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currently utilized signature-based methods cannot provide accurate detection of zero-day 

attacks and polymorphic viruses. That is why the need for machine learning-based detection 

arises. 

The purpose of this work was to determine the best feature extraction, feature representation, 

and classification methods that result in the best accuracy when used on the top of Cuckoo 

Sandbox. Specifically, k-Nearest-Neighbors, Decision Trees, Support Vector Machines, 

Naive Bayes and Random Forest classifiers were evaluated. The dataset used for this study 

consistsed of the 1156 malware files of 9 families of different types and 984 benign files of 

various formats. 

This work presents recommended methods for machine learning based malware 

classification and detection, as well as the guidelines for its implementation. Moreover, the 

study performed can be useful as a base for further research in the field of malware analysis 

with machine learning methods. 
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1 INTRODUCTION 

With the rapid development of the Internet, malware became one of the major 

cyber threats nowadays. Any software performing malicious actions, including 

information stealing, espionage, etc. can be referred to as malware. Kaspersky 

Labs (2017) define malware as “a type of computer program designed to infect 

a legitimate user's computer and inflict harm on it in multiple ways.” 

While the diversity of malware is increasing, anti-virus scanners cannot fulfill the 

needs of protection, resulting in millions of hosts being attacked.  According to 

Kaspersky Labs (2016), 6 563 145 different hosts were attacked, and 4 000 000 

unique malware objects were detected in 2015. In turn, Juniper Research 

(2016) predicts the cost of data breaches to increase to $2.1 trillion globally by 

2019.  

In addition to that, there is a decrease in the skill level that is required for 

malware development, due to the high availability of attacking tools on the 

Internet nowadays. High availability of anti-detection techniques, as well as 

ability to buy malware on the black market result in the opportunity to become 

an attacker for anyone, not depending on the skill level. Current studies show 

that more and more attacks are being issued by script-kiddies or are automated. 

(Aliyev 2010). 

Therefore, malware protection of computer systems is one of the most important 

cybersecurity tasks for single users and businesses, since even a single attack 

can result in compromised data and sufficient losses. Massive losses and 

frequent attacks dictate the need for accurate and timely detection methods. 

Current static and dynamic methods do not provide efficient detection, 

especially when dealing with zero-day attacks. For this reason, machine 

learning-based techniques can be used. This paper discusses the main points 

and concerns of machine learning-based malware detection, as well as looks 

for the best feature representation and classification methods. 

The goal of this project is to develop the proof of concept for the machine 

learning based malware classification based on Cuckoo Sandbox. This sandbox 

will be utilized for the extraction of the behavior of the malware samples, which 

will be used as an input to the machine learning algorithms. The goal is to 
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determine the best feature representation method and how the features should 

be extracted, the most accurate algorithm that can distinguish the malware 

families with the lowest error rate.  

The accuracy will be measured both for the case of detection of wheher the file 

is malicious and for the case of classification of the file to the malware family. 

The accuracy of the obtained results will also be assessed in relation to current 

scoring implemented in  Cuckoo Sandbox, and the decision of which method 

performs better will be made. The study conducted will allow building an 

additional detection module to Cuckoo Sandbox. However, the implementation 

of this module is beyond the scope of this project and will not be discussed in 

this paper. 

2 THEORETICAL BACKGROUND 

This chapter provides the background that is essential to understand the  

malware detection and the need for machine learning methods. The malware 

types relevant to the study are described first, followed by the standard malware 

detection methods. After that, based on the knowledge gained, the need for 

machine learning is discussed, along with the relevant work performed in this 

field. 

2.1 Malware types 

To have a better understanding of the methods and logic behind the malware, 

it is useful to classify it. Malware can be divided into several classes depending 

on its purpose. The classes are as follows:  

 Virus. This is the simplest form of software. It is simply any piece of 

software that is loaded and launched without user’s permission while 

reproducing itself or infecting (modifying) other software (Horton and 

Seberry 1997). 

 Worm. This malware type is very similar to the virus. The difference is 

that worm can spread over the network and replicate to other machines 

(Smith, et al. 2009). 
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 Trojan. This malware class is used to define the malware types that aim 

to appear as legitimate software.  Because of this, the general spreading 

vector utilized in this class is social engineering, i.e. making people think 

that they are downloading the legitimate software  (Moffie, et al. 2006). 

 Adware. The only purpose of this malware type is displaying 

advertisements on the computer. Often adware can be seen as a 

subclass of spyware and it will very unlikely lead to dramatic results. 

 Spyware. As it implies from the name, the malware that permorms 

espionage can be referred to as spyware. Typical actions of spyware 

include tracking search history to send personalized advertisements, 

tracking activities to sell them to the third parties subsequently  (Chien 

2005). 

 Rootkit. Its functionality enables the attacker to access the data with 

higher permissions than is allowed. For example, it can be used to give 

an unauthorized user administrative access.  Rootkits always hide its 

existence and quite often are unnoticeable on the system, making the 

detection and therefore removal incredibly hard. (Chuvakin 2003). 

 Backdoor. The backdoor is a type of malware that provides an additional 

secret “entrance” to the system for attackers. By itself, it does not cause 

any harm but provides attackers with broader attack surface. Because of 

this, backdoors are never used independently. Usually, they are 

preceding malware attacks of other types. 

 Keylogger. The idea behind this malware class is to log all the keys 

pressed by the user, and, therefore, store all data, including passwords, 

bank card numbers and other sensitive information (Lopez, et al. 2013). 

 Ransomware. This type of malware aims to encrypt all the data on the 

machine and ask a victim to transfer some money to get the decryption 

key. Usually, a machine infected by ransomware is “frozen” as the user 

cannot open any file, and the desktop picture is used to provide 

information on attacker’s demands. (Savage, Coogan and Lau 2015). 
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 Remote Administration Tools (RAT). This malware type allows an 

attacker to gain access to the system and make possible modifications 

as if it was accessed physically. Intuitively, it can be described in the 

example of the TeamViewer, but with malicious intentions. 

2.2 Detection methods 

All malware detection techniques can be divided into signature-based and 

behavior-based methods. Before going into these methods, it is essential to 

understand the basics of two malware analysis approaches: static and dynamic 

malware analysis. As it implies from the name, static analysis is performed 

“statically”, i.e. without execution of the file. In contrast, dynamic analysis is 

conducted on the file while it is being executed for example in the virtual 

machine.  

Static analysis can be viewed as “reading” the source code of the malware and 

trying to infer the behavioral properties of the file. Static analysis can include 

various techniques (Prasad, Annangi and Pendyala 2016) : 

1. File Format Inspection: file metadata can provide useful information. 

For example, Windows PE (portable executable) files can provide much 

information on compile time, imported and exported functions, etc. 

2. String Extraction: this refers to the examination of the software output 

(e.g. status or error messages) and inferring information about the 

malware operation. 

3. Fingerprinting: this includes cryptographic hash computation, finding 

the environmental artifacts, such as hardcoded username, filename, 

registry strings.  

4. AV scanning: if the inspected file is a well-known malware, most likely 

all anti-virus scanners will be able to detect it. Although it might seem 

irrelevant, this way of detection is often used by AV vendors or 

sandboxes to “confirm” their results.  
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5. Disassembly: this refers to reversing the machine code to assembly 

language and inferring the software logic and intentions. This is the most 

common and reliable method of static analysis. 

Static analysis often relies on certain tools. Beyond the simple analysis, they 

can provide information on protection techniques used by malware. The main 

advantage of static analysis is the ability to discover all possible behavioral 

scenarios. Researching the code itself allows the researcher to see all ways of 

malware execution, that are not limited to the current situation. Moreover, this 

kind of analysis is safer than dynamic, since the file is not executed and it cannot 

result in bad consequences for the system. On the other hand, static analysis 

is much more time-consuming. Because of these reasons it is not usually used 

in real-world dynamic environments, such as anti-virus systems, but is often 

used for research purposes, e.g. when developing signatures for zero-day 

malware. (Prasad, Annangi and Pendyala 2016). 

Another analysis type is dynamic analysis. Unlike static analysis, here the 

behavior of the file is monitored while it is executing and the properties and 

intentions of the file are inferred from that information. Usually, the file is run in 

the virtual environment, for example in the sandbox. During this kind of analysis, 

it is possible to find all behavioral attributes, such as opened files, created 

mutexes, etc. Moreover, it is much faster than static analysis. On the other hand, 

the static analysis only shows the behavioral scenario relevant to the current 

system properties. For example, if our virtual machine has Windows 7 installed, 

the results might be different from the malware running under Windows 8.1.  

(Egele, et al. 2012). 

Now, having the background on malware analysis, we can define the detection 

methods. The signature-based analysis is a static method that relies on pre-

defined signatures. These can be file fingerprints, e.g. MD5 or SHA1 hashes, 

static strings, file metadata. The scenario of detection, in this case, would be as 

follows: when a file arrives at the system, it is statically analyzed by the anti-

virus software. If any of the signatures is matched, an alert is triggered, stating 

that this file is suspicious. Very often this kind of analysis is enough since well-

known malware samples can often be detected based on hash values.  
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However, attackers started to develop malware in a way that it can change its 

signature. This malware feature is referred to as polymorphism. Obviously, such 

malware cannot be detected using purely signature-based detection 

techniques. Moreover, new malware types cannot be detected using signatures, 

until the signatures are created. Therefore, AV vendors had to come up with 

another way of detection – behavior-based also referred to as heuristics-

based analysis. In this method, the actual behavior of malware is observed 

during its execution, looking for the signs of malicious behavior: modifying host 

files, registry keys, establishing suspicious connections. By itself, each of these 

actions cannot be a reasonable sign of malware, but their combination can raise 

the level of suspiciousness of the file. There is some threshold level of 

suspiciousness defined, and any malware exceeding this level raises an alert. 

(Harley and Lee 2009). 

The accuracy level of heuristics-based detection highly depends on the 

implementation. The best ones utilize the virtual environment, e.g. the sandbox 

to run the file and monitor its behavior. Although this method is more time-

consuming, it is much safer, since the file is checked before actually executing. 

The main advantage of behavior-based detection method is that in theory, it can 

identify not only known malware families but also zero-day attacks and 

polymorphic viruses. However, in practice, taking into account the high 

spreading rate of malware, such analysis cannot be considered effective 

against new or polymorphic malware. 

2.3 Need for machine learning 

As stated before, malware detectors that are based on signatures can perform 

well on previously-known malware, that was already discovered by some anti-

virus vendors. However, it is unable to detect polymorphic malware, that has an 

ability to change its signatures, as well as new malware, for which signatures 

have not been created yet. In turn, the accuracy of heuristics-based detectors 

is not always sufficient for adequate detection, resulting in a lot of false-positives 

and false-negatives. (Baskaran and Ralescu 2016). 

Need for the new detection methods is dictated by the high spreading rate of 

polymorphic viruses. One of the solutions to this problem is reliance on the 
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heuristics-based analysis in combination with machine learning methods that 

offer a higher efficiency during detection.  

When relying on heuristics-based approach, there has to be a certain threshold 

for malware triggers, defining the amount of heuristics needed for the software 

to be called malicious. For example, we can define a set of suspicious features, 

such as “registry key changed”, “connection established”, “permission 

changed”, etc. Then we can state, that any software, that triggers at least five 

features from that set can be called malicious. Although this approach provides 

some level of effectiveness, it is not always accurate, since some features can 

have more “weight” than others, for example, “permission changed” usually 

results in more severe impact to the system than “registry key changed”. In 

addition to that, some feature combinations might be more suspicious than 

features by themselves. (Rieck, et al. 2011).  

To take these correlations into account and provide more accurate detection, 

machine learning methods can be used. 

2.4 Related work 

Although not widely implemented, the concept of machine learning methods for 

malware detection is not new. Several types of studies were carried out in this 

field, aiming to figure the accuracy of different methods.  

In his paper “Malware Detection Using Machine Learning” Dragos Gavrilut 

aimed for developing a detection system based on several modified perceptron 

algorithms. For different algorithms, he achieved the accuracy of 69.90%-

96.18%. It should be stated that the algorithms that resulted in best accuracy 

also produced the highest number of false-positives: the most accurate one 

resulted in 48 false positives. The most ”balanced”s algorithm with appropriate 

accuracy and the low false-positive rate had the accuracy of 93.01%. (Gavrilut, 

et al. 2009). 

The paper “Malware Detection Module using Machine Learning Algorithms to 

Assist in Centralized Security in Enterprise Networks” discusses the detection 

method based on modified Random Forest algorithm in combination with 

Information Gain for better feature representation. It should be noticed, that the 

data set consists purely of portable executable files, for which feature extraction 
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is generally easier. The result achieved is the accuracy of 97% and 0.03 false-

positive rate. (Singhal and Raul 2015). 

“A Static Malware Detection System Using Data Mining Methods” proposed 

extraction methods based on PE headers, DLLs and API functions and methods 

based on Naive Bayes, J48 Decision Trees, and Support Vector Machines. 

Highest overall accuracy was achieved with the J48 algorithm (99% with PE 

header feature type and hybrid PE header&API function feature type, 99.1% 

with API function feature type). (Baldangombo, Jambaljav and Horng 2013). 

In “Zero-day Malware Detection based on Supervised Learning Algorithms of 

API call Signatures”, the API functions were used for feature representation 

again. The best result was achieved with Support Vector Machines algorithm 

with normalized polykernel. The precision of 97.6% was achieved, with a false-

positive rate of 0.025. (Alazab, et al. 2011). 

As it can be seen, all studies ended up with different results. From here, we can 

conclude that no unified methodology was created yet neither for detection nor 

feature representation. The accuracy of each separate case depends on the 

specifics of malware families used and on the actual implementation.  

3 MACHINE LEARNING METHODS 

This chapter gives a theoretical background on machine learning methods, 

needed for understanding the practical implementation. First, the overview of 

the machine learning field is discussed, followed by the description of methods 

relevant to this study. These methods include k-Nearest Neighbors, Decision 

Trees, Random Forests, Support Vector Machines and Naive Bayes. 

3.1 Machine Learning Basics 

The rapid development of data mining techniques and methods resulted in 

Machine Learning forming a separate field of Computer Science.  It can be 

viewed as a subclass of the Artificial Intelligence field, where the main idea is 

the ability of a system (computer program, algorithm, etc.) to learn from its own 

actions. It was firstly referred to as "field of study that gives computers the ability 

to learn without being explicitly programmed" by Arthur Samuel in 1959. A more 

formal definition is given by T. Mitchell: "A computer program is said to learn 
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from experience E with respect to some class of tasks T and performance 

measure P if its performance at tasks in T, as measured by P, improves with 

experience E." (Mitchell 1997). 

The basic idea of any machine learning task is to train the model, based on 

some algorithm, to perform a certain task: classification, clusterization, 

regression, etc. Training is done based on the input dataset, and the model that 

is built is subsequently used to make predictions. The output of such model 

depends on the initial task and the implementation. Possible applications are: 

given data about house attributes, such as room number, size, and price, 

predict the price of the previously unknown house; based on two datasets with 

healthy medical images and the ones with tumor, classify a pool of new images; 

cluster pictures of animals to several clusters from an unsorted pool.  

To develop a deeper understanding, it is worth going through the general 

workflow of the machine learning process, which is shown in Figure 1.  

 

Figure 1. General workflow process 

As it can be seen, the process consists of 5 stages: 

1. Data intake. At first, the dataset is loaded from the file and is saved in 

memory. 

2. Data transformation. At this point, the data that was loaded at step 1 is 

transformed, cleared, and normalized to be suitable for the algorithm. 

Data is converted so that it lies in the same range, has the same format, 

etc. At this point feature extraction and selection, which are discussed 

further, are performed as well. In addition to that, the data is separated 

into sets – ‘training set’ and ‘test set’. Data from the training set is used 

to build the model, which is later evaluated using the test set. 
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3. Model Training. At this stage, a model is built using the selected 

algorithm. 

4. Model Testing. The model that was built or trained during step 3 is 

tested using the test data set, and the produced result is used for building 

a new model, that would consider previous models, i.e. “learn” from 

them. 

5. Model Deployment. At this stage, the best model is selected (either after 

the defined number of iteration or as soon as the needed result is 

achieved). 

3.1.1 Feature extraction 

In any of the examples mentioned above, we should be able to extract the 

attributes from the input data, so that it can be fed to the algorithm. For example, 

for the housing prices case, data could be represented as a multidimensional 

matrix, where each column represents an attribute and rows represent the 

numerical values for these attributes. In the image case, data can be 

represented as an RGB value of each pixel.  

Such attributes are referred to as features, and the matrix is referred to as 

feature vector. The process of extracting data from the files is called feature 

extraction. The goal of feature extraction is to obtain a set of informative and 

non-redundant data. It is essential to understand that features should represent 

the important and relevant information about our dataset since without it we 

cannot make an accurate prediction. That is why feature extraction is often a 

non-obvious task, which requires a lot of testing and research. Moreover, it is 

very domain-specific, so general methods apply here poorly. 

Another important requirement for a decent feature set is non-redundancy. 

Having redundant features i.e. features that outline the same information, as 

well as redundant information attributes, that are closely dependent on each 

other, can make the algorithm biased and, therefore, provide an inaccurate 

result.  

In addition to that, if the input data is too big to be fed into the algorithm (has 

too many features), then it can be transformed to a reduced feature vector 
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(vector, having a smaller number of features). The process of reducing the 

vector dimensions is referred to as feature selection. At the end of this process, 

we expect the selected features to outline the relevant information from the 

initial set so that it can be used instead of initial data without any accuracy loss. 

Other possible transformations are: 

1. Normalization 

An example of normalization can be dividing an image x, where  xis are 

the number of pixels with color i, by the total number of counts to encode 

the distribution and remove the dependence on the size of the image. 

This translates into the formula: 𝑥′ =
𝑥

||𝑥||
 (Guyon and Elisseef 2006).  

2. Standardization 

Sometimes, even while referring to comparable objects, features can 

have different scales. For example, consider the housing prices example. 

Here, feature ‘room size’ is an integer, probably not exceeding 5 and 

feature ‘house size’ is measured in square meters. Although both values 

can be compared, added, multiplied, etc., the result would be 

unreasonable before normalization. The following scaling is often done:  

x'i= (xi−µi)/σi , where µi and σi are the mean and the standard deviation 

of feature xi over training examples. (Guyon and Elisseef 2006). 

3. Non-linear expansions 

Although in most cases we want to reduce the dimensionality of data, in 

some cases it might make sense to increase it. This can be useful for 

complex problems, where first-order interactions are not sufficient for 

accurate results.  

3.1.2 Supervised and Unsupervised Learning 

So far we have discussed the machine learning concepts from the point of view, 

where we have initial data, on which the model can be trained. However, this is 

not always the case. Here we want to introduce the two machine learning 

approaches - supervised and unsupervised learning. 
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In Supervised Learning, learning is based on labeled data. In this case, we 

have an initial dataset, where data samples are mapped to the correct outcome. 

The housing prices case is an example of supervised learning: here we have 

an initial dataset with houses, its attributes, and its prices. The model is trained 

on this dataset, where it ”knows” the correct results. Examples of supervised 

learning are regression and classification problems: 

1. Regression 

Predict the value based on previous observations, i.e. values of the 

samples from the training set. Usually, we can say that if the output is a 

real number/is continuous, then it is a regression problem.  

2. Classification 

Based on the set of labeled data, where each label defines a class, that 

the sample belongs to, we want to predict the class for the previously 

unknown sample. The set of possible outputs is finite and usually small. 

Generally, we can say that if the output is a discrete/categorical variable, 

then it is a classification problem. 

In contrast to Supervised Learning, in Unsupervised Learning, there is no 

initial labeling of data. Here the goal is to find some pattern in the set of unsorted 

data, instead of predicting some value. A common subclass of Unsupervised 

Learning is Clustering: 

3. Clustering 

Find the hidden patterns in the unlabeled data and separate it into 

clusters according to similarity. An example can be the discovery of 

different customer groups inside the customer base of the online shop. 

3.2 Classification methods 

From machine learning perspective, malware detection can be seen as a 

problem of classification or clusterization: unknown malware types should be 

clusterized into several clusters, based on certain properties, identified by the 

algorithm. On the other hand, having trained a model on the wide dataset of 

malicious and benign files, we can reduce this problem to classification. For 

known malware families, this problem can be narrowed down to classification 

only – having a limited set of classes, to one of which malware sample certainly 
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belongs, it is easier to identify the proper class, and the result would be more 

accurate than with clusterization algorithms. In this section, the theoretical 

background is given on all the methods used in this project. 

3.2.1 K-nearest neighbours 

K-Nearest Neighbors (KNN) is one of the simplest, though, accurate machine 

learning algorithms. KNN is a non-parametric algorithm, meaning that it does 

not make any assumptions about the data structure. In real world problems, 

data rarely obeys the general theoretical assumptions, making non-parametric 

algorithms a good solution for such problems. KNN model representation is as 

simple as the dataset – there is no learning required, the entire training set is 

stored. 

KNN can be used for both classification and regression problems. In both 

problems, the prediction is based on the k training instances that are closest to 

the input instance. In the KNN classification problem, the output would be a 

class, to which the input instance belongs, predicted by the majority vote of the 

k closest neighbors. In the regression problem, the output would be the property 

value, which is generally a mean value of the k nearest neighbors. The 

schematic example is outlined in Figure 2. 

 

Figure 2. KNN example 

Different distance measurement methods are used for finding the closest 

neighbors. The popular ones include Hamming Distance, Manhattan Distance, 

Minkowski distance: 
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𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝑑𝑖𝑗 = ∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|

𝑝

𝑘=1

 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝑑1(𝑝, 𝑞) = ||𝑝 − 𝑞||1 = ∑ |𝑝𝑖 − 𝑞𝑖|

𝑛

𝑖=1

 

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝⁄

 

 

The most used method for continuous variables is generally the Euclidean 

Distance, which is defined by the formulae below: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 ;  𝑝 𝑎𝑛𝑑 𝑞 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑛 − 𝑠𝑝𝑎𝑐𝑒 

Euclidian distance is good for the problems, where the features are of the same 

type. For the features of different types, it is advised to use, for example, 

Manhattan Distance. 

For the classification problems, the output can also be presented as a set of 

probabilities of an instance belonging to the class. For example, for binary 

problems, the probabilities can be calculated like 𝑃(0) =
𝑁0

𝑁0+𝑁1
, where P(0) is 

the probability of the 0 class membership and 𝑁0, 𝑁1 are numbers of neighbors 

belonging to the classes 0 and 1 respectively. (Thirumuruganathan 2010). 

The value of k plays a crucial role in the prediction accuracy of the algorithm. 

However, selecting the k value is a non-trivial task. Smaller values of k will most 

likely result in lower accuracy, especially in the datasets with much noise, since 

every instance of the training set now has a higher weight during the decision 

process. Larger values of k lower the performance of the algorithm. In addition 

to that, if the value is too high, the model can overfit, making the class 

boundaries less distinct and resulting in lower accuracy again. As a general 

approach, it is advised to select k using the formula below: 

𝑘 = √𝑛 

[4] 

[1] 

[2] 

[3] 

[5] 
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For classification problems with an even number of classes, it is advised to 

choose an odd k since this will eliminate the possibility of a tie during the 

majority vote.  

The drawback of the KNN algorithm is the bad performance on the unevenly 

distributed datasets. Thus, if one class vastly dominates the other ones, it is 

more likely to have more neighbors of that class due to their large number, and, 

therefore, make incorrect predictions. (Laaksonen and Oja 1996). 

3.2.2 Support Vector Machines 

Support Vector Machines (SVM) is another machine learning algorithm that is 

generally used for classification problems. The main idea relies on finding such 

a hyperplane, that would separate the classes in the best way. The term 

’support vectors’ refers to the points lying closest to the hyperplane, that would 

change the hyperplane position if removed. The distance between the support 

vector and the hyperplane is referred to as margin.  

Intuitively, we understand that the further from the hyperplane our classes lie, 

the more accurate predictions we can make. That is why, although multiple 

hyperplanes can be found per problem, the goal of the SVM algorithm is to find 

such a hyperplane that would result in the maximum margins.  

 

Figure 3. SVM scheme 
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On Figure 3, there is a dataset of two classes. Therefore, the problem lies in a 

two-dimensional space, and a hyperplane is represented as a line. In general, 

hyperplane can take as many dimensions as we want.  

The algorithm can be described as follows: 

1. We define X and Y as the input and output sets respectively. 

(𝑥1, 𝑦1),…,(𝑥𝑚, 𝑦𝑚) is the training set. 

2. Given x, we want to be able to predict y. We can refer to this problem as 

to learning the classifier y=f(x, a), where a is the parameter of the 

classification function. 

3. F(x, a) can be learned by minimizing the training error of the function that 

learns on training data. Here, L is the loss function, and 𝑅𝑒𝑚𝑝 is referred 

to as empirical risk. 

𝑅𝑒𝑚𝑝(𝑎) =
1

𝑚
∑𝑙(𝑓(𝑥𝑖 , 𝑎), 𝑦𝑖) = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟

𝑚

𝑖=1

 

 

4. We are aiming at minimizing the overall risk, too. Here, P(x,y) is the joint 

distribution function of x and y. 

𝑅(𝑎) =  ∫ 𝑙(𝑓(𝑥, 𝑎), 𝑦)𝑑𝑃(𝑥, 𝑦) = 𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 

5. We want to minimize the Training Error + Complexity term. So, we 

choose the set of hyperplanes, so f(x) = (w⸱x)+b: 

1

𝑚
∑𝑙(𝑤 ⋅ 𝑥𝑖 + 𝑏, 𝑦𝑖) + ||𝑤||2
𝑚

𝑖=1

 subject to  𝑚𝑖𝑛𝑖|𝑤 ⋅ 𝑥𝑖| = 1  

SVMs are generally able to result in good accuracy, especially on ”clean” 

datasets. Moreover, it is good with working with the high-dimensional datasets, 

also when the number of dimensions is higher than the number of the samples. 

However, for large datasets with a lot of noise or overlapping classes, it can be 

more effective. Also, with larger datasets training time can be high. (Jing and 

Zhang 2010). 

 

[6] 

[7] 

[8] 
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3.2.3 Naive Bayes 

Naive Bayes is the classification machine learning algorithm that relies on the 

Bayes Theorem. It can be used for both binary and multi-class classification 

problems. The main point relies on the idea of treating each feature 

independently. Naive Bayes method evaluates the probability of each feature 

independently, regardless of any correlations,  and makes the prediction based 

on the Bayes Theorem. That is why this method is called ”naive” – in real-world 

problems features often have some level of correlation between each other.  

To understand the algorithm of Naive Bayes, the concepts of class probabilities 

and conditional probabilities should be introduced first.  

a. Class Probability is a probability of a class in the dataset. In other 

words, if we select a random item from the dataset, this is the 

probability of it belonging to a certain class. 

b. Conditional Probability is the probability of the feature value 

given the class.  

1. Class probability is calculated simply as the number of samples in the 

class divided by the total number of samples: 

𝑃(𝐶) =
𝑐𝑜𝑢𝑛𝑡(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝐶)

𝑐𝑜𝑢𝑛𝑡(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑁𝑡𝑜𝑡𝑎𝑙)
 

2. Conditional probabilities are calculated as the frequency of each attribute 

value divided by the frequency of instances of that class. 

𝑃(𝑉|𝐶) =
𝑐𝑜𝑢𝑛𝑡(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑉 𝑎𝑛𝑑 𝐶)

𝑐𝑜𝑢𝑛𝑡(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑉)
 

3. Given the probabilities, we can calculate the probability of the instance 

belonging to a class and therefore make decisions using the Bayes 

Theorem: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 

[9] 

[10] 

[11] 
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4. Probabilities of the item belonging to all classes are compared and the 

class with the highest probability if selected as a result. 

The advantages of using this method include its simplicity and easiness of 

understanding. In addition to that, it performs well on the data sets with 

irrelevant features, since the probabilities of them contributing to the output are 

low. Therefore they are not taken into account when making predictions. 

Moreover, this algorithm usually results in a good performance in terms of 

consumed resources, since it only needs to calculate the probabilities of the 

features and classes, there is no need to find any coefficients like in other 

algorithms. As already mentioned, its main drawback is that each feature is 

treated independently, although in most cases this cannot be true. (Bishop 

2006). 

 

3.2.4 J48 Decision Tree 

As it implies from the name, decision trees are data structures that have a 

structure of the tree.  The training dataset is used for the creation of the tree, 

that is subsequently used for making predictions on the test data. In this 

algorithm, the goal is to achieve the most accurate result with the least number 

of the decisions that must be made. Decision trees can be used for both 

classification and regression problems. An example can be seen in Table 1: 

 

Table 1. Decision tree example dataset 
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Figure 4. Decision tree example 

As it can be seen in Figure 4, the model was trained based on the dataset and 

can now classify the tennis playing decision to “yes” or “no”. Here, the tree 

consists of the decision nodes and leaf nodes. Decision nodes have several 

branches leading to leaf nodes. Leaf nodes represent the decisions or 

classifications. The topmost initial node is referred to as root node. 

The common algorithm for decision trees is ID3 (Iterative Dichotomiser 3). It 

relies on the concepts of the Entropy and Information Gain. Entropy here 

refers to the level of uncertainty in the data content. For example, the entropy 

of the coin toss would be indefinite, since there is no way to be sure in the result. 

Contrarily, a coin toss of the coin with two heads on both sides would result in 

zero entropy, since we can predict the outcome with 100% probability before 

each toss. (Mitchell 1997). 

In simple words, the ID3 algorithm can be described as follows: starting from 

the root node, at each stage we want to partition the data into homogenous 

(similar in their structure) dataset. More specifically, we want to find the attribute 

that would result in the highest information gain, i.e. return the most 

homogenous branches (Swain and Hauska 1977): 

1. Calculate the entropy of the target. 

𝐸(𝑇, 𝑋) = ∑𝑃(𝑐)𝐸(𝑐)

𝑐∈𝑋

 

 𝐸(𝑆) = ∑ −𝑝𝑖 log2 𝑝𝑖
𝑐
𝑖=1  

[12] 

[13] 
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2. Split the dataset and calculate the entropy of each branch. Then 

calculate the information gain of the split, that is the differences in the 

initial entropy and the proportional sum of the entropies of the branches. 

𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑋) 

3. The attribute with the highest Gain value is selected as the decision 

node. 

4. If one of the branches of the selected decision node has an entropy of 0, 

it becomes the leaf node. Other branches require further splitting. 

5. The algorithm is run recursively until there is nothing to split anymore.  

 

J48 is the implementation of the ID3 algorithm, that is included in one of the R 

packages, and this is the implementation we are going to use in our study. 

Decision tree method achieved its popularity because of its simplicity. It can 

deal well with large datasets and can handle the noise in the datasets very well. 

Another advantage is that unlike other algorithms, such as SVM or KNN, 

decision trees operate in a “white box”, meaning that we can clearly see how 

the outcome is obtained and which decisions led to it. These facts made it a 

popular solution for medical diagnosis, spam filtering, security screening and 

other fields. (Mitchell 1997). 

 

3.2.5 Random Forest 

Random Forest is one of the most popular machine learning algorithms. It 

requires almost no data preparation and modeling but usually results in 

accurate results. Random Forests are based on the decision trees described in 

the previous section. More specifically, Random Forests are the collections of 

decision trees, producing a better prediction accuracy. That is why it is called a 

’forest’ – it is basically a set of decision trees.  

The basic idea is to grow multiple decision trees based on the independent 

subsets of the dataset. At each node, n variables out of the feature set are 

selected randomly, and the best split on these variables is found.  

In simple words, the algorithm can be described as follows (Biau 2013): 

[14] 
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1. Multiple trees are built roughly on the two third of the training data 

(62.3%). Data is chosen randomly. 

2. Several predictor variables are randomly selected out of all the predictor 

variables. Then, the best split on these selected variables is used to split 

the node. By default, the amount of the selected variables is the square 

root of the total number of all predictors for classification, and it is 

constant for all trees. 

3. Using the rest of the data, the misclassification rate is calculated. The 

total error rate is calculated as the overall out-of-bag error rate. 

4. Each trained tree gives its own classification result, giving its own ”vote”.  

The class that received the most ”votes” is chosen as the result.  

The scheme of the algorithm is seen in Figure 5. 

 

 

Figure 5. Random Forest scheme 

As in the decision trees, this algorithm removes the need for feature selection 

for removing irrelevant features – they will not be taken into account in any case. 

The only need for any feature selection with the random forest algorithms arises 
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when there is a need for dimensionality reduction. Moreover, the out-of-bag 

error rate, which was mentioned earlier can be considered the algorithm’s own 

cross-validation method. This removes the need for tedious cross-validation 

measures, that would have to be taken otherwise. (Mitchell 1997). 

Random forests inherit many of the advantages of the decision trees algorithms. 

They are applicable to both regression and classification problems; they are 

easy to compute and quick to fit. They also usually result in the better accuracy. 

However, unlike decision trees, it is not very easy to interpret the results. In 

decision trees, by examining the resulting tree, we can gain valuable information 

about which variables are important and how they affect the result. This is not 

possible with random forests. It can also be described as a more stable 

algorithm than the decision trees – if we modify the data a little bit, decision 

trees will change, most likely reducing the accuracy. This will not happen in the 

random forest algorithms – since it is the combination of many decision trees, 

the random forest will remain stable. (Louppe 2014). 

 

3.3 Cross-validation 

The drawback of the accuracy evaluation methods that are present in the 

machine learning methods themselves is that they cannot predict how the 

model will perform on the new data. The approach to overcoming this drawback 

relies on the cross-validation. The idea is to split the initial dataset. The model 

is trained on the biggest part of the dataset and then subsequently tested on 

the smaller part. There are three different classes of cross-validation: 

1. Holdout method – here, the dataset is separated into two parts: a 

training set and test set. The model is fit on the training set. The model 

is then tested on the test set, which it has not seen before. The resulting 

errors are used to compute the mean absolute test error, that is used for 

model evaluation. The advantage of this method is its high speed. On 

the other hand, the evaluation result depends highly on how the test set 

was selected since the variance is usually high. Therefore, the evaluation 

result can differ significantly between different test sets. 
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2. The k-fold method can be seen as the improvement over the holdout 

method. Here, the k subsets are selected, and the holdout method is 

repeated k times, where each time one of the k subsets is used as a 

training set, and the k-1 subset is used as the test set. The average error 

is then computed over all k runs of holdout method. With the increase of 

k, the variance is reduced, ensuring that the accuracy will not change 

with different datasets. The disadvantage is the complexity and the 

running time, which is higher as compared to the holdout method. 

 
3. The leave-one-out method is the extreme case of the k-fold method, 

where the k is as big as the sample universe. On each run of the holdout 

method, data is trained on all the data points except from one, and that 

one point is subsequently used for testing. The variance, in this case, is 

as small as possible. The computing complexity, on the other hand, is 

high. (Schneider 1997). 

 

This chapter provided background on the machine learning that is essential for 

understanding the practical implementation of the project, that is described in 

the next chapter. The concepts of feature set, feature extraction, and selection 

methods were discussed along with the machine learning algorithms that will 

be used in practical part. The chosen algorithms are K-Nearest Neighbours, 

Support Vector Machines, Decision Trees, Random Forests and Naive Bayes. 

 

4 PRACTICAL PART 

As a reminder, the goal of the project lies in the determination of the most 

suitable feature representation and extraction methods, the most accurate 

algorithm that can distinguish the malware families with the lowest error rate 

and how this accuracy relates to the current scoring system accuracy. This 

chapter discusses the practical aspects of the project implementation. This 

includes data gathering, description of malware families that represent the 

dataset, selection of the features that will be used for the algorithm and finding 

the optimal feature representation method, evaluation method, and the 

implementation process. 
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4.1 Data 

For this project, a total of 2 140 files were collected. For most of them, hashes, 

which uniquely identify files were found in incidence reports or malware reverse 

engineering reports, and these hashes were subsequently used to get the 

corresponding samples from the VirusTotal service with the help of external 

malware researchers. (VirusTotal 2017) To be able to operate with a diverse 

dataset, nine malware families were used, resulting in 1 156 malicious files and 

984 benign files. Malicious families that were used are Dridex, Locky, 

TeslaCrypt, Vawtrak, Zeus, DarkComet, CyberGate, Xtreme, CTB-Locker. 

They are discussed in detail further in this chapter. Benign files were mainly 

software installers of the .exe format, but also included several files of .pdf, 

.docx, etc. formats, as they are often used as malware spreading vectors. To 

achieve the most meaningful and up-to-date results only malware that has 

appeared in the last two years is used.  

4.1.1 Dridex 

The first malware family with a total of 172 unique files is Dridex. This malware 

belongs to the Trojan class, specifically, banking trojan. It caused a huge 

infection in 2015, resulting in 3 000 - 5 000 infections per month.  

Dridex is derived from Cridex, malware that spread in 2012. Cridex was also a 

banking credentials stealer, but more specifically, it was a worm, that utilized 

attached storage devices as a spreading vector. In 2014 a renewed version 

appeared, switching from command and control communications to peer-to-

peer and therefore becoming more resilient to takedown operations.   

The Dridex attack was targeted to users of specific banks, aiming to steal their 

credentials during banking sessions. It is said to be target over 300 institutions 

and 40 regions, mostly focusing on English-speaking countries with high income 

rates: most infections happened in the United States, the United Kingdom, and 

Australia. (O’Brien 2016). 

Most of the Dridex malware files were distributed during a massive-scale spam 

campaign, by using real company names as the sender addresses, but fake top 

level domains, matching the location of the targeted users. Most emails were 

either invoices or orders. Attackers behind Dridex showed a high level of 
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attention to details: emails with real company names also utilized real employee 

names and were sent during business hours. 

 

Figure 6. Dridex operation scheme (Aquino 2014) 

The operation scheme of Dridex is outlined in Figure 6. From a technical 

perspective, Dridex malware was embedded into macros of Word documents. 

After running these macros, a file of .vbs format was run and executed, 

downloading and installing Dridex Trojan. Dridex performs a man-in-the-middle 

attack, embedding itself into the Chrome, Firefox or Internet Explorer web 

browsers and subsequently monitoring traffic and seeking for online banking 

connections. After finding one, Dridex steals data from keylogs, screenshots, 

and input forms. (O’Brien 2016). 

Dridex has a modular architecture, allowing for the attackers to easily add 

additional functionality. According to Symantec, there are the following modules 

(O’Brien 2016): 

1. Loader module’s only purpose is to install the main module. The loader 

will find one of the servers inside of its configuration and request a binary 

and configuration data using HTTPS request. 
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2. Main module performs the most functionality of the Dridex malware, 

including taking screenshots, logging keystrokes, stealing data input 

forms, deleting files, stealing cookies, etc. For communication, it uses 

HTTPS with gzipped and XOR-encrypted data. 

3. VNC (Virtual Network Computing) module, which is available on both 

x86 and x64 architectures provides a graphical interface for the remote 

control of the computer. It supports a wide variety of functions, including 

command prompt, disk management, system settings, etc. 

4. SOCKS module is also available for x86 and x64 architectures, 

supporting remote command execution, file download, command and 

control, etc. 

5. The mod4 module is used for the creation of new processes.  

6. The mod6 module provides an ability to send emails via Outlook and is 

used for spam campaigns.  

4.1.2 Locky 

The second malware family, represented by 115 unique files, is Locky. This is 

ransomware that encrypts all data on the victim’s system using the RSA-2048 

and AES-256 ciphers and adds a .locky extension to it. Locky emerged in 

February 2016 and has been distributed aggressively since then. The most 

common distribution vectors are spam campaigns, specifically, fake invoices 

and phishing websites. These spam campaigns were extremely similar to the 

ones used to distribute Dridex in its size, utilization of financial documents and 

macros, which gives a sign of the Dridex group being responsible for this 

malware. The price for decryption of system files varied from 0.5 to 1 bitcoin. 

(Symantec Security Response 2016). The operation scheme of Locky can be 

seen in Figure 7. 
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Figure 7. Locky operation 

 

Upon delivery to the system,  the macros embedded into a .docx or .xls file runs 

and downloads the Locky malware. Malware file, in turn, injects itself into the 

%temp% folder with a random name and .exe or .dll file format. A “Run” registry 

key with value “Locky” will subsequently be added to the registry, pointing out 

the .exe file in the %temp% folder. The initial file will be deleted at this point. A 

new process will be started after that, exploring the volume properties and 

deleting shadow copies present on the volume. Recovery instructions and the 

public key are retrieved with a POST request from a command and control 

server. After that, all files on the system are encrypted, and the desktop 
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background is changed to the image with the decryption instructions. (McAfee 

Labs 2016). An additional registry key is created, allowing the malware to run 

every time the system is started. Figure 8 shows the decryption instructions for 

Locky. 

 

Figure 8. Recovery instructions of the Locky malware (Symantec Security Response 2016) 

4.1.3 Teslacrypt 

Teslacrypt is the third malware family, consisting of 115 files and belonging to 

the ransomware class. Main distribution vector is compromised websites and 

emails with links leading to malicious websites that download the malware once 

they are visited. Upon download, the file is executed immediately. The operation 

scheme of Teslacrypt can be found in Figure 9. 
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Figure 9. TeslaCrypt operation 

Upon execution TeslaCrypt is copied to the /AppData/Roaming/ folder. Malware 

is compiled with a C++ compiler and the screen outlined in Figure 10 pops up 

upon the encryption is finished (McAfee Labs 2016): 

 

Figure 10. Decryption instructions for TeslaCrypt (McAfee Labs 2016) 
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Payment for a decryption key is requested to be made via PayPal or Bitcoin (1 

000 USD or 1.5 bitcoin). Unlike other ransomware families, TeslaCrypt 

encrypted not only obvious data files, such as .pdf, .doc, .jpg etc., but also 

game-related files, including Call of Duty, World of Tanks, Minecraft and World 

of Warcraft.  

Interestingly, in May 2016, the attackers behind TeslaCrypt announced that they 

closed the project and released the master decryption key. Several days later, 

ESET antivirus released a free decryption tool. More details can be found in 

Figure 11. 

 

Figure 11. Payment page of TeslaCrypt with the master decryption key (Mimoso 2016) 

4.1.4 Vawtrak 

Fourth malware family that consists of 74 unique files is Vawtrak. Also referred 

to as Neverquest or Snifula, Vawtrak is another example of banking Trojan. The 

most infections happened in Czech Republic, USA, UK, and Germany. 

Spreading vectors include malware downloaders, spam with malicious links or 

other drive-by downloads. After downloading, Vawtrak is capable of gaining 

access to banking accounts of a victim, as well as stealing credentials, 

passwords, private keys, etc. 

The operation process of this malware family is outlined in Figure 12. The 

execution of the initial file, downloaded to the drive, results in the installation of 

a dropper file into %ProgramData% folder with a randomly created extension 

and filename. The initial file is deleted after that. (Křoustek 2015). This dropper 

file is a DLL that is responsible for unpacking the Vawtrak module and injecting 

it to the running processes. To do that, the DLL firstly decrypts the payload with 
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the hardcoded key and decompresses itself, resulting in a new DLL, which 

replaces the initial one. This DLL, in turn, extracts the final module, which turns 

out to be a compressed version of two DLLs: 64 and 32-bit modifications. These 

DLLs are injected into the system processes and are responsible for the 

Vawtrak’s functionality. 

 

Figure 12. Vawtrak operation 

After successful execution, Vawtrak is capable of performing a wide range of 

malicious actions (Křoustek 2015): 

 Disabling the antivirus protection 

 Communication with CnC servers 

 Stealing passwords, cookies, digital certificates 

 Creation of a proxy server  on the host system 

 Keylogging and screenshots taking 

 Changing web browser settings (Internet Explorer, Firefox, Google 

Chrome) and modifying communications with web servers  
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4.1.5 Zeus 

Zeus is the fifth malware family and is represented by 116 unique files. It is a 

botnet package, which can be easily traded on the black market for around 700 

USD. After its appearance in 2007, Zeus has evolved and remains one of the 

most common botnet malware representatives. 

 

Figure 13. Zeus operation 

The summary of Zeus operation can be found in Figure 13. Infection vectors of 

Zeus vary dramatically, starting from spam emails, and ending with drive-by 

downloads. After the download, the malware injects itself into the sdra64.exe 

process and modifies the registry values so that it is executed upon system 

startup. After that, Zeus injects itself into the winlogon.exe process and 

terminates the initial executable. Winlogon injected code injects additional data 

into the svchost.exe process and creates two files: local.ds contains the up-to-

date configurations, and user.ds contains data to be transmitted to the 

command and control server. (Falliere and Chien 2009). 
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The functionality of Zeus includes stealing of system information, online 

credentials, storage information. Specification of data to be stolen is either 

hard coded into the binary or is retrieved from the command and control 

server. (Falliere and Chien 2009). 

The popularity of Zeus malware is related to the fact that it is relatively cheap 

and easy to use. Moreover, it comes as a ready-to-deploy package and as a 

result can be used by novices and script kiddies. 

4.1.6 DarkComet 

DarkComet is an example of the Remote Administration Tool (RAT). It was 

utilized in several attacks in 2012-2015. Initially, DarkComet was not developed 

as a malicious tool, however, because of its nature and functionality, it was 

eventually used by the Syrian government for espionage, followed by several 

other attacks in the following years. 

During Syrian conflict in 2014, it was used by the Syrian government for 

espionage on Syrian citizens that were bypassing government’s censorship on 

the Internet. In 2015, the ”Je Suis Charlie” slogan was used to trick people into 

downloading the DarkComet: it was disguised as a picture, which compromised 

the users once downloaded. 

As most of the RATs, the DarkComet includes two components: the client and 

the server. However, they have a reverse meaning from the perspective of the 

attacker, where the ’server’ is the machine with malware, and the ’client’ is the 

attacker. The DarkComet relies on the remote-connection architecture: once it 

executes, the server connects to the client, which has a GUI, allowing it to 

control the server. (Kujawa 2012) The functionality of DarkComet is broad, 

including, but not limited to (Kujawa 2012): 

 Webcam and sound capture 

 Keylogging 

 Power off/Shutdown/Restart 

 Remote Desktop functionality 

 Active ports discovery 

 LAN computers discovery 

 URL download 
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 WiFi Access Points discovery 

 Remote Edit Service 

 Update server from file or URL 

 Lock computer 

 Redirect IP/port  

The communication between the server and the client is outlined in Figure 14.  

 

 

Figure 14. DarkComet communication scheme 

4.1.7 CyberGate 

CyberGate is another example of the Remote Administration Tool (RAT).  

Written in Delphi, it is constantly being developed, resulting in stability and 

extensive functionality. It should be mentioned that CyberGate can be 

considered “legal” malware since it was initially developed for legal purposes 

and is used in legal problems. However, it is often used for malicious activity, 

such as espionage. 
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CyberGate provides the ability to:  

 Log into the victim’s machine 

 Retrieve the screenshots of the machine 

 Connect to the multiple users at the same time. 

 Lock computer 

 Restart, shutdown 

 Read and modify the registry 

 Interact via shell 

 Capture data from connected input devices 

The operation of the CyberGate is guided by the attacker, and the 

communication happens with a client-server model. Again, here the attacker is 

referred to as a client and the infected machine is a server. The communication 

happens in a way similar to the one outlined in Figure 14. 

In addition to that, there are plenty of the tutorials that can be found on the 

Internet, allowing people with a limited set of skills to take advantage of this RAT 

for malicious purposes. (Aziz 2014). 

4.1.8 Xtreme 

Another example of RAT is Xtreme. Developed in Delphi, it is available for free 

and shares the source code with several other Delphi RAT malware, including 

CyberGate.  

Xtreme was used in several governmental attacks, as well as several attacks 

targeting Israel and Palestina. The architecture of Xtreme relies on the client-

server architecture, where the attacker is considered to be a client. The 

configurations are written to the %APPDATA%\Microsoft\Windows folder or the 

folder named after the mutex created. The data is subsequently encrypted using 

RC4 and ”CONFIG” or ”CYBERGATEPASS” as a password. The configurations 

are stored in the file of ”.ngo” or ”.cfg” extensions. The configuration data 

includes the name of installed file, an injection process, FTP and CnC 

information, mutex name. (Villeneuve and Bennett 2014). The communication 

between the infected machine and the attacker happens in a way similar to the 

one of the DarkComet, which is outlined in Figure 14. 
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The functionality of Xtreme allows the attacker to (Villeneuve and Bennett 

2014): 

 Read and modify the registry 

 Interact via the remote shell 

 Desktop capturing 

 Capture data from connected devices, such as a microphone, webcam, 

etc. 

 Manipulate running processes 

 Upload and download files 

  

4.1.9 CTB-Locker 

The last malware family used was CTB-Locker, and it was represented by 79 

unique files. This is another example of ransomware which encrypts user’s files 

asking for money for the decryption key. CTB is an acronym for Curve Tor 

Bitcoin, referring to Elliptic Curve algorithm that was used for encryption.  

 

Figure 15. CTB-Locker operation 
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The propagation of the CTB-Locker samples was happening through the e-

mails with malicious attachments. Attachments represented .zip files with the 

downloader inside. The initial operation of CTB-Locker is outlined in Figure 15. 

Upon execution malware drops itself to the %temp% folder with a random name 

and injects itself into the svchost.exe process. Moreover, a mutex of random 

name is created, ensuring that there is only one instance of CTB-Locker running 

on the machine.  

Upon successful completion of malware, a pop-up screen will appear, providing 

information on payment and encryption details. This pop-up screen is shown in 

Figure 16. CTB-Locker targeted mostly Spain, France and Austria. (McAfee 

Labs 2015). 

 

Figure 16. CTB-Locker decryption instructions (McAfee Labs 2015). 

4.2 Cuckoo Sandbox 

The study is based on and targeted to Cuckoo Sandbox. It is clear that to apply 

the machine learning algorithms to any problem, it is essential to represent the 

data in some form. For this purpose, Cuckoo Sandbox was used. The reports 

generated by the sandbox, describing the behavioral data of each sample, were 

preprocessed, and malware features were extracted from there. However, it is 
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important to understand the functionality of the sandbox and the structure of the 

reports first. 

Cuckoo Sandbox is the open-source malware analysis tool that allows getting 

the detailed behavioral report of any file or URL in a matter of seconds. 

According to Cuckoo Foundation (2015), currently, supported file formats 

include: 

 Generic Windows executables 

 DLL files 

 PDF documents 

 Microsoft Office documents 

 URLs and HTML files 

 PHP scripts 

 CPL files 

 Visual Basic (VB) scripts 

 ZIP files 

 Java JAR 

 Python files 

 Almost anything else  

Cuckoo has a highly customizable modular architecture, allowing it to be used 

both as a standalone application as well as integrated into the larger 

frameworks.  

The main components of Cuckoo’s infrastructure are a host machine (the 

management software) and a number of guest machines (virtual or physical 

machines for analysis). Its operation scenario is quite straightforward: as soon 

as the new file is submitted to the server, a virtual environment is dynamically 

allocated for it, the file is executed, and all the actions performed in the system 

are recorded.  
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Figure 17. Cuckoo Sandbox architecture (Cuckoo Foundation 2015). 

As shown in Figure 17, the sandbox generates the report which outlines all the 

behavior of the file in the system. The report is represented as a JSON file, and 

currently, it is capable of detecting the following features (Cuckoo Foundation 

2015): 

 Traces of calls performed by all processes spawned by the malware 

 Files being created, deleted and downloaded by the malware during its 

execution 

 Memory dumps of the malware processes 

 Network traffic trace in the PCAP format 

 Screenshots that were taken during the execution of the malware 

 Full memory dumps of the machines 

After getting the behavior of the file, Cuckoo Sandbox makes a decision on the 

level of maliciousness of the file using some pre-defined signatures. This 

functional part of the sandbox is only interesting to us as the way to compare 

the performance of the machine learning methods to the currently implemented 

signature-based methods. 
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4.2.1 Scoring system 

The Cuckoo analysis score is an indication of how malicious an analyzed file is. 

The score is determined by measuring how many malicious actions are 

performed. Cuckoo uses a set of summarized malicious actions, called 

signatures, to identify the malicious behavior. Each of these signatures has its 

score, which indicates the severity of the performed action.  

In total, there are three levels of severity and all levels have their score of 

severity: 1 for low, 2 for medium and 3 for high. An example of a low severity 

signature is the action of performing a query on a computer name. An example 

of a medium severity signature is the creation of an executable file. An example 

of a high severity signature is the removal of a shadow copy.  

During analysis, all actions are stored to be processed afterwards. In the end, 

multiple modules, including the signatures module, are used to examine the 

stored actions. The signatures module examines all the collected data and finds 

patterns that match a signature. If the signature matches, a counter is 

incremented by the score of the severity of the signature (1, 2, or 3). When all 

signatures have been processed, the value of the counter is divided by 5.0 to 

create a floating point score. This score is the Cuckoo analysis score. An 

example of the signatures of different severity can be found in Figure 18. 

 

Figure 18. Severity levels of cuckoo signatures 
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The average scores of the malware families used in this project are outlined in 

Table 2. The color indicates the maliciousness level corresponding to the score. 

Family Average Cuckoo score 

Benign 1.04 

Dridex 5.26 

Locky 6.41 

Teslacrypt 6.27 

Vawtrak 2.66 

Zeus 6.46 

DarkComet 5.15 

CyberGate 6.57 

Xtreme 5.15 

CTB-Locker 4.76 

Table 2. Cuckoo scores for malware families 

It is hard to measure the accuracy of the detection since there is no threshold 

value indicating whether the sample is malicious or not. Moreover, determining 

the specific class to which malware belongs is beyond the functionality of the 

sandbox. In the graphical user interface, there are indicators of green, yellow 

and red colors, outlined in Figures 18 - 19, indicating how reliable the file is. The 

green indicator is used for samples with a score of 4 and lower, yellow for 

samples with score 4-7, red for scores 7-10. However, this feature is only an 

interface part and is not very reliable, as it is still in the alpha state. Moreover, it 

has some bugs, as outlined in Figure 20. 

 

 

Figure 19. Color labels of the severity of reports 

 

Figure 20. Bugs in the Cuckoo scoring systems 
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4.2.2 Reports and features 

To apply machine learning algorithms to the problem, we need to figure out 

what kind of data should be extracted and how it should be presented. 

Some works in the field are utilizing string properties or file formats properties 

as a basis for feature representation. For example, for Windows-based malware 

samples, the data contained in PE headers is often used as a base for analysis. 

However, implementing format-specific feature extraction is not the best 

solution, since formats of analyzed files can vary dramatically. (Hung 2011). 

Other works rely on the so-called n-grams. Byte n-grams are overlapping 

substrings, collected in a sliding-window fashion where the windows of fixed 

size slides one byte at a time. Word n-grams and character n-grams are widely 

used in natural language processing, information retrieval, and text mining. 

(Reddy and Pujari 2006).  

However, such approach has several disadvantages. The major difficulty in 

considering byte n-grams as a feature is that the set of all byte n-grams obtained 

from the set of byte strings of malware as well as of the benign programs is very 

large and it is not useful to apply classification techniques directly on these. 

(Reddy and Pujari 2006). In addition to that, such approach limits the ability of 

detection of polymorphic malware. In this case, the samples generating the 

same behavior will result in different strings, and, therefore, different n-grams. 

Because of the above-mentioned reasons, in this study, it is decided to rely on 

the actual behavior of the files, that is monitored by the sandbox. Overall, we 

can identify the following features extracted by the sandbox: 

 Files  

 Registry keys  

 Mutexes  

 Processes  

 IP addresses and DNS queries 

 API calls 

This section discusses which of the above-mentioned features should be used 

in our work. 
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 Files 

The reports contain information about opened files, written files, and 

created files. This kind of information is good in predicting the malware 

family since any malware files trigger many modifications to the file 

systems. It can be used for the quite accurate malware classification in 

most cases. However, for example in the cases of ransomware, relying 

solely on the file modifications might result in the algorithm not being able 

to distinguish different families. This is because ransomware encrypts 

every file on the system. Therefore the feature set consists mostly of the 

encrypted files. The differences between ransomware families would be 

defined by the files with malware settings, the amount of which is vastly 

lower than the whole feature set and, therefore, it would be very hard to 

make predictions based on this data. 

 Registry keys 

On Windows systems, the registry stores the low-level system settings 

of the operation system and its applications. Any sample that is run on 

the system triggers a high amount of the registry changes – the Cuckoo 

reports can outline the registry keys opened, read, written, deleted. The 

information on the registry modifications can be a good source of 

information on the system changes caused by malware and can be used 

for malware detection. 

 Mutexes 

The mutex stands for the Mutual Exclusion. This is a program object that 

allows multiple threads to share the same resource. Every time a 

program is started, a mutex with a unique name is created. Mutex names 

can be good identifiers of specific malware samples. However, for the 

families, they cannot result in the accurate result on a large scale, since 

the number of mutexes created per sample is dramatically lower than the 

dataset. That is why the small change related to the bug or non-started 

process would result in the dramatic change of the prediction results. 

 Processes 

Common identifier of the specific malware sample is the name of the 

created process. However, very rarely it can be used for identification of 
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the malware family since in the common cases the process names are 

the same as the hash of the sample. As an alternative, the malware 

sample can inject itself into the system process. That is why this feature 

is bad for the family identification.  

 IP addresses and DNS queries 

Cuckoo provides information about the network traffic in the PCAP 

format, from which the data about contacted IP addresses as well as 

DNS queries can be extracted. This data accurately identifies the IP 

addresses of the command and control servers of attackers and, 

therefore, can accurately identify the malware family in most cases. 

However, often the attackers change the domain names or IP addresses 

of their servers or spoof them. Therefore, it is unreliable to rely solely on 

this kind of information. 

 API calls 

API stands for Application Programming Interface and refers to the set 

of tools that provide an interface for communication between different 

software components. API calls are recorded during the execution of the 

malware and refer to the specific process. They outline everything 

happening to the operating system, including the operations on the files, 

registry, mutexes, processes and other features mentioned earlier. For 

example, API calls OpenFile, OpenFileEx, CreateFile, CopyFileEx, etc. 

define the file operations, calls OpenMutex, CreateMutex and 

CreateMutexEx describe mutexes opened and created, etc. API call 

traces present the wide description of the sample behavior, including all 

the properties mentioned above. In addition to that, they include a wide 

set of distinct values. Moreover, they are simple to describe in numeric 

format, and that is why they were chosen as features. Here, the feature 

set will be defined by the number of unique API calls and the return 

codes. The next section describes the representation way in more detail.  

4.3 Feature representation 

Having familiarized ourselves with the features presented in the Cuckoo 

Sandbox reports, we can now think about the way to represent the features to 

be used for the machine learning algorithms. Since the feature set, containing 
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the failed and successful APIs as well as the return codes, is quite large, we 

have to find a way to present it in a clear, compact and non-redundant way. The 

representation chosen for this task is the Frequency (Binary) matrix, discussed 

in detail in the following section. 

4.3.1 Binary representation 

The binary representation is the most simple and straightforward way to 

represent the features of the failed and successful API calls. Here, a matrix is 

created, where the rows represent the samples, and the columns represent the 

API calls. A value of 0 represents the ‘failed’ state of the API call, and the value 

of 1 represents the successful API call. 

𝐴𝑃𝐼𝑏𝑖𝑛 =

 𝐴𝑃𝐼1 𝐴𝑃𝐼2 … 𝐴𝑃𝐼𝑛
𝑆1

𝑆2

⋮

𝑆𝑛 [
 
 
 
 

   

1     1     ⋯     0   

1     0     ⋯     1   

⋮     ⋱     ⋱     ⋮   

1     1     ⋯     1   ]
 
 
 
 
 

Although this approach is simple and straightforward, it does not take into 

account the return codes generated, as well as a number of times the certain 

API call was triggered, resulting in lower accuracy. (Pirscoveanu 2015). 

4.3.2 Frequency representation 

The frequency representation approach is close to the binary representation 

approach in its structure. However, instead of marking each API call as ‘failed’ 

or ‘successful’, it outlines the frequency of each API call, showing a number of 

times it was triggered. 

𝐴𝑃𝐼𝑓𝑟𝑒𝑞 =

 𝐴𝑃𝐼1 𝐴𝑃𝐼2 … 𝐴𝑃𝐼𝑛
𝑆1

𝑆2

⋮

𝑆𝑛 [
 
 
 
 

   

112    312     ⋯    72   

16   23     ⋯   315  

⋮     ⋱     ⋱     ⋮   

157    1     ⋯     567   ]
 
 
 
 
 

Here, the horizontal axis represents the samples and the vertical axis 

represents the API call, where each number represents a number of times the 
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API call was triggered. This approach clearly provides more details than the 

binary representation, resulting in better accuracy. (Pirscoveanu 2015). 

4.3.3 Combining representation 

To utilize the maximum amount of useful data presented in the API calls 

information, the best approach is to combine the features of the previous 

representation methods. The resulting matrix would outline the frequency of 

failed APIs, successful APIs, and the return codes. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

 𝑃𝑎𝑠𝑠1      . . . 𝑃𝑎𝑠𝑠𝑛    𝐹𝑎𝑖𝑙1     … 𝐹𝑎𝑖𝑙𝑛 𝑅𝑒𝑡𝐶1 … 𝑅𝑒𝑡𝐶𝑛

𝑆1

𝑆2

⋮

𝑆𝑛 [
 
 
 
 

   

23     ⋯     3     224 ⋯ 123 23 ⋯ 27

52     ⋯     21     224 ⋯ 57 224 ⋯ 1

⋮     ⋱     ⋱     ⋮   ⋱ ⋮ ⋮ ⋱ ⋮

52     ⋯     22     210  ⋯ 46 72 ⋯ 111]
 
 
 
 
 

Here the rows represent the samples, the columns 𝑃𝑎𝑠𝑠1…𝑃𝑎𝑠𝑠𝑛 represent a 

number of times each API call in [𝑃𝑎𝑠𝑠1; 𝑃𝑎𝑠𝑠𝑛] was called, where n is a total 

number of API calls triggered. Similarly, columns 𝐹𝑎𝑖𝑙1…𝐹𝑎𝑖𝑙𝑛 represent a 

number of times each API call failed. Columns 𝑅𝑒𝑡𝐶1 … 𝑅𝑒𝑡𝐶𝑛 represent a 

number of times each return code was returned. (Pirscoveanu 2015). 

This approach results in a fair performance, and that is why it is chosen for our 

problem. Obviously, the usage of the combination method resulted in the 

dramatic increase in the number of features, since they are now represented by 

the combination of passed APIs, failed APIs and return codes, instead of relying 

solely on the APIs triggered. Since the feature set became more than two times 

bigger, some feature selection should be performed.  

4.4 Feature selection 

The goal of the feature selection is to remove the non-important features from 

the feature set as it gets too big. Bigger feature sets are harder to operate with, 

but some features in this set might not put any weight on the decision of the 

algorithm and, therefore, can be removed. For example, in our case, some API 

call might only be triggered in one sample once. In a case of a wide and variate 

feature set, this unique API call will not play any role in the algorithm and, 

therefore, removing it will not affect an accuracy in any way.  



51 

 

After extracting the features and representing them as a combination matrix, we 

ended up with 70518 features.  This amount is too large for processing and 

accurate predictions. For example, with such a large feature set, it takes 

approximately two-three hours to load the dataset, preprocess it and run the k-

nearest neighbors algorithm on an x64 8GB RAM machine. This amount of 

resources is unacceptable, and there is a need for removing irrelevant features.  

Three general classes of feature selection methods are filtering methods, 

wrapper methods, and embedded methods (Guyon and Elisseef 2006). 

 Filter methods 

Filter methods statistically score the features. The features with higher 

scores are kept in the dataset, while the features with the low scores are 

removed. 

 Wrapper methods 

Here, the different feature combinations are tried with a prediction model 

and the combination that leads to the highest accuracy are chosen.  

 Embedded methods 

These methods evaluate the features used while the model is being 

created.  

4.5 Implementation 

During this step the research plan is designed and can be implemented in 

practice.  

The whole implementation process can be outlined in the following steps: 

1. Sandbox configuration 

2. Feature extraction (using Python 2.7) 

3. Feature selection (using R) 

4. Application of the machine learning methods (using R) 

5. Evaluation of the results 

Each of these steps is discussed in detail further in this chapter. 
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4.5.1 Sandbox configuration 

To get the malware behavioral reports and to ensure that malware runs 

correctly, including all of its functionality, it is important to configure Cuckoo 

Sandbox. In the real world different malware samples exploit different 

vulnerabilities that might be part of certain software products. Therefore, it is 

important to include a broad range of services in the virtual machines created 

by the sandbox. 

The hypervisor used for the virtual machines for Cuckoo is Virtualbox. The 

virtual machines will be created by using VMcloak, an automated virtual 

machine generation and cloaking tool for Cuckoo Sandbox. (Bremer 2015). 

All virtual machines will have the following specifications:  

 1 CPU core 3.2 Ghz  

 2 GB RAM  

 Internet connection  

The installed software on all the virtual machines are:  

 Windows 7 Professional 64bit without any updates, including Service 

Pack 1  

 Adobe PDF reader 9.0  

 Adobe Flashplayer 11.7.700.169  

 Visual Studio redistributable packages 2005 - 2013.  

 Java JRE 7 

 .NET framework 4.0 

4.5.2 Feature extraction 

As discussed in the previous section, the chosen feature representation method 

is the combining matrix that includes successful APIs, failed APIs and their 

return codes. This data is extracted from the reports generated by the sandbox. 

The detailed process of feature extraction is outlined in Figure 21. In our 

implementation, the reports are stored locally after they were processed by the 

sandbox. Then, these reports are used as an input to the feature extraction 

script which produces the .csv file with the combining matrix inside. The number 
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of minimum API calls can be specified in the algorithm, e.g. all reports which 

triggered less than five API calls can be skipped. The file includes the timestamp 

of the extraction, and the logs, outlining the successful and unsuccessful 

operations are stored in a separate file.  

 

Figure 21. Feature extraction process 
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4.5.3 Feature selection 

As described in the previous chapter, feature selection is used for removing 

redundant and irrelevant features to improve the accuracy of the prediction. In 

our case, the feature set is extremely large, and the need for feature selection 

is, therefore, high. 

The R language will be used for performing the feature selection and applying 

the machine learning methods. R is a free software environment for statistical 

computing and graphics. It compiles and runs on a wide variety of UNIX 

platforms, Windows, and MacOS. (Venables and Smith 2016). 

A good and simple algorithm for feature selection in classification problems is 

the Boruta package. Roughly speaking, it is a wrapper method that works 

around the Random Forest algorithm. Its algorithm can be described as follows 

(Kursa and Rudnicki 2010): 

1. Create shuffled copies of all features (to add more randomness). These 

are referred to as shadow copies. 

2. Train a Random Forest classifier on the new dataset and apply a feature 

importance measure in the form of the Mean Decrease Accuracy 

algorithm. The importance of each feature is measured at this stage, and 

the weights are assigned. 

3. On each iteration check if the feature from the initial feature set has a 

higher weight than the highest weight of this feature’s shadow copy. 

Remove the features that are ranked as unimportant at each iteration. 

4. Stop after classifying all features as ‘selected’ or ‘rejected’, or after a 

certain number of iterations of random forest is achieved.  

Unlike other feature selection methods, Boruta allows identifying all features 

that are somehow relevant to the result. Other methods, in turn, rely on a small 

feature subset that results in the minimal error. (Kursa and Rudnicki 2010). 

The problem arises when we start implementing the feature selection. Having 

70 518 features, the Boruta package exhausts, as it is not able to allocate 

enough memory and is not able to run. Therefore, we need to divide the dataset 
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randomly into the subsets that can fit into the memory and run feature selection 

on all of them. Then, we collect all the features that were ranked as relevant 

and merge the subsets, leaving out all the non-important features. The next step 

is to run the feature selection again on the whole dataset. After running the 

feature selection algorithm, we ended up with 306 features. The performance 

of this change was evaluated based on the KNN accuracy with the given feature 

set. KNN was chosen for this problem, as it is the only algorithm that can 

process the whole feature set – it does not store any other information other 

than the dataset and does not build models, unlike other algorithms. After 

removing irrelevant features, the accuracy of detection based on KNN improved 

by approximately 1% and the prediction took approximately three seconds. 

4.5.4 Application of machine learning methods 

After the features were extracted and selected, we can apply the machine 

learning methods to the data that we obtained. The machine learning methods 

to be applied, as discussed previously, are K-Nearest Neighbours, Support 

Vector Machines, J48 Decision Tree, Naive Bayes, Random Forest. The 

general process is outlined in Figure 22. 

The packages used for the implementation of algorithms are: 

 K-Nearest Neighbours – class 

 Support Vector Machines – kernlab 

 J48 Decision Tree – RWeka 

 Naive Bayes – e1071 

 Random Forest – randomForest 

 CrossTable plotting – gmodels 
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Figure 22. Machine learning classification scheme 

 

5 RESULTS AND DISCUSSION 

This chapter discusses the results of the assessment of the implemented 

machine learning methods. The accuracy of detection is measured as the 

percentage of correctly identified instances: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑢𝑛𝑡(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝑐𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
 

5.1 K-Nearest Neighbors 

The result of the K-Nearest Method can be inferred from the cross table in 

Figure 23. The results outlined there should be understood as follows: rows 

represent the actual classes of the tested samples, while columns represent the 

predicted values. Therefore, the cell of the 1st row and 1st column will show the 

number of correct instances for the 1st class. The cell of the 1st row and 2nd 

column will show the number of 1st class instances, that were marked as 2nd 

class, etc.  

 

[15] 
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Figure 23. CrossTable for KNN multi-class classification 

As it can be seen, the test set consists of 371 samples, and 1 sample had an 

error resulting in a “0” class. The classification accuracy can be seen in Table 

3. 

Class Family Correctly 

classified 

Incorrectly 

classified 

Accuracy Average 

Cuckoo score 

1 Benign 49 12 80.3% 1.04 

2 Dridex 31 6 83.8% 5.26 

3 Locky 22 5 81.5% 6.41 

4 TeslaCrypt 43 1 97.7% 6.27 

5 Vawtrak 15 3 83.3% 2.66 

6 Zeus 30 10 75% 6.46 

7 DarkComet 47 2 95.9% 5.15 

8 CyberGate 38 0 100% 6.57 

9 Xtreme 31 3 91.2% 5.15 

10 CTB-Locker 17 5 77.3% 4.76        

Table 3. KNN multi-class accuracy 
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The total accuracy of the K-Nearest Neighbors depends on the k value. In our 

case, different values were tested. They produced the following accuracy: 

 k=1: 87% 

 k=2: 84.63% 

 k=3: 81.3% 

 k=4: 80% 

 k=5: 80% 

 k=6: 80% 

 k=10: 77.8% 

As it can be seen, the best accuracy was achieved with k=1, and the accuracy 

was 87%. This is an unusual case – when the best accuracy is achieved with 

k=1 it can be a sign of one of the following: 

1. The test data is the same as the traininig data. 

2. The test data is very similar to the training data. 

3. Boundaries between different classes are very clear. 

In our case, the train and test set were selected randomly from the dataset with 

2/3 ratio. This means that the data cannot be the same. The most probable 

reason for this is that the classes are distributed in a way that the boundaries 

are very clear when the KNN algorithm was applied. 

 

Figure 24. CrossTable for KNN binary classification 

Two-class classification into malware and benign files was also performed. The 

resulting cross-table can be seen in Figure 24. In the table, class 1 represents 
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the benign files, while class 2 represents malicious files. Again, predictions were 

made with different k values: 

 k=1: 94.6% 

 k=2: 94.3% 

 k=3: 93.5% 

 k=5: 93.5% 

 k=7: 92.7% 

The best accuracy was achieved with k=1 - 94.6%. The detailed accuracy can 

be found in the Tables 4.1 and 4.2. 

Class Correctly identified 

instances 

Incorrectly identified 

instances 

Accuracy 

Benign 49 12 80.3% 

Malicious 302 8 97.4% 

Table 4.1. KNN binary accuracy 

 

True positives True negatives False positives False negatives 

302 49 12 8 

Table 4.2. KNN binary accuracy 

Overall, the KNN algorithm resulted in a good accuracy of 87% for multi-class 

classification and 94.6% for two-class classification. We can conclude that the 

algorithm provided good results. Classes are distributed evenly in the case of 

multi-class classification, which also affected the good accuracy of the 

predictions. Even though the distribution is not even in the case of two-class 

classification (310 vs. 61), the results are still accurate. 

5.2 Support Vector Machines 

The next algorithm that was tested was Support Vector Machines. The result of 

the predictions can be outlined in Figure 25. The overall accuracy achieved was 

87.6% for multi-class classification and 94.6% for binary classification. 
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Figure 25. SVM CrossTable 

The detailed information about the accuracy of each class can be found in 

Table 5.  

Class Family Correctly 

classified 

Incorrectly 

classified 

Accuracy Average Cuckoo 

score 

1 Benign 56 5 91.8% 1.04 

2 Dridex 32 5 86.5% 5.26 

3 Locky 21 6 77.8% 6.41 

4 TeslaCrypt 37 7 84% 6.27 

5 Vawtrak 10 8 55.6% 2.66 

6 Zeus 31 9 77.5% 6.46 

7 DarkComet 48 1 98% 5.15 

8 CyberGate 37 1 97.4% 6.57 

9 Xtreme 31 3 91.2% 5.15 

10 CTB-Locker 22 0 100% 4.76 

Table 5. SVM multiclass accuracy 
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Figure 26. SVM binary classification CrossTable 

Figure 26 outlines the cross-table for binary classification. The detailed 

information about binary classification can be found as well in Tables 6.1 and 

6.2. As we can see, the number of correctly identified benign instances (true 

negatives) was equal to 41, correctly identified malicious instances (true 

positives) – 310, incorrectly identified benign instances (false positives) – 20, 

incorrectly identified malicious instances (false negatives) – 0. 

Class Correctly identified 

instances 

Incorrectly identified 

instances 

Accuracy 

Benign 41 20 67.2% 

Malicious 310 0 100% 

Table 6.1. SVM binary classification accuracy 

 

 

True positives True negatives False positives False negatives 

310 41 20 0 

Table 6.2. SVM binary classification accuracy 
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Overall, the resulted accuracies of 87.6% for multi-class classification and 

94.6% for binary classification are almost equal to the results of the K-Nearest 

Neighbors. In turn, this algorithm resulted in 0 false negatives in binary 

classification – this means that no malware samples were identified as benign. 

Therefore, it can prevent malware infections more effectively than K-Nearest 

Neighbors.  

5.3 J48 Decision Tree 

The third tested algorithm was the J48 Decision Tree. The advantage of the 

Decision Tree method is that it operates in the ”white box” approach and we 

can see which decisions resulted in our prediction. The decision trees for multi-

class classification and binary classification can be found in Figures 27 and 28 

respectively. 
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Figure 27. Multiclass Decision Tree 
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Figure 28. Binary Decision Tree 
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The overall accuracy was 93.3% for multiclass classification and 94.6% for 

binary classification. The cross-table outlining the results of multiclass 

classification can be found in Figure 29. 

 

 

Figure 29. Decision Tree multi-class CrossTable 

The detailed results of each malware family can be found in Table 7. 
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Class Family Correctly 

classified 

Incorrectly 

classified 

Accuracy Average 

Cuckoo score  

1 Benign 54 7 88.5% 1.04 

2 Dridex 37 0 100% 5.26 

3 Locky 24 3 88.9% 6.41 

4 TeslaCrypt 44 0 100% 6.27 

5 Vawtrak 16 2 88.9% 2.66 

6 Zeus 33 7 82.5% 6.46 

7 DarkComet 47 2 95.9% 5.15 

8 CyberGate 38 0 100% 6.57 

9 Xtreme 32 2 94.1% 5.15 

10 CTB-Locker 21 1 95.5% 4.76 

Table 7. Decision Tree multi-class accuracy 

For the binary classification problem, the algorithm resulted in 46 correctly 

identified instances for benign samples (true negatives), 305 correctly identified 

malware samples (true positives), 15 incorrectly identified benign samples 

(false positives) and 5 incorrectly classified benign samples (false negatives). 

The details are introduced in Figure 30 and Tables 8.1 and 8.2. 

 

Figure 30. Decision Tree binary classification CrossTable 

 

Class Correctly identified 

instances 

Incorrectly identified 

instances 

Accuracy 

Benign 46 15 75.4% 

Malicious 305 5 98.4% 

Table 8.1. Decision Tree binary classification accuracy 
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True positives True negatives False positives False negatives 

305 46 15 5 

Table 8.2. Decision Tree binary classification accuracy 

The overall accuracy of J48 Decision Tree was good: 93.3% for multiclass 

classification and 94.6% for binary classification. For multiclass classification, 

this result is sufficiently better than the one obtained with the K-Nearest 

Neighbors and Support Vector Machines. For binary classification, the result is 

the same, however. 

5.4 Naive Bayes 

The fourth algorithm that was tested was Naive Bayes. The resulted accuracy 

was 72.23% for multiclass classification and 55% for binary classification. The 

cross table related to the Naive Bayes classification can be found in Figure 31.  

 

Figure 31. Naive Bayes multi-class classification cross-table 
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The detailed results that outline the accuracy of each of the malware families 

can be found in Table 9. 

Class Family Correctly 

classified 

Incorrectly 

classified 

Accuracy Average 

Cuckoo score 

1 Benign 34 27 55.8% 1.04 

2 Dridex 1 36 2.7% 5.26 

3 Locky 25 2 92.6% 6.41 

4 TeslaCrypt 33 11 75% 6.27 

5 Vawtrak 8 10 44.4% 2.66 

6 Zeus 28 12 70% 6.46 

7 DarkComet 49 0 100% 5.15 

8 CyberGate 37 1 97.4% 6.57 

9 Xtreme 31 3 91.2% 5.15 

10 CTB-Locker 22 0 100% 4.76 

Table 9. Naive Bayes multi-class classification accuracy 

For binary classification, the algorithm performed poorly. The number of 

correctly identified benign instances (true negatives) was 61, correctly identified 

malware instances (true positives) 143, incorrectly identified benign instances 

(false positives) 0, incorrectly identified malware instances (false negatives)  

167. The detailed results can be found in Figure 32 and in Tables 10.1 and 10.2.  

 

 

Figure 32. Naive Bayes binary classification cross-table 
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Class Correctly identified 

instances 

Incorrectly identified 

instances 

Accuracy 

Benign 61 0 100% 

Malicious 143 167 46.1% 

Table 10.1. Naive Bayes binary classification accuracy 

 

True positives True negatives False positives False negatives 

143 61 0 167 

Table 10.2. Naive Bayes binary classification accuracy 

Overall, the Naive Bayes algorithm performed poorly. The accuracy of 

multiclass classification was 72.23% and of binary classification only 55%. This 

result is insusceptible for real world detection. In addition to that, a number of 

false negatives, in other words, malware files that were incorrectly marked as 

benign filed, reached 167 – 45% of the total number of files. In a real 

environment, such result would cause a huge malware epidemics in a short 

amount of time. 

Most likely, such a bad accuracy is the result of having a high dependability 

between features. As we know, the main drawback of the Naive Bayes 

algorithm is that each feature is treated independently, although in most cases 

this cannot be true. In our case, most likely certain APIs are dependent on each 

other, i.e. 𝐴𝑃𝐼𝑛 cannot be triggered without 𝐴𝑃𝐼𝑚. That is the most probable 

reason of a bad result of the Naive Bayes algorithm. 

5.5 Random Forest 

The last algorithm that was implemented was the Random Forest algorithm. 

The algorithm resulted in a good accuracy of predictions, 95.69% for multi-class 

classification and 96.8% for binary classification. The cross-table related to the 

multiclass predictions can be found in Figure 33. 
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Figure 33. Random Forest multiclass classification cross-table 

The detailed information about the performance of each class can be found in 

Table 11. 

Class Family Correctly 

classified 

Incorrectly 

classified 

Accuracy Average 

Cuckoo score 

1 Benign 58 3 95% 1.04 

2 Dridex 35 2 94.6% 5.26 

3 Locky 25 2 92.6% 6.41 

4 TeslaCrypt 44 0 100% 6.27 

5 Vawtrak 15 3 83.3% 2.66 

6 Zeus 35 5 87.5% 6.46 

7 DarkComet 49 0 100% 5.15 

8 CyberGate 38 0 100% 6.57 

9 Xtreme 34 0 100% 5.15 

10 CTB-Locker 22 0 100% 4.76 

Table 11. Random Forest multiclass classification accuracy 
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In the binary classification problem, the result achieved reached 96.8%. More 

specifically, the number of correctly identified benign instances (true negatives) 

reached 52, correctly identified malware instances (true positives) 307, 

incorrectly identified benign instances (false positives) 9, and incorrectly 

identified malware instances (false negatives) 3. The detailed information can 

be found in Figure 34 and Tables 12.1 and 12.2. 

 

 

Figure 34. Random Forest binary classification cross-table 

 

Class Correctly identified 

instances 

Incorrectly identified 

instances 

Accuracy 

Benign 52 9 85.2% 

Malicious 307 3 99% 

Table 12.1. Random Forest binary classification accuracy 

 

True positives True negatives False positives False negatives 

307 52 9 3 

Table 12.2. Random Forest binary classification accuracy 

The Random Forest algorithm resulted in the highest accuracy among the other 

algorithms. It achieved 95.69% and 96.8% accuracy for multiclass and binary 

classifications respectively. However, some false negatives are still present – 

their number is equal to three.  
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6 CONCLUSIONS 

Overall, the goals defined for this study were achieved. The desired feature 

extraction and representation methods were selected and the selected machine 

learning algorithms were applied and evaluated.  

The desired feature representation method was selected to be the combined 

matrix, outlining the frequency of successful and failed API calls along with the 

return codes for them. This was chosen, because it outlines the actual behavior 

of the file. Unlike other methods, it combines information about different 

changes in the system, including the changes in the registry, mutexes, files, etc.  

In classification problems, different models gave different results. The lowest 

accuracy was achieved by Naive Bayes (72.34% and 55%), followed by k-

Nearest-Neighbors and Support Vector Machines (87%, 94.6% and 87.6%, 

94.6% respectively). The highest accuracy was achieved with the J48 and 

Random Forest models, and it was equal to 93.3% and 95.69% for multi-class 

classification and 94.6% and 96.8% for binary classification respectively.  

The result achieved by Random Forest is more accurate than the one achieved 

by the sandbox. It is hard to compare the results quantitively, since the sandbox 

does not classify the samples into malicious or benign. The classification into 

malware family is beyond its functionality as well. Instead, the maliciousness of 

the file is seen as a regression problem, and the severity score is its output. 

However, the difference in the accuracy can be easily seen. Table 2, outlined 

in Chapter 4.2.1, shows that none of the malware families were labeled with the 

“red” severity level, and one was labeled as “green”. This result is very 

inaccurate in comparison to the 95.69% and 96.8% achieved by Random 

Forest. 

Based on the results described before, it is recommended to implement the 

classification based on the Random Forest method for multi-class classification, 

as it resulted in the best accuracy and high performance. Although this method 

achieved the highest result for binary classification as well, it is recommended 

to consider implementing Support Vector Machines instead. This is because 

this method resulted in 0 false-negatives, i.e. no malware samples were 

classified as benign. Although in the binary problem accuracy is still the main 
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concern, the number of false-negatives is an important factor as well, since they 

can result in massive infections. Random Forest, despite its high accuracy, 

resulted in 3 false negatives. Support Vector Machines, in turn, resulted in 0 

false-negatives, while the accuracy is lower by only 2%. That is why it is 

recommended to consider implementing Support Vector Machines for binary 

classification. 

Classifier 

 

Performance 

KNN SVM Naive Bayes J48 Random Forest 

M
u

lt
i-

c
la

s
s
  

Accuracy 

 

87% 

 

87.6% 

 

72.34% 

 

93.3% 

 

95.69% 

 

B
in

a
ry

 

Accuracy 94.6% 94.6% 55% 94.6% 96.8% 

False-

positives 

12 20 0 15 9 

False-

negatives 

8 0 167 5 3 

True-

positives 

302 310 143 305 307 

True-

negatives 

49 41 61 46 52 

Table 53. Results 

6.1. Future Work 

The study performed in this project was a proof-of-concept. Therefore, several 

future improvements related to the practical implementation of this project can 

be identified: 

 Implement feature extraction in the inline mode 

Currently, the feature extraction is performed after the files were run in 

the sandbox and the reports were generated. This approach will result 

in delays in the file analysis when implemented. Instead, it is advised to 
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extract the features as they are processed by the sandbox, so that 

there will be no need to go through the reports again. 

 

 Use a wider dataset 

Although the dataset that was used in this study is broad, covering most 

of the malware types that are relevant to the modern world, it does not 

cover all possible types. Collecting a malware dataset is a tedious task 

that requires a lot of time and effort. For more accurate evaluation of the 

predictors, it is advised to test the models on all the possible types of 

malware: spyware, adware, rootkits, backdoor, banking malware, etc.  In 

addition to that, it is important to understand that the model will only be 

able to predict the samples of the families that it has seen earlier. In other 

words, in a real-world application, the maximum amount of possible 

families should be used before the launch of the project for real-world 

environments. 

 

 Use pre-selected APIs 

In this work, the big overhead in the data processing was created by the 

need of selecting the relevant API calls and removing the redundant 

ones. For further implementation, only the APIs that were identified as 

relevant in this study can be used. This will decrease the amount of time 

required for data preprocessing, reduce the performance requirements 

of the machine on which the analysis is being done and decrease the 

level of feature selection to be made. However, it should be noted, that 

for more accurate description, the relevant APIs should be extracted from 

the biggest possible dataset. Also, it is advised to select the relevant 

APIs per malware family, as this will result in another level of flexibility 

and accuracy.  
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APPENDICES 

1. Feature Extraction Code (Python) 

 

#!/usr/bin/env python 

 

import json 

import logging 

import os 

import sys 

import time 

import datetime 

 

import numpy 

 

 

def get_json(filepath, log): 

    """ 

    Reads a JSON file, returns None on ValueError 

    and if not a file. 

    """ 

    parsed_json = None 

 

    # See if it is a file and not a directory or something else 

    if not os.path.isfile(file_path): 

        log.warning("%s is not a file! Skipping", file_path) 

        return parsed_json 

 

    try: 

        with open(filepath, "rb") as fp: 

            parsed_json = json.loads(fp.read()) 

 

    except ValueError as e: 

        log.error("Error reading JSON file %s. Error: %s", 

                  filepath, e) 

 

    return parsed_json 

 

 

def setup_logger(): 

    """" 

    Sets up the logger.  

    """ 

    logformat = "[%(asctime)s %(levelname)s] %(message)s" 

    dateformat = "%d-%m-%y %H:%M:%S" 

    logger = logging.getLogger("extraction") 

    formatter = logging.Formatter(logformat) 

    formatter.datefmt = dateformat 

    fh = logging.FileHandler("dataextraction.log", mode="a") 

    fh.setFormatter(formatter) 

    sh = logging.StreamHandler() 

    sh.setFormatter(formatter) 

    logger.setLevel(logging.INFO) 

    logger.addHandler(fh) 

    logger.addHandler(sh) 

    logger.propagate = False 
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if __name__ == "__main__": 

 

    setup_logger() 

    log = logging.getLogger("extraction") 

 

    # Add path to reports here 

    DATASET_DIR = "/home/kate/thesis/reports" 

 

    # Location where data will be stored. This should be a directory, 

not a filename. 

    # The filename will be generated using a timestamp. Format: data-

timestamp.npy 

    NUMPY_DATA_SAVE = "/home/kate/thesis" 

 

    if len(sys.argv) > 1: 

        min_calls = int(sys.argv[1]) 

        log.info("-----> | Using only reports with a minimum of %s 

calls | <-----", min_calls) 

    else: 

        min_calls = 1 

        log.info("-----> | Using only reports with a minimum of 1 

call | <-----") 

 

    ignore_list = [] 

 

 

    success_apis, fail_apis, return_codes = [], [], [] 

    sample_num = 0 

 

    # Fill the lists with calls 

    for sample in os.listdir(DATASET_DIR): 

 

        file_path = os.path.join(DATASET_DIR, sample) 

 

        try: 

            # Load JSON file 

            log.info("Reading file: %s", file_path) 

            parsed_json = get_json(file_path, log) 

 

            if parsed_json is None: 

                log.warning("Parsed JSON was None. Skipping %s", 

file_path) 

                continue 

 

            # Check the number of API calls 

            total = 0 

            for proc in parsed_json["behavior"]["processes"]: 

 

                total += len(proc["calls"]) 

            if total < min_calls: 

                log.warning("Sample %s is less than %s calls. 

Skipping..", 

                            file_path, min_calls) 

                ignore_list.append(file_path) 

                continue 

 

            # Successfully loaded, increment number 

            sample_num += 1 
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            for n in parsed_json["behavior"]["processes"]: 

 

                for k in n["calls"]: 

                    call = k["api"] 

                    if k["status"] == 1: 

                        if call not in success_apis: 

                            success_apis.append(call) 

 

                    elif call not in fail_apis: 

                        fail_apis.append(call) 

 

                    if k["return_value"] not in return_codes: 

                        return_codes.append(k["return_value"]) 

 

        except MemoryError as e: 

            log.error("Error! %s", e) 

            sys.exit(1) 

 

    log.info("Success APIs: %s", len(success_apis)) 

    log.info("Fail APIs: %s", len(fail_apis)) 

    log.info("Return codes: %s", len(return_codes)) 

 

    data_length = len(success_apis) + len(fail_apis) + 

len(return_codes) + 2 

 

    # Create the matrix using the calculated length of all lists 

    matrix = numpy.zeros((sample_num, data_length)) 

    matrix_scores = numpy.zeros((sample_num, 3)) 

 

    log.info("Data length: %s", data_length) 

 

    ids = 0 

 

    try: 

        for sample in os.listdir(DATASET_DIR): 

 

            file_path = os.path.join(DATASET_DIR, sample) 

 

            if file_path in ignore_list: 

                continue 

 

            # Load JSON file again 

            log.info("Reading file %s", file_path) 

            parsed_json = get_json(file_path, log) 

 

            if parsed_json is None: 

                log.warning("Parsed JSON was None. Skipping %s", 

file_path) 

                continue 

 

            log.info("Handling all calls for file %s", file_path) 

 

            for process in parsed_json["behavior"]["processes"]: 

 

                for call in process["calls"]: 

 

                    status = call["status"] 

                    api = call["api"] 

                    returncode = call["return_value"] 
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                    if status: 

                        # Store successful call in matrix 

                        index = success_apis.index(api) 

                        matrix[ids][index] += 1 

                    else: 

                        # Store failed call in matrix 

                        offset = len(success_apis) 

                        index = offset + fail_apis.index(api) 

                        matrix[ids][index] += 1 

 

                    # Store return code in matrix 

                    offset = len(success_apis) + len(fail_apis) 

                    index = offset + return_codes.index(returncode) 

                    matrix[ids][index] += 1 

    

    

            if sample.split( "-" )[0] == "benign": 

  matrix[ids][data_length-2] = 1 

  matrix[ids][data_length-1] = 1 

                matrix_scores[ids][2] = 1 

     elif sample.split( "-" )[0] == "dridex": 

                matrix[ids][data_length-2] = 2 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 2 

            elif sample.split( "-" )[0] == "locky": 

  matrix[ids][data_length-2] = 3 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 3 

            elif sample.split( "-" )[0] == "teslacrypt": 

                matrix[ids][data_length-2] = 4 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 4 

            elif sample.split( "-" )[0] == "vawtrak": 

                matrix[ids][data_length-2] = 5 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 5 

            elif sample.split( "-" )[0] == "zeus": 

                matrix[ids][data_length-2] = 6 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 6 

            elif sample.split( "-" )[0] == "darkcomet": 

                matrix[ids][data_length-2] = 7 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 7 

            elif sample.split( "-" )[0] == "cybergate": 

                matrix[ids][data_length-2] = 8 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 8 

            elif sample.split( "-" )[0] == "xtreme": 

                matrix[ids][data_length-2] = 9 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 9 

            elif sample.split( "-" )[0] == "ctblocker": 

                matrix[ids][data_length-2] = 10 

  matrix[ids][data_length-1] = 2 

                matrix_scores[ids][2] = 10 

                 

     



84 

 

            matrix_scores[ids][0] = sample.split(".")[0].split( "-" 

)[1] 

            matrix_scores[ids][1] = parsed_json["info"]["score"] 

    

 

            ids += 1 

 

    finally: 

        date_time = time.time() 

        dt_stamp = 

datetime.datetime.fromtimestamp(time.time()).strftime( 

            "%d-%m-%Y_%H-%M-%S") 

        filename = "data-%s.csv" % dt_stamp 

        file_scores = "scores-%s.csv" % dt_stamp 

        try: 

            path = os.path.join(NUMPY_DATA_SAVE, filename) 

            path_scores = os.path.join(NUMPY_DATA_SAVE, file_scores) 

            log.info("Storing numpy data in at %s", path) 

            numpy.savetxt(path, matrix, delimiter=",") 

            numpy.savetxt(path_scores, matrix_scores, delimiter="," ) 

        except Exception as e: 

            path = 

os.path.join(os.path.dirname(os.path.realpath(__file__)), filename) 

            path_scores = 

os.path.join(os.path.dirname(os.path.realpath(__file__)), 

file_scores) 

            log.error("Error writing numpy data! Trying script 

directory %s", 

                      path) 

            numpy.savetxt(path, matrix, delimiter=",") 

            numpy.savetxt(path_scores, matrix_scores, delimiter="," ) 

 

 
Note: after this script, the headers of “Class” and “Malware” should be added to 
the respective columns. The classes are derived from the names of files.  
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2. Feature selection code (R) 

library(RWeka) 

library(Boruta) 

 

home_dir <- "C:\\Users\\Kateryna\\Desktop\\Thesis-stuff\\ 

data-07-12-2016_18-13-37.csv" 

 

#load data from .csv file 

apis1<- read.csv(home_dir, header=TRUE) 

 

set.seed(123) 

boruta.train <- Boruta(Class ~., data = apis1, doTrace = 2) 

print(boruta.train) 

final.boruta <- TentativeRoughFix(boruta.train) 

print(final.boruta) 

k1=getSelectedAttributes(final.boruta, withTentative = F) 

boruta.df <- attStats(final.boruta) 

 

selected_apis1<-apis1[,k1] 

selected_apis1<-cbind(selected_apis1, apis1[70518]) 

write.csv(selected_apis1, file = "selectedfeatures.csv") 
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3. Classification code (R) 

#import libraries 

library(RWeka) 

library(kernlab) 

library(Boruta) 

library(class) 

library(dplyr) 

library(lubridate) 

library(gmodels) 

library(ggvis) 

library(e1071) 

library(randomForest) 

 

#set directory 

home_dir <- "C:\\Users\\Kateryna\\Desktop\\Thesis-

stuff\\selectedfeatures.csv" 

 

#load data from .csv file 

selected_apis <- read.csv(home_dir, header=TRUE) 

 

#define the normalization function 

normalize <- function(x) { 

  num <- x - min(x) 

  denom <- max(x) - min(x) 

  return (num/denom) 

} 

 

coln = ncol(selected_apis) 

coln1=coln+1 

 

#normalize data 

selected_apis<- as.data.frame(lapply(selected_apis[,1:coln-

1], normalize)) 

 

#DIVIDE DATA INTO TRAINING AND TEST SET 

set.seed(1234) 

#label matrix with 1 with prob 0.067 and 2 with prob 0.33, to 

#separate dataset into 2/3 ratio 

ind <- sample(2, nrow(selected_apis), replace=TRUE, 

prob=c(0.67, 0.33)) 

 

#create 2 datasets from tables, without the class label 

selected_apis.train1<-selected_apis[ind==1,(1:coln)] 

selected_apis.test1<-selected_apis[ind==2,(1:coln)] 

selected_apis.train2<-selected_apis[ind==1,1:coln1] 

selected_apis.test2<-selected_apis[ind==2,1:coln1] 

selected_apis.train2<-selected_apis.train2[,-coln] 

selected_apis.test2<-selected_apis.test2[,-coln] 

#set class labels for training and test sets 

selected_apis.testlabels<-selected_apis[ind==2,coln] 

selected_apis.trainlabels<-selected_apis[ind==1,coln] 

 

#set class labels for 2-class classification 

selected_apis.testlabels.twoway<-selected_apis[ind==2,coln1] 

selected_apis.trainlabels.twoway<-selected_apis[ind==1,coln1] 

 

#J48 
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fit <- J48(as.factor(Class)~., data=selected_apis.train1) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test1) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 

 

#two-class 

fit2 <- ksvm(as.factor(Malware)~., data=selected_apis.train2) 

# summarize the fit 

summary(fit2) 

# make predictions 

predictions <- predict(fit2, selected_apis.test2) 

# summarize accuracy 

CrossTable(selected_apis.testlabels.twoway, predictions, 

type="C-Classification") 

 

#KNN classification 

model_pred <- knn(train = selected_apis.train1, test = 

selected_apis.test1, cl = selected_apis.trainlabels, k=1) 

CrossTable(x = selected_apis.testlabels, y = model_pred, 

prop.chisq=FALSE) 

 

#two-way 

model_twoway<-knn(train = selected_apis.train2, test = 

selected_apis.test2, cl = selected_apis.trainlabels.twoway, 

k=1) 

prob <- attr(model_pred, "prob") 

CrossTable(x = selected_apis.testlabels.twoway, y = 

model_twoway, prop.chisq=FALSE) 

 

#Naive Bayes 

fit <- naiveBayes(as.factor(Class)~., 

data=selected_apis.train1) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test1) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 

 

#two-way 

fit <- naiveBayes(as.factor(Malware)~., 

data=selected_apis.train2) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test2) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 

 

 

 

#RandomForest 
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fit <- randomForest(as.factor(Class)~., 

data=selected_apis.train1) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test1) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 

 

#two-way 

fit <- randomForest(as.factor(Malware)~., 

data=selected_apis.train2) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test2) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 

 

#SVM 

# fit model 

fit <- ksvm(as.factor(Class)~., data=selected_apis.train1) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test1) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 

 

#two-way 

fit <- ksvm(as.factor(Malware)~., data=selected_apis.train2) 

# summarize the fit 

summary(fit) 

# make predictions 

predictions <- predict(fit, selected_apis.test2) 

# summarize accuracy 

CrossTable(selected_apis.testlabels, predictions, type="C-

Classification") 
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4. List of MD5 hashes of malware samples 

Locky 
297529814d8d292594a1981fad30daa6 
b97ed89e814ad91338a6bdd5f7853566 
40849d82a14058cbc91d0ecea473d1d8 
254c5c13dd02a9fccbe2a40ac0b04355 
1d0687fe7c7c5591f1049ecb84e8cbd9 
0aa56c23cff79948f977ebd1a470b4ad 
85af16270f649b670cd255e6054d5388 
0c0bf27bf900f3fcc6e35ba20131d344 
901ef89350b60a992e1a6c67a61dcdab 
fe4985beae55b054259bf14d3a3e50a7 
8784d8f8eb6988bab68a1c56de740eeb 
3b522c3e3fc6cf29a2c8c65a80f14a08 
252957f37b8bd7a57473eab5f1a65d5c 
a8344ecd79b1c1371526ee06a0a0fcd6 
ea8b3acdfb0c30156977897f693f9db6 
5cc3a50ee804e38a1d4546166e204544 
552ba52f618ac8d1e50a5524ef15bb5c 
5d2cebe73f8387466ef8534797840de0 
5f0cb3259701298a76d6ca475b4e404e 
9347fbbfec873aa7f19811674f80bdbe 
d377f4ca5ef69de33e3c58a8d4e76803 
111e581f1c3bb53c11afe0b2bd131e4a 
ba7505460a9c758c25bb3de1208cf23f 
bf664e4a8f36d2de1614984e6982bbb2 
810c011911151d3e8a064ad44a600421 
5fbdf068522177ac6392fa8f8689ed43 
e81a50d312fe396641fb781a63667f3e 
d35d938cccbccb5b84a19d2271c97ae7 
10bdf784fd1f36aa72100aa90da22d8a 
05f96e4199d83caa6f5e189016215e45 
ad2022689e5de22e2e706b065e148c25 
5a5817583b302c651a71f0ddfbe33a6d 
9e3588c7245e6ddec33473e5b4975670 
f7bc8f3b73313b238944e4812a3e4975 
dce1cd7955c0352f86ecd7364f4a3fdb 
5341fabc65b3984bf5e0d1718983020c 
47380d71be72bb4ff55b5e51f8bdc963 
296b0a81f0925c95e01839690c0934bc 
d98e82be5222b3686d58a625c77ab488 
f08c3b7ace25f1ce76bebd3429762ef8 
264f16260d200d0501cf83220ed9a30a 
5695803a695e1dc6443ea09572e6b14c 
ba5a6500cfba0e674f8bd2a62a308ae5 
71b8d35385ca32cd413c8f708e802c9b 
e52cc2b7136c572838b8a9e2b021bd5b 
17e23f44a0bcf6b27f480439714b4688 
7822f2ca1be80f98649a30fe5441d0ba 
5db257bb49dddf90d093d17b43eaa9c9 
72dd8bc7871f07e2d6320270c60ac451 
1311d9372c3550300d400c3fe83cd867 
680a02bdae6724c537053f0590b731fd 
89a2fcb5acc56884f13129f6143b957e 
f2c79d175e2df1baf8a041802df691b7 
4fb20848e9564c399d566b614caad9a4 
e23f7ee88a37a90b1a3c49dc168e6fce 
4febc1c6f735dd81d8225247aeaa6457 
2a08b4c513ab56a3284828bfc9aedbf7 
b1c957ab802f39839f2b92d7d55e7f83 
5af520ad3507da22aaa756357e78eb57 
124b76844281e9067654506429437545 
fb469897a4536876306ae78e18409be6 
a56722d826d5f222a8385cbc5666b63b 
1cd414da2994719c23c85f076efed410 
1b9f7d4c8a918cc8fb1cddadab9ee81b 
cdd120508a1f0ff0b5b18497d67ca349 
63b695765260d6d1d2a5e5fb88130dfd 
3258e4be68770b76315a5059a0cb3199 
1fa1023e66b05db04d22ed4f57d37651 
baaaefc5706911cd0a797808e23544ae 
a2c8be7f272bdd1191bdf112ba1aa9ac 
3e733108c36c9d407f7a40868d251911 
c9cbbb6364f51f790585aec9f5fa98cc 
e4ad8906a152085e7564252b47f6c10d 
d6e56a430c2c53104ca5b0cd092875b1 
c6ff697b6c1b2164ede3fa5fac0e127a 
b1c156ff3c59f19e30f96545bea247cf 
9fd4d9c87668844d3f645b6877d64d89 
885c4cfbf0b9b7956adcbd5b93688836 
7e409b55d878a463e974b50c92cb172d 
68aa9f8fdb7c43ebdb4a7b3a6ceb98d2 
5dce19699be78fa82e32a96aee436c44 
3d91e5f119093cf1639f8d38b35d1742 
2e96ae4983cdec64af16788300c50e9d 
28b86d53228b2f5b042db52c3a6341fe 
1725b728a5225a47e3e6fc0092281071 
0fb871b4b329003dd29ed674228e0206 

cb3425d0e436e358a07c3f38110135a1 
0c8f52995d8303837a3be33246658e0c 
09f95bd2323574b6edeac8f8e349e4dd 
85af825a34e5b0c000c6c4b4fa065d82 
89b2bae66f6a8e24396fba2dfa062227 
a6bf89594d36f2f5c499efde3c584bd0 
8adbcffe2cb52628afe8d6412c1e3a06 
5fc1ccd8530954f61ceeafb77e72045e 
c9be9e7751b8f164d04a31a71d0199c6 
a5116b31ab81b6c8fc0c9251dbb6f315 
81e85dcaf482aba2f8ea047145490493 
579eb4f17d08c5061d8cf71b96436a8a 
2809b79768b898adc24eb276e5866ce2 
1ef99356e1b53b6ccc163364a5418bf4 
f5fdc2a9d330a7e607003445edd9dfc2 
f0d96cecf681e1f5f1b7dbf9f6a518b6 
d72d9aa76ab313d50f059774d78875de 
c49177a1553b3240dfea69ee09d58b70 
bf1890c2109ac0d6eb6183a98353c2ce 
ac4e4c3cb5cc6c068466e937f48adcc8 
90eb8948513e21a8c87f8295ac7e81f5 
82f32982439cf4fa320a0f9a8e4adc98 
77287dec5a92a3163c3c88ddecc8ba50 
768b0a09344df69404d2466c5a45aaf0 
710f6476ca3029e2017e6472b751127d 
17f493da40a77f6bc7940f3166e9d89b 
150ffde680083d6e8d814d93fdc5b5e8 
053d6ae27d906e6303dd5604262ccd31 
527290686ec5515f248d4d20c3bb29df 
a2236e65f3d0849ca2b85775ade093ff 
b06d9dd17c69ed2ae75d9e40b2631b42 
7848d43a591033c95422f4b9eb22e071 
31d2bdcd2fc117b558b54e731af02a65 
8d57943a277830544fc7204a0912d937 
f0f7c752758175478d275e638f3f49dc 
663c6ffc9a3b9ad8168a24ca929ac3da 
3280c0f144a78ef5a0dd4df35655040c 
dee63e8e44bba5e6f6cb076f05d0c56b 
2f6a0dd5a5967e533cd78f1942b95b50 
9537e164e0eec0d55c4bd10b58efa994 
4d8fedc12514af7312782e0cc66fa428 
043270b914fcfc6966e20dd8cea0a60a 
c75e655247b9644d512c907485b95d20 
43d7a82c8317b49452cff1cc2e993dd2 
66b17e85d778c8aa51ef635858faa8a3 
400b1eb815c4567010ac6e908391105a 
3c408d7b459151c051f8597be7e7e41c 
7a3d24a705cbf7e6edad81a116c065f8 
6159c5d8a54ab76dec48a795b4b73318 
9d50bcbb9487430f92a500d6ed0cd8ff 
598a0f26018fa23f7d46f9cd21fdc24a 
3eb688eb8a4a3a87dc7c39db8ce7718f 
db8e6ed8d24d2ad2f5a09b9851c25fba 
c6b7f5336ae4b985b0b523f3db76adbc 
513b2bad427c31cc7c6f3a225ffc15f7 
44b713d31d7ddde51b0790d356cc1816 
2b57d9b650820b3ca9f66ed5aadab237 
f5279dbe89db9e33fa48c609f5f043c6 
c57f72512fa5f47288e82054d58b9e8b 
ab583c9202f705fbead50361356d660c 

98cd1d2cc58142e1c662a71521229d04 
86b735f30639165462f709e689daffcb 
3f34b185b6e0ee6d73602305bb9d2733 
3d148f33bc2e22218080d99f1f58336d 
a1e5fbcfee3aa4a025954774493edab1 
a01d60682ad5fadc9018908185e8cde3 
9da331f4353f5b0033c162eb308a8197 
1f46e31835b0f228877e161f59e6cc0a 
b86d81259e15e343d4b6f64f72075d00 
aff7a62522104c6dcb39463c0b1b00b6 
adbc166058c872d2a61a53c86915ab78 
8ed052b3c5c92727f385761786e16eb6 
4812375295c39123dc03e634911adf2c 
475bd8f697f7ebf88682be5458e4cdd2 
3dc8d7cee33a5c2fc39c5386146a1d35 
afd40dca335530ec993d9cf91be96b4c 
12e15a697cdb0f1a73b05637d8b943ba 
e57c0d32918eabeb319d1ee52d11df14 
8a3182f0afc0d21230b9ff1a0a8d7599 
8e5d13bdeb92bd7cedf828fed987882d 
79386615a10ff859ee325652ef3aba0b 
30896101aa3ea284d44c03289d8e34eb 
0bbdd9fe374151073c54310d687431d3 
01e2b6fb23d4a6b5250e95fdf47f0d01 
7cf47395408c261c6b6db19a9250c230 
59cc8fc8984bcda72cc4e6f9003053cd 
27a6dbbc09d4fb7e0912e9fea078f5db 
20b623f490914625366aab0ae7b11941 

c492867c40851c748125dc5742b82801 
eb49f361ed56cf58193cc3ef7bf6250a 
b986b4396f001e508898baa4ba71367f 
89df8a4d6fffca3f8d72eb00921b32b5 
3f03b44a0981ae6b05ad7e9b32b662d4 
0608285eed579359e5649881169ca920 
a52ac037fcd84bac28e1243ab6442c8b 
137e9311d5807974eabb5fa394de0a15 
ff06ce7adf8f6cf1973a6845859ff0b5 
0fe90340684fb1344c9946620ed955f3 
89a2fcb5acc56884f13129f6143b957e 
f2c79d175e2df1baf8a041802df691b7 
4fb20848e9564c399d566b614caad9a4 
e23f7ee88a37a90b1a3c49dc168e6fce 
4febc1c6f735dd81d8225247aeaa6457 
2a08b4c513ab56a3284828bfc9aedbf7 
 

Teslacrypt 
a30863f1a404bc2f735cc9ad862e85a9 
a2fb8550db4d13c218f98862e24ef105 
a1559181f4d306118f589dd86a8a3c30 
2180152ae725f04088dfc9eae68066a6 
a448ffac07a217b95d4c6478c487f096 
9f82d05168c593b297f222e35f75d1f2 
74bdc7b3c8b04d65de527ebaa5e98c6f 
a4743f759b43493ff32ce5f70b45946d 
dea0621fc08f5ee517579eee17ab2c14 
59be3dee06e4440a0acf98a002558bd1 
aaee605dc1238bd916a317ac48f4212d 
a0f02c3c9bfa3845099f100931b4242b 
aa6192caec3e025bb0943efa4ef28344 
a28437b921610199fd8aa95c473e0d59 
6834dd22796b7600deaf0b5d1927ae92 
df2c0333c22768322ced8e55532dc8e8 
fc2e7389ce9140a4d096858c23e854e6 
f417f72aa747d2b41a6c9467a027786e 
7a6029fb9d2580edbb6007b098b519ec 
c1de2311ae763f305144be54402a13ed 
725009eaa8a92d1d0cc46d70154939a9 
2c5adf1b60ac6a0ed1c8872012ce0a82 
64bfb28973ef71284140bf9a871f732d 
5076b9ba5e068d07fbfd59282836ac61 
4d20cc6b4021d176e806e96952ce3019 
d54fca0defb36c447af3b6961711dda3 
517732067df17a66f8dc2fbee8ac97c2 
8949c5e942bf4c048eb8e00963bf5525 
aa0ac61c36b7cff9cd85a9a6d792c45b 
c6b73f8ce2f66b0a7c063c2347d732b0 
6a314c7a8f70955e59aa5989587e245a 
c589dca14b4333fce03b1aeb57a32b85 
5ac00faf34e19005d2451c4ebf01a7e8 
508d11a0f364ef375a03d3b7fbebdf11 
6f58b32e2fce9e58169871880ad9fbf5 
fb6ac8d602af2363ab5c5e48525838b1 
e6a9e9e261b7bfa13b9f51b7cc466360 
cb9cfe955cfe5fa1f0c7bb0d6624e41b 
b4e7fe1420c1d22853a70813d7f3cbdf 
8cd8cf63f6776b67d957d163fa042f2b 
8c789cb4e1de85176d8883314e0be9f1 
8737dac549e33c49facd8d000995bf97 
871e464c7f9f6f8c18e5c948d8a7bd09 
518e931a049d7d64c381dbebc96cf19d 
2d47913035204c11128d944d78be8eb7 
167142261e4d18f68ba6071d5aa4fb68 
a100eff9dae36b7b3bae3ed072639d99 
a97f4ba951113e2cff2aae378f96a309 
08a01b8e22656b17e7effcd8ee171e5c 
8758b085c23ac1dbe45c09fa2417a66a 
bdd376e9659f2005e4bf48e7f98965a9 
c3f42c89da95d0a85c788eccdb9b2e6a 
2881ed786e725d3312121e4e328d9c32 
c3c2766af1866936c43940940b94aef1 
49416a772135939ff390ec5ed3382ab7 
8059476333d165e44cb9526e70e0ae72 
7c55b97d75b90f33f0386a904a5b2713 
fa67597147f38665cf7470f9936b95cd 
fd7c988278891a9e0cf174ec6c2ea182 
81f9415bba1c3fa3fc732ac3ce4a94de 
e562102f07c34d3ddb303ef3b2382fd6 
dc0416c30fc4bd13d3527c6119cf9ace 
880130a4c1a01e4c611f85576cfd9661 
230c2660e50c7fd753f7a57393d1b327 
21511f9f6168464fda3933de79cc381e 
a4f32a5d83d34017dd806563852ce64f 
38555d4660ead26e032984872c86bb12 
4feb058a914f76d0de2d07f22d472f7a 
abdb703ae875838616b6718966e7c463 
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f623aa2147c701b68f8db4e3bb36701c 
c36a30b84cd95d7a88aa43e32419ee0e 
b9c1e09b996165cc19150c46ca42f789 
b163e8fe594af8ba6a429b32940df067 
ac4d46e5c8b04bd99b454237bbf5f6fc 
8c1e663762ed6f0136a6867dae3c5317 
8691b47066dcb4605cf7e82b0889c3f0 
7f70f850b327f27e10623d7e13058c3f 
5aac7e400fefb6864971a8262a9cad06 
28a2ee1c2126013c33debb4dbcace50a 
e8c51d8d429aeee10fd983a2fc279242 
dee1f217663389710c3b729386d68339 
4d8339c4ac3225102e60e4885b443268 
a601cbb0a15bf9cb4cea80be4b6dcfe8 
a5bcb278884567194108fedcb797e7dc 
cf1641bd5394298e6cadf07812fa700c 
267f81735a124928840d7482daf5010e 
f27f3bd810aece963a520583c6481a88 
c7eef7fb8f346f150cc23db56eb6ebce 
061b069a8207931d64b2be0f666fc5c4 
96501faa103e99a3408494bb95b04f78 
5b08230bd076c020acd55871d0a50c79 
1dc7fb65a936731dbcaed723419a12f8 
3c524fa4a569ca559302e289918cfccd 
18b1414e846fa91fa7246c80a4d20f21 
0c93686d4c166f2beec86b507f6433c9 
79f170cd385b217275e7c7db63899eae 
c71be56223ce2b7ebf5a10bc10750793 
c385dcd7ec1f80efcc31c8d6bd0e8364 
9b3b9a40b86c7864819fe6b54e0f1725 
7a0e726d058c1d95c8e09b4394d4e5ea 
795352e779a0105e4c644df3085848a5 
78d8fadc8ddd5f17dcac4411f145c92b 
23e355d8d268c4795e95500d22515344 
1914acc9110eb0f72c000bc1a1061497 
50aab7f0c52691e1e66d544e43e16987 
ca03464f0ed7235e14485c8e753ea572 
48471c25da611c4a50ede7e7408240f4 
9659d8de6bd1a3648c7a67ee538683e4 
60f4fbc0a58f146e8fd6d90b8d57c271 
2696bfb20ad7cff3fe98cdd7219b88a5 
118064f032f310d3f4af292600f7c7b6 
fc00d65b2fc6d46826a4deaebac54896 
e2cf4230402ab26407a344697e67c243 
a95ffcb339e7daa98a2f68b65eeb64f1 
e98785089105baacf3d655edd41bac61 
daac7d7a60bdc62d7b18f6cc9658e6e0 
b1021e2e00dc2dc2745b8c6f3a9abc60 
5d8dab0445d7b7db7bdb0f335b097949 
54a651b3cc5255e0b42b7c3c50c65cd9 
20d8043b4b4d80de696c009afe7fb671 
fa2e23aaf5ab9069ee8b3fad0c3aa591 
f88c12f2ccd31b7877031d8a22d652ed 
ec9a8118e2473027cec05ebaadd074f5 
c3cb934d93db52b22c2ce7d03abe8417 
8f6a85eb0c58837a48a7f9163e5d30d1 
055e612b2818622f50967cf098427c17 
923e4997bc57d1ad633cfbc029e2ecdd 
d5975f208ac5783f4b58e8632cb17c47 
f50f693ba762bfb674004a49560a23af 
da9e982175fc1a331e644f4e4fdba26c 
d907a9616fc14126653d03772fc7de7a 
d5289115d669750f4f8f448842eee8a0 
bf7118e2fe12f38fa2c41ad3cc843344 
bb75e0ae806040be55b40d452686d770 
57daafc94241d097f7b7462fdb46522b 
1c910936748d1c317ada333a06445330 
0ea102aa6196a11eb84cb5a4ecb60f33 
f1c1bfa9c4544b05d642fe2a865abc36 
a1f5f6c29895a446b6eb831075cfaec8 
aa7092e36d6ac9f885b8caaf70b57ed4 
224ffdd75e2db700e0816bd27cb128d1 
12562a42cd391b27ddafcf8a0b0cfde3 
828af987a6cc99586a72a017bb0ee799 
0f3f0d90419cc8c91ddcb5c430867707 
3ad4b974967a3da9767ca80e3227ae4d 
640a96f41e1691254e33372a5330ce94 
5f1db9e4cb450d750124e244b520c514 
d6609f0e82f65102b7d33417f2e8c599 
778d9b3bafbd4a0f74cc32f2483fe0f5 
52c3ee0d5bf15949dbb082531f865e9e 
b0dfa978aaba1f0ae0c79d05b8f804e1 
04001a95c39716be3cca725fed1c7144 
e3241e5075c58aeba64d8c9496f53b4d 
7444ace98a3e2e588a39fe2d54180530 
fc1698a45c58bb95f9e47db83ad4a9f9 
1cedac81bec37becff994f3bd16b1a92 
ed07cf9bb0776107b2c3eedd2fdb8064 

08362cb614a2077433f18a43eee06820 
7b1b891dc2e23fd6207292f6b0c63ed6 
aaf3ac53fb8961ffc70d29bdbf1d718d 
96469329287b7e2cd7fdfd916addc1a2 
a5a704040ad779d2e70db4780a9ed219 
e058ecc0e3853de1f8b727f3cf34dce4 
bc8be30f7c39e1cf5ceba3670cd8da25 
d5f684b45126d5303c692a516515e845 
48ffaf220f167c19ad9888dba639c0d9 
77d66df823582d46b5b41e6837b89ac3 
53339edca63641c414ec1eecc6a662ba 
56dd14e03a486ee2c385318a34416a35 
4742ed29ab69e60405a75178c6685c9d 
15fac9dd13c580ef22a5ca980bf1f416 
5c4b120733b7dbba4042ee4df4a53bcb 
25c1d151e7377c0cac6572edd3df4a90 
06fbbe54ff699d90197e4bcd730571d2 
b9ad0e1c2e7b129645ee202ba833c296 
1571350e00ba56b2bf23ac751053639b 
b9f41073806c83a9d44c0c66ce8b55eb 
a8aea9e1d840359af9d7ce6155ff244b 
d79d46621fe7b9fbbf1bbefba9c52a5f 
8093d1dd604dd0890a18d50fceccbb4c 
7af90c3b2578dd9b15078c3ba9ddf7c5 
ad60fe328fc3b24f6cc7a5bdb34e0ee3 
1938b6e247a686839564ddf99a1c27f8 
0fce6304e09e798303677e49d12c2322 
715bf2f0f539b49f5eabcd784ac4175c 
1862ac546f78c27263300645449d6d8d 
7af9aacde8bdd650188817fc4ebe1599 
c4b14d1478cb8f2f03be946880c8eb96 
59e7926695207e1097ec45a37ea2aafb 
156aca02760e0d7ed1934b666794c45b 
776e822a7d178b76143ce058c87fede6 
951c86cd98b1e181503167299d410857 
7df5f6d611eb67f481a95804c5ce0630 
c731bebaf093da2c82d893df2b58c8fc 
32f6caafc8aec1b34f243d029cc1e885 
0cdfe31534220e6c69bf47943aeaa712 
d58e0347714ba9dfa46bc33691a02d87 
8e0b2797a7f9d79e39a73ad54a73b0d9 
db9a3ebf29d902e3177a26aa8dbc2af2 
ea7a382a75db24dad6014a4e9c5e0ceb 
233be9c321ebcdbadf27fc61167d45ae 
36e54247977b339983349daf471ad8cd 
2a511414a8e5a332c4fe349a47d20ba4 
830d9f6ca8d9494c749fbec24d3269eb 
6981409964483b4b7624c1a85f575e21 
41a740d9622767940fb511a6b3bf1adf 
2b9f62978f6e7b72b07b8f1af0c85730 
a05473b31a0446db76c512177d21c474 
8cba1524bea06be9c5f093a0031c32f8 
aec45f2ca076216d0768ea518b9b6c96 
3d95231b71f286af199fb4fea138a29c 
cb94d44b89256b00a9fd33320ca3d4d7 
5d5b6c2ef3a7b934ed657681f09abe5e 
8c0a09ae8a711bb0a2dea9fb2f32178a 
6e72482c91f40143f2014c3fc4bfca0c 
b0b6648542bd8557260e16299baaf72a 
d15eebbfd21479858c044faca86b7756 
555ea3963b253263ad89ffcc155d67a3 
6f9532c7b7d3e508732ded880e6cf831 
dab5ecba74d7113e73a9a625d404edec 
fbfd0c1102cb745e583986f3e9cf8ac8 
729aedbd826f86b213cfcde2fc1e1743 
89b14b6eccf58083abf4557dc42ecc08 
c7241928868b6cabb6a35c90f274bf8a 
285f9f45e19b7933b39d23b9a3ed0563 
4d93fa2270b31acea407a786ce412c21 
c3a4b8692c6bdb0bce16067f150419da 
071313017f6e276ba2a800ccf0362014 
ff77c722471c1db1084f26a2dfaf64fd 
f50c3962458aa054a20d65b061f17bff 
f21bba7e1dd8425cfab2de19e181bd9b 
f19d4ca93aee0422e49cd3158ed6b9cb 
e282a97cfb1ed590c549c5d659390e59 
da28166f9ff6bbea1c23b63dcba842f1 
d7a72a833bbca58196537a6345b9f4ed 
d6551e0503967dc7a5a02dad6b1d35f6 
b96fd404534f155f7566947308fd220a 
be224f27fc90b7f889268eecb54a72a0 
b6cc780f0fbf531f19ce93e29c3148bd 
b66c5bd925434d5c9777fbf4428e59d1 
b5fb5edf9105c9c3d16b1010f6ab5fb0 
b1602e09029ce232bf41535919b6964e 
b0c2851fc7e9010469b532bab91b15c4 
abcab0cd2457117828a564c6135c0b91 
a56ad8c98d10a1dc1287983bcc6e11fa 

a21f0dede5ef472164284a1522597e04 
a0e31da4616857c6e8746d5505b8e43c 
948b2d66e8db1fb7f4c017ce4e381098 
9317cd510d54508682f08b0ff0b5d7c7 
89dba5be2371073843a4cb8fba81184a 
893df996cf724f57f9fa153eb8cf3c43 
716f15fa7b39ad8d3c46e61096abc7cb 
6bdbfa1cde59a0189116ca91760d9328 
5ff6f37db3d56c3abe8dbfb938b11262 
55e2a9d59a3dc13bad9646a8314f1d57 
55b7a77b7c43cfa416a679d8bfa6dfbb 
526cdcfd23336e5e7254422b4bf9ea83 
4f8001b62e13e04c243b76ddb095eb1d 
48cc26a4fcc6a3a09bd81bf8bf773531 
43ae902f95cd48f77a744758b8e0b32e 
400cc969285639696de9de4e335c7d90 
3d89a9ffa5df043f1a1571011952378d 
35a37f38f99ea94ee65fd0428cdabbcc 
355441d76229368f22e0d903558f1c24 
2e1ed3870d996dd89c1d1db3409424ad 
2a481a0c5d2bfe1e7b7c88f1f525b0d8 
1e1ef2c69e799b5feffa5d797efb7773 
1b86d6ad044616452ebf604d6a12b280 
1b46211a12fc2e419bc77feaddc68053 
192ef3a468cad8d147b87bbe7520bb87 
15be4aea16ca93fd530d60e36b795965 
15333f8519cdab0414a6fd49e3dcf2b3 
0ed44fc3abf67d9dffb4be4592e92e5f 
0cf29aa7447ef1dce0ed36600f13d7fe 
09d52b3aaaa1dc5d88a3172c1d540685 
073053cdb253dd1057f4a2a442a3ee95 
005a6963097536bb687192aa0247ef3a 
e40299365df054a684c642dcde2cd2c8 
d38cc7eae608e61e3e117babfaa72e3f 
a092c96335a0008577f9165cde69d1db 
e8d5e913475643180b2f5d4ce6522b0c 
9031ce1d24ea20673d49832ae76f967d 
f22601593da29f220fac234f3031087a 
837bfbcae22ce95f2932e572e44b099e 
3fa03d0ffd0c1e44cb3139fd3f722faa 
bc2ed64cb7d0243c7b3c131263077293 
7bef5cfb592e6cfa35fbeae5acaa15d0 
7eeea350aba999189fdefaa8666cfee7 
bcdda69fb415df35b44818eb788b918d 
efc68fc517db1d700434d3d7cafb592c 
84a2fdc47c1aa5853c139aea37ad0016 
6b7ba8ab030d6b4a4700e8c7b9b3a40b 
99333789293e2198b5c75f69cf978e8f 
8952377a0513c24cd2a00e5946d45103 
cab329ec48c90638556a99e1654d0509 
794d2e712252bc8bc682f25cc66c3f3c 
1384c22e8053e329cd8b1cf2ef513430 
fe84dd31332a4efcd474011be27ed09b 
baa493c7a1ebd3b10947511ab46bf521 
c44ea1e978b5ce9fd098735395273749 
5d3ee1052b86c6386235e561972d4ad7 
dc9ca33654a83f584b5baf8ba48e51ab 
ff90f59d7fd1e747197353c5ac440d45 
73f78062c4ecee89ecbc8f23f590e50e 
 

Vawtrak 
43e2354bb9bab6614ea1f8b154a564f4 
9c6a5663d83c38781d4bc0eac2c9890a 
4826e1b51599e3eeaa792e9621170324 
e930b8184305aa81965cac7f1975851f 
34976648b44273c0b336d2ef89e672db 
25f813e97409bf7808756f1913b11102 
142ad2c753f1929a3407952fc8ac147d 
262a1a847173d3b151a9e049f06f948e 
786c43da9212a35dcd3364d9a09fe1b3 
34080a4e7c2bb069e525e22e555f60dd 
209480561bbd613503a0950211588f4b 
1dd40a9223e0c43e4e5890aa84da1844 
d0583d0c51aae77de743cfb29ecac4f9 
7ccc57f92ee1132e30141f22bbb385db 
ccc611f636bb96bb9e34c3da97f3b8f8 
99f8252f6f396993fde32c1dbbbae61a 
31b1e70519d0a8ac1303ea89a0d817dc 
8927105aaf53fbb0495be81835474d74 
16b691b9c41227fb9aaf592d7f49c722 
7d9b38fad4992247cab2663a1e6ed137 
6359dffafaf53f1d4b7e2d548a9556cf 
28b577ce059b5c3851b469911ca637aa 
1d59afe9be5899c51c4f62aaa6536e5c 
608c9297e685d1037ea72b55474cd9cf 
d7b0bfb55d8d46d8f661a4cb46c531ae 
845ced65ee8d3ada63fb940f4dfd4e51 
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199d642f5c50780045085cb5992a52fd 
f0bdd217d0552bfd73e6d217cb65a739 
3c8f1e08e774dd503d7528a1d6d49951 
6edaef466a97955a842f54e53f205991 
86af5b1b003fa2a570dc45ca247a6274 
6b87d33b169986cb34f913c14a547f75 
110458278211d7f6f29180a78fa125c7 
4172363f9ef187f0b26e04f9e331501e 
842e2cbdea3abc786332e1eeff20a59a 
973fb4955add4ca88d4b661dfdaf6edc 
c202883ebe5033041aeb9dab8c635f1a 
048d559df99a7fee82fe5fd4dfee900a 
bf64cbdbcdfff2d00d75c620cc6320ec 
8ee24f9715b6cc5711557d59a1f10581 
 

Zeus 

e7c054ea8bc2f66e914ef82841d329fc 
86255ec982e822f6b57855d3866618ae 
50220851ac85a9422c35966b433c203b 
8fad5dfac3671d90dd12792ec81fe595 
237031fc5cf6b5ed59d8e750b860341f 
7e3b8c6062f7f11fef7cd66d068539c7 
11a1c3b8be7a08c1b547a5500efe17d5 
70a0f9cef4d7a4952eb659b049e98fc7 
82f34481e82f289f89ef69e4eb2abb3a 
14a18b30c40f5a4fafe08e0c21cc5844 
353f3b54de9ecfd82c63a2aeaf1c3b9c 
2c0244c28036f9cb5f9a703c8b329f2f 
461f8cb7c8f1dd63b062fe726ea764e2 
96383909da192e14760de588761e38ac 
46ab2d15b560b7a07d39862907290220 
d725561817d04a1dd0c889781613b577 
bd6466701c9e93ab24d77c34d44106a7 
09eb0efbb48e7efe2e19e71edd655f3e 
199d04e319f6f8c1e88ab3ddc7ed28d5 
392b86e7d4c9f28e98862e39cff6e49b 
a25263c96b548b76031d96b43fe46b08 
1e0058d2e69f3bc4b961451710e2fa06 
65b16d40f024b5c1cf8676dc1c252d56 
ba57db487bb18b15217cbb08c923da50 
338caa225b3906be3bf5399d8cb74df9 
dcdf3aaed2047d2bc746ab3200667261 
c30825c55ddd1b3d93ee6141d44c78ef 
d2d969b5db07a1dcffab0831907d31b5 
322c39b56988f5a35e64c54633c196ee 
3a2c75fef3be79b5d8662f121f85b4bb 
3356ebab1bc8aa9e6212f584bdfc7566 
78c00cd8930229a1d34b334f983a633b 
6da10c3719c7bfc5617f6095d08854cc 
122d32cf91a5f6a545496e0c7c64355f 
63992249e966ff33d7555e887ce28595 
5054c0c2dad7207eb1aa69f5c48c978f 
b73aa307e8c2328f6a7dfde1a1f024fc 
065e6b516c4fab893826103db6aeb5dc 
be39759c2e6f2685097deae282692851 
8802d13595da8294c84821e5e3086442 
e89261b86d55db32261ea9117fefb1aa 
9b2162f6148f7ba9a15e2b2424952973 
d87a03973f8cb42b90a573f831d29bd3 
493b3700a1ac3b5b872bf2a516bcb701 
0db7da4e3489ba8a2ddfb128422daee2 
b2b1325cbfcc52be62e38fb99713b1f3 
d86ec2bf5962d1254e08458b17ff9594 
9f890fe67151372e2dcb34d4329eacc6 
eccfe46a97deef63172aac0ae8771d9a 
805df9572b345cc8691198ed1caba924 
ac2d2fe0bd0c40db038c88cca4a3296f 
33fa98383d855527c1a166ac61f92ec2 
ebffa1e446ac21950941ae3463aa2df2 
1fa4764c0c1eae57af50d4a5277886aa 
4e9a5f7e45043f7ce0e2822b947fc117 
2cb6faf81fc9cb701e71d0497a25f1d1 
177e77d48bdf6424eaf0bbbff2905236 
29c0e993e5ff6106d93be0b54282831f 
7b2c587c79dfbdb60d71c0144a3e2ece 
7331895ea0d778ffef3ab95d3e1c355b 
6c3fd4e592eb5e0f5d8b4a2f76d9fa8e 
e94de39e9a23550f4a8a18e6cf77323b 
 

CTB-Locker 

7c9c4037d574cfea519c4c3d43d733bb 
67cf92d2387b864723bcb4dc5178eb15 
d5259f68bf8750ad7426b423f028e700 
ccb02c979345ca34fba61c38465d5ea0 
2bbaa69d4ee1c512eaeee74bf21ea234 
12673429ef910fc9957248919784cd89 

c4b29d3345ed0b7a0b284764f3446396 
aadf8bb8770d563aa27eadc57ef238e9 
db0a2be5b0eb4603fada6e6f79f3d267 
3be529d7c05913ef0571a6f4fbf7d946 
555eaa028a55704f3200614a01d0a464 
b4a012e465f845bc7ac8b441bec2d2c3 
f87208a911d9d1a3793914a649dac97e 
78b22232b87e0598e8f6f584f1883c87 
6d0509c64d650c95b0e132567c063eb2 
497b225179a648c3fcec8773351991b8 
1011a4fa57954818d4e378a2af9fc3d6 
77fac4194a04d2bbd9b4503044f4250c 
fa51284e30ae0547fec613aecf61191a 
5bf3e5258ec9efe29f92acbac924c451 
cf98e53ef516ef190ff0039073a048dd 
b6cdfdef61c8acbcb72b43547eb7aab4 
a4c64aefb73d3623521d91d5d63cdb45 
01a466176732f7050a2853334f2752b8 
44351f134a282f98359766ca2cd03e14 
428285ac08507dcaefe93d269247506d 
73c570a78ca50abea3a623c84fa69daa 
33e3869b8f83e4f6e7cf57e37e243bd7 
442d975dbb126cbc2e67e87e3fbdb3e7 
18770c7b60ea583d6a7f24f87ac1ba79 
1bf842a82acfa384cff8cafcc70847fe 
2d1626395dd249c3f0945597c3f6d82a 
3f40a4f7e25909f83fb3c9eea43fc5a6 
afd71522bec434cdc6b88846a9492aac 
7c5880d358198f2b987335759dde6ac7 
d769cb11f4779d0054fd9a877abab214 
9df802d586aa99385940f62f4bf4b1ee 
54fde8486cc14f738f71cc14d1e696ac 
bcfd0793e4f8839cb1cfbc9baafdce6a 
2004713813fc19550489da11070ed5de 
ff7d5a564a87d6802b84c4181aa1b374 
a2683c2bd2908a866823ebbfbfa53739 
cc408fae00a5cc333e60df1d80d76785 
3eee2f067500bd40fd6ad7e073ef0395 
8b19b6588b96f8ff0a64dc9beb531fd7 
d286b84a6d50b4b3e2c21e21ce8f8427 
7aec61bbb9178868ed8b98f4f924ed84 
0bcebedb7d37e6faca9ebe0234cda920 
c0efb6d55a141faf7d9de077bdff992c 
5859f85c79b316926de3e5e4c719d958 
a7474add15ec31f416735bdde6f008ee 
3f1b5f5d4e2970c6906b4c7dd83d2a26 
188b5f83ca6ea33bf99af52e85203f42 
495429bcd88402d8fe7e9213a17f1d00 
a5b9efd7aae56ab5b3e166b54400cea8 
d8a6831e73bedcd7f09696e2dfe3f732 
957fd7a1c3aaffff456feb8c157d2517 
a65a63148e6f7b11eddb8f54a7fb58a5 
a0ad6de0377bbd43cc993d1f08165653 
7c9c4037d574cfea519c4c3d43d733bb 
cc2d120c65a79bf49a3e7bdbee122e19 
f1a88bfcf2db8fe01f2805e4b4067152 
67cf92d2387b864723bcb4dc5178eb15 
90646b00de8f964e6454d20d06315567 
c4b29d3345ed0b7a0b284764f3446396 
aadf8bb8770d563aa27eadc57ef238e9 
db0a2be5b0eb4603fada6e6f79f3d267 
3be529d7c05913ef0571a6f4fbf7d946 
555eaa028a55704f3200614a01d0a464 
0ddfb2e0506d73169ec9e75b80941133 
b4a012e465f845bc7ac8b441bec2d2c3 
f87208a911d9d1a3793914a649dac97e 
78b22232b87e0598e8f6f584f1883c87 
6d0509c64d650c95b0e132567c063eb2 
497b225179a648c3fcec8773351991b8 
15321c41f6cd553e1c533444a380338e 
1011a4fa57954818d4e378a2af9fc3d6 
77fac4194a04d2bbd9b4503044f4250c 
fa51284e30ae0547fec613aecf61191a 
5bf3e5258ec9efe29f92acbac924c451 
8c2a701dc7b1cb16f77ff64600538568 
0008321a7143bd05182043aba53e2d8d 
a4c64aefb73d3623521d91d5d63cdb45 
a60b271c13baa2651735f6e3fc9ae4a9 
428285ac08507dcaefe93d269247506d 
13768dd756e873f3d0d613940fdebddc 
33e3869b8f83e4f6e7cf57e37e243bd7 
442d975dbb126cbc2e67e87e3fbdb3e7 
1bf842a82acfa384cff8cafcc70847fe 
2d1626395dd249c3f0945597c3f6d82a 
5afcd5cc66ab0ddf68b1368d356bcea3 
428f97739da47241b8c88b527ba4dceb 
3f40a4f7e25909f83fb3c9eea43fc5a6 
afd71522bec434cdc6b88846a9492aac 

7c5880d358198f2b987335759dde6ac7 
d769cb11f4779d0054fd9a877abab214 
a488ab820757bd9933b4c12bf620f03e 
34feacac7f909d5f5433eea8d88fe6ad 
9df802d586aa99385940f62f4bf4b1ee 
54fde8486cc14f738f71cc14d1e696ac 
bcfd0793e4f8839cb1cfbc9baafdce6a 
2004713813fc19550489da11070ed5de 
0aef2e849be6782b64aa95987c92e450 
a2683c2bd2908a866823ebbfbfa53739 
cc408fae00a5cc333e60df1d80d76785 
3eee2f067500bd40fd6ad7e073ef0395 
8b19b6588b96f8ff0a64dc9beb531fd7 
d286b84a6d50b4b3e2c21e21ce8f8427 
7aec61bbb9178868ed8b98f4f924ed84 
afff0b9b22c7b9ef8cc10ba5b3a16101 
0bcebedb7d37e6faca9ebe0234cda920 
c0efb6d55a141faf7d9de077bdff992c 
40ce00566109565d499b53a150716303 
5859f85c79b316926de3e5e4c719d958 
a7474add15ec31f416735bdde6f008ee 
3f1b5f5d4e2970c6906b4c7dd83d2a26 
188b5f83ca6ea33bf99af52e85203f42 
9419edbf565f67d46e087ac343447607 
b43b19699691f198be2128936f6bc872 
495429bcd88402d8fe7e9213a17f1d00 
dabfbf466bb46fa6c07618c08f1dd97f 
812b538c94aa1703b2b0d457ffc11a46 
d8a6831e73bedcd7f09696e2dfe3f732 
88b1309efa06d2282d151aee4fb534de 
957fd7a1c3aaffff456feb8c157d2517 
50409d8c532f6b9ad43deb90a6a7f5d5 
06cc11966ab4d0154faaf323fa08df89 
f73cf0a85e51e5cf95fd1d4162727795 
e47ff86e1a3daef8d01a3410dfc84b2b 
 

CyberGate 

e6b37fe5775812b5006cb6a2bb89977c 
31fab5d4dc9e7baba161e6eca79af442 
50198b5b3b60bed98a6531fbed2252a0 
532265c36a89daeb95a025395a817348 
d3cce60e0f2b7d92ccbfc9dc1bd7ad0f 
60a6949a16edb92a8501132939008127 
8e82122767022b7d49f1f2d43f7040dd 
9869f4ef5a911595156ca61991126212 
9a15502f62ff537618841b4d4baafcf0 
cbfae9234b8dd18a3d5cf806e3b46263 
7ec7d9c3927d668c81f0d41c579a0df4 
e2805cfff9fffd24e6abdfce3643afad 
7d1788f05546128ca230d4a925472907 
fa1a792d0f253c4c0b105122cfc0b46a 
6cd39faad8a780ce2d66cefdec058899 
dbb099b05177933212f8262b936d1cbf 
feb6bcdad25e61badf8146ef6d85d9ea 
a15bbf7546400af475bc0f460c866ddd 
e3439afd875ccfc90b741379dcdad65f 
46604a70b623984862fb89af33f8ad3d 
e58ea7a6dd5c56629608d6413ef3501b 
63041fa934971c3829aa68b7ca29473e 
0ba36b98bcfb6d98872fca6e2eb91e6f 
3e4e1b731cd46e6a854bdcf268ea3161 
80a9bc2361bbd24b21c18df0dc4f2580 
9706e40a6df6940485234ac4c6991eeb 
65b1ebf391737d64438dbe9279bcd096 
3be00ae45f84baf74ada5ed7e87cf6fd 
b162a2ace62e9c444530766a06594f21 
6b805a28b0670828062416df99faea2a 
6f09cafb88a4b7a21711e7fa877c3d03 
52978198e3d3d5f0a614f7c0fc236e8c 
a6798cfb887d15300a769f8cabe13cf0 
5812f73c70df432fd61709b101be1cd7 
a90848af417cd6cd1342fcdb3a2d23b4 
6fd33787c1344bdedc931434599cc960 
a54e58e3239d90bfcdc4b18f69cc6c67 
ddeca23b697762faa189f94a6fc158b2 
98796034b56125cdf61cdaf2c9bb8f10 
1c60124c9a8e604078f519c4dfea855c 
1a7f51bbf414dec32b6958f6f291184a 
a33c8fa06bcc84393d0d7bcefddc4d70 
2c8bdb2620e0cb5844a32f4a2e134f04 
6d2fb50599068772d6c3ac508bfb9b41 
044237a829c8298d996dd0c302be1853 
e41754c51c658e1e56e41bfe656c0781 
8803d50c9065603ee66a17e25c1212b0 
ddca2e3af7db65056f76a5f2178620f7 
9366855dc179cd99e94c18696e9625d6 
26dc848575bc3204627dea150b10a2e8 
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f2a4feb0ce6aeeb9b981013b51756fde 
eebc4560fe3677a4ee4c9b040c6647ac 
0123c976998077f97c647c6effd71dd1 
3525cfb74a1d5c432333623f81e81cc1 
49c4bc1473cc9069d79d1a3c0163ef72 
e20cbd5763fcfd9da3f96dc940c96b08 
c6b7b80f2ecf55b69b0dcf6ba77a0040 
f05f3a44e68dbd70644814d3ed2d29bd 
85861861d22459de82cdd43951819388 
f4d5c811c84340774ff477c90352d860 
c00e759bcd9f2f094751cf3adfb18b9e 
997c382ab3baca83179620010e6a66b7 
93c91852b419384d8f287c549c937a93 
72ff8ea46c059831d8bea31e11310f10 
5001f11413423fead58ea4942c0d4977 
7bc369eb8c71bb7b19a7c6ea07a51235 
9c8ae93bb78d89ecc8b88b706caa5f0c 
c60d2508c3bc53450a7a3f8a5b0d62c6 
3f357aaea658adfcfd01d9939171738e 
68b7a8da0f88c2a990dd921978bbe7cc 
6636395c024a60243d057c3cabc676e0 
430b161a360a2580561941bb867e55ec 
94a42983d9dc0900c18e8428b3157f71 
3e7734f3b833db26f0a46765726c604c 
35a162fd3f39f8e7369fe60580352da4 
3a6438b5da1cf8e8991e5acf558a8fcb 
f5708c09e07692493f8a7fdfbc524c17 
c346fcdedf2dbde83bea4b3f04a70a5d 
54ee9bbd9f5b382e1871eeb88d67abd1 
61df91d6efac0cf943c75edfa776c511 
0c83af8102f81c1d4dcb2a8e3fca45cd 
24d3daab0ea6408ad7a04a362f17f936 
99dbdefe6c69233dc101932d62aea219 
79d089d8c31207fbd85b3c94763f43b8 
0cd0d9802e21c72f20d6c54afaaa848c 
2a281e4c52a17677692d6aa7258832de 
252e1f94363fc1cae2e5f3f9d5c93139 
ab261bd57fd7da354025fcbb88c49313 
815fbe1ac2407a16b058bb44a771d024 
562049dfc5e2c2e9b90cfc01bd5875c1 
f0e10b91a56e761b5c88ab14f0798143 
97cb703cfcdd52d3376ee26b45429e0e 
a5ba70c3308684c0f3cd69f1bd2ac170 
268b0bdb8858d15ec59900922f748de2 
66975096369486b3ee667fb5079dc3b9 
6a78182cfd46b02af525270a8daa1d31 
8c968d7fb508aab8d950ee644e734464 
a049d274d5a2debf4433e3035abb2ac7 
92b00b54ce1bda07297d7b9b0212bb3b 
2b82b9b7b0d5ab95d2e5455e6883b3e0 
91c1a2a23a3d27eed35331e905772373 
fde8b828e5119808a24943a28a2a0970 
2b24f22b6a5c8b82d26adf4dcf23db98 
36b671655d69aaec27b35a988a589b01 
38389037778ccc1692eca9af3b608273 
5b1e7f665f959d79d9a05193852652e1 
2c9bc4b93bdbe9c4320680e825c32593 
497b6e3e2d62a2606dec78ea3d2a1521 
cb4e1ce2bbe7e2ccf751d195836895de 
15738eae47ab9f00cd8a76c2bdcfc7ce 
8c282f0dac553cb2883715640d2a4746 
9640691cb9f549b70912aa3be320ba50 
626c62e7ef237570c54af289a4fe9e70 
831a91bf2f0169f5d489dfa9bfd11ce1 
97d61faa67393fbd149443a170973b90 
08cb0d4fe71cc770ff2a84f8946e21c9 
e27f671aeacaf4306a2b21ebba57de6b 
a65846face57e70e2677d35fdd9ad650 
e55541e4dcc41d6efaed01dda3a72ee1 
a15cd1eb9417d3bb9191bdf76047b5a5 
d3da1bbbf3763db6d0d930ea7994cb56 
a092c6c641bc63b0c53e42ecc79f331a 
969c853f98a8e68557528ea3205f07db 
ec337f19a29dd611753ed5e9360ab272 
72746ee99eb41078cce9c62010a0ef3d 
b77b8bed0d72e4c130b6f1160c3092c3 
04a6c4810effc7873e7271fb64a8b02b 
c33284f281d9ccc63386ce5ee78f542c 
ecdece3b03435e83f2c07589bd15c140 
98b411c471e1457ca05d596cccc69360 
0b9a21eebf9e3a0371de196a5d98324a 
91ea948fda1672570d822a7b7c24a11b 
a161dd319e15d52ce489106d95635150 
9a1d8eb265d0ce2f3f17416c5dd1abc0 
d510a80846a68408615844dc0dd8f168 
4fe25d785ebb9c7a540da87782b16a70 
9384f08eb288b6614814224348252526 
9aedb9c8e3f8f5d8a6ab74b7b0eaa589 

412bb3c0871d6cb2bce6dbb7a07bfc71 
bf8b08067f6db63df667023d07a290b1 
889d2e59aae86a5b733fb2d741582a8d 
7abfc10ec74d263995592fd60899a25f 
0817f8f0015e02ec5bfe897de16cbe21 
6d637cc5b02538a7cb49a9d15c80fa4f 
61b9dcc35994b303eb553f7601788e16 
756192b93ee26ce2f875102b01d89380 
e31fcea6344662d97cd8769515f06c60 
761148162c3976ad61b6ffb0b4954af9 
75e64db9af83faeeb8457514f78fa460 
871a2a879d5548105f3cf08f3a675168 
19586bb2b7ed5e35155340623c3b0088 
f8f07d949eff7b72b7cb84fc52b6dfc7 
b4da8bee85a875343c9c2ca4a52b362d 
21a66213adf0ba37c737acd455db98d1 
813ba07affe9c2ea74cf8ae388260884 
d4407496716fbdf5186703675d0a1cd1 
4e6e214c6c23ca2d741dcab87464c527 
a620a37f802fe4ec3b620531099a185a 
04667561eaabaa9d2068568b9e4001bd 
55c89fbd4225b37278cfd8293b952180 
9677016487cdf4c1f037d833a2b7d120 
b03f30ca09096f87eddc2d19b9c7ff24 
1bc1d648625e6ace3e1f4cb55cd4a180 
85678cc81a645fdd52c1f51a8f5a38f7 
e68e02368da1806c1f81b6325c7cd7e0 
28c1f66bfe88f02db40c36b0b30d0ba1 
9492fbe49368d26658a3ba2bd596a8ed 
988f7afca81eb153d3945c734f5aeb21 
eb498c5dea684e9a9ed7da5edd12e472 
e5df9034445de568960b74d51962ef6d 
3bb019d29bb949a6f9d2bbe3eaae3c3a 
801c05a5d61883df78d04f2fb5612d5d 
 

Dridex 
9e06e2fcda95624e24207112632934de 
5b4c1b0e5c0c375594018a79b2a7a4be 
a78a2cfcb76422b16936537bc5296996 
b382486264996132983c279b056bab2a 
dfa8814b043cbd03bbd56fe6783a159d 
075d6ac8bd9c1d1e0ba6aca7ca98bfab 
6a46f5c6d1417f159a0134941da35cca 
0111b2bd0543d5e35acde388ed8b62eb 
debe7758f06568d1a1d98f26ad8ef9db 
017d9d43baf8dc2d8451d0ef2e9a07f6 
2e0c328aae6abfb19bf02e0fbc5dea93 
2ca3d7c9f95cbb42efa447d1cbe9a885 
3b1a28c2064bacc292e473c9cd49390e 
8f3063ef8032799f71507b8f88f8a1c5 
0ed7cdd5df7bf46fac39ae32478203bb 
59765f9d900ca3788287b683e39e01ef 
1f259a88f61e45cc6f357f2fc8dacb9c 
2845499946fd5882f94cc9a4375b364a 
cbb76581026efc205559598918841b32 
3a6ba8f950ce66247f8ecad7768eddaf 
d92147110ed2fcc0de8a4fa8ce14a558 
d57f52a02404302ce2f27b7f693ca001 
f6df80f3671d48a0af931d3b8fd290d3 
e6cabc9b892f5b8362cbc8617228161b 
d938a67f1cab993ce0afe47c699fa907 
d4c3e289e5c2240b4bc06e344be6e5b6 
b227c91fbc1ba56e9f01ab4f1e2e502f 
98b7f9ac486c577b8c3f517a03faf31e 
db158a28d5f831cc1450ce1f69e94459 
265f7a370f09fe912dfcb465ad79f2a4 
882435fc2acf984e252cf595e244acc6 
7350d128c6a5606bc3ec43ca3cab7f27 
d9501e0adfdf8539c5e0cf4bef62ee2c 
f4b0f7ba911d067e754a3028b6174aee 
ba72f454bc216c61313c8eedf55f1082 
db65c736eff94e7ee5924927607f0be4 
dec85f017d2905f82497f31b3b551222 
da05fe0a977a9c30d232719288944a9a 
de6a14ecec8ae8150048f90d1eca363d 
d63a59bc621e0380eaec5bd07e47c4a9 
faf8433ef3b9c6fa53f13129b8d79ef3 
1a4543034cc6669184ecd4682b624198 
49919b3662efc214bb9a9d1800303fc0 
ddfab0500bcdc5c098ad7fd2a1ce82ec 
a37072400f9efde4dd0ff39d3a5ab15c 
b6418505dea2ddfd514cb4d0201bb955 
6d934dee9ef917d58d3021f5fda66e91 
dd4d75cde2d7ca60ee16ed717d0dbdb0 
94db4504de4e3a7c00ce3deeada87a33 
590f83135ecfcca3f0d1d741619133f3 
359a0b19f195dd9881dc8b40465b2970 

0c8a9a1ff7c1873a44a633bff1340bf8 
cef009cd8b1d72f3467dcaca691c82b8 
c6fe297e17693171457476f52c3eeaef 
beeaa3525de08777943964047c026fc8 
abc7944ddc2e28b154ab4c6f18fbcff9 
dd69bdeffbb8dc89404d21ed6a538b3e 
c084fe0271d68f63f738744c38f12251 
f49a7d462bd90214712153f97485a627 
81c1830e41b2da2e62ab0437c94d6fae 
b734f059295c6c41dc5965d1f4357bbf 
2ecf67958ed874401752344c3d0dbd74 
5437946a684c7720397df91ef7a2a2f3 
1827fbcddcafba6ce75eb5b8652332b6 
031fb0ab676cf7b8dcb460ccdf0dd8d6 
2934c524678e7e1447653e72a1e8ca3b 
b36c03005b7a8a825ac0e2319a87d8bf 
32150a6d2e9857aa311cbadf5ac8fd50 
2510bbe7510051c28caccd58ddb52007 
005f267003bf3ef09afebcfdadebd66d 
c71512f731fd9e9ca7c05d8caf4fef63 
db922ea144a2a99edc7069fc6b6b7a6d 
ac9eaccfdf60a6a50d4716ffbf012511 
7a7477ffb6120c1e3cad044e4c00200c 
a1ebab44ad99e97a96952bbd189e3bf7 
dd7680148235776b83f5355eaac1259f 
70caa351b1f68306876be12292762b19 
86099251ea4e577fdbf732928eec0756 
058a0092509d341f0925e20f644aaa4a 
da879b282ad672a5e31d1a610285778a 
6a890edae526e67dd6c9bcd6223417a3 
da2a0dde23b5adefef9acf7a87ed6f8e 
2579d9b9b7e3b3fd966cc2a03000a1a9 
dbd53da111f226b0b10858b2875710ff 
8f90c2c0cd35980297d60eb7125deb58 
9dc38eda8768709a162b44a33930a532 
a4a901a0dc6d79889c022cabd9fc29ec 
6ce28a37396e727b71bbc09f789ae0e3 
f6e9341216c403e94f1510238800be1c 
390417a789210dfa96321640d17992d5 
9ad5043d7d669fa52c7509625fb26c13 
672e36c63b932d83918b7e0fc383d807 
6d54c4849c4bc6de06642d676d361a83 
a72e87753c0e3345a96c36cf53366711 
3df822d0b5a0e0725fb4ab07498cb753 
c54e30779317cf9e588f4edb9e00cf93 
f81e314ddb5c1af7923a4ee967dec16e 
df65cf7dff99ce1c1654175df3307aa0 
407b5b65e2e9faba61be1587c7559ec1 
55c3e203be9454bff685d68971a90cb9 
ddbca7f89ff170377a94711799060ff0 
8a490b5675cd2d76d8dac77387369a72 
d6c0ee6878edbb2eedffda133d32e7d8 
1e4576d9336f204c4f7ff416bdeba0df 
8437795613b383c8000af8356ab9285a 
b4ff7b38edb88b79af1787d922e6b39a 
104528e67f01168e12cdac550fc43260 
4b9406e27cf4332ffa2d78b1ef8b986f 
ab19e26233537edc42843172293deb77 
00dca835bb93708797a053a3b540db16 
dd9c152f9965ed947dc6667ab4a2c545 
d98e128bc2a462b7b7774b03e5d25078 
a1cc525428bf22fa3068c8dbcb6d507c 
d9a2585dc11272f9305784fb71c1fa31 
57a07921b9a8e7ee6fe5421466ae15d7 
7dd59150717878681976f811acbc116f 
dc617075b90c59efb3ff3e8ac6788ce0 
04b70b6985b638035014d2eb6a41391c 
5dbd9956b4e15026ea2c06427e7d0a4d 
0e746a512379ddd47519937491652176 
02b24a492e792eabedff4746ba1b4240 
acd613ac96a22ff3e98bbf76024fb1a3 
526446e9c9267e344433d2b1e2a27950 
f3a17cb9919d6d5e92af37f0a3f71575 
c601a5a1a129488c4ae1ad7b55d9e243 
afa5200cec6270b821245cc8daf80cfb 
8e79997df7f235e4ef30553376382e53 
b0b2041ea6601942970647e690430e08 
de6370680ce959101117d44b1db00aef 
fe5a5164a447a473bf41fe4fd7434078 
00881545fa5768e4a94fadff8db5df49 
d4ecf11a5188a1647488790fa32fc8c8 
5373ae00e9fb34bfb30693fd7c533285 
de10711b36f5657d4abb0ff40b53d3f8 
df2dbb5f963100cde06a777e650dc8a3 
68ea4fbac42c7376e18d61298fafb476 
2eaf243bad4b1c22089e7654524f0e5a 
dd770eb10539934eb711349d37220ac6 
655a01ec9f936e275edd130fcc90f2d3 
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bfbcc08397c441d6498fa822cb7b268f 
c36d05f428122b58cdaca3006c288323 
dbbb88b6fbfcc7e0261a430d50339984 
8badf2ca3eef55efb3043950b365729a 
df50eeedf488e22e9f56c6431a24f468 
78d232d7da0e3bc89defe62ab162fec6 
a5f86063d20096f63db2b00d5e2d0e57 
c4eb6552105da6a93696119c94e70110 
f328f2cb570f41ff26913a0e796b1772 
f67dafe155d76c37db9ce876cc1f4744 
ddbf27194a9a1b92a2dc7c5c71c462fc 
d648adb828179bf98a6c268a45f54b80 
91d1699a1e3a904a0a1ba80dc9862cc5 
2c7ce5faf0479757edc3e71eeadc11d1 
2f2269743b9124e401a4bc4c5a27459d 
480460d178d903757908844775b74c8c 
29c2c5e121f4da789b634d414328b4c0 
dc30d2ef4c5f58b8a4b93eaeda71f323 
a498137fa180d601e6d529e4c9508747 
a25ed53a41eefdbbf8325dec39f328fc 
5d4250d1a8f53b731e4b79e119a5a489 
0707bd13b03b79ade9a1821b98c1e71e 
df28a2f40b24619d8d8d0c12a0c6cd45 
04dc2cb4c2a9d985372d617f10861f7b 
c3735f46eeca1b0bd28f5af55230dfc9 
c3536da59887a2f66d388f5a26bdacd6 
613d479da711a116d57be0f48ae17fdd 
bd3213f6bfa3eb033acf48c4fbac9097 
dd552eec031bb7cd0bf9b3e09384cddd 
59cb24053e96010c4a5631999d3cec4b 
01424db3e7c4c1cd59a78df29277e009 
da3dfaa8aad75096dcbf5aa0c63c68e2 
aa2b1e82d3063126319d80e4dbda40c0 
 

Xtreme 

00047fb702c1bd3b20d2254650df3768 
012ef682f57c5b242736fdbf533216ce 
03afa299cdd5f04260c3c802a08e151d 
03ccd72bae83487eea6585340c1f54ad 
053c17c285aafa964535325a00eb934b 
053ea0f162ef3f20bc2c02342f33b9e2 
055ea57c27cf7b47b41135ea6dc1443a 
07b836b6dad2ed74478a5e4b4d0fd4da 
0ac05f67abc4ec757c96858a865adf7c 
0e0ecf06774b7bd961a2d8d97b37b6f4 
0f21d1349842c69674b9b17004cb5c7e 
0ff429394157e4fca331c5f08c91899e 
12d358ff057a96c11687c5d09410595e 
13009b63dee4675c842ace362235f1d7 
13eccdcf26d5a0495a2f205c9bd68c40 
14176a9a467b67ed29fdc9bfaa89fad5 
163abb0c7ca93edd01f5854465cb64c4 
17f3da74634e562e7fe19c6c4e4e2bc3 
1834e956f576a05805ecb824b23b5f28 
187cf4f5091f9838bcf8cf82df4ba6b7 
1999232fd02d0c267f2dc9696b82ce86 
1d48820868d7711fc0d65df99a3c2df3 
1d6b0df54f051dbb4855d7c31d22729f 
1fc7935affe50d60ef087bef38b2d4f1 
1fcd2c9bc63632d6e23490b04768991f 
24aeab6b0c333c6c75ce2fbd781db178 
26b2868c417367221699b392fff022dd 
281bc2f3049df79163377480656fc30e 
29aa8d848bd540540cbd216a3d0567e8 
29b3e377ffd6c479a96c97ea38dcd9ec 
2ab89b6319ca4256d27f88c8f3c6ff05 
2ae2b09f9a9eb4a4c981c43ef8642ef7 
2af454cace8a047bc87d17b33151b71c 
2c06eab6814c9789410285a3cd21d12e 
2f33c24cb9dd37639ffccd7cac1e9dbf 
30eb6483e143bd625ea1986fb0063514 
32e73a98543f0f9ca9b2126f323c7e58 
332704bce32a7d10aadca990c6fd24f4 
33b7bee5818f8b2308170d9374428625 
3448085381bc85de2363b3e7bb940838 
34a4423bc864c829810b461e8d76f7d9 
34e982abb0a2a4d835c3b453d35063a3 
3592b29962a9ca40fafaac79b6460b93 
3930398dc09233736af17faf7137a4fc 
3a197ad72e1808a94b0b9d1124f3fbbd 
3a48bd69cd6c8f484b578835ff347c3a 
3ed74518ed6a875f533db40057be26f0 
3ed813685d098c623ac97a5a50265647 
40ee2641605669dde236ba26c9ddfaeb 
40f93cd71fa289c174aba946dab07abc 
43c89d639c5f1033aca75fff2f7d09e9 
44cd04d0c681452741c77b330fe7f0ec 

47d0f8e92839cbdefe66c54f06671692 
4889f7ebdb03204d8b97de40211c9882 
4bcf521c724edbb6184ce54a6efe11f3 
4c3906ae023c569f351cd6d675c0f0ae 
4c4a502dfe46b3cf242ee286915b3091 
4d46918268e3e0a40e8893182e1916d0 
4d85c0086a8add9dc27d1630b51b02be 
4e76ad2139234f43e49d5bac6a909516 
4e85e3a69be777f4043be63540f6e97d 
5064f4d882e0f92061265de63e340527 
509792c2d1ac577116c9f5dc419e1178 
5206506397fddfcb2cdc639b155a5d63 
5452d9f6da91f30d0147d52e587773fe 
54d154b0c019ac1ce78557c14bd2ee29 
5518ca3496c8e24b84c12b5e09780831 
558185ee2311843dc571f8e8aa0cf186 
558f9e2cd560c9fd3c274ac8e4c97778 
580759da374049f50cd5bdd92235dfd9 
5a23de6447a9294e4b00129649e42b6b 
5b454b62e087143916f48f021f17f80c 
5b86f52c5402ee5091a43d3b6c34f9b5 
5d4aeede9c2477cb53024d454a5f19fb 
607e598bb7d6a5804cacb9fce9da3757 
64647b1a6ce44ccea4603b22d0c872a7 
65568920b004c74ab94e23c57515016c 
66136f40e9629e9db585474d75bcbee8 
666952adabd976b1baf3f78f021aa9c4 
6697a6265596585b0efac772fe869da3 
679b19c199282a402e0297a0cd3b9823 
6832a9e81de26c141ace88c3f9f53a12 
68565d1c42475f7c060c746fe77579a7 
697632f4dc1850e4cbeb36912a4c3044 
6aa1ec3ed70945cd85b2a8dafe9b55b7 
6b7bf65f0bdc849c6f7811e4189f474b 
6f7165f69900b5abd505749fc69dfdc1 
7173ff3ed650215eb618bfc9c6d9bd30 
72b3bf916d9fc12ee4b46a9609e5cb35 
7619e19d3d4aec9ab12142975d5cc177 
76965fd607f94445c7904be4b4e33daf 
76badb708d12455b3e06eb0b50010d2d 
76cce82b75abb63957bf1ac1ab28e9db 
7836d5f7f1e1ac4db4e9ac588f3c36c1 
78b66a3d27096f4959332300e59132b4 
78bf4a5176aa02f79868979ec92439a8 
7a82d47220a53d201120fba89706aa7b 
7c5ee1e690b31bbb9f971886e01bdbe9 
7dbe90a5d8d065ebbf45efc40fff345b 
7f114aaff8333cee561dcb815d7ba780 
80651ef04c7323340af351d48761aada 
807e0d36758d6b6bce5ac22f4c4de35d 
822b89419badab03f62107dceec5c5cd 
8280a34d5b0415223c659b7b49b2d32a 
83079614d1e882f808d8542f6c03d9d4 
834570ce6baec79e3b2b6b36b3928d0e 
8a13703a1bcff8f68d20084337005143 
8a954e5a8992dbbe835808ca7bcf121c 
8b71efcbfe62a3c68723559b21da6320 
8ba2cadd7821ca2b4259b21af776f513 
8c2dd62748e9e86d37c6aeb04dc7f6e6 
8c40f636d72a05e3079ff75e2bd81cce 
8fd2ba061de501525e8d3c5a64f56273 
9189169d74005760a091bfd127cd457b 
92057608f2b49602efd4c6f3b738b819 
92e6f9c4aea0c83f6f3f5e1a8fa35b07 
96764ec96630c6ddb826ea63e0ac4dc9 
96d5a3821427f57abb4934f3ee86354b 
99bbb7003cf64e7ae3899415ea4c4ba3 
9e0a499265fa583be8ec00382e33201a 
9f828761585a7a3d9394153860e3f718 
a03e8726d0d48087d51902d0c40b81b4 
a3a4c632697c12ba4a0c3042867a1c6a 
a4b4245c10bc99714b38fdda9cfe47e5 
a5f4683e71d7b3790cd513abd97a5647 
a721b97e2ec292968c23141171ed8439 
a95aa8f30ca55435085536fa44267ebe 
a9e364993af77022b908d22eae14c89f 
ae786bf8360db97a33991eb4a0550ff4 
aecf1e9fbb5a3c428a367f62ab52d39e 
b064b4710ccdcd15987ca4ce9bdcc4b3 
b113eaeeac8352f87b3610fc8f5e9230 
b3c23f912778a946fd81806b5b8f66c9 
b53db050b357feaed7437db4186f1665 
b5aafce997968a48e61c4af5e2ebc2bb 
b6e0674c89fbd2a5f6870fade56dcb59 
b7c3620e2e6d44933196fe2dcc269057 
b8417df837c5db0e029cf53d6629d9b6 
b96786038d462389cd8b89194a42bff5 
b96b2796f76bb75c9dbe37a05dd711e5 

bb735ce094e3a9f28ee60a0acaa1501d 
bd18e1c99caf6a1348a5646d8f711bc7 
bd300ea0bbb0edf1e5aed2cdb058e8a7 
bd8f9b665655bcb6dae2c0540d20feae 
c0a4db45a13ad446cb465b8f98abcb7b 
c19762025fd962fb27c07ac86424dc57 
c27739bc50567c7726b47b6de95b569c 
c2acdde0c6060f42e1f8b63a887fde1c 
c49b7dd47d772ff6f808e9387de1dbab 
c4eeeb97a1ba6517a33aa4f6a1a0cb47 
c56520d5e3232acb596ec9211703fb19 
c7b2fc8e9ce9af5db5b567aee900d81b 
c9214f802a583cf5b78e89c319736e6d 
c9f690ca0aa4f2656e2d008625ee6a5e 
cbcb15a3814c2664af31a03659249a08 
cd677bb61de2334c2195e114e5cfe9c0 
ce46d3bc68edc03dc3885e472c851ea5 
ce4a7098eb4d2618fe3dd6864031369b 
ce7f4ad96f49f3deef0fa37c70e4e832 
d408f71a26299473904dbe3dba137c76 
d451cd1793ebab031f4041112104b9b7 
d62044aa8e1f9fac97a1f45a193e8912 
d9901c589eaa340eb2cfa6134424cf83 
dd2e46b407eef8372fcd41cf521c8016 
ddc9a13c0a5152d92086dc145516e2a6 
de29344d8c9502add8e4c26d4b97f216 
e13891ac63e18be50d4250c8e279ebe0 
e24e3970516af0a878a01fe61e17a8a9 
e2b1d139ac08fe865e11780cf4507af5 
e33b3037962037b72fe8b7c9de4959bc 
e366b06f0a9546b03fa67715b5fd737f 
e388050c5f04c03e6a256da3ca301433 
e62ac8c331028f256bfffae67c9e555b 
ea5c7217a9039891bfcf67aad76e456e 
ead53e2f497e040cce972afc6fc3a62e 
ecea54c62a9e77799e2ff3ebeecf0430 
ee3f30d5e47214a39315aa122a5b61d1 
eee54d68e3482a87315ca3de13c2a976 
efc4a39372d2db4fa21275ad4206cea0 
efc5350a5f8d3cdf61f61f108a31b3c7 
f07bd87f4ae1674ec3861d037aef1148 
f21baefff256722dbabe77859522df98 
f22e678501a4d9d1dcbe1e0ac9e3abb7 
f2c2c57ff3f7e7b5849e134f352a5b2f 
f35899c46def8ee218e59ad7ae38d015 
f388549d7b7ba26fb6c58ba8d59ce260 
f3e1836a47a2fb1780625811252940b6 
f3eb7e7b75a0cfa9d1ad13b005b32313 
f492570ce33486c2ff760dfbd566e73e 
f51e48b2984bd1ca6b5eb04347c7be9e 
f56157feb0056643827d34d093fc49b4 
f67379246dae6b88600e920ed693dfd1 
f7cc7946f3b9fdd073259b5ea50eaa3a 
fb18fa5a3477953e9551560fe10cbe0f 
fb8b3d6e284eb236f2b86d2853687323 
fbbbb695075d9b10b4732be3ce418e65 
fc29e524ee35f53f583019730574d7c0 
fd0ad9aacf6d98ff37f286f5138df45b 
fd86f140aa0539d26364e530a8d3f8b3 
fdc2db15d85c679687ee325bbf80517e 
febd97c9c08282ef198b48a274e0122e 
fff2c8b832433e6181f7ddf1b93e79a1 


