
	
	
	
	
	
	
	
	
	
	
	

	

	

BUILDING	THE	ARTIFICIAL	NEURAL	NETWORK	ENVIRONMENT	

Artificial	Neural	Networks	in	plane	control	
	

	

	

	

	

	

	

	
	
	
	
	
	

Bachelor’s	thesis	
	
	
	

Valkeakoski,	Automation	Engineering	
	

Fall	2016	
	

Daniil	Naumetc	
	
	

ABSTRACT	
	
	
	
Automation	Engineering	
Valkeakoski	
	
Author	 	 Daniil	Naumetc	 	 Year	2016	
	
Subject		 	 Artificial	Neural	Networks	in	plane	control	
	
	
ABSTRACT	
	

These days Artificial Neural Networks have penetrated into all digital technologies that
surround us. Mostly every online service like Facebook, Google, Instagram are using
Artificial Intelligence to build better service for their users.

Google Self-Driving Car Project that started several years ago already have results as
driverless cars already moving on the streets of California.

Artificial Intelligence makes a breakthrough in Medicine as well. Such programs
already successfully find disease reasons and make clinical decisions.

Boldly saying, we can expect AI replacing human beings in most spheres of our lives.

This Thesis idea is to make approach for developing AI for piloting, since the topic is
not highly developed yet.

	
	

Keywords	 Artificial	 neural	 networks,	 autopilot,	 artificial	 intelligence,	 machine	
learning	
	
Pages	 32	pages	including	appendices	9	pages	
	
	
	
	
	

CONTENTS	

	

1	 INTRODUCTION	...	1	

2	 BACKGROUND	...	2	

2.1	 Neuron	..	2	
2.2	 Neural	Network	...	2	
2.3	 Artificial	neuron	..	3	
2.4	 Artificial	Network	..	4	
2.5	 Simple	perceptron	...	4	
2.6	 Backpropagation	...	6	
2.7	 Input	and	output,	Normalization	..	7	
2.8	 Activation	Functions	..	8	

2.8.1	 Identity	..	9	
2.8.2	 Sigmoid	..	10	
2.8.3	 Tanh	...	12	
2.8.4	 ReLU	..	13	

2.9	 Types	...	14	
2.9.1	 Feed	forward	Network	..	14	
2.9.2	 Recurrent	Network	..	15	
2.9.3	 LSTM	..	16	
2.9.4	 Kohonen’s	self-organizing	maps	..	17	

2.10	Learning	procedure	of	feed-forward	network	..	18	
2.11	Commonly	used	frameworks	..	22	

3	 MATERIALS	AND	METHODS	..	22	

3.1	 Plane	stabling	task,	basic	concept	...	23	
3.2	 Plane	stabling	task	in	details	...	24	
3.3	 Plane	simulation	..	25	
3.4	 Data	processing	for	the	ANN	...	28	
3.5	 Jetson	TX1	...	29	
3.6	 Artificial	Neural	Network	..	29	
3.7	 Learning	process	...	30	

4	 CONCLUSION	...	30	

5	 FUTURE	WORK	..	30	

REFERENCES	...	32	

	
	
Appendices		
Appendix	1	 Contents	of	XML	input/output	file	
Appendix	2	 Python	program	for	receiving	Flight	Gear	data	
Appendix	3	 Contents	of	Python	library	for	preparing	data	for	Caffe	
Appendix	4	 Prototxt	file	containing	description	of	network	for	Caffe	
Appendix	5	 Prototxt	file	containing	description	of	solver	for	Caffe	

1	
	

	
	

1 INTRODUCTION	

Every	program	is	built	up	on	a	model.	The	model	can	be	full	or	not,	some	
of	variables	may	be	so	insignificant	that	won’t	really	affect	the	result.	But	
some	variables	that	were	not	taken	into	count	can	modify	the	result	in	a	
very	unexpected	way,	so	that	a	hardware	that	works	with	an	incomplete	
software	can	cause	damage	to	an	environment	it	operates	with.		
	
Along	with	the	open	model	based	class	of	problems,	there	is	a	class	of	
problems,	that	has	a	lack	of	information	like	how	does	a	problem	can	be	
solved.	The	model	of	a	process	can	be	so	large	that	it	is	impossible	to	
cover	it	all,	or	even	only	a	small	part.		
	
To	deal	with	that	kind	of	problems	where	some	variables	are	not	known	
we	can	replace	them	with	the	artificial	ones(nodes)	and	try	to	find	their	
role	using	the	recorded	experience	of	inputs	and	outputs.	The	pre-
learned	model	found	while	solving	the	problem	can	be	not	as	full	as	the	
real	world	model,	but	using	neural	networks	we	can	start	solving	the	
problem	not	trying	to	understand	how	it	works.	So,	we	can	try	to	balance	
between	time	spent	on	development	and	the	outcome,	that	can	be	
accurate	enough.	On	the	other,	hand	the	model	learned	by	large	amount	
of	data	can	be	much	more	accurate	than	any	other	algorithm	that	was	
built	by	a	human	being.	
	
Also,	it	is	necessary	to	mention	that	ANN	can	become	an	extremely	
effective	black-box	in	topics	where	human	doesn’t	know	how	to	make	
machine	do	some	operations.	For	instance,	processing	natural	language	is	
a	kind	of	a	problem,	where	it	is	not	obvious	how	to	program	the	voice	
recognition	in	a	classic	way.	A	neural	network	is	the	only	way,	lets	voice	
recognition	works	in	Google	or	Apple.	
	
Summarising	the	first	impression,	ANN	is	a	program	that	can	learn	
possible	results	by	the	data	given	on	the	inputs.	To	do	so	it	builds	abstract	
models	of	relationships	between	variables.	

	
Modern	systems	that	operate	planes	are	developed	enough	to	be	some	
how	responsible	for	people	who	uses	airline	services.	Autopilot	systems	
were	evolving	for	decades	and	one	technology	is	not	enough	to	upend	
the	whole	industry.	I	also	believe	that	such	systems	that	I	want	to	
propose	are	being	developed	right	now.	
	
Since	all	the	programs	and	models	were	built	by	humans,	they	are	quite	
heavy	and	have	a	strong	theoretical	background.	It	can	become	an	
interesting	topic	to	build	a	plane,	that	can	learn	to	fly	and	head	the	
course	by	itself.	There	are	two	problems	that	can	be	covered	by	this	
project:	hard	predictability	of	natural	processes	and	impossibility	to	work	

2	
	

	
	

in	an	unknown	environment.	Second	problem	is	seen	quite	interesting	for	
me	because	for	computers	unknown	environment	can	be	a	place	with	
unusual	conditions,	for	example	air	pressure,	or	broken	left	wing	with	the	
different	lift	characteristics	from	the	right	one	can	be	a	good	example	of	
unknown	environment.	

	
	
	

2 	 BACKGROUND	

2.1 Neuron	

Brain	of	every	being	is	represented	by	a	large	Neural	Network,	the	
amount	of	neurons	and	their	structure	as	a	network	determines	a	level	of	
intellect	of	that	creature.	But	the	neuron	itself	remains	the	same	among	
most	of	creatures.	The	basic	idea	behind	the	neuron	is	to	receive	signals	
of	other	neurons,	combine	a	transformed	signal	based	on	inputs	and	
transfer	it	to	other	neurons.	Signals	are	transferred	as	electrical	signals	
from	one	neuron	to	another	and	it	is	always	changed	by	the	last	one.	
	
Basic	natural	neuron	consists	of	three	main	parts:	dendrite,	nucleus	and	
axon.	Dendrite	is	a	terminal,	that	receives	electrical	signals	and	transfer	it	
to	nucleus.	Nucleus	is	a	part	that	remembers	previous	experiences	in	a	
way,	that	it	can	give	a	positive	output	if	the	input	satisfies	it	or	negative	
on	the	contrary.	Then	the	output	goes	to	axon,	which	is	connected	to	
several	other	neurons	of	the	network.	
	
It	is	important	to	understand	about	neurons,	that	each	of	them	can	be	
represented	as	some	mathematical	(logical)	function.	For	example,	we	
can	define	a	neuron	that	we	want	to	give	high	positive	signal	(1)	as	cat	
and	neutral	(0)	as	“other”.	Dendrites(inputs)	can	be	programmed	to	
receive	0	or	1	from	other	neurons	responsible	for	cat	wool,	four	paws	
and	tail.	If	all	three	inputs	have	1,	that	makes	nucleus	give	1	as	well.	[1]	

	
The	most	attractive	feature	of	neuron	is	that	it	can	learn.	The	function	
represented	a	neuron	can	change	standard	variables	in	time	while	it	is	
learning.	The	results	with	the	same	inputs	may	vary	before	and	after	
learning	activities.	Basically,	if	every	time	neuron	gives	us	an	opinion,	that	
a	thing	that	has	four	paws	and	a	tail	is	a	cat,	we	say	that	it	is	not	a	cat,	it	
can	lead	to	extinction	of	the	particular	neuron.		

	

2.2 Neural	Network	

One	neuron	can	solve	quite	simple	problems	and	doesn’t	represent	value	

3	
	

	
	

by	itself.	But	a	collection	of	neurons	connected	in	a	certain	way	can	solve	
quite	complex	problems.	Basic	NN	contains	one	or	several	layers	of	
neurons.	Layer	represents	a	set	of	neurons	that	are	not	connected	
between	each	other	in	most	cases;	and	stay	between	other	layers.	Some	
neuron	layers	are	defined	as	input	and	output	layers	which	depends	on	
its	position.		

	
The	simplest	kind	of	neural	network	is	a	single-layer	perceptron	network,	
which	consists	of	a	single	layer	of	output	nodes.	The	inputs	are	fed	
directly	to	the	outputs	via	a	series	of	weights.		

	
Between	input	and	output	neurons	can	be	a	set	of	other	layers,	which	
called	hidden	layers.	They	are	responsible	for	building	complex	high-level	
abstractions.	

		
The	example	with	the	cat	in	section	2.1	is	quite	empirical	one.	In	real	life	
we	faced	to	much	complex	systems.	If	we	want	to	define	a	cat,	we	
require	lots	of	other	properties	of	an	animal:	colouring,	height,	weight,	
face	and	so	on.	Amount	of	properties	can	be	counted	in	hundreds	and	
thousands,	but	neuron	can’t	be	connected	to	each	of	them,	and	even	if	
could	that	would	keep	NN	very	simple.	In	such	case	neurons	in	hidden	
layers	can	handle	processing	of	abstractions.	Neurons	in	the	middle	
hidden	layers	recognise	patterns	from	previous	layers	and	the	results	
being	sent	forward.	

	
In	complex	neural	networks	neurons	in	hidden	layers	can	represent	
abstractions	that	can’t	be	understood	by	humans,	but	in	such	problems	
like	image	recognition,	one	layer	can	recognise	patterns	like	circles,	that	
could	be	used	to	recognise	wheels	of	a	car.	

	

2.3 Artificial	neuron	

Artificial	neuron	represents	real	neuron	mathematically.	Real	neuron	has	
very	complicated	concept.	It	works	by	biological	mechanics.	Many	
features	play	role	in	it:	hormones,	speed	of	conduction,	chemical	
composition	of	the	neuron,	presence	of	elements	in	organism.	Artificial	
neuron	works	by	very	basic	rules.	Nucleus	replaced	with	simple	
mathematical	function	called	“activation	function”,	dendrites	are	
multiplication	function,	they	multiply	incoming	signal	by	a	weight	that	is	
always	changed	after	learning.	Axon	has	no	transformation	functions.	

	
There	are	lots	of	activation	functions	used	in	programmed	neuron,	but	
the	most	basic	and	effective	one	is	sigmoid	function.	Sigmoid	can	input	
signal	of	any	range	but	outputs	signal	only	between	-1	and	1.	That	makes	
much	easier	to	work	within	a	network.	Moreover,	only	after	the	sigmoid	
was	used	was	found	another	characteristic	that	increases	effectiveness	of	
the	function.	Neural	network	learning	process	is	very	expensive	for	the	

4	
	

	
	

computer,	because	of	the	amount	of	mathematical	computations.	
Sigmoid	function	simplifies	the	process	because	the	calculation	of	
derivative	of	sigmoid	function	is	very	easy.	That	would	be	covered	
furtherer.	[2]	

	

2.4 Artificial	Network	

Due	to	complexity	of	real	neural	network	we	can’t	make	a	full	model	of	it.	
Creating	the	model	that	repeats	all	the	processes	influencing	the	neurons	
would	be	a	rough	problem	to	solve.	Even	though,	right	now,	the	models	
built	to	recognise	voice	or	pictures	are	relatively	simple	comparing	to	
brain	of	a	smallest	being	and	they	require	lots	of	computational	power	
from	an	operating	unit.	

	
The	way	that	lets	us	use	neural	networks	is	quite	simple.	First	of	all,	
programmers	of	neural	networks	do	not	think	in	terms	of	neurons	as	
computation	units.	What	plays	a	role	in	programming	of	artificial	neural	
networks	are	the	weights.	That	weights	that	represent	dendrite	in	natural	
neuron	is	the	most	important	thing	because	only	them	are	always	
changing	while	neural	networks	learn.	After	learning	all	the	things	used	to	
create	a	network	remains	the	same	except	weights.	In	some	cases,	
learning	rate	can	be	changed,	but	it	is	not	necessary	to	know	the	learning	
rate	to	use	the	learned	network.	

	
Secondly,	in	most	cases	the	network	is	just	a	program.	The	memory	of	a	
network,	as	told	before,	is	stored	as	weights.	In	most	of	modern	Neural	
Networks	neurons	of	two	particular	layers	are	connected	between	each	
other	(not	inside	of	one	layer).	This	type	of	connection	is	called	Each-to-
Each.	The	interesting	feature	of	this	connection	type	is	that	all	weights	
can	be	easily	stored	as	massive.	For	example,	if	we	have	2	layers	
connected	Each-to-Each:	10	neurons	and	5	neurons,	because	each	of	5	
neurons	in	the	second	layer	would	have	10	connections	from	the	first	
layer.	We	can	easily	store	them	as	an	array	of	two	dimensions,	5	and	10	
respectively,	and	treat	them	as	matrixes.		

	 	

2.5 Simple	perceptron	

Single	layer	perceptron	is	an	example	of	a	basic	feed	forward	network,	
which	was	the	first	artificial	neural	network	built.	It	has	just	two	layers:	
one	input	and	one	output.	Neurons	in	the	first	layer	receive	signals	and	
transfer	them	to	the	output	neurons.	As	accepted	first	layer	doesn’t	apply	
any	filter	to	data	and	transfer	it	directly	from	dendrite	to	axon.	After	that	
signals	got	multiplied	by	weights	and	continue	to	activation	function	and	
further	outcome	as	output	signals.		

	

5	
	

	
	

As	an	example	of	how	it	works	we	can	model	a	single	layer	perceptron	
with	AND	activation	function.	We	will	have	two	input	neurons	and	one	
output.	[3]	

	
	

The	output	neuron	would	have	two	weights	w1	and	w2	that	come	from	
Neuron	1	and	Neuron	2	respectively.	The	output	would	be	T.	The	output	
of	input	neurons	is	meant	to	be	an	input	itself	and	equal	to	I1	and	I2.	The	
perceptron	separates	input	into	two	categories:	the	one	that	cause	fire	
on	output	and	the	one	that	does	not.	It	does	this	by	looking	at		

	
w1I1	+	w2I2	<	t,	

	
If	LHS	is	smaller	than	t	it	doesn’t	fire,	otherwise	it	fires.	That	is,	it	is	
drawing	the	line:	

	
w1I1	+	w2I2	=	t	,	

	
and	looking	at	where	the	input	point	lies.	Points	on	one	side	of	the	line	
fall	into	1	category,	points	on	the	other	side	fall	into	the	other	category.	
And	because	the	weights	and	thresholds	can	be	anything,	this	is	just	any	
line	across	the	2	dimensional	input	space.	

	
So	what	the	perceptron	is	doing	is	simply	drawing	a	line	across	the	2-d	
input	space.	Inputs	to	one	side	of	the	line	are	classified	into	one	category,	
inputs	on	the	other	side	are	classified	into	another.	e.g.	the	OR	
perceptron,	w1=1,			w2=1,			t=0.5,	draws	the	line:	

	
I1	+	I2	=	0.5	

across	the	input	space,	thus	separating	the	points	(0,1),	(1,0),	(1,1)	from	
the	point	(0,0):	

	

6	
	

	
	

	
Figurе 1: Input space

	
	

As	you	might	imagine,	not	every	set	of	points	can	be	divided	by	a	line	like	
this.	Those	that	can	be,	are	called	linearly	separable.	

	
In	2	input	dimensions,	we	draw	a	1	dimensional	line.	In	n	dimensions,	we	
are	drawing	the	(n-1)	dimensional	hyperplane:	

	
w1I1	+	…	+	wnIn	=	t	

	

2.6 Backpropagation	

Backpropagation	is	the	most	basic	idea	behind	the	Neural	Networks.	It	lets	
neural	networks	learn.		
	
If	we	consider	that	feedforward	network	is	called	by	feeding	input	signals	
through	 the	 entire	 network	 towards	 its	 output.	 The	 backpropagation	
mechanism	is	the	opposite	to	feeding	forward	–	feeding	backward.		
	
To	arrange	 learning	process	we	need	 to	propagate	 the	 teaching	sample	
input-output	 pair	 to	 the	 experience-less	 network	 and	 get	 the	predicted	
output	of	the	network.	Then	what	we	would	is	to	show	the	network	which	
how	differs	its	prediction	to	original	one.	For	that	task	we	would	calculate	
the	difference	between	original	output	and	imperfect	output	done	by	the	
network.	If	we	will	just	send	the	original	output	back	through	the	network	
will	be	just	seamless.	For	such	a	case	was	invented	a	way	to	backpropagate	
the	error	itself.		
	

7	
	

	
	

To	backpropagate	the	error	first	we	will	apply	it	to	the	input	weights	of	the	
output	 neurons.	 We	 will	 compute	 ∆"# 	 for	 each	 input	 weight	 and	 the	
signals	 outputted	 by	 previous	 layer.	 After	we	 calculated	 the	 outputs	 of	
each	neuron	of	previous	layer	we	need	to	backpropagate	the	error	through	
the	activation	function.	We	can’t	just	send	the	error	through	it,	so	what	we	
do	is	we	get	the	derivative	of	the	function	and	through	the	derivative	we	
send	the	error.	After	that	all	the	steps	taken	we	repeat	for	each	neuron	
and	each	layer	down	to	the	input	of	the	network.	[4]	
	
This	 trick	 is	 the	 basic	 for	 all	 the	 most	 used	 neural	 networks,	 like	
feedforward,	convolutional,	recurrent	and	Long	Short-Term	Memory	cells.	

	

2.7 Input	and	output,	Normalization	

The	most	 important	 and	 time	 consuming	 step	 in	working	with	Artificial	
Neural	 Networks	 is	 preparing	 data.	 Since	 we	 are	 working	 with	
mathematical	 functions	 it	 is	 not	 possible	 just	 to	 input	 some	 values	 in	
random	format.	 In	machine	 learning	and	 in	neural	networks	 learning,	 in	
particular,	data	should	be	in	right	format.	The	process	of	formatting	the	
data	 is	 called	 “Normalization”.	 Artificial	 Neural	 Networks	 input	 data	
depends	on	activation	function.	Usually	data	should	be	brought	to	interval	
[0,1]	or	[-1,1]	if	the	input	neuron’s	activation	function	is	Sigmoid	or	Tanh,	
or	similar.	If	normalization	is	not	applied,	input	data	would	exert	additional	
influence.		
	
Neural	network	outputs	data	in	same	format	as	inputs,	usually,	between	0	
and	1.	
	
For	example,	if	we	have	a	problem	of	image	recognition,	popular	MNIST,	
where	the	on	 input	we	get	a	picture	and	we	should	output	a	digit,	 that	
corresponds	 to	 an	 image.	 Raw	 images	 for	 that	 problem	 are	 pictures	 of	
28x28	pixels,	each	pixel	has	a	range	of	256	colors.	To	input	this	picture,	we	
make	an	array,	that	is	called	“Tensor”	and	contain	a	set	of	numbers.	In	our	
case	the	tensor	will	have	784	variables.	Each	of	them	should	be	between	0	
and	1,	where	0	is	white	and	1	is	black.	If	we	have	a	pixel	that	is	middle	gray	
valued	as	128,	to	store	it	in	required	range	we	divide	the	value	by	256.	So	
we	get	0.5	 for	middle	gray.	We	apply	 this	 technique	 to	all	 the	 rest	783	
variables.	 To	 say	 further	 we	 will	 have	 an	 input	 neuron	 for	 each	 input	
variable	in	the	tensor.	
	
To	solve	the	problem,	we	need	to	recognize	which	digit	is	drawn	on	image.	
For	example,	we	can	have	only	10	possibilities,	an	image	can	have	a	digit	
between	0	and	9,	inclusive.	So,	we	make	10	output	neurons,	for	each	digit.	
After	the	model	is	trained	network	should	output	some	values	between	0	
and	 1,	 and	 the	 one	 neuron	 that	 has	 the	 highest	 value,	 is	 winning.	 For	
instance,	 if	 output	 is	 [0.1,0.2,0.15,0.94,0.25,0.12,0.21,0.3,0.1,0.2],	 4th	

8	
	

	
	

value	 has	 the	 highest	 number,	 that	 means,	 that	 4th	 value	 wins,	 which	
corresponds	to	number	3.	This	technique	is	called	“One-hot”.	[5]	
	
Machine	learning	problems	consume	big	amounts	of	data.	To	be	sure	that	
we	learned	model	would	work	out	it	is	usually	needed	to	collect	not	less	
than	 ten	 thousand	 of	 working	 samples	 for	 simple	 problems.	 But	 more	
complex	 ones	 require	 even	 more.	 For	 example,	 accomplished	 task	 by	
DeepDrive,	which	aim	was	learning	a	model	to	drive	simulated	car,	took	a	
dataset	of	600	thousand	photos,	which	consumed	80	Gigabytes	of	memory	
size.	To	collect	this	amount	of	data	researchers	needed	to	record	driven	
car	for	42	hours.	[6]	
	
It	is	obvious	that	it	is	not	possible	to	load	such	large	datasets	into	RAM	to	
process	it.	For	such	cases	researchers	divide	data	into	batches.	Each	batch	
contain	 some	 amount	 of	 working	 samples,	 for	 example,	 1000	 images	
which	are	loaded	to	RAM.	After	batch	is	finished,	next	batch	is	loaded.		
	
Working	 sample	 contain	 inputs	 and	 outputs	 that	 are	 fed	 into	model	 to	
teach	it.	It	can	be	image	or	text,	or	just	a	sequence	of	signals.	The	desired	
outputs	have	to	be	loaded	in	parallel,	so	that	each	sample	should	be	fed	
and	processed	with	the	corresponding	output.			

	
		

	

2.8 Activation	Functions	

In	computer	systems	activation	functions	used	inside	nodes.	They	define	
the	output	of	node	according	to	input.	For	example,	standard	computer	
chip	can	give	1	or	0	depending	o	input.	This	is	very	simple	to	linear	
activation	function	in	Neural	Networks.	However,	linear	activation	
functions	don’t	let	to	solve	non	trivial	problems	in	with	small	amount	of	
neurons	in	a	network.	Nonlinear	functions	are	the	base	that	lets	neural	
networks	solve	complex	tasks.		

	
In	neural	networks	that	designed	to	be	biologically	similar.	Activation	
function	represents	potential	of	neuron	to	fire	on	certain	conditions.	
Basic	neuron	can	give	its’	output	as	1	or	0,	but	more	sophisticated	
activation	functions	allow	more	complex	outputs,	like	between	0	and	1,	
where	output	of	0.3	can	mean	that	the	neuron	sure	for	30%,	that	is	
probably	not	enough,	but	0.9	can	mean	that	the	neuron	is	90%	sure.	So,	
to	get	understanding	on	how	differs	functions	we	will	review	most	used	
ones.	

	

9	
	

	
	

2.8.1 	Identity	

First	of	all,	goes	the	simplest	function	which	is	linear,	that	is	also	called	
Identity.	The	main	drawback	of	this	kind	of	activation	function	is	that	if	
we	apply	two	or	more	hidden	layers,	the	entire	network	would	be	
equivalent	to	a	single	layer	model.	Also	this	type	of	activator	is	
unbounded,	that	creates	a	lack	of	normalisation,	which	is	very	harmful	
for	computation	process	and	for	model	itself.		

	
To	understand	better,	we	will	take	a	look	at	how	one	Identity	neuron	will	
separate	the	point	in	data	space.	

	
We	will	have	a	set	of	points	marked	as	1	and	set	of	0	marked	points.	After	
learning	was	applied	we	see	the	line	separates	sets.	

	

	
Figurе 2: Logistic Regression – Stochastic Gradient Descent

	
The	line	separates	points	very	well,	unless	we	have	a	trickier	task,	like	
this:	

10	
	

	
	

Figurе 3: Logistic Regression

	
Here	sets	can’t	be	divided	by	one	line,	so	we	need	to	apply	some	complex	
solution.	Non-linear	function	would	fit	the	problem.	Multi-layer	
perceptron	with	one	hidden	layer	of	200	neurons	powered	with	sigmoid	
functions	will	solve	it.	

	

	
Figurе 4: Multi-layer Perceptron, w. 1 hidden layer, 70 units

2.8.2 	Sigmoid		

	

11	
	

	
	

	
Figurе 5: Sigmoid graphic

	
Sigmoid	is	a	smooth	monotonic	non-linear	function,	that	has	“S”	shape	
and	always	increase.	It	gained	popularity	in	Neural	Networks	as	an	
activation	function	due	to	ability	increase	low	signals	and	not	get	over	
saturated	from	high	signals.	The	function	can	input	signals	from	-∞	to	+∞	
and	outputs	signal	from	0	to	1,	that	makes	it	perfect	normalising	
function.	Derivative	of	sigmoid	can	be	easily	expressed	through	the	
function	itself,	that	significantly	simplifies	the	backpropagation	process.	
[7]	

	
On	the	other	hand,	saturation	of	sigmoid	function	is	a	drawback,	because	
it	kills	gradients.	Gradients	that	close	to	0	or	1	are	almost	zero.	Recall	that	
during	backpropagation,	this	(local)	gradient	will	be	multiplied	to	the	
gradient	of	this	gate’s	output	for	the	whole	objective.	Therefore,	if	the	
local	gradient	is	very	small,	it	will	effectively	“kill”	the	gradient	and	almost	
no	signal	will	flow	through	the	neuron	to	its	weights	and	recursively	to	its	
data.	Additionally,	one	must	pay	extra	caution	when	initializing	the	
weights	of	sigmoid	neurons	to	prevent	saturation.	For	example,	if	the	
initial	weights	are	too	large	then	most	neurons	would	become	saturated	
and	the	network	will	barely	learn.	Or	even	it	is	possible	that	sigmoid	give	
irrelevant	results:	
	

f’(a)=f(a)	(1-f(a)),	when	a	goes	infinite	large	f(a)	can	become	1,	so:	
	

1*(1-1)	=	0	
		

Also,	sigmoid	outputs	are	not	zero-centred.	This	is	undesirable	since	
neurons	in	later	layers	of	processing	in	a	Neural	Network	would	be	
receiving	data	that	is	not	zero-centered.	This	has	implications	on	the	
dynamics	during	gradient	descent,	because	if	the	data	coming	into	a	
neuron	is	always	positive,	then	the	gradient	on	the	weights	will	during	
backpropagation	become	either	all	be	positive,	or	all	negative.	This	could	
introduce	undesirable	zig-zagging	dynamics	in	the	gradient	updates	for	

12	
	

	
	

the	weights.	However,	notice	that	once	these	gradients	are	added	up	
across	a	batch	of	data	the	final	update	for	the	weights	can	have	variable	
signs,	somewhat	mitigating	this	issue.	Therefore,	this	is	an	inconvenience	
but	it	has	less	severe	consequences	compared	to	the	saturated	activation	
problem	above.	

	

2.8.3 Tanh	

	

	
Figurе 6: Tanh graphic

	
The	tanh	non-linearity	is	shown	on	the	image	above	on	the	right.	It	
squashes	a	real-valued	number	to	the	range	[-1,	1].	Like	the	sigmoid	
neuron,	its	activations	saturate,	but	unlike	the	sigmoid	neuron	its	output	
is	zero-centred.[7]	Therefore,	in	practice	the	tanh	non-linearity	is	always	
preferred	to	the	sigmoid	nonlinearity.	Also	note	that	the	tanh	neuron	is	
simply	a	scaled	sigmoid	neuron,	in	particular	the	following	holds:	

	
tanh(x)=	2σ(2x)-1	

	

13	
	

	
	

2.8.4 ReLU		

	
Figurе 7: ReLU graphic

	
The	Rectified	Linear	Unit	has	become	very	popular	in	the	last	few	years.	It	
computes	the	function	f(x)=max(0,x).	In	other	words,	the	activation	is	
simply	thresholded	at	zero.	It	was	found	to	greatly	accelerate	the	
convergence	of	stochastic	gradient	descent	compared	to	the	
sigmoid/tanh	functions.	It	is	argued	that	this	is	due	to	its	linear,	non-
saturating	form.	Compared	to	tanh/sigmoid	neurons	that	involve	
expensive	operations	(exponentials,	etc.),	the	ReLU	can	be	implemented	
by	simply	thresholding	a	matrix	of	activations	at	zero.	[7]	

	
On	the	other	hand,	ReLU	can	die.	For	example,	a	large	gradient	flowing	
through	a	ReLU	neuron	could	cause	the	weights	to	update	in	such	a	way	
that	the	neuron	will	never	activate	on	any	data	point	again.	If	this	
happens,	then	the	gradient	flowing	through	the	unit	will	forever	be	zero	
from	that	point	on.	That	is,	the	ReLU	units	can	irreversibly	die	during	
training	since	they	can	get	knocked	off	the	data	manifold.	For	example,	
you	may	find	that	as	much	as	40%	of	your	network	can	be	“dead”	(i.e.	
neurons	that	never	activate	across	the	entire	training	dataset)	if	the	
learning	rate	is	set	too	high.	With	a	proper	setting	of	the	learning	rate	
this	is	less	frequently	an	issue.	

	
	 Leaky	ReLU	can	solve	this	problem	by	changing	the	threshold	from	0	to	
0.01.		
	
		
	 		
	 	
	
	 	

14	
	

	
	

2.9 Types	

2.9.1 	 Feed	forward	Network	

	
Since	the	first	single	layer	perceptron	was	created,	scientists	were	trying	
to	solve	different	types	of	problems	with	it.	Unfortunately,	not	all	the	
problems	can	be	solved	with	feedforward	networks.	There	were	created	
several	types	of	Neural	Networks	with	different	structures	that	solve	
problems	of	different	kinds.		
	
To	say	more	about	types	of	tasks	that	can	be	solved	with	neural	networks	
mostly	its	problems	with	predictions.	If	we	need	to	predict	some	kind	of	
event	in	future	if	we	have	some	information	about	the	past,	we	will	use	
Neural	Networks.	But	it	is	not	the	only	case	we	use	them.	Using	Neural	
Networks,	we	can	classify	given	information,	forecast,	compress	data,	
make	associative	memory,	etc.		

	
There	are	three	main	types	of	Networks:	Feedforward	Networks,	
Recurrent	Networks	and	self-organising	maps.	Also	there	is	a	network	
called	Radial	Basis	Function	Network,	but	it	didn’t	get	popularity.	

	
ANNs	allow	signals	to	travel	one	way	only:	from	input	to	output.	There	
are	no	feedback	(loops);	i.e.,	the	output	of	any	layer	does	not	affect	that	
same	layer.	Feed-forward	ANNs	tend	to	be	straightforward	networks	that	
associate	inputs	with	outputs.	They	are	extensively	used	in	pattern	
recognition.	This	type	of	organisation	is	also	referred	to	as	bottom-up	or	
top-down.	

Figurе 8: Multi-layer perceptron

	
The	layers’	structure	can	vary	to	be	extremely	large	and	complicated.	For	
example,	to	a	problem	of	image	recognition	was	invented	a	structure	
called	convolutional	neural	network,	where	each	image	gets	divided	into	
blocks	of	pixels	for	many	times.	If	picture	has	resolution	4	x	4	pixels	it	can	

15	
	

	
	

be	split	in	9	blocks	of	2	x	2	pixels	for	further	processing.		
	

	
Figurе 9: Convolutional Neural Nework

	 	

2.9.2 Recurrent	Network	

	
Recurrent	networks	can	have	signals	traveling	in	both	directions	by	
introducing	loops	in	the	network.	Feedback	networks	are	powerful	and	
can	get	extremely	complicated.	Computations	derived	from	earlier	input	
are	fed	back	into	the	network,	which	gives	them	a	kind	of	memory.	
Feedback	networks	are	dynamic;	their	'state'	is	changing	continuously	
until	they	reach	an	equilibrium	point.	They	remain	at	the	equilibrium	
point	until	the	input	changes	and	a	new	equilibrium	needs	to	be	found.	
	

	
Figurе 10.1: Recurrent Network

	
Feedforward	neural	networks	are	ideally	suitable	for	modelling	
relationships	between	a	set	of	predictor	or	input	variables	and	one	or	

16	
	

	
	

more	response	or	output	variables.	In	other	words,	they	are	appropriate	
for	any	functional	mapping	problem	where	we	want	to	know	how	a	
number	of	input	variables	affect	the	output	variable.	The	multilayer	
feedforward	neural	networks,	also	called	multi-layer	perceptron	(MLP),	
are	the	most	widely	studied	and	used	neural	network	model	in	practice.	

	

	
Figurе 10.2 : Recurrent network

	
	

As	an	example	of	feedback	network,	I	can	recall	Hopfield’s	network.	The	
main	use	of	Hopfield’s	network	is	as	associative	memory.	An	associative	
memory	is	a	device	which	accepts	an	input	pattern	and	generates	an	
output	as	the	stored	pattern	which	is	most	closely	associated	with	the	
input.	The	function	of	the	associate	memory	is	to	recall	the	
corresponding	stored	pattern,	and	then	produce	a	clear	version	of	the	
pattern	at	the	output.	Hopfield	networks	are	typically	used	for	those	
problems	with	binary	pattern	vectors	and	the	input	pattern	may	be	a	
noisy	version	of	one	of	the	stored	patterns.	In	the	Hopfield	network,	the	
stored	patterns	are	encoded	as	the	weights	of	the	network.	

	

2.9.3 LSTM	

LSTM	networks	are	one	of	the	most	interesting	types	of	networks	and	
they	are	quite	new	comparing	to	other	types.	They	were	invented	as	a	
replacement	of	normal	recurrent	networks	due	to	some	reasonable	
advantages.	Normal	recurrent	networks	were	a	kind	of	breakthrough.	
However,	they	also	had	drawbacks.	One	of	the	most	significant	
disadvantages	was	the	problem	of	vanishing	(or	exploding)	gradients.	The	
main	idea	is	that	the	recurrent	networks	work	less	efficiently	with	bigger	
amounts	of	steps	remembered	by	network.		
	
As	a	solution	for	this	problem	was	invented	Long	Short-Term	Memory	
unit.	In	this	model	normal	neurons	are	replaced	with	special	units	that	
have	quite	complicated	structure	comparing	with	normal	neural	
networks.	LSTM	units	help	to	keep	an	error	that	can	be	backpropagated	
through	layers	and	time.	Unlike	normal	recurrent	networks,	that	would	

17	
	

	
	

be	hard	to	calculate	at	100	step,	LSTM	can	remember	over	1000	steps.			
	
LSTMs	contain	information	outside	the	normal	flow	of	the	recurrent	
network	in	a	gated	cell.	To	data	could	be	applied	all	types	of	operations,	
like,	writing	or	reading.	Inside	the	cell	there	is	a	mechanism,	that	when	
receives	the	information	can	decide	what	to	do	with	it.	It	decides	
whether	it	is	necessary	to	store	the	information	or	it	can	be	deleted.	To	
make	such	decisions	cell	gates	learn	on	practice,	which	operations	in	
which	conditions	brought	more	precise	predictions	in	the	past.	This	
learning	process	also	covered	with	the	same	mechanism	of	
backpropagation,	mainly	this	is	possible	due	to	universality	of	the	
backpropagation	algorithm.	[8]	
	
	

	
	

Figurе 11: LSTM cell
	 	
	 	

	

2.9.4 Kohonen’s	self-organizing	maps	

Kohonen’s	self-organizing	maps	(SOM)	represent	another	neural	network	
type	that	is	markedly	different	from	the	feedforward	multilayer	
networks.	Unlike	training	in	the	feedforward	MLP,	the	SOM	training	or	
learning	is	often	called	unsupervised	because	there	are	no	known	target	
outputs	associated	with	each	input	pattern	in	SOM	and	during	the	
training	process,	the	SOM	processes	the	input	patterns	and	learns	to	
cluster	or	segment	the	data	through	adjustment	of	weights	(that	makes	it	
an	important	neural	network	model	for	dimension	reduction	and	data	
clustering).	A	two-dimensional	map	is	typically	created	in	such	a	way	that	
the	orders	of	the	interrelationships	among	inputs	are	preserved.	The	
number	and	composition	of	clusters	can	be	visually	determined	based	on	
the	output	distribution	generated	by	the	training	process.	With	only	input	
variables	in	the	training	sample,	SOM	aims	to	learn	or	discover	the	
underlying	structure	of	the	data.	

	

18	
	

	
	

	

Figurе 12: Kohonen’s SOM

	
These	Neural	network	are	the	basic	ones.	On	the	top	of	them	people	
construct	more	sophisticated	networks	for	more	tight	type	of	problems.	
To	deal	with	the	topic	we	don’t	need	to	know	some	sort	of	specific	
network,	we	need	to	succeed	working	with	one	of	those	are	mentioned.	
At	some	point	we	may	understand	that	we	may	need	some	sort	of	
specific	structure,	but	it	would	be	a	matter	of	an	experiment,	because	
most	of	the	networks	are	somehow	unique.	Moreover,	everyday	we	
people	invent	new	structures	working	on	their	goals.	

	
	
	

2.10 Learning	procedure	of	feed-forward	network	

To	understand	how	neural	networks	learn	we	will	take	an	example	of	
Andrew	Trask.	The	goal	of	the	experiment	would	be	teaching	computer	
statistical	to	recognise	inputs	and	predict	outcome.	To	do	so	we	will	feed	
to	the	network	several	combinations	of	3	input	digits	where	each	can	be	
1	or	0,	and	one	output	digit	1	or	0.	Reviewing	the	simplest	process	of	
learning	of	Neural	Networks	we	are	going	to	write	a	code	in	Python	
programming	language,	which	is	quite	simple	to	understand	and	an	
effective	tool	for	prototyping.	The	model	we	want	to	build	is	two	layer-
perceptron.	To	multiply	and	process	matrixes	we	will	use	NumPy	library	
for	Python.	We	will	use	sigmoid	as	activation	function.	Back-propagation	
will	cover	the	learning	process.	[9]	

19	
	

	
	

	
First	of	all,	we	need	to	define	Sigmoid	function.	Sigmoid	is	defined	as	
formula	

	
S(t)=	1/(1+e^-t)	

	
For	back	propagation	algorithm	we	need	to	define	the	derivative	of	
sigmoid	function.	As	it	was	said	already	simple	sigmoid	derivative	is	one	
of	main	reasons	of	sigmoid	popularity.	The	derivative	can	be	written	as		

	
S’(t)=t*(1-t)	

	
It	is	obvious	that	derivative	of	sigmoid	is	much	easier	to	calculate	than	
the	original	function.		

	
Now	we	ant	to	write	the	sigmoid	as	a	Python	function	that	can	be	used	in	
program.	We	will	do	it	in	a	way	that	one	function	will	be	used	to	calculate	
sigmoid	and	derivative	of	it.	To	calculate	sigmoid	will	be	used	such	form:	
nonlin(x),	where	x	is	a	variable	needed	to	pass	through	sigmoid.	If	we	
need	to	know	the	outcome	of	derivative	we	request		

	
nonlin(x,	deriv=True)	
def	nonlin(x,deriv=False):	
	 if(deriv==True):	
	 	 return	x*(1-x)	
	 return	1/(1+np.exp(-x))	
	

Next	we	are	going	to	define	inputs	and	outputs.	As	it	was	mentioned	
before	the	input	data	should	be	normalised.	But,	our	task	does	not	
require	digits	more	than	one	and	less	than	zero.	

	
For	our	task	we	need	3	input	nodes,	1	output	node	and	4	hidden	neurons.	
We	are	going	to	feed	too	small	batch	of	information,	but	we	aim	to	feed	
it	a	couple	of	thousands	times.	The	input	batch	will	look	like	a	massive	of	
3	columns	and	4	rows.	3	columns	mean	that	in	first	row	we	have	3	digits	
that	are	3	inputs.	We	will	have	4	teaching	examples,	so	that	we	have	4	
rows.	Output	will	look	like	an	array	of	1	column	and	4	rows:	one	output	
for	each	of	four	examples.	X	would	be	the	inputs	and	y	outputs.	

	
X	=	np.array([[0,0,1],	
	 	 							[0,1,1],	
	 	 							[1,0,1],	
	 	 							[1,1,1]])	
	
y	=	np.array([[0],	
	 	 						[1],	
	 	 						[1],	
	 	 						[0]])	

20	
	

	
	

	
Between	3	layers	we	will	have	2	sets	of	weight	connections.	First	it	is	
necessary	to	initialise	them	with	random	values	to	break	the	symmetry	
and	prevent	equal	weights	after	learning.	The	weights	matrixes	we	will	
call	synapses.	To	create	two	synapses,	we	will	run	the	following	code:	

	
syn0	=	2*np.random.random((3,4))	-	1	
syn1	=	2*np.random.random((4,1))	-	1	

	
After	that	preparations	are	ready,	now	we	start	a	loop	of	60	thousand	
repetitions,	all	the	code	after	that	will	be	inside	of	a	loop	and	will	run	
along	the	program	works	

	
for	j	in	xrange(60000):	

	
First	of	all	we	need	to	feed	forward	our	network	with	given	sequences.	
Layer	0	will	input	the	feed	batch	matrix	3	by	4.	The	second	layer	marked	
as	l1	will	be	a	result	of	matrix	multiplication	of	layer	0	with	weights	of	the	
first	synapse	and	application	of	sigmoid	function	to	that.	The	process	of	
calculation	of	the	last	layer	is	similar	but	works	with	the	second	layer	and	
the	second	synapse.			

	
l0	=	X	

l1	=	nonlin(np.dot(l0,syn0))	
l2	=	nonlin(np.dot(l1,syn1))	

	
Since	the	output	layer	values	now	changed	and	have	1;4	dimensions,	we	
want	to	check	how	much	our	results	are	different	from	what	we	really	
want.	In	Python	language	it	is	very	easy	to	work	with	matrixes,	so	we	just	
subtract	one	from	another	one.	

	
l2_error	=	y	-	l2	

	

21	
	

	
	

Figurе 13: Derivatives for sigmoid function

	
	

By	the	end	of	the	loop	cycle	we	need	to	edit	weights	by	some	value,	so	
the	next	time	they	will	make	more	accurate	predictions.	But	first	of	all	we	
need	to	find	a	value	to	change	the	existing	weights.	For	that	we	will	use	a	
method	called	The	Error	Weighted	Derivative.	We	will	apply	this	method	
to	the	first	and	the	second	layers.	The	idea	of	this	technique	is	very	
simple.	If	we	get	a	derivative	of	a	value,	we	get	an	angle	of	a	slope.	After	
that,	multiplying	“slope”	by	the	angle,	we	can	reduce	the	error	of	highly	
confidential	predictions.		

	
For	example,	if	the	the	slope	is	parallel	to	abscissa,	the	network	either	
have	very	high	value	or	very	low.	This	means	that	the	network	is	quite	
sure	that	in	positive	or	negative	way.	On	the	other	hand,	if	the	angle	is	
quite	steep,	the	value	is	near	to	x=0,	y=	0.5,	for	instance,	this	means	that	
the	network	is	not	confident	at	all.	So,	we	need	to	force	it	to	make	a	
choice	to	more	confident	decisions.		

	
l2_delta	=	l2_error*nonlin(l2,deriv=True)	

	
After	that	we	calculate	the	error	for	the	first	layer.	To	do	so	we	use	
"confidence	weighted	error"	from	l2	to	establish	an	error	for	l1.	It	simply	
sends	the	error	across	the	weights	from	l2	to	l1.	This	gives	what	you	
could	call	a	"contribution	weighted	error"	because	we	learn	how	much	
each	node	value	in	l1	"contributed"	to	the	error	in	l2.		

	
l1_error	=	l2_delta.dot(syn1.T)	

	

22	
	

	
	

Next	we	are	getting	delta	for	layer	1	as	we	did	for	the	layer	2.	
	

l1_delta	=	l1_error	*	nonlin(l1,deriv=True)	
	

In	the	end	we	add	the	values	we	calculated	to	synapses	0	and	1	just	
multiplying	layer	and	corresponding	delta.	

	
syn1	+=	l1.T.dot(l2_delta)	
syn0	+=	l0.T.dot(l1_delta)	

	
This	is	a	good	example	of	simple	feed	forward	perceptron	with	backpropagation	
learning	algorithm.	

	

2.11 Commonly	used	frameworks	

Neural	 networks	 are	 quite	 complicated	 tools	 to	 use.	 They	 require	
understanding	lots	of	mathematics	and	logics.	Also,	it	is	necessary	to	know	
programming	 to	maintain	 in	 computing.	 Basic	 high	 level	 languages	 like	
Python	or	Pascal	can	be	appropriate	only	in	studying	stage,	if	the	user	of	
neural	networks	need	to	build	his	own	network	and	program	it,	it	is	very	
important	to	know	fast	low-level	language,	like	C,	C++	or	GO	at	least.	Also,	
some	 knowledge	 about	Unix-like	 systems	 and	 possibilities	 to	 parallelize	
computing	tasks	would	definitely	help	the	researcher	to	solve	his	tasks	in	
deadline.		
	
The	list	of	requirements	to	user	is	quite	big,	and	that	can	keep	out	lots	of	
researchers	from	tasks	of	machine	learning	and	deep	learning	in	particular.	
Also,	writing	new	code	to	experiment	with	neural	networks	would	take	lots	
of	time.	Researchers	started	to	build	frameworks	and	open-source	them	
to	populate	 this	 field	of	 studies	 and	also,	 to	 get	 support	of	 researchers	
from	all	over	the	world.		
	
Basically	most	of	the	frameworks	are	build	in	high-level	languages	as	front-
end	to	give	more	flexibility	and	support	access	to	GPU	parallelism,	which	
is	the	most	efficient	way	calculating	matrixes	these	days	and	give	from	10	
to	40	times	increase	in	learning	rate	of	neural	network.	[10]	The	front-end	
language	 is	 used	 for	 prototyping	 and	 it	 is	 usually	 Python,	 due	 to	 its	
popularity,	 flexibility	and	simplicity.	C++	 is	 the	back-end	 language	 in	the	
most	popular	frameworks.	The	compilation	process	takes	very	short	time	
and	the	program	build	with	it	runs	very	fast.	

3 MATERIALS	AND	METHODS	

23	
	

	
	

The	task	of	auto	piloting	with	neural	networks	is	quite	popular	these	days,	
mostly	it	is	used	only	in	terms	of	driver-less	cars.	Building	pilot-less	plane	
is	much	more	 complicated	 and	 responsible	 task.	 Car	 autopilot	 depends	
more	on	picture	 recognition	 tasks,	while	plane	 task	 requires	more	data	
from	 sensors	 and	 not	 deal	 with	 image	 processing	 at	 all,	 except	 tasks	
related	to	landing	and	taking	off,	where	pilot	actively	observe	current	state	
of	 environment.	 Between	 landing	 and	 taking	 off	 pilot	 is	 guided	only	 by	
signals	of	sensors	like	GPS,	heading,	altitude	indicators.	
	
Since	 plane	 automation	 development	 is	 quite	 time	 and	 resource	
consuming	 task,	 the	 best	 idea	 for	 developing	 auto	 pilot	 is	 to	 use	 plane	
simulator.	
	

3.1 Plane	stabling	task,	basic	concept	

Stable	 flight	 is	 one	 of	 the	 basic	 routine	 of	 a	 flight.	 We	 can	 divide	 the	
simplified	flight	algorithm	into	5	parts:	taking	off,	alignment	to	the	course,	
keeping	the	course,	preparing	to	landing,	landing	itself.	To	keep	the	course	
it	 is	 needed	 to	 stay	 stable	 during	 the	 flight.	 This	 can	 be	 achieved	 by	
controlling	simple	set	of	variables.	To	set	our	task	more	obvious	to	solve,	
lets	 define	 its	 goal	 as	 a	 stable	 flight,	 opposite	 to	 crashing.	We	will	 not	
hardly	focus	on	the	way	the	plane	goes,	but	at	the	same	time	we	do	not	
need	the	plane	to	fly	by	rounds.		
	
To	keep	the	plane	flying	we	request	such	variables	as:	3-axis	acceleration,	
altitude,	 pitch,	 roll,	 turn	 rate,	 airspeed.	 This	 set	 of	 variables	 can	 be	
assumed	as	an	environmental	feedback	on	our	actions.	Also,	it	would	be	a	
good	 practice	 to	 monitor	 the	 current	 states	 of	 flight	 control	 systems:	
throttling,	aileron,	elevator	and	rudder.	
	
The	first	set	of	variables	we	can	call	outputs	and	the	second	in	this	case	
will	be	inputs.	Mainly,	we	are	considering	the	environment	as	a	dynamic	
system	that	responds	us	with	its	state	change	according	to	our	actions.	If	
we	change	some	output	like	we	will	turn	right	with	elevator,	the	system	
will	 respond	 us	 with	 decreasing	 height	 and	 increasing	 turn	 rate.	 This	
concept	 can	 be	 called	 Proactive:	 we	 do	 something	 and	 environment	
respond	us	with	something	else.	This	concept	could	be	helpful	if	we	have	
a	few	options	and	we	can	predict	the	future	with	them,	and	choose	the	
best	option	for	us.	But,	on	the	other	hand	 if	we	have	too	many	options	
calculating	each	one	in	bulk	will	consume	time	and	resources	greater	than	
allowed.	
	
In	this	case	we	have	to	change	input	and	output	in	places.	Now	it	will	be	a	
Reactive	approach.	We	will	input	current	environment	states	and	produce	
output	as	a	set	of	changes	we	need	to	apply	to	aileron,	elevator	or	rudder.	
	

24	
	

	
	

So,	now,	the	input	would	be	environmental	states	and	the	output	will	be	
the	change	needed	to	apply	to	control	systems.	
	

3.2 Plane	stabling	task	in	details	

As	 it	 is	stated	already	we	are	going	to	take	several	variables	from	Flight	
Gear	 to	 develop	 our	 piloting	 system.	 Stepping	 forward	we	will	 take	 all	
somehow	 relevant	 variables	 from	 Flight	 Gear.	 It	 is	 not	 necessary,	 but	
neural	 networks	 tend	 to	 pull	 out	 all	 information	 from	 inputs	 and	
independently	decide	which	information	is	relevant	and	which	is	not.	If	the	
input	information	not	affects	the	outputs,	it	will	not	screw	up	our	results,	
furthermore	 it	will	be	possible	 to	define	which	data	 is	 irrelevant	on	 the	
later	steps	and	it	can	be	retrained	without	useless	inputs.	So	the	full	list	of	
variables	we	need	is:	
	
1. 3-axis	acceleration	
2. Altitude	
3. Pitch	
4. Roll	
5. Aircraft	speed	relatively	to	the	ground	
6. Turn	rate	
7. Vertical	speed	indicator	
8. Airspeed	
9. Throttle	
10. Aileron	
11. Elevator	
12. Rudder	
	
To	keep	stable	fly	it	is	needed	to	keep	all	the	variables	from	1	to	8	stay	the	
same	changing	variables	from	9	to	12.		

25	
	

	
	

	
Figurе 14: Pitch, roll and yaw Axis

	
The	main	variables	here	are	Pitch	and	Roll	they	control	that	plane	is	parallel	
to	the	ground.	If	the	plane	is	stable	in	Pitch,	Roll,	Height	and	Turn	rate,	that	
means	that	 it	moves	straight.	Airspeed	determines	the	speed	of	aircraft	
relatively	to	the	air	around.	Wind	presence	also	affect	this	indicator.	Since	
wind	affects	moving	aircraft	very	high,	pitch	and	roll	may	be	different	with	
the	same	throttle,	aileron,	elevator	and	rudder,	for	such	a	reason	we	need	
to	have	to	know	as	much	as	possible	about	wind	affect	on	the	aircraft.	For	
such	reason	we	need	additional	variables	like	3-axis	acceleration,	ground	
and	 vertical	 speed.	 These	 additional	 information	 gives	 enough	
representation	of	what	is	going	on	around	the	plane.	
	
	
	
	

3.3 Plane	simulation	

Flight	Gear	simulator	was	chosen	for	development.	It	is	open-sourced	and	
has	quite	large	developer	community.	
	
For	the	task	of	stabling	the	plane	we	need	several	properties	of	the	current	
state	of	a	plane,	that	come	directly	from	plane	sensor	indicators.	All	the	
variables	described	in	3.2	can	be	extracted	from	the	program.	
	
Flight	 Gear	 have	 convenient	 mechanism	 of	 extracting	 and	 importing	
variables,	that	lets	developers	make	their	control	systems	outside	of	the	
program	on	the	fly.	All	the	variables	that	can	be	extracted	and	changed	are	

26	
	

	
	

stored	in	a	module	called	Property-tree.	The	access	to	the	property	tree	
can	be	obtained	through	“native”	and	“generic”	protocols.	First	one	gives	
access	to	the	property	tree	from	memory,	that	can	be	captured	from	sided	
C++	program.	The	second	one	opens	access	through	UDP	protocol	or	over	
Serial	port.	
	

	
Figurе 15: Property-tree in Flight Gear

	

	
Using	UDP	we	can	run	a	server	on	the	host	machine	and	the	controlling	
machine	 can	 capture	 the	 information	 if	 it	 is	 in	 local	 network,	 or	 even	
outside	 of	 it.	 Serial	 port	 can	 be	 used	 to	 connect	 low-level	 devices	 like	
Arduino,	RaspberryPi	or	other	devices	that	have	GPIO	extension	slot	on	the	
board.		
	
To	use	these	options,	it	is	necessary	to	create	a	XML	file	with	a	very	simple	
structure.		
	
<?xml	version="1.0"?>	
	
<PropertyList>	
	
	<generic>	
	
		<output>	
			<line_separator>newline</line_separator>	
			<var_separator>,</var_separator>	
	

27	
	

	
	

			<chunk>	
				<name>pilot-gdamped</name>	
				<type>float</type>	
				<node>/accelerations/pilot-gdamped</node>	
				<format>%f</format>	
			</chunk>	
	
	 …	
	
			<chunk>	
				<name>airspeed-kt</name>	
				<type>float</type>	
				<node>/velocities/airspeed-kt</node>	
				<format>%f</format>	
			</chunk>	
				
</output>	
<input>	
			<chunk>	
				<name>throttle</name>	
				<type>float</type>	
				<node/controls/engines/engine[0]/throttle</node>	
				<format>%f</format>	
			</chunk>	
</input>	
	
	</generic>	
	
</PropertyList>	
	
	
It	 is	easy	to	understand	a	meaning	of	each	 line	 in	the	code.	The	code	 is	
divided	into	two	parts:	input	and	output.	Input	section	defines	the	input	
protocol	and	the	output	defines	the	output	rules.	The	most	interesting	part	
is	the	“chunk”	statement.	Amount	of	chunks	is	correlated	with	amount	of	
properties	we	are	going	to	work	with.	Inside	a	chunk	name	can	be	random	
and	doesn’t	play	role	in	the	result.	Type	means	the	type	of	representation	
of	a	value.	It	can	be	float,	integer	or	bool,	depends	on	how	we	will	use	it.	
Inside	the	node	is	stored	the	path	to	a	property	inside	of	the	Property	tree.	
If	the	value	is	needed	to	be	multiplied	or	converted	the	rule	is	defined	in	
this	section.		
	
To	run	generic	protocol,	it	is	needed	to	run	the	Flight	Gear	program	with	
flags		
	

--generic=socket,out,10,127.0.0.1,49001,udp,outputprotocol	
--generic=socket,in,10,,49000,udp,inputprotocol	

	

28	
	

	
	

First	flag	is	for	exporting	data	from	the	program.	First	parameter	is	always	
“socket”.	 Second	parameter	defines	whether	 the	 flag	 is	 for	 input	or	 for	
output.	On	the	3rd	place	digit	defines	amount	of	packages	with	data	would	
be	sent	or	received	in	a	second.	Next	goes	IP	address	and	port	number	of	
the	machine	that	is	going	to	receive	the	packages.	Input	protocol	doesn’t	
need	to	have	IP	address.	On	the	last	place	stands	the	name	of	the	XML	file	
containing	the	protocol	 instructions	without	“.xml”	ending.	The	XML	file	
should	be	placed	into	the	/data/Protocol	folder	under	the	root	of	the	Flight	
Gear.	
	
The	output	of	the	file	in	Appendix	1	is	looking	like	that:	
	
0.910101,1.000,0.000,0.150,0.050,1148.926025,3.260596,-
0.272000,28.521667,0.043057,4.652739,114.134407,56.893894	
	
0.908808,1.000,0.000,0.150,0.050,1152.446167,3.008736,0.216146,28.4
92014,0.051938,4.457239,114.064537,56.915268	
	
The	Python	program	that	received	packages	is	under	Appendix	2.	
	

3.4 Data	processing	for	the	ANN	

To	process	the	data,	we	need	to	define	the	algorithm	of	the	network.	
	
For	the	task	of	stabling	the	plane	in	the	air	we	are	going	to	export	some	
data	from	the	simulation	program,	learn	the	Artificial	Neural	Network	and	
after	that	deploy	the	learned	model	under	extensive	computer	to	control	
the	plane	by	the	learned	algorithm.		
	
To	 learn	 the	model,	we	 need	 to	 define	 the	 roles	 of	 each	 variables	 and	
normalize	 them.	Some	of	 the	values,	 like	 turn	rate	and	acceleration	are	
already	fine	values	to	put	in	a	neural	network,	except	they	are	needed	to	
put	under	-1;1	or	0;1	frame,	so	we	will	define	the	frames	they	are	already	
exist	and	divide	by	the	biggest	value	existing	for	that	variable,	of	course	
without	“-“.	Values	like	Pitch,	Roll,	Aircraft	speeds	we	are	going	to	compare	
with	values	on	the	previous	timestamp,	calculate	the	delta	for	the	values	
and,	finally,	normalize	it,	like	we	did	before.		
	
As	soon	as	our	elevator,	aileron	and	rudder	should	be	the	reaction	on	the	
previously	happened	changes	in	other	properties,	we	are	going	to	calculate	
the	delta	 for	 them	comparing	current	and	 the	next	 timestamp.	So,	as	a	
result	we	have	such	dataset	map.	
	
	

29	
	

	
	

	
Figurе 16: Timestamp dataset development

	
	
The	timestamp	dataset	sample	is	represented	as	acceleration	and	turn	rate	
as	they	are	at	current	timestamp.	Aileron	and	elevator	can	be	represented	
as	 the	 difference	 between	 previous	 timestamp	 or	 also	 as	 they	 are	 at	
current.	Altitude,	pitch,	 roll,	ground	speed,	vertical	 speed	and	air	 speed	
can	be	represented	as	difference	between	two	timestamps,	current	and	
previous.	 To	 simplify	 learning	 process,	 we	 can	 get	 rid	 of	 throttle	 and	
rudder,	so	the	difference	between	next	time	step	and	current	for	aileron	
and	 elevator	 can	 represent	 label	 samples	 that	 can	 be	 reactions	 for	 the	
situation	in	current	timestamp.		
	
The	 Python	 program-library	 that	 content	 functions	 for	 converting	 raw	
dataset	into	new	dataset	with	data	described	above	for	Caffe	framework	
can	be	found	in	Appendix	3.	

3.5 Jetson	TX1	

Nvidia	Jetson	TX1	will	fit	the	requirement	for	controlling	computer.	It	has	
256	 GPU	 cores	 that	 are	 perfect	 for	 processing	 matrix	 and	 computing	
Artificial	Neural	Networks	 in	particular.	 It	 runs	special	Linux	distributive,	
modified	Ubuntu.	 It	supports	CUDA	and	Cudnn	libraries	from	the	box.	 It	
has	GPIO,	that	can	be	used	for	serial	port	connection	to	host	computer.	To	
connect	host	to	Jetson	needed	to	have	USB-TTL	cable.	Arduino	Nano	can	
be	used	as	a	USB-TTL	connector.	It	is	needed	to	connect	RST	with	GND	pins	
on	 the	Arduino,	GND	pin	of	Arduino	 should	be	 connected	 to	 ground	of	
Jetson,	TX	pin	of	the	Arduino	should	be	connected	to	RX	of	Jetson	and	RX	
of	the	Arduino	to	TX	of	Jetson.	After	that	serial	port	will	be	open	on	115200	
baud	rate.	
	

3.6 Artificial	Neural	Network	

By	 the	 moment	 of	 writing	 the	 thesis	 the	 most	 advanced,	 community	
supported	and	well	documented	ANN	library	is	TensorFlow.	Unfortunately,	
it	is	not	working	well	on	Jetson	due	to	complexity	of	installation	for	that	
platform.	Alternatively,	Caffe	can	be	used.		
	

30	
	

	
	

The	network	contains	3	files:	dataset	for	learning,	prototxt	file	describing	
the	 ANN	 model,	 prototxt	 file	 describing	 working	 process	 of	 learning,	
testing	and	deploying.		
	
Because	 the	 flight	 control	 is	 not	 a	 single	 event	 process	 the	 best	 choice	
would	be	to	use	LSTM	network,	since	it	can	remember	long	sequences	of	
events.	Unfortunately,	by	November	Caffe	framework	community	doesn’t	
have	documentation	for	using	LSTM	cells.		
	
Alternatively,	simple	deep	feed-forward	network	can	be	used.	Appendix	4	
and	5	contains	the	prototxt	files	for	building	deep	feedforward	network.		
	

3.7 Learning	process	

After	 capturing	 the	 data	 started	 the	process	 of	 learning	 can	 take	up	 to	
several	days.	Gathering	4	samples	a	second	will	give	14.400	samples	an	
hour.	 To	make	 sure	 that	 the	 neural	 network	will	 remember	 better	 it	 is	
necessary	to	take	at	least	100.000	samples,	which	will	require	more	time.	
Moreover,	 the	 learning	process	will	 request	maximum	attention	 from	a	
teacher	along	the	way.	In	case	LSTM	cells	were	used,	the	network	will	copy	
all	the	manner	the	teacher	piloting	the	plane.	
	
	

4 CONCLUSION	

The	topic	of	artificial	neural	networks	is	around	aircrafts	for	a	while,	but	
how	 already	was	mentioned	 it	 takes	 huge	 amount	 of	work	 and	 lots	 of	
responsibilities	 to	 build	 up	 a	 project	 from	 scratch	 to	 real-life	
implementation	on	working	prototypes.	
	
It	is	absolutely	necessary	to	continue	the	project	in	future	since	artificial	
neural	networks	 are	 coming	 into	our	 lives	quite	deeply,	with	 increasing	
computing	 powers	 and	 development	 of	 Artificial	 Intelligence.	 Such	
systems	but	in	more	complex	implementations	will	definitely	conquer	the	
market,	not	only	the	Aircrafts	but	also	other	controlling	systems.	The	proof	
is	 Google	 implementations	 in	 car	 control	 systems,	 that	 already	 drive	
without	driver	on	streets	of	California.		
	

5 FUTURE	WORK	

31	
	

	
	

The	current	implementation	with	LSTM	cells	seems	to	be	very	promising.	
But	even	now	 it	 requires	some	sort	of	 teacher	presented	at	all	 learning	
time.	 The	possible	 and	 clever	way	would	be	automation	of	 the	process	
with	Reinforcement	learning	technology,	where	program	receiving	some	
feedback	from	controlled	system,	so	that	it	can	learn	not	only	what	actions	
are	good,	but	at	the	same	time	it	can	learn	what	is	harmful	for	the	system.		
	
On	the	other	way	such	way	of	learning	can	not	be	implemented	in	more	
expensive	planes.	It	will	require	at	least	some	people	present	on	a	plane	
to	control	the	learning	process	from	destroying	facilities.		
	
The	 other	 good	way	would	 be	 to	 start	 implementing	 only	 the	 learning	
systems	 with	 different	 specifications,	 for	 example,	 if	 every	 plane	 that	
performs	flies	these	days	will	be	equipped	with	such	a	system,	in	future	we	
will	have	lots	of	data	that	can	be	used	to	teach	such	systems.	After	that	
implementation	 LSTM	 with	 reinforcement	 modules	 to	 pilot-less	 planes	
may	force	such	systems	to	evolve.	
	
	

	

	 	

32	
	

	
	

REFERENCES	

1. Stanford	 -	 Artificial	 Neuron.	 (n.d.).	 Retrieved	 November	 27,	 2016,	 from	
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-
networks/Neuron/index.html	

2. Karpathy,	 A.,	 PhD.	 (n.d.).	 Hacker's	 guide	 to	 Neural	 Networks.	 Retrieved	
November	27,	2016,	from	http://karpathy.github.io/neuralnets/	

3. Single-layer	Neural	Networks	(Perceptrons).	(n.d.).	Retrieved	November	27,	
2016,	 from	
http://computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html	

4. How	 the	 backpropagation	 algorithm	 works,	 chapter	 2.	 (n.d.).	 Retrieved	
November	 27,	 2016,	 from	
http://neuralnetworksanddeeplearning.com/chap2.html	

5. MNIST	 For	 ML	 Beginners.	 (n.d.).	 Retrieved	 November	 27,	 2016,	 from	
https://www.tensorflow.org/versions/r0.7/tutorials/mnist/beginners/index.
html	

6. DeepDrive	 -	 self-driving	 car	AI.	 (n.d.).	 Retrieved	November	 27,	 2016,	 from	
http://deepdrive.io/	

7. Convolutional	 Neural	 Networks	 for	 Visual	 Recognition.	 (n.d.).	 Retrieved	
November	27,	2016,	from	http://cs231n.github.io/neural-networks-1/	

8. Convolutional	 Neural	 Networks	 for	 Visual	 Recognition.	 (n.d.).	 Retrieved	
November	27,	2016,	from	http://cs231n.github.io/neural-networks-1/	

9. A	Neural	Network	in	11	lines	of	Python	(Part	1).	(n.d.).	Retrieved	November	
27,	 2016,	 from	 http://iamtrask.github.io/2015/07/12/basic-python-
network/	

10. CUDA	Spotlight:	GPU-Accelerated	Deep	Neural	Networks.	(2015).	Retrieved	
November	 27,	 2016,	 from	 https://devblogs.nvidia.com/parallelforall/cuda-
spotlight-gpu-accelerated-deep-neural-networks/	
	

	 	

33	
	

	
	

	

	

	

	

	
Appendix	1	

Contents	of	XML	input/output	file	
	
<?xml	version="1.0"?>	
	
<PropertyList>	
	
	<generic>	
	
		<output>	
			<line_separator>newline</line_separator>	
			<var_separator>,</var_separator>	
	
			<chunk>	
				<name>pilot-gdamped</name>	
				<type>float</type>	
				<node>/accelerations/pilot-gdamped</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>throttle</name>	
				<type>float</type>	
				<node>/controls/engines/engine[0]/throttle</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>aileron</name>	
				<type>float</type>	
				<node>/controls/flight/aileron</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>elevator</name>	
				<type>float</type>	
				<node>/controls/flight/elevator</node>	
				<format>%f</format>	
			</chunk>	

34	
	

	
	

	
			<chunk>	
				<name>rudder</name>	
				<type>float</type>	
				<node>/controls/flight/rudder</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>indicated-altitude-ft</name>	
				<type>float</type>	
				<node>/instrumentation/altimeter/indicated-altitude-ft</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>indicated-pitch-deg</name>	
				<type>float</type>	
				<node>/instrumentation/attitude-indicator/indicated-pitch-deg</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>indicated-roll-deg</name>	
				<type>float</type>	
				<node>/instrumentation/attitude-indicator/indicated-roll-deg</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>ns-velosity-msec</name>	
				<type>float</type>	
				<node>/instrumentation/gps/ns-velocity-msec</node>	
				<format>%f</format>	
			</chunk>	
	
			<chunk>	
				<name>indicated-turn-rate</name>	
				<type>float</type>	
				<node>/instrumentation/turn-indicator/indicated-turn-rate</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>vertical-speed-indicator</name>	
				<type>float</type>	
				<node>/instrumentation/vertical-speed-indicator/indicated-speed-mps</node>	
				<format>%f</format>	

35	
	

	
	

			</chunk>	
				
			<chunk>	
				<name>airspeed-kt</name>	
				<type>float</type>	
				<node>/velocities/airspeed-kt</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>heading</name>	
				<type>float</type>	
				<node>/instrumentation/heading-indicator/indicated-heading-deg</node>	
				<format>%f</format>	
			</chunk>	
		</output>	
		<input>	
	
			<chunk>	
				<name>Inthrottle</name>	
				<type>float</type>	
				<node>/controls/engines/engine[0]/throttle</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>Inaileron</name>	
				<type>float</type>	
				<node>/controls/flight/aileron</node>	
				<format>%f</format>	
			</chunk>	
				
			<chunk>	
				<name>Inelevator</name>	
				<type>float</type>	
				<node>/controls/flight/elevator</node>	
				<format>%f</format>	
			</chunk>	
	
			<chunk>	
				<name>Inrudder</name>	
				<type>float</type>	
				<node>/controls/flight/rudder</node>	
				<format>%f</format>	
			</chunk>	
	
		</input>	
	

36	
	

	
	

	</generic>	
	
</PropertyList>	
	

	
	

Appendix	2	
Python	program	for	receiving	Flight	Gear	data	
	
import	socket	
	
UDP_IP	=	"127.0.0.1"	
UDP_PORT	=	49001	
	
sock	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)	#	UDP	
sock.bind((UDP_IP,	UDP_PORT))	
counter=0	
dataset=85	
data=[]	
dataToFlush=''	
while	True:	
	 dataInput,	addr	=	sock.recvfrom(1024)	
	 dataRawList=str(dataInput).split(',')	
	 dataRawList[1]=dataRawList[1][:5]	
	 dataRawList[2]=dataRawList[2][:5]	
	 dataRawList[3]=dataRawList[3][:5]	
	 dataRawList[4]=dataRawList[4][:5]	
	 print('|ail:	 ',dataRawList[2],'|el:	 ',dataRawList[3],'|rud:	
',dataRawList[4],'|hgt:	',dataRawList[5],'|head:	',dataRawList[12],'\n')	
	 dataToFlush+=','.join(dataRawList)+'\n'	
	 counter+=1	
	 if	counter==240:	
	 	 dataset+=1	
	 	 counter=0	
	 	 with	open('dataset'+str(dataset)+".txt",'w')	as	file:	
	 	 	 file.write(dataToFlush)	
	 	 	 	
	 	 dataToFlush=''	
	 	
	

	
	
	
	

Appendix	3	
Contents	of	Python	library	for	preparing	data	for	Caffe	
	

	

37	
	

	
	

	
	
	

import	numpy	as	np	
import	deepdish	as	dd	
	
	
#lolnp=np.array(lol,dtype='float64')	
	
def	deleteCols(array,liOColl):	
	 liOColl.reverse()	
	 for	i	in	liOColl:	
	 	 array=np.delete(array,np.s_[i:i+1],1)	
	 return	array	
	
	
def	delta(di,nu):	
				prev=float(di[0][nu])	
				max1=min1=float(di[1][nu])-float(di[0][nu])	
				for	i	in	di:	
												cdel=float(i[nu])-prev	
												if	cdel>max1:	
																				max1=cdel	
												if	cdel<min1:	
																				min1=cdel	
												prev=float(i[nu])	
				return([min1,max1])	
	
def	minmax(di,nu):	
				min1=float(di[0][nu])	
				max1=float(di[0][nu])	
				for	i	in	di:	
												if	float(i[nu])<min1:	
																				min1=float(i[nu])	
												if	float(i[nu])>max1:	
																				max1=float(i[nu])	
				return([min1,max1])	
	
	
	
def	getparams(indi):	
	 #out=np.zeros(len(indi)-2,len(indi[0]))	
	 out1data=np.zeros([1,10],dtype=float)	
	 out1label=np.zeros([1,2],dtype=float)	
	 for	i	in	range(len(indi)-1):	
	 	 if	i	==	0:	
	 	 	 continue	
	 	 #tm1=indi[i-1]	

38	
	

	
	

	 	 #t=indi[i]	
	 	 #tp1=indi[i+1]	
	 	 curr=indi[i]	
	 	 d1=indi[i]-indi[i-1]	
	 	 d2=indi[i+1]-indi[i]	
	
	 single=np.array([[curr[0],curr[1],curr[2],d1[3],d1[4],d1[5],d1[6],curr[7],d1
[8],d1[9]]])	
	 	 singlelabel=np.array([[d2[1],d2[2]]])	
	 	 out1data=np.append(out1data,single,axis=0)	
	 	 out1label=np.append(out1label,singlelabel,axis=0)	
	 	
	 return([np.delete(out1data,np.s_[0:1],0),np.delete(out1label,np.s_[0:1],0
)])	
	
def	divideAlongAxis(array,column,num):	
	 for	i	in	array:	
	 	 i[column]=i[column]/num	
	 return	array	
	
def	minMaxColumn(array,column):	
	 return	([np.min(array[:,column]),np.max(array[:,column])])	
	
def	multiDivideAlongAxis(array,column,num):	
	 newarray=array	
	 for	n	in	range(len(column)):	
	 	 newarray=divideAlongAxis(newarray,column[n],num[n])	
	 return	newarray	
	
def	makeh5(data,labels):	
	 if	len(data)==len(labels):	
	 	 X=np.zeros((len(data),1,1,len(data[0])))	
	 	 y=np.zeros((len(labels),len(labels[0])))	
	 	 for	i	in	range(len(data)):	
	 	 	 for	l	in	range(len(data[0])):	
	 	 	 	 X[i][0][0][l]=data[i][l]	
	 	 	 for	l	in	range(len(labels[0])):	
	 	 	 	 y[i][l]=labels[i][l]	
	 print('Done	creating')	
	 dd.io.save('test.h5',	{'data':	X,	'label':	y},	compression=None)	
	 print('Done	writing')	
	 return([X,y])	
	
def	makeh5_2d(data,labels):	
	 X=data	
	 y=labels	
	 dd.io.save('2ddata.h5',	{'data':	X,	'label':	y},	compression=None)	
	 return	0	

39	
	

	
	

	
	

Appendix	4	
Prototxt	file	containing	description	of	network	for	Caffe	
	
name:	"DeepNet"	
layer	{	
		name:	"input"	
		type:	"HDF5Data"	
		top:	"data"	
		top:	"label"	
		include	{	
				phase:	TRAIN	
		}	
		hdf5_data_param	{	
				source:	"way/to/dataset.h5"	
				batch_size:	64	
		}	
}	
	
	
layer	{	
		name:	"ip1"	
		type:	"InnerProduct"	
		bottom:	"data"	
		top:	"ip"	
		inner_product_param	{	
				num_output:	10	
		}	
}	
	
layer	{	
		name:	"Sigmoid1"	
		type:	"Sigmoid"	
		bottom:	"ip1"	
		top:	"Sigmoid1"	
}	
	
	
	
layer	{	
		name:	"ip2"	
		type:	"InnerProduct"	
		bottom:	"Sigmoid1"	
		top:	"ip2"	
		inner_product_param	{	
				num_output:	20	
		}	

40	
	

	
	

}	
	
layer	{	
		name:	"Sigmoid2"	
		type:	"Sigmoid"	
		bottom:	"ip2"	
		top:	"Sigmoid1"	
}	
	
layer	{	
		name:	"ip3"	
		type:	"InnerProduct"	
		bottom:	"Sigmoid2"	
		top:	"ip3"	
		inner_product_param	{	
				num_output:	10	
		}	
}	
	
layer	{	
		name:	"Sigmoid3"	
		type:	"Sigmoid"	
		bottom:	"ip3"	
		top:	"Sigmoid1"	
}	
	
layer	{	
		name:	"loss"	
		type:	"SigmoidCrossEntropyLoss"	#	"SoftmaxWithLoss"		
		bottom:	"Sigmoid3"	
		bottom:	"label"	
		top:	"loss"	
}	
	
	

Appendix	5	
Prototxt	file	containing	description	of	solver	for	Caffe	
	
#	reduce	learning	rate	after	120	epochs	(60000	iters)	by	factor	0f	10	
#	then	another	factor	of	10	after	10	more	epochs	(5000	iters)	
	
#	The	train/test	net	protocol	buffer	definition	
net:	"way/to/model.prototxt"	
#	test_iter	specifies	how	many	forward	passes	the	test	should	carry	out.	
test_iter:	10	
#	Carry	out	testing	every	1000	training	iterations.	
test_interval:	1000	
#	The	base	learning	rate,	momentum	and	the	weight	decay	of	the	network.	

41	
	

	
	

base_lr:	0.001	
momentum:	0.9	
#weight_decay:	0.004	
#	The	learning	rate	policy	
lr_policy:	"step"	
gamma:	1	
stepsize:	5000	
#	Display	every	100	iterations	
display:	100	
#	The	maximum	number	of	iterations	
max_iter:	60000	
#	snapshot	intermediate	results	
snapshot:	10000	
snapshot_prefix:	"examples/example_sigmoid"	
#	solver	mode:	CPU	or	GPU	
solver_mode:	GPU	

