files, keyboard, pointer,

screen, PC cards, etc. The windows-based emulator makes it possible for

the developer to run the software on Windows using Win32 services and

the same user-side APIs as in the machine implementations. The

windows-based tools are called a WINC environment. [6]

1.2 Background of the Symbian Consortium

Symbian is an independent joint venture formed by Ericsson, Nokia and

Psion in June 1998. At the same time Motorola signed a Memorandum of

Understanding to join Symbian, and in October 1998 Motorola became a

shareholder in the Symbian joint venture. Matsushita (Panasonic) joined in

May 1999. [3]

Symbian aims to promote standards for the interoperation of Wireless

Information Devices, WIDs, with wireless networks, content services,

messaging and enterprise-wide solutions. Symbian's mission is to license

the Symbian platform to all mobile phone manufacturers and to create a

mass market for next generation mobile phones by working closely with

wireless networks, content, messaging and enterprise-wide solution

providers. [6]

EPOC is Symbian's product, which consists of an operating system, core

software, application frameworks, applications and development tools for

WIDs. [6]

13

1.3 EPOC from the user’s point of view

EPOC has outstanding reliability in all operating conditions. There are

some primary requirements for devices containing EPOC. Power

economy, requiring efficient applications, a small memory footprint,

effective power management during normal operation, and robust

response to low power conditions and sudden power supply failure.

Because it is possible to make a connection using infrared, RS232 or

sockets, and they have suitable higher-level application protocols, it is

possible to integrate these devices with other wireless information

devices, like portable computers. [7]

EPOC machines are expected to run for many days or weeks on batteries.

The operating system and major applications may run for up to several

years without ever being shut down or reset in any way. If an error occurs,

it must be ensured that user data is still safe and will not disappear. EPOC

has been designed with this in mind: ROM-based computing for low-

power, compact machines and long-running, mission-critical applications.

[7]

Several devices are available that have an EPOC operating system.

Psion’s Series 5mx was the first, and after that many others have already

produced,such as Psion’s Series 7 and Psion’s Revo. [1] [3]

1.4 EPOC from the programmer’s point of view

From the application developers viewpoint, the core components are

EPOC’s major components. They provide APIs and a runtime

environment on which all other components are built (see figure 1). The

core includes a base, engine support, graphics and a GUI. [1] [7]

14

The GUI and system components provide an environment and a

programming framework for applications. EIKON is EPOC’s GUI library,

which has been designed specially for use with handheld devices that

have a ½ VGA screen, a keyboard and a pen. EIKON provides standard

controls and dialogs for programmers use, a dialog framework, an

application and object embedding framework, and many utilities. [6]

EPOC32 operating system design is fully object-oriented and it is

implemented in C++, except for a few hardware-dependent or extremely

speed-critical functions written in assembly. [8]

Memory efficiency and cleanup are strengths in EPOC32. It is essential

for an EPOC programmer to be familiar with the cleanup framework and to

use it effectively. The programmer should be careful with allocating and

deallocating memory, so that memory leaks do not occur. Memory

management is one of the vital issues when developing applications in

EPOC. More details about cleanup and memory management are given in

section 2. [4]

Symbian does not provide a compiler of its own, but Visual C++ and GNU

C++ compilers are used. The applications are developed in a Windows

environment with Microsoft’s graphical tools and debuggers, and then the

same source code is recompiled using a GNU C++ compiler. After

compiling, the source code can be transferred to the target machine using

a link cable and suitable communications software. [4]

1.5 EPOC SDK

A software Development Kit (SDK) allows development of applications

with a standard PC. The first version of the EPOC Software Development

Kit (EPOC SDK 1.0) was released in August 1997. Symbian's first full

release of EPOC is EPOC Release 5 (ER5) C++ SDK, which was

15

released in June 1999. In November 2000 Symbian launched its fully

integrated, open software platform called v6.0. The issues handled in this

chapter are based on version ER5. [3]

With EPOC Release 5 C++ SDK it is possible to write EPOC applications,

DLLs and system components. The applications can be tested on a PC,

since the SDK includes an EPOC simulator for Windows. [3] [9]

The SDK also includes documentation, an EPOC Emulator, a GCC cross

compiler, various software tools, extensive example code, a complete

design exercise and some selected EPOC source code. [4]

1.6 EPOC programming principles

EPOC uses C++, but it does not use some language features, it provides

some new features of its own and it has adapted others. Most of these

changes are made to achieve reliability or efficiency in ROM-based

devices. [7]

Basic classes

E32 applications use four general kinds of classes:

• Value classes, or types, whose name begins with a T. These may be

safely orphaned on the stack because they need no explicit

assignment or copy constructor operator.

• Heap-allocated classes, whose name begins with a C. These objects

are derived from a CBase class, which means they have a constructor

and a destructor, they are allocated on a heap, and they are usually

referred to by pointer.

• Resource classes, whose name begins with an R. These classes are

proxies for objects owned elsewhere.

16

• Mix-in classes, whose name begins with an M. These are the only

classes where multiple inheritance is allowed. [7]

Naming conventions

EPOC has its own naming conventions for naming classes, structures,

variables, functions, macros, enumerations, and constants. They reflect

the cleanup-related properties of objects and classes. More details about

this can be read from the book Professional Symbian Programming. [3] [7]

Recurring code patterns

There are some very commonly used code patterns. Two-phase

construction is the most important to know, and it is covered later in this

thesis.

Casting

EPOC32 provides some macros to encapsulate C++ cast operators.

These macros are REINTERPRET_CAST, STATIC_CAST,

CONST_CAST and MUTABLE_CAST. Casting should be used with

caution, because it may indicate a questionable code. [7]

Asserts

Asserts are commonly used macros in EPOC. Asserts are one method of

catching programming errors. Asserts are covered more precisely in

section 4. [4]

17

Test code

Test code is an important part of software development. Codes must be

tested in specific areas, not only when the whole code is ready. Testing is

covered more exactly in section 4. [7]

1.7 EPOC Programming Framework

Working with EPOC usually means working with EPOC frameworks.

Frameworks are well suited to OO (object-oriented) systems, because

frameworks take the notion of an API a step further and provide both

architecture and ready-made building blocks for re-use. [4]

The programming framework is provided by EIKON. The EPOC32

programming framework provides the programmer with a large set of base

classes and services required by all applications. For example, services

like channelling, user input to the correct part of the application code, and

providing access to file-handling functions defined by the Application

Architecture. [4]

The programming framework requires that some aspects of an

application’s layout and behaviour, including menu, toolbar and other

control structures, are defined in a resource file. This means that even

small changes to the resource file can change an application significantly.

This feature can be taken advantage of when localising an application.

Only the resource file text associated with each menu item, task bar or

other control needs to be changed. If the behaviour of the code does not

change, it is not necessary to recompile the application to use the new file.

[4]

18

2 MEMORY MANAGEMENT

2.1 General description

Dynamic memory management is a very important part of real-time

systems. The amount of RAM in small, portable products is as small as

possible. Because of costs and power consumption, that is why RAM must

be shared among tasks.

There are some key issues to remember when developing software for

wireless information devices. RAM is limited, so programs must use it

efficiently. Because it is not possible to reserve unreleased resources,

memory should be released as soon as possible. Out-of-memory

situations will happen, so it is important to notice possible error situations

beforehand. Every time memory is allocated, it is possibility to cause an

out-of-memory error, and the operation could fail. If this happens all the

allocated resources must be cleaned up and operation must roll back to

an acceptable and consistent state without losing any user data. [7] [10]

Memory management is a way to control limited memory resources so

that memory leaks do not happen. EPOC supplies a variety of tools for

dealing with memory management. These tools include C++ destructor, a

trap harness, a leave mechanism, a cleanup stack, heap failure tools,

heap checking tools, a two-phase constructor pattern, a CBase class,

some naming conventions and programming patterns. The cleanup stack,

CBase class and two-phase construction are EPOC’s most important

features. [4] [10]

19

2.2 Memory

There are three types of memory: program binaries, a stack and a heap.

The program binaries are constant and do not change. Literals built by the

programs go into the program binaries. The stack is the place where fixed-

size objects whose lifetimes coincide with the function that creates them

are placed. The heap is used for objects that are built or manipulated

during runtime, are too big, or whose lifetimes do not coincide with the

function that created them. [3]

Process

Programs running in EPOC consist of a number of processes, which are

memory management’s basic units. Each process has its own address

space, a primary thread, and any number of other threads. A primary

thread is created every time a process is installed. Addition to the primary

thread, processes may also create additional threads. [4]

Every user process has its own private address space. This address

space is a collection of memory regions that a user process can access,

but it does not include memory areas in the address space of another

process. A kernel process is a special process whose threads run at a

supervisor priviledge level. [4]

Chunks

A chunk is a particular area in RAM, consisting of linear addresses next to

each other. When a user process is created, it contains one thread and

one to three chunks. A stack/heap chunk always exists. A code chunk

exists if the process is loaded into RAM, and a data chunk exists if the

process has static data. [4]

20

One chunk consists of two different kinds of regions, reserved and

committed. A reserved region consists of linear addresses next to each

other, which may be occupied by the chunk. The RAM is mapped in a

committed region. Because the size of a chunk is dynamically alterable,

the committed region’s size can vary from zero up to the reserved region

size. This gives some flexibility in case processes need to obtain more

memory. [4]

The committed region generally starts from the bottom of the reserved

region. It is also possible to create ’double-ended’ chunks (from EPOC

Release 4) where the committed region is any contiguous subset of the

reserved region. The size of this kind of chunk is equal to an integral

multiple of the processor page size. [4]

There can be two kinds of chunks:

• A local chunk, which is dedicated to the process which creates it. Other

processes do not have access to it. Local chunks do not have names.

• A global chunk, which is intended to be accessed by other processes.

These chunks have names by which a process can open them. [4]

Thread

A thread is a unit of execution within a process. Every process contains

one primary thread. There may also be additional threads.

A kernel process is a special process, which normally contains two

threads:

• A kernel server thread. This is the highest priority thread in the system.

• A null thread. When nothing else happens, this thread places the

processor into an idle mode to save power.

Each thread is unaware of other threads in a process. Each thread also

has also a priority. A thread with has highest priority, is executed first and

21

thread with higher priority can suspend executing thread with lower

priority. Threads, which have same priority, are time sliced on a round

robin basis. [4]

Each thread is assigned a priority; at any time, the thread running is the

highest priority t thread, which is ready to run. Context switching between

threads involves saving and restoring the state of threads. This state

includes not only the processor registers (the thread context) but also the

address space accessible to the thread (the process context). The

process context only needs switching if a reschedule is between threads

in different processes. Active objects allow non pre-emptive multi-tasking

within a single thread. [4]

After the thread is created it is in a suspended state, which means that the

thread priority can be changed before the thread is started. The priority

change has been done by calling the thread’s member function called

SetPriority(). The thread is started by calling thread’s Resume() member

function. [4]

Stack

T class objects are also called automatic variables. These T types can be

declared on the stack without any kind of memory management. [7]

Below is an example code about T class object lifetime. Figure 3 illustrates

this situation.

22

([DPSOH����7�FODVV�REMHFW�OLIHWLPH�>�@�

{ // 1.

TClass x; // 2.

 // use x

} // 3.

The object’s scope unit starts at point 1. In the figure it can be seen that

the stack is empty. An object is created on the stack at point 2. After the

object is used and the scope unit ends, at point 3, the object is

automatically destroyed from the stack. [7]

)LJXUH����7�FODVV�REMHFW�OLIHWLPH�

Heap

Each thread also has a heap. You can allocate and de-allocate objects on

the heap at will, and refer to them using a pointer. The benefit of a heap is

that the lifetime of an object is entirely within your control. This power

comes with responsibility: you must not forget to de-allocate objects once

you have finished with them, and you must not use pointers to objects that

have been de-allocated. [4]

A heap’s structure in EPOC is rather simple. It consists of two linked lists.

One is for allocated cells and the another is for free cells. [7]

1. 2. 3.

x

Stack Stack Stack

23

Object lifetime

Objects have a certain life cycle, which is the same in both a stack and a

heap. The life cycle starts when memory is allocated for the object. Then

this allocated memory is initialised, after which the object is used. After

use all the resources used by that object are freed up. Finally, the memory

is de-allocated from the stack or heap. [4]

Example 2 shows a normal C++ approach to object construction, apart

from the use of an overloaded new operator. If the construction is

successful, this approach behaves identically to that of C++ new. Figure 4

illustrates the use of memory resources. [7]

([DPSOH����2EMHFW�OLIHWLPH�>�@�

{ // 1.
CClass* p; // 2.
p = new(ELeave) CClass; // 3.
 // Use the CClass
delete p; // 4.

}

New(ELeave) corresponds to new in C++, and it will leave if it fails to

allocate the required memory. Operator new(ELeave) should always be

used instead of plain new. [4]

24

)LJXUH����2EMHFW�OLIHWLPH

From the figure above it can be seen that memory is allocated from the

heap at point 3 and deallocated at point 4.

In some other operating systems memory is not as limited as in handheld

devices, and that is why object lifetimes can be neglected. When a

program terminates, the stack and heap are destroyed and there is no

need to worry about cleaning up. But in EPOC, object lifetime is an

important issue, because programs may run for months without

interruption or a system re-boot. [4]

Stack Heap

Stack Heap

Stack Heap

1.

3.

2.

4.

CClass

p

p

Stack Heap

p

25

2.3 C++ exception handling

Exception handling mechanisms in C++ are provided to report and handle

errors and exceptional events. The C++ mechanism try-catch works like

EPOC’s trap harness. Functions that can detect and recover from errors

are executed within a try block. This try block calls other functions that are

able to detect exceptions. Catch is an exception handler, which handles

exceptions by their parameters. [11]

Then why not use C++ exception handling in EPOC? There are some

reasons for that. First of all, the GNU C++ compiler, which is used for

MARM implementation, does not support exception handling. Secondly,

the code fragments used to clean up stack frames for throw processing

can add considerably to code size. This is true even if such code

fragments are only be generated if objects with destructors are allocated

on the stack. In any case, this is forbidden in EPOC. Extra stack space

and run-time overheads are reserved by the stack format to support C++

exception handling, even for functions that do not require cleanup

fragments. Run-time type information support is needed when using C++

exceptions, and this carries its own overheads. Even if the overheads of

C++ exceptions are low, they tend to increase. If C++ exception handling

were used, part of EPOC exception support would also be needed. [4]

2.4 Panics

A panic is an action which stops the program from running. A panic is

caused by programming errors, and only way to fix this is to correct the

program. Asserts help detect programming errors. These errors are

checked by the _ASSERT_DEBUG macro. [3] [4]

26

Panics are discovered by a library code, which operates on behalf of the

program. There are functions available that panic a thread with an error.

The User::Panic() function panics a thread if the operating library code is

in a DLL running in the same thread as the program. When the library

code is in a server executing on behalf of another program, the server

should panic the client thread using RThread::Panic(). Panics are

characterised by a category, which is a sixteen-character string, and a

number, which identifies the specific cause. Some panics are raised in

debug builds only. [4]

2.5 Memory Leaks

There are two kinds of memory leaks: static and dynamic. A static leak

occurs when there is a different number of allocations and deallocations in

a piece of code. This kind of leak will cause a panic when the application

is closed. Dynamic leaks are caused by an error condition. [4]

When a new C class object is created, it is necessary to have an

automatic pointer for it on the stack or a member pointer in another class.

Memory leaks occur when pointer goes out of range before the object in

the heap is deleted. When this kind of situation happens, the memory

area where object is can not be used anymore. [7]

Example 3 is about a memory leak. It is a fragment of code in which an

object is created and used, but not destroyed. The allocated memory is

not released from the heap because the pointer of the heap object was

lost for some reason. In figure 5 the same situation is presented visually.

27

([DPSOH����0HPRU\�OHDN�>�@�

{ // 1.
CClass* p; // 2.
p = new(ELeave) CClass; // 3.
 // Use the CClass
 // delete p;

} // 4.

)LJXUH����8VH�RI�D�VWDFN�DQG�D�KHDS�ZKHQ�D�PHPRU\�OHDN�KDSSHQV�

Stack Heap

Stack Heap

Stack Heap

1.

3.

2.

4.

CClass

CClass

p

p

Stack Heap

28

At point 3 the memory is allocated from the heap. If the memory is not

deallocated from the heap before the pointer goes out of range, the

memory can not be deallocated anymore and a memory leak occurs. The

pointer of the heap object was lost and the object was orphaned and could

not be cleaned up. This is a memory leak. [7]

Amusingly, a memory leak has been called ’alloc heaven’. This term

comes from the fact, that an allocated heap cell is in heaven because it

cannot be reached by pointers. Term ’alloc hell’ has also been suggested

to describe the horror caused by double deletion, but that term never

caught on. [3]

Memory leaks can be detected by the _UHEAP_MARK and

_UHEAP_MARKEND macros. When memory is allocated, the number of

allocated heap cells is noted by _UHEAP_MARK, and

_UHEAP_MARKEND causes a panic if it finds that the number of heap

cells currently allocated is not the same. These are very useful macros,

which help to keep the heap imbalance in every development phase. [3]

[7]

2.6 Cleanup Stack

When a function that has allocated objects leaves, there must be a way to

clean up those objects. A cleanup stack is EPOC’s mechanism for

handling this cleaning up. A cleanup stack must be used only when it is

needed. Using a cleanup stack is quicker and more efficient than using a

trap harness, so if appropriate, the cleanup stack should be used. The

trap harness is explained in section 3. [4]

Every application has its own cleanup stack. Before it can be used, the

cleanup stack must be created using CTrapCleanup::New(). All the

29

objects placed in the cleanup stack will be destroyed when a leave occurs.

[4] [7] [12]

CleanupStack::PushL() pushes objects onto the cleanup stack and

CleanupStack::Pop() cleans up the objects. Pop() can be used when it is

sure that an object in the cleanup stack will either be destroyed or a

reference to it will be stored. [4] [12]

Using the CleanupStack::PopAndDestroy() function will both pop and

destroy the object from the cleanup stack. This is usually used when an

object on the cleanup stack is no longer needed. [4]

Example 4 contains a fragment of code showing the use of the cleanup

stack. At point A the object is pushed onto the cleanup stack, and after

memory allocation has been completed, the object is popped from the

cleanup stack.

([DPSOH����&OHDQXS�VWDFN�>�@�

CExample* CExample::NewL()
{

CExample* self = new(ELeave) CExample;
CleanupStack::PushL(self); // A
self->iMem1 = new(ELeave) CX;
self->iMem2 = new(ELeave) CY;
CleanupStack::Pop(); // B
return(self);

}
// delete self gets called by the cleanup stack if function leaves

In figure 6 the object is pushed onto the cleanup stack like at point A. If a

leave occurs, the object is destroyed and the memory can be deallocated.

30

)LJXUH����2EMHFW�SXVKHG�RQWR�WKH�FOHDQXS�VWDFN�

)LJXUH����2EMHFW�SRSSHG�IURP�WKH�FOHDQXS�VWDFN�

If the memory is succesfully allocated at point B, the object is popped from

the cleanup stack, as shown in figure 7.

Stack

self iMem1 iMem2

CExample

$

Heap

Cleanup Stack

self

%

Cleanup Stack

Stack

myObject iMem1 iMem2

Heap

CX CY

31

2.7 One-phase construction

It is appropriate to use a conventional C++ constructor when the object

construction can not leave. A set of example codes follows, which

presents two class definitions and a function that uses one-phase

construction. One-phase construction uses the usual C++ construction

strategy. [4] [7]

([DPSOH����&6LPSOH�FODVV�GHILQLWLRQ��>�@�

class CSimple : public CBase // simple class
{

public: // functions
 CSimple();
 ~CSimple();
 void Display();
private:
 Tint iVal;
protected:
 CSimple(TInt);

};

All EPOC C classes are inherited from a base class called CBase, like the

CSimple class in example 5 and CCompound in example 6. [4]

Example 6 is a definition of the CCompound class. The definition shows

the data members and functions owned by the CCompound class. iChild

is a pointer to a CSimple object owned by CCompound. The associations

between the classes can also be seen in a class diagram in figure 8.

([DPSOH����&&RPSRXQG�FODVV�GHILQLWLRQ�>�@�

class CCompound : public CBase // compound class
{

public: // functions
 void Display();
 virtual ~CCompound();

32

 static CCompound* NewL();
 static CCompound* NewLC();
private:
 CSimple* iChild;
 protected:
 CCompound(); // constructor

};

The object in example 7 is created using one-phase construction. In the

example the PushL() and PopAndDestroy() functions are used to ensure

that if a leave occurs the object can still be deleted correctly.

([DPSOH����)XQFWLRQ�LPSOHPHQWHG�XVLQJ�RQH�SKDVH�FRQVWUXFWLRQ�

void CExampleAppUi::OnePhaseL()
{

CSimple* mySimple = new(ELeave) CSimple;
CleanupStack::PushL(mySimple);
//
// do something that might leave here
//
CleanupStack::PopAndDestroy();
mySimple = 0;

}

The previous example also illustrates a good practise: zero the pointer

after the object does not exist anymore.

Use of NewL() and NewLC()

The NewL() function is a static function that is usually used when the

object being created is going to be referred to by an automatic variable.

When creating member variables (i front of the variable name), the

destructor handles the cleanup, so NewL() is used. [7]

Example 8 contains the NewL() function. The object is popped from the

cleanup stack before returning.

33

([DPSOH����+HDS�SRLQWHU�FRQVWUXFWLRQ�>�@�

CExample* CExample::NewL()
{

Example* self = new(ELeave)CExample;
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop();
return(self);

}

Example 9 uses the NewLC() function, which operates much like NewL(),

but it does not pop the object from the cleanup stack before returning.

([DPSOH����6WDFN�SRLQWHU�FRQVWUXFWLRQ�>�@�

CExample* CExample::NewLC()
{

Example* self = new(ELeave)CExample;
CleanupStack::PushL(self); // A
Self->ConstructL();
return(self);

}

// Anywhere within another function
CExample* myEx = CExample::NewLC();
myEx->DoSomething();
CleanupStack::PopAndDestroy();

NewLC() is usually used to create objects owned by other objects. The

pointer myEx must be deleted after use, or it will be orphaned in the stack.

[7]

34

)LJXUH����6WDFN�SRLQWHU�FRQVWUXFWLRQ�

Figure 8 illustrates the use of a stack and a cleanup stack when creating a

stack pointer. The pointer is pushed onto the cleanup stack at point A, so

if the construction fails there is no memory leak.

2.8 Two-phase construction

When using normal C++ conventions between the allocation performed by

new and the invocation of a C++ constructor that follows the allocation,

there is no need to push objects onto the cleanup stack. The C++

constructors should contain any functions that can leave. That is why two-

phase construction was invented. Two-phase construction should be used

when a class has to allocate member data storage, in other words, for C

classes. [3]

The next code example uses classes like the example presented earlier in

one-phase construction, but now a two-phase constructor is used.

([DPSOH�����)XQFWLRQ�LPSOHPHQWHG�XVLQJ�WZR�SKDVH�FRQVWUXFWLRQ�

void CExampleAppUi::TwoPhaseL()
{

CCompound* my2Phase = CCompound::NewLC();
//
// do something that might leave here

Stack

Cleanup Stack

CExample

myEx

35

//
CleanupStack::PopAndDestroy();

}

After the construction is successfully finished, the pointer is popped and

destroyed from the cleanup stack.

([DPSOH�����1HZ/&���IXQFWLRQ�

CCompound* CCompound::NewLC()
{

CCompound* self = new (ELeave) CCompound; // A
CleanupStack::PushL(self);
self->ConstructL(); // B
return self;

}

After allocating memory from the heap at point A, the pointer is pushed

onto the cleanup stack. If the function leaves, the pointer is safe and the

memory can be deallocated. After pushing the pointer onto the cleanup

stack, the second-phase constructor is called at point B, and the

construction can be finished. [7]

Example 12 contains the ConstructL() function, which is called the

second-phase constructor. This function performs any initialization that

might leave. [7]

([DPSOH�����&&RPSRXQG
V�FRQVWUXFWRU�LQ�WZR�SKDVH�FRQVWUXFWLRQ�>�@�

void CCompound::CConstructL()
{

iChild = new(ELeave) CSimple;
}

When performing initialization that could leave, a two-phase constructor

must be used. That is a reliable way to avoid leaves when initializing

classes.

36

)LJXUH����&ODVV�GLDJUDP�

The associations between the CSimple, CCompound and CBase classes

can be seen in figure 8. From the diagram it can be seen that the

CCompound class owns the other objects. iChild points to a CSimple

object owned by CCompound.

2.9 General rules for cleanup

It is important to follow certain instructions when handling the cleanup.

Very few rules govern cleanup stack programming, and they are relatively

easy to learn. Here are some basic instructions that help in handling the

cleanup correctly. Most of these instructions are based on EPOC Release

5 C++ SDK, System Documentation HTML Help [4] and the book

Professional Symbian programming [3].

When allocating objects, it is necessary to ensure that if a leave occurs,

the object will not disappear. So, after the object is allocated and before a

pointer of that object is stored in a structure that would be accessible if a

leave occurs, the object must be pushed onto the cleanup stack. After the

pointer is stored in an object that is accessible after a possible leave, the

object should be popped from the cleanup stack. [4] [13]

CBase

CSimple

TInt iVal

CSimple()
void Display()
~CSimple()

CCompound

TInt iRoot
CSimple* iChild

CCompound()
virtual ~CCompound()
void Display()
static CCompound* NewL()
static CCompound* NewLC()

iChild

37

The cleanup stack is needed only when it is necessary to prevent the

object’s destructor from being bypassed. If the object’s destructor is going

to be called anyway, or if the object is a member variable of another class,

the cleanup stack is not needed. A member variable should never be

pushed onto the cleanup stack. [10] [13]

Never push member variables onto the cleanup stack. If this is done it is

likely that the member variables will be deleted from both the cleanup

stack and the class’s destructor. [3] [13]

38

3 TRAP HARNESS

3.1 Purpose of the trap harness

A trap harness is a Symbian coding convention that works basically like

C++’s and Java’s try-catch mechanism. When a leave occurs, it means

that either a resource allocation has failed or a request for the use of

some remote resources has not been successful. [7]

3.2 Leave functions

When an OOM error occurs, functions in EPOC32 should leave. A

function may also leave because a function it called has left. When a

leave occurs, the User::Leave() function is invoked and the program will

return to the current trap harness. [3] [13]

It is important to know if a function might leave. When writing this kind of

function, L should be placed in the function’s name. However, the

compiler does not check leave function names, so if the L is missing, the

compiler will not complain about it. [3] [13]

When writing a function it must be known if the function is an L function or

not. Every time when it is possible that a function might require a cleanup,

the function must be an L function. The function must also be an L

function if the function calls another function, which is an L function. [3]

So, a trap harness invokes only L functions, but that does not mean all L

functions are invoked by a trap harness. If it were so, exception handling

would be too inefficient to use. [4]

39

3.3 Leave Mechanism

When an OOM error occurs, the operation must roll back to a former state

that was consistent and stabile. A mechanism that makes this possible is

called a trap harness. A trap harness catches any function that leaves

inside the trap harness. When a function leaves, the TRAP or TRAPD

macro takes control and returns an error code, which can be used by the

calling function. [3] [4]

([DPSOH�����8VLQJ�75$3'�>�@�

TRAPD(error, doExampleL());
 if(error != KerrNone)
 {
 //do some error code
 }

Example 13 above shows the syntax required when a TRAPD macro is

used. The doExampleL() function is executed under a trap harness, and if

the function leaves, the error code inside the TRAPD is executed.

The only difference between the TRAP and TRAPD macros is, that in

TRAP the program code must declare the leave code variable. TRAPD is

more convenient to use as it declares this inside the macro. So, when

TRAP is used like TRAPD is used in example 13, the code looks like the

one shown in example 14. [13]

([DPSOH�����8VLQJ�75$3�>�@�

TInt error;
TRAP(error, doExampleL());
 if (error != KerrNone)
 {
 //do some error code
 }

40

When a leave occurs, the call stack is unwound back to the last TRAP and

the cleanup stack is unwound, too. All EPOC code is TRAPed in the

active scheduler of the thread. Default TRAP behaviour displays trivial

"Error" dialogs. When a function leaves under a trap harness, the TRAP

macro takes the control and stores the leave code into the TRAP’s return

value. [4]

([DPSOH�����75$3�H[DPSOH�>�@�

TInt leaveCode; // hold result from trap
TRAP(leaveCode, SomeFunctionL()); // call a function
 if(leaveCode != KerrNone) // check for error leave code
 {

//do something
 }

In the previous example the function called by TRAP is executed under a

trap harness. If the function leaves, control returns immediately to the

TRAP macro.

It is also possible that the called function returns a value. The syntax for

this action is shown in example 16.

([DPSOH�����5HWXUQ�RI�D�YDOXH�>�@�

TRAPD(leaveCode,value = GetSomethingL()); // get a value
 if(leaveCode != KerrNone) // check for error leave code
 {
 // some cleanup
 }
 else {
 // didn’t leave: value valid
 }

41

3.4 Nested Traps

Traps inside of other traps are needed sometimes. A situation like this

appears when a new trap harness is set up by a function executing within

an existing trap harness. If the function leaves, control is transfered to the

new trap harness, only. [3] [4]

Lets take an example, like a word processor. When a key is pressed it

causes many actions, like allocation of undo buffers and expansion of the

document to receive a new character. If anything goes wrong the whole

operation need to be undone completely. Example 17 contains code

which can be used in a situation like the one described above. [3]

([DPSOH�����6SHFLDOLVHG�FOHDQXS�>�@�

TRAPD(error, HandleKeyL());
if(error)
{
 RevertUndoBuffer();

 //Any other special cleanup
 User::Leave(error);
}

This performs a specialised cleanup and then leaves anyway, so the

EIKON framework can post an error message. More is mentioned about

error messages in chapter 3.5.

Some Draw() functions are rather complicated, and it may be appropriate

to code them in such a way that they make allocations. In this case, the

failures are trapped, as shown in example 18. [3]

42

([DPSOH�����([DPSOH�RI�D�'UDZ���IXQFWLRQ�>�@�

virtual void Draw(const Trect& aRect) const
{
 TRAPD(error, MyPrivateDrawL(aRect));
}

Example 19 shows a useless trap code.

([DPSOH�����8VHOHVV�WUDS�FRGH�>�@�

TRAPD(error, FooL());
if(error)
 User::Leave(error);

The previous code does exactly the same as the code in example 20.

([DPSOH�����6XEVWLWXWH�IXQFWLRQ�>�@�

FooL();

From these two examples above it can be seen that it is not wise to use a

trap in every situation. Traps increase the code size and take time to

execute. That is why traps should be used only when they are needed.

3.5 Error notification

There are three different kind of errors:

• program errors, which are caused by the programmer.

• environment errors, which are caused by insufficient memory or disk

space, or other missing resources

43

• user errors, which are caused by the user, for example by attempting

to enter bad data into a dialogbox. [4]

When a function leaves, some kind of error indication should be

performed to indicate that the function was not actually executed. The

next two examples, 21 and 22, present two different ways to notify of an

error. Example 21 uses a subsequent leave to notify of an error:

([DPSOH�����(UURU�QRWLILFDWLRQ�E\�D�VXEVHTXHQW�OHDYH�>�@�

 void TrySomethingL()
 {
 TRAPD(leaveCode, SomeFunctionL());
 if(leaveCode)

 {
 //cleanup
 User::Leave(KerrSomethingDrastic); //leave because of

 //error
 }

 }

So, if an error situation occurs, the function leaves.

In example 22 the error is announced by an error code. Different kind of

errors cause different kinds of error codes. Error code value can be used

to inform the user which kind of error happened.

44

([DPSOH�����(UURU�QRWLILFDWLRQ�E\�DQ�HUURU�FRGH�>�@�

 TInt TrySomething()
 {
 TRAPD(leaveCode, SomeFunctionL());
 if(leaveCode)
 {
 //cleanup
 return KerrSomethingDrastic;
 // indicate couldn’t do request function
 }
 return KerrNone; // indicate requested function performed
 }

If the previous SomeFunction() function leaves, an error code is returned.

If the function does not leave, it returns a KerrNone to indicate that the

function was performed succesfully.

In some circumstances, it is necessary to use no error notification. For

example, if User::Leave() prevents an action from occurring and the

cleanup stack takes care of all the cleanup requirements, it is appropriate

to leave with a reason code KerrNone. [4]

3.6 Use of the trap harness

Different error conditions are checked and handled in different ways.

Program errors are checked by the _ASSERTBDEBUG macro. These

errors cause a panic, i.e., program running is terminated. Environment

and user errors can be handled in two ways:

• If an error is detected before an action is performed, an error message

is a convenient way to notify about it. This checking and dealing with a

return code is usually more economical than setting up a trap harness.

This is also quite easy to program, and if cleanup requirements exists

they are also easy to identify or handle.

45

• If an error can not be detected until the processing of a requested

action, the process should be run under a trap harness. The error can

be signalled by User::Leave(), so that the cleanup stack handles the

cleanup and the code follows the trap harness. When an error occurs

deep inside the processing of a requested action, the trap harness is

the more appropriate method to use. [4]

The situation may be more complicated when interfaces exist. Then there

may be a situation in which both of the methods, or even a combination of

both methods, is used. This kind of situation exists when an L function has

to be used: it is necessary to use a trap harness or ensure that the

program is already running in one. All CONE applications run under a

CONE-provided trap harness. When specifying interfaces for others to

use, there can be a significant difference between which method is used,

leave or error return. It will influence the design of the programs that use

the interface. [4]

46

4 CODE TESTING

4.1 Purpose of code testing

Code testing is an important part of the software development process.

When developing applications like software for a mobile phone, it is

important to carry out low memory testing from time to time. For debug

builds, EPOC provides heap failure tools.

4.2 Testing tools

Application programmers mostly use the resources consisting of the

memory in their own application. EPOC’s toolkit has its own cleanup tools

for handling and testing out-of-memory. Part of these tools have been

covered earlier in this thesis. [3]

EPOC has own debugging tools for searching for memory leaks. These

tools are called EIKON debugging tools, and they can be used when

running a program with EPOC’s own debugger. Some memory leaks can

be eliminated by using these tools. After building and translating the code

for the target machine, other tools must be used. [3]

47

)LJXUH�����(32&�KHDS�IDLOXUH�WRRO�>��@�

Heap failure tools, which produce deliberate out-of-memory errors are

created for testing purposes. When ctrl+alt+shift+P is pressed, the heap

failure dialog shown in figure 3 appears. There are three options:

• off: if there is sufficient memory, the allocations succeed

• random: if there is sufficient memory, the attempted allocations usually

succeed, but randomly fail

• deterministic: depending on the number typed in the Rate field, the

allocations are guaranteed to fail. For example, if the rate is 5, the

allocations will fail on the 5th, 10th etc., attempts. [3] [7]

4.2.1 EPOC SDK testing tools

EPOC’s emulator is a testing and developing tool which can be used to

find possible memory leaks. It is used alongside any language-specific

tools provided by the development environments. [4]

EIKON GUI provides special key combinations for resource checking and

redraw testing. These can be used in debug builds of EPOC to help trap

memory leaks early in the development cycle. EIKON debugging keys for

resource allocation are:

48

• ctrl+alt+shift+A; shows the number of heap cells allocated by the

program.

• ctrl+alt+shift+B; show the number of file server resources used by this

program.

• ctrl+alt+shift+C; shows the number of window server resources used

by this program. [4]

WINS (Windows single process) emulator is a good help when solving

memory leaks. When an application is closed, the emulator will panic and

raise a dialogbox if memory has leaked. This dialogbox gives the address

of the leaked memory, which is why you should exit the application, not

just kill the emulator. An application should always exit cleanly, even in the

development phase. [7]

The next thing is to find what leaked. If the application exit panics, use the

watch window in Visual C++ to try to cast the leaked address to CBase*.

This works only if the leaked object is CBase derived. Once the address

of the leaked memory is known, you can find where it was allocated. [3]

These techniques are not foolproof. If a large compound object has

leaked, you may get bogus type information. The same address may be

allocated many times, so you do not know which one is the leak. Both

techniques rely on the leak being repeatable. Leaked resources can be

very difficult to find unless the server panics. A better way to eliminate

memory leaks is avoidance. [3]

Memory leaks can be found by using _UHEAP_MARK and

_UHEAP_MARKEND in the code to check for mismatched heap allocs

and frees or by using _K variations for the kernel heap (device drivers,

etc.). [3] [7]

49

4.2.2 Commercial testing tools

There are not so many commercial testing tools available on the market,

which are suitable for the EPOC environment. Some testing tools, like

McCabe IQ and TestWell Toolpack++, support EPOC code testing in the

PC Emulator environment, but every one of these testing tools has

problems with the EPOC environment. So, modifications must be made to

get the tools to work properly. A study is going on, which is examining the

suitability of different testing tools for this purpose.

50

5 SUMMARY

Memory resources in handheld devices, are limited and if resourses are

allocated but never freed, this will cause memory leaks and out-of-memory

situations. When programming with EPOC it is important to know the

basic issues about memory management and cleanup.

This document is suitable for new EPOC programmers to allow them to

get acquainted with the basic principles of EPOC memory management.

The trap harness is one of the specific features of EPOC, and this is

covered more precisely in this work. Because there is also other solutions,

the trap harness is a little-used feature in memory management, but in

some cases it is the only way to handle situations like error conditions.

EPOC was new to me when I started this project. First I started to search

for and read material about EPOC and its memory management. At the

moment, all available material has been produced by Symbian, so this

thesis work is almost completely based on Symbian’s materials.

A good thing was that during this final year project I learned much about

EPOC. I believe this work has taught me many things that will be helpful in

my further work. With the help of this work new employees and students

can get familiar with memory management in EPOC.

Further development

Because the contribution of memory management is one of the most

important issues when developing applications for handheld devices, the

importance of testing is very obvious. The next thing to do would be to

look for suitable testing tools, which support testing in the EPOC

environment. Especially the possibility of testing memory leaks during the

implementation phase.

51

6 REFERENCES

1 Symbian. EPOC Overview: Summary. Last modified 23. May

2000. [WWW-document].

<http://www.symbian.com/technology/papers/e5oall/e5oall.ht

ml>

2 Symbian. EPOC Overview: Core. Last modified 23. May 2000.

[WWW-document].

<http://www.symbian.com/technology/papers/e5ocore/e5ocor

e.html>

3 Tasker, M. Professional Symbian Programming. Wrox Press

Ltd. ISBN 1-861003-03-X.

4 EPOC Release 5 C++ SDK, System Documentation HTML

Help

5 Tasker, Martin. Symbian. EPOC Overview. January 1999.

6 Symbian. About us: Corporate Fact Sheet. Last modified 25.

May 2000. [WWW-document].

<http://www.symbian.com/about/corpfacts.html>

7 Tieturi. EPOC Programing Essentials. Course material. 2000.

8 Symbian. Technical Library. C++ Development process. Last

modified 04. February 2000. [WWW-document].

<http://www.epocworld.com/techlibrary/technotes/C++process

.html>

9 Symbian. Getting started: About this SDK. Last modified 04.

February 2000. [WWW-document].

<http://www.epocworld.com/techlibrary/documentation/ER5/C

PP/sysdoc/product/productdocs/aboutcpp.html>

10 Symbian. Approaches to memory management. Last modified

23. May 2000. [WWW-document].

<http://www.symbian.com/technology/papers/memmanc/mem

manc.html>

11 Stevens, Walnum. Standard C++ Bible. IDG Books

Worldwide, Inc. ISBN 0-7645-4654-6

http://www.symbian.com/epoc/papers/e5oapptec/e5oapptec.html
http://www.symbian.com/epoc/papers/e5oapptec/e5oapptec.html
http://www.symbian.com/technology/papers/e5ocore/e5ocore.html
http://www.symbian.com/technology/papers/e5ocore/e5ocore.html
http://www.symbian.com/about/corpfacts.html
http://www.epocworld.com/techlibrary/technotes/C++process.html
http://www.epocworld.com/techlibrary/technotes/C++process.html
http://www.epocworld.com/techlibrary/documentation/ER5/CPP/sysdoc/product/productdocs/aboutcpp.html
http://www.epocworld.com/techlibrary/documentation/ER5/CPP/sysdoc/product/productdocs/aboutcpp.html
http://www.symbian.com/technology/papers/memmanc/memmanc.html
http://www.symbian.com/technology/papers/memmanc/memmanc.html

52

12 Symbian. Exeption handling in EPOC. Last modified 04.

February 2000 [WWW-document].

<http://www.symbiandevnet.com/techlib/techcomms/techpape

rs/papers/cpp_tutorial_excephandling/excepthandling.htm>

13 Symbian. Memory management and cleanup. Last modified

06. November 2000 [WWW-document].

<http://www.symbiandevnet.com/techlibrary/techcomms/techp

apers/papers/memman/memman.htm>

http://www.epocworld.com/techlibrary/tutorials/excepthandling.htm
http://www.epocworld.com/techlibrary/tutorials/excepthandling.htm

