

Michal Srb

OPTIMIZATION OF FONTCONFIG LIBRARY

OPTIMIZATION OF FONTCONFIG LIBRARY

Michal Srb
Bachelor's Thesis
Spring 2017
Information Technology
Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Internet Services

Author: Michal Srb
Title of the bachelor’s thesis: Optimization of Fontconfig Library
Supervisor: Teemu Korpela
Term and year of completion: Spring 2017 Number of pages: 39 + 1 appendix

Fontconfig is a library that manages a database of fonts on Linux systems. The

aim of this Bachelor's thesis was to explore options for making it respond faster

to application's queries.

The library was identified as a bottleneck during the startup of graphical

applications. The typical usage of the library by applications was analyzed and

a set of standalone benchmarks were created. The library was profiled to

identify hot spots and multiple optimizations were applied to it.

It was determined that to achieve an optimal performance, a complete rewrite

would be necessary. However, that could not be done while staying backward

compatible. Nevertheless, the optimizations applied to the existing fontconfig

yielded significant performance improvements, up to 98% speedups in

benchmarks based on the real-world usage.

Keywords: fontconfig, optimization, benchmarking, profiling

3

CONTENTS

1 INTRODUCTION 6

2 BACKGROUND 7

1.1 Motivation 7

1.2 Fontconfig 8

1.2.1 Function 9

1.2.2 Configuration 11

2 ANALYSIS 12

2.1 Main entry functions 12

2.1.1 FcFontMatch 12

2.1.2 FcFontSort 14

2.1.3 FcFontList 15

2.2 Disk IO 15

3 OPTIMIZATIONS 16

3.1 Reimplementation consideration 16

3.2 Determining most common uses 17

3.3 Benchmarks 18

3.4 Optimizations 20

3.4.1 Rewriting FcFontMatch algorithm 20

3.4.2 Value preprocessing 23

3.4.3 Reducing heap allocations 25

3.4.4 Refactoring FcStrCaseWalkerNext 26

3.4.5 Micro-optimization in FcCompareValueList 28

3.4.6 Reduce FcObjectFromName call amount 30

3.4.7 Hint branch predictor 30

3 RESULTS 35

3.5 Total speedup 35

3.6 Speedups in real-world scenarios 36

4 CONCLUSION 38

4

VOCABULARY

ABI: Application binary interface

API: Application programming interface

Callgrind: Tool from valgrind suite for profiling programs on a sythetic

CPU.

Disk IO: Input/output operations performed on a disk.

Glob: A wildcard character that substitues one or more

characters in a filename.

Gperf: A perfect hash function generator.

GUI: Graphical user interface

Intrinsic: A function whose implementation is handled by the

compiler.

KCacheGrind: KDE frontend for Callgrind/Cachegrind.

5

1 INTRODUCTION

Fontconfig is a library that provides information about fonts installed in the

system to applications. It is used by most graphical applications on Linux.

Fontconfig is responsible for finding font files installed in the system, extracting

information from them and caching the information for a fast lookup.

Applications can retrieve this information or search for fonts matching the given

criteria. Fontconfig has a flexible configuration that allows the user to set rules

that affect the information given to applications (for example, to set fallback

fonts or to overwrite some rendering properties).

In this thesis the most common usage of fontconfig by applications is explored

and the performance of the current fontconfig implementation is evaluated.

Possible optimizations are implemented and impact on performance is

measured.

6

2 BACKGROUND

1.1 Motivation

The idea that the current fontconfig implementation may not be well optimized

came from analyzing the CPU usage during the start of graphical applications

on Linux. The motivation of the author was to improve the startup times of

applications.

The most obvious suspect for slow startups would be disk IO. However, some

applications were observed to start slowly even during the repeated starts with

enough unused operational memory, which allows all accessed files to be

cached. Moreover, it was observed that CPU is highly utilized during the start of

an application, which suggests that the startup operation is CPU-bound.

A rough measurement was done on various graphical applications in order to

determine which part of an application is responsible for the high CPU usage

during startup. The applications were ran inside callgrind and were manually

terminated as soon as their window appeared. Obviously, this measurement

method is not reliable because it depends on the reaction time of a human

tester and it measures the CPU usage not only during the startup, but also

during the short runtime and shutdown. Nevertheless, the measurements have

shown a clear culprit, a fontconfig library. A disproportionate amount of

instructions executed during the measurement originated from it.

TABLE 1. Callgrind measurement of start and immediate shutdown of Kate.

Instruction count Library

1,082,214,650 libfontconfig

934,421,487 libQt5Core

413,363,774 libc

174,812,595 libcrypto

166,361,614 ld

138,371,618 libQt5Gui

7

Table 1 shows first six libraries ordered by the amount of instructions executed

during the startup test performed on a Kate application. Kate is a well known

text editor from the KDE application suite and it was used as a representative of

a lightweight GUI application. It is not surprising to see the Qt libraries among

the top six because Kate is a Qt based application and Qt is doing all the heavy

work. Similarly, it is not surprising to see there libc, which is the standard C

library and ld which takes care of loading dynamic libraries. A bit surprising is

the time spent in libcrypto, which is the OpenSSL library. It turned out that most

of the time was spend running a FIPS self-test during the OpenSSL

initialization. This may be a candidate for another optimization. Finally, the most

expensive library, in terms of instructions executed, is libfontconfig. There is no

obvious reason why finding a font in a font database should use more CPU than

any other component of the application.

Other graphical applications were measured and the amount of instructions

executed by the fontconfig library was similarly high in them. The examples

include Firefox, Gimp, Konsole, LibreOffice Writer and Nautilus.

1.2 Fontconfig

The original ideas for Fontconfig came about during the design and
deployment of the Xft library. Xft was originally designed to connect fonts
rasterized with the FreeType library with the X Render Extension to the X
window system. As FreeType provided no font configuration or
customization mechanisms, Xft included its own. Extending the problem of
font configuration by creating yet another incompatible configuration file
format. (1)

Fontconfig was originally developed by Keith Packard and was introduced in

2002. It is written in C. It is open source and it was released under the MIT

license. It is commonly used in Linux distributions and in some Linux-based

systems, such as MeeGo from Nokia, Tizen from Samsung and Chrome OS

from Google. (2, 3)

It is important to note that fontconfig’s tasks are only to inform applications

about the available fonts in the system and to perfom queries on them. In a way,

fontconfig is a specialized database for fonts. Fontconfig does not render fonts

nor does it enforce any font rendering method on applications. Fontconfig also

8

does not have any dependency on the X server. Most applications do not use

fontconfig library directly but through some GUI framework. Notable GUI

frameworks that use fontconfig are: Qt, GTK, FLTK, and wxWidgets. (4)

1.2.1 Function

During initialization, the fontconfig library reads the system's and optionally

user’s configuration files. Then it examines font directories and extracts

information from the font files found in them. The font files are parsed using the

FreeType library. The extracted information is stored in cache files inside the

current user’s home directory so that the fonts do not need to be parsed every

time.

Extracting the information takes a considerable time which would slow down the

first application that attempts to use fontconfig after the font files have changed.

To solve that, fontconfig provides an fc-cache tool, which can be used to

generate cache files in advance. It can be used to generate system-wide cache

files, which can be used by all users. Linux distributions typically invoke fc-

cache from hooks in their packaging system after a font package has been

installed or removed.

A font in fontconfig database is represented by a set of properties. Each

property has a name, a type and a list of values. The properties can be split into

two categories: The first category consists of well known properties, such as

e.g. family, style, size and width. which are recognized by fontconfig and can be

used for font matching and completition. The second category consists of any

arbitrary properties that are not interpreted by fontconfig, but are passed to the

application, which may use them for example to set up a font rasterizing engine.

Figure 1 shows an example of the data stored about the Arial font.

9

The application can retrieve the font information using three main querying

functions:

• FcFontMatch: Retrieves a single font which is the best match for a given

pattern.

• FcFontSort: Retrieves all fonts sorted by the closeness to a given

pattern.

• FcFontList: Retrieves all fonts that fully match a given pattern.

All three querying functions take a pattern as a parameter. The pattern is a set

of font properties and their values. The pattern and font have so similar

structure that they are both internally represented by the same data type called

FcPattern. All of those functions search in fonts installed in the system. A

variant that searches in a set of fonts supplied by the caller exists for all of

them.

These querying functions are described in detail in chapter 2.1.

10

file=arial.ttf
family=Arial
familylang=en
style=Normal,obyčejné,Standard,Κανονικά,Regular,Normaali ...
stylelang=ca,cs,de,el,en,fi,hu,it,nl,pl,ru,sk,sl,vi,eu
fullname=Arial
fullnamelang=en
slant=0
weight=80
width=100
foundry=Mono
index=0
outline=True
scalable=True
charset=20-7e a0-17f 18f 192 1a0-1a1 1af-1b0 1cd-1dc ...
lang=aa|af|ar|av|ay|az-az|be|bg|bi|bin|br|bs|bua|ca|ce ...
fontversion=184812
capability=otlayout:arab
fontformat=TrueType
decorative=False
postscriptname=ArialMT
color=False
symbol=False

FIGURE 1. Information about the Arial font extracted from fontconfig database.

Retrieved using the fc-cat tool and edited, some properties were shortened for

the display.

1.2.2 Configuration

Fontconfig reads the configuration files from the system's and user’s directories.

The configuration files are in the XML format. The configuration contains basic

settings, such as directories where the font and cache files are stored, and rules

that affect the font matching process. These rules define modifications, which

are applied to a pattern before it is used for matching, or to a font before it is

given to an application, or to a font when it is read from a font file, if the pattern

or font fulfil some condition.

Figure 2 shows a rule that targets patterns. It appends “Liberation Mono” to the

list of values in the “family” property if it contains the “Courier” value. Therefore,

whenever the application makes a query for a “Courier” font, the pattern is

edited making “Liberation Mono” a second choice. Effectively, it means that

“Liberation Mono” becomes a fallback font in case “Courier” is not installed.

Figure 3 shows a rule that targets fonts. It sets the “embeddedbitmap” property

to true if the font supports Japanesse language. This is one of the properties

that is not interpreted by fontconfig, but is only passed to the application which

may use it as a hint on how to render the font.

11

<match target="font">
 <test name="lang" compare="contains">
 <string>ja</string>
 </test>
 <edit name="embeddedbitmap" mode="assign">
 <bool>true</bool>
 </edit>
</match>

FIGURE 3. Example match from fontconfig configuration

<match target="pattern">
 <test name="family">
 <string>Courier</string>
 </test>
 <edit name="family" mode="append" binding="same">
 <string>Liberation Mono</string>
 </edit>
</match>

FIGURE 2. Example match from fontconfig configuration

2 ANALYSIS

The source and profiler records of fontconfig were examined. The algorithms of

main entry functions and hot spots were analyzed.

2.1 Main entry functions

2.1.1 FcFontMatch

FcFontMatch finds and returns the best matching font for a given pattern. It is

actually a specialization of a more general FcFontSetMatch function, which

searches in fonts supplied by the caller. FcFontMatch does not require the

caller to provide a list of fonts but searches in all available fonts.

The search is done by iterating over all fonts and calculating a score which

represents the distance of the font from the given pattern. Fonts and patterns

are compared by comparing their individual properties. All well-known properties

have a defined priority for comparison. The score is represented by a tuple of

numbers (s1 , s2 , s3 ,...) , where each number s i holds the result of comparison of

a property with priority i . The scores are compared lexicographically and the

font with the lowest score is returned.

The properties in both fonts and patterns can hold multiple values. When such

properties are compared, all combinations of values are compared and the

lowest score is used. Individual property values are compared using a special

comparison function associated with the property (such as FcCompareFamily

for family property or FcCompareNumber for size property).

12

In practice the properties in the pattern usually contain multiple values because

fallback alternatives were added to them by the mechanism described in

chapter 1.2.2 Configuration.

One can see that the number of operations performed depends on the amount

of fonts in the system, the number of properties in the pattern and the number of

13

values in every property. As there is only a constant amount of well-known

properties, the number of properties involved in the comparison can be at most

equal to that constant. In a big O notation the complexity is O(n∗m) , where n

is the amount of fonts in the system and m is the longest list of values in the

pattern.

Figure 4 is a diagram showing which functions and how many times were called

as a result of five calls of FcFontMatch. The test was ran on a machine with

approximately 5,000 fonts installed (not an uncommon number when the TeX

typesetting system is installed) and with a default fontconfig configuration, which

extends the properties of every pattern with multiple fallback values. It can be

seen that the initial five calls of FcFontMatch caused 25,225 comparisons of a

font to a pattern, which caused 229,036 comparisons of their properties, which

in turn caused 4,485,139 comparisons of family names and 18,291

comparisons of file names. The final property comparisons involved fairly

expensive custom implementations of string comparators.

2.1.2 FcFontSort

FcFontSort returns a list of all fonts sorted by the closeness to a given pattern.

It is actually a specialization of a more general FcFontSetSort function, which

works on a set of fonts supplied by the caller. FcFontSort does not require the

caller to provide a list of fonts, but works with all the available fonts.

FcFontSort starts by calculating the score representing the closeness to the

given pattern for every font in a set. The score is calculated using the same

algorithm as described in FcFontMatch. After that, the fonts are sorted using

the standard C qsort function and a custom compare function that compares

the font scores to each other.

FcFontSort does the same huge amount of font property comparisons as

FcFontMatch. In addition, it spends some extra time for sorting the resulting

set.

14

2.1.3 FcFontList

FcFontList returns a list of all fonts matching a given pattern. Unlike

FcFontMatch and FcFontSort, which always return at least one font,

FcFontList returns only fonts that perfectly match a given pattern. The fonts in

the returned list contain only properties chosen by the caller and do not contain

duplicates.

FcFontList starts by creating a hash set that serves for removing duplicities in

the returned list. Then it iterates over all fonts and for each it tests whether it

matches the given pattern. This test is different from the one used in

FcFontMatch and FcFontSort and surprisingly it interprets some font

properties slightly differently. For example, FcFontMatch ignores spaces when

comparing family properties, but FcFontList does not, FcFontMatch interprets

glob characters inside a file property, but FcFontList does not.

If a font passes the test, FcFontList adds it into the hash set unless it is

already there. Only properties that will be returned to the caller are considered

when testing and adding fonts to the hash set.

In the end, FcFontList pulls fonts from the hash set and creates a regular list,

which is returned to the caller.

2.2 Disk IO

An analysis of file accesses performed by fontconfig shows that it is well

designed in this regard. It uses its own cache files that aggregate information

about installed fonts therefore it does not need to parse them if they have not

changed. The cache file format is designed in such a way that the files can be

read-only mapped into memory and used directly without any transformation. As

every application, which uses fontconfig, maps these cache files into their

memory in read-only mode, they can be shared among them, thus saving

memory and removing the need to read them repeatedly from a disk.

15

3 OPTIMIZATIONS

3.1 Reimplementation consideration

The first considered course of action was to reimplement fontconfig from ground

up. It would allow to completely redesign the internals of the library to use data

structures and algorithms that would allow to match fonts effectively. It would

also be possible to implement it in a language with higher level abstractions,

such as C++ or Rust.

However, any reimplementation should keep the same API and ideally also the

same ABI as the original fontconfig library to ease its adoption as a fontconfig

replacement. It is unlikely that the current users of fontconfig would be willing to

add an additional font database backend to their code even if it meant an

improved performance.

A closer inspection of fontconfig's API showed that fontconfig currently exposes

a wide range of functionality, including functions that are just loosely related to

font matching. Examples include UTF-8, UTF-16 and UCS-4 conversion

functions, functions for manipulating filenames, and functions for atomic file

operations. A reimplementation would have to recreate all the fontconfig's

functionality, including those functions. Considering that the current

implementation works and it was tested by years of usage, it would be risky and

take too much effort to rewrite everything. It is only the core of the library that

needs performance improvements.

Additionally, the public API of fontconfig exposes an internal structure of some

important data types, such as FcValue or FcFontSet, which forces any

alternative implementation to implement them in the same way. That in turn

limits algorithms that can work on top of them.

Upon considering the difficulties of a full reimplementation and the time frame of

this thesis, it was decided to make incremental optimizations to the existing

fontconfig instead.

16

3.2 Determining most common uses

In order to create optimizations that will improve real-world usages of the library,

it was necessary to determine what kinds of patterns applications most

commonly search.

The Linux dynamic loader can be configured using an LD_PRELOAD

environmental variable to load a library before all others. This can be used to

override functions from other libraries. (5) This trick was used to load a small

custom library instead of fontconfig to all applications. The library records all

calls of relevant fontconfig functions and their parameters to a file. It forwards

the function calls to original functions from real fontconfig to keep the behavior

same for the applications.

This library was used to record fontconfig queries by various Linux graphical

applications, especially testing applications using different GUI frameworks.

These records were analyzed and some highlights are presented in Table 2.

17

typedef FcPattern * (*OrigFcFontSetMatch)(FcConfig *config,
FcFontSet **sets, int nsets, FcPattern *p, FcResult *result);

FcPublic FcPattern *
FcFontSetMatch (FcConfig *config,
 FcFontSet **sets,
 int nsets,
 FcPattern *p,
 FcResult *result)
{
 FcChar8* description = FcNameUnparse(p);
 preload_log("FcFontSetMatch: %s\n", description);
 free(description);

 OrigFcFontSetMatch orig =
 (OrigFcFontSetMatch) dlsym(RTLD_NEXT, "FcFontSetMatch");

 return orig(config, sets, nsets, p, result);
}

FIGURE 5. Snippet from library for recording fontconfig usage. It shows a

function that intercepts calls to FcFontSetMatch.

TABLE 2. Highlights of typical fontconfig usage by various applications

Application Typical queries

Function Pattern parameter

KDE applications FcFontList empty

FcFontMatch has file and family and few other

properties

FcFontSort has family property and few others

GTK applications FcFontList empty

FcFontMatch has family and many other properties

Chromium browser FcFontMatch has family property and few others

FcFontSort same as match

Firefox browser FcFontSort has family property and few otherss

FcFontMatch has family property and many others

Java Swing

applications

FcFontMatch has family property and few others

Many applications start with a query for all fonts using FcFontList with an

empty pattern. All observed applications use fontconfig during the startup to

retrieve fonts for their GUI. In case of fonts for GUI the fonts typically exist and

are matched sucessfully. In case of KDE applications, the query even includes

the file property, which points to the actual file of the font. Applications that

display content, such as word processors or web browsers, typically query for

additional fonts when the displayed content changes.

3.3 Benchmarks

With the knowledge of most commonly used queries, it was possible to create

benchmarks that measure their performance. A Google's microbenchmark

support library (6) was used. Table 3 shows the performance measurements of

the fontconfig library before optimization. These numbers will be used as a

baseline for measuring improvements by upcoming optimizations.

The fontconfig library was compiled using a clang version 3.8.0

(tags/RELEASE_380/final 262553) with -O3 level of optimizations. The gcc

compiler was also tested (versions gcc-4.8 and gcc-6.0) and while it produced

18

code that worked correctly and the optimizations brought similar speedups,

there were random fluctuations in perfomance. A change in a function

occasionally caused a completely unrelated function to perform faster or slower.

Clang was chosen over gcc to be used for micro-benchmarking the

optimizations in this thesis as the code compiled with it had a more predictable

perfomance.

Benchmarks were run on a x86_64 Linux system with Intel i7-3770K CPU using

performance governon.

TABLE 3. Measurements before optimizations

Function Pattern Time [ns] σ [ns]

Match common_kde 16,979,822 6,619

Match common_gnome 16,774,682 7,370

Match common_chromium 16,674,855 9,558

Match common_firefox 15,668,690 4,959

Match existing_file 1,527,992 928

Match non_existing_file 1,529,358 4,038

Match existing_file_with_globs 1,824,564 993

Match existing_family 383,132 351

Match not_existing_family 377,222 633

Sort common_kde_1 18,755,030 660

Sort common_kde_2 12,424,092 4,343

Sort common_firefox_1 18,721,599 26,949

Sort common_firefox_2 19,694,770 15,660

Sort common_firefox_3 2,127,628 10,978

List empty_pattern 6,925,237 919

List existing_file 1,557,534 120

List not_existing_file 1,559,173 131,082

List existing_file_with_globs 1,445,537 3,248

List existing_family 258,622 5,717

List not_existing_family 248,760 757

“Match”, “Sort” and “List” are measuring the performance of FcFontMatch,

FcFontSort and FcFontList functions respectively. The patterns with names

“common_something” represent a pattern that has the same structure as a

19

pattern observed in a real-world application. The patterns with descriptive

names, such as an “empty_pattern” describe an artificial pattern which was

created to measure performance of a specific input.

For more details about the benchmarks see Appendix 1.

3.4 Optimizations

3.4.1 Rewriting FcFontMatch algorithm

Due to the algorithm described in chapter 2.1.1 FcFontMatch, the FcFontMatch

function performs a large amount of property comparisons, some of which are

very computationally expensive.

The analysis of most common queries showed that almost all patterns in

FcFontMatch queries contain the family property and some also contain the file

property. In almost all cases a font that matches precisely the query is found.

This is because applications are mostly querying for fonts that will be used in

their GUI and those fonts are known to exist in the system.

The file property has the highest priority of all well-known properties, which

means that if a single font with a matching file property is found, it could be

returned immediatelly because none of the remaining properties can make

another font match more closely. Similarly the family property also has a fairly

high priority and if a single match is found, there is no point in comparing

properties with lower priorities. However, the original FcFontMatch algorithm

compares all properties of all fonts.

A new algorithm was designed that instead iterates over all well-known

properties in the pattern from the highest to the lowest priority. For each

property it reduces the set of candidates for the best matching font. Initially, the

candidate set contains all fonts. The set is iterated and for every font in it only

the current property is compared against the property in the pattern. The fonts

that were closest match for the property are tracked. In the end if there was

exactly one closest matching font, it is returned. If there were multiple fonts

matching equally well, the candidate set is reduced to them and the search

continues with the next property. There is always at least one best matching font

if there is at least one font in the initial set.

20

Figure 6 shows representation of the original FcFontMatch algorithm. First, all

properties are evaluated for Font 1, then all properties for Font 2, etc. All

properties of all fonts are evaluated before Font 1 (green) can be determined as

the best match.

Figure 7 shows representation of the new FcFontMatch algorithm. The

candidate set starts with all fonts, but is reduced to Font 1 and Font 3 after

evaluating Property 1 (yellow). It stays the same after evaluating Property 2.

21

score Prop. 1 Prop. 2 Prop. 3 Prop. 4 Prop. 5

Font 1 2 3 1 5 2

Font 2 4 1 2 5 2

Font 3 2 3 2 5 1

Font 4 5 3 9 1 2

Font 5 3 2 7 1 1

FIGURE 6. Representation of the original FcFontMatch algorithm.

Inner loop
O

ut
er

 lo
o

p

score Prop. 1 Prop. 2 Prop. 3 Prop. 4 Prop. 5

Font 1 2 3 1

Font 2 4

Font 3 2 3 2

Font 4 5

Font 5 3

FIGURE 7. Representation of the new FcFontMatch algorithm.

Outer loop

In
n

er
 lo

o
p

The search can stop after evaluating the candidate set against Property 3

because Font 1 (green) is known to be the best match.

This algorithm greatly reduces the amount of expensive property comparisons.

However, while the old algorithm was able to find the best matching font in a

single pass over all fonts, the new one needs multiple passes during which it

keeps track of the candidate set. Thanks to the fact that the list of all fonts can

be indexed, a bitset was chosen to represent the candidate set – the value of

the n- th bit represents whether the n- th font is still a candidate for the best

match. This way only one dynamic allocation of small size is required and

removing fonts from the set is trivial.

TABLE 4. Speed comparison of the effects of FcFontMatch optimization.

Function Pattern % Before [ns] After [ns] σ [ns]

Match common_kde -92% 16,979,822 1,400,777 6,619

Match common_gnome -11% 16,774,682 14,929,744 7,370

Match common_chromium -10% 16,674,855 15,084,903 9,558

Match common_firefox 4% 15,668,690 15,031,823 4,959

Match existing_file -8% 1,527,992 1,409,579 928

Match non_existing_file -8% 1,529,358 1,405,771 4,038

Match existing_file_with_globs -7% 1,824,564 1,692,467 993

Match existing_family -15% 383,132 326,661 351

Match not_existing_family 26% 377,222 474,051 633

Sort common_kde_1 2% 18,755,030 19,163,212 660

Sort common_kde_2 2% 12,424,092 12,623,249 4,343

Sort common_firefox_1 2% 18,721,599 19,126,093 26,949

Sort common_firefox_2 3% 19,694,770 20,201,083 15,660

Sort common_firefox_3 3% 2,127,628 12,489,881 10,978

List empty_pattern 2% 6,925,237 7,065,266 919

List existing_file 2% 1,557,534 1,587,054 120

List not_existing_file 1% 1,559,173 1,578,804 131,082

List existing_file_with_globs 2% 1,445,537 1,479,631 3,248

List existing_family 1% 258,622 261,303 5,717

List not_existing_family 3% 248,760 256,553 757

Table 4 shows the speedups achieved using the described optimization. The

Match/common_kde benchmark became much faster because it searches for a

22

pattern with file, family, pixelsize, and index properties. Prior to the optimization,

all of these properties had to be compared. After this optimization, the matching

can stop immediatelly after a successful match of the file property.

Other Match benchmarks observed speedups, too. The benchmark

Match/not_existing_family became slower because it had to compare the family

property of all fonts, both before and after the optimization, but after it also had

to keep track of the candidate set. It is however an artificial test and even with

the slowdown, it is quite fast compared to others.

The Sort and List benchmarks did not receive any significant speedups or

slowdowns as the optimization did not touch any code executed by them.

3.4.2 Value preprocessing

While the new FcFontMatch algorithm reduces the amount of property

comparisons, some are still inevitable. In addition, it is not possible to do a

similar optimization for FcFontSort. It does not search for a single best matching

font, but orders all fonts by their closeness to the pattern. Therefore, it must

compare all properties of all fonts to the given pattern.

Profiling the benchmarks showed that the family and the file properties have the

most expensive comparison functions.

The family property is a UTF-8 encoded string and is compared using a custom

string comparison function. This function ignores a character case (in a UTF-8

correct way) and skips spaces. For example, strings “Times New Roman” and

“timesnewroman” are considered equal. This special behavior is the reason why

the standard strcmp or strcasecmp can not be used, even if it is likely that they

would be faster than the custom implementation.

The file property is also a string and is compared in a case-sensitive way first,

followed by a case-insensitive comparison. A string that matches using the

case-sensitive comparison is considered more similar than a string that

matches only after ignoring a case. In addition, so called globs (“?” and “*”

characters) can be present in the file property and serve as wildcards. The

comparison function attempts to match the strings while replacing the wildcard

characters with matching characters from the other string. For example, a string

23

“times.ttf” will be matched by patterns “times.ttf”, “TIMES.TTF” and “times.*”, in

decreasing order of closeness.

It is obvious that fontconfig does lot of redundant work during every comparison,

such as converting UTF-8 characters to lowercase or glob matching. It would be

beneficial if it could preprocess the cached font data into a format that would

allow a faster comparison. The best option would be to introduce some kind of

index into the font set, for example in a form of a trie. Unfortunately, the

fontconfig API allows querying any arbitrary set of fonts supplied by the

application, not only fonts from fontconfig cache. Therefore, it must be able to

perform the queries even on font sets that were not preprocessed. This makes it

difficult to fundamentally change the font set format.

As a basic optimization, a simple optional field with arbitrary preprocessed data

was added to the font property data type. If it is present, it can speed up the

property comparison, but if it is ommited the properties can be compared in the

regular way. Fontconfig now preprocesses all the font properties when creating

the cache files. When a querying function is called, the query pattern is

preprocessed as well and all the comparison functions can access both the

optional preprocessed value and the actual value.

Below is a summary of implemented preprocessing steps and improvements to

the comparison functions:

• family property: Preprocessed by calculating the hash of the string after it

was converted to lowercase and spaces were removed. The comparison

function can quickly reject two strings if the hash is present but does not

match. If the hash is missing or is equal, a full comparison is performed.

• file property: Preprocessed by calculating the hash of the string in

lowercase. In addition, information on whether the string contains glob

(“*”, “?”) characters is stored. The comparison function can skip both

case-sensitive and case-insensitive comparisons if hashes are present

but not matching. It can also skip a comparison using globs if no globs

are present in the pattern (a common case).

• All other string properties: String is hashed and a comparison function

quickly rejects two strings if hashes are not matching.

24

There is an opportunity for preprocessing other properties, such as lang.

TABLE 5. Speed comparison of the effects of value preprocessing.

Function Pattern % Before [ns] After [ns] σ [ns]

Match common_kde -76% 1,400,777 332,228 376

Match common_gnome -37% 14,929,744 9,411,893 51,172

Match common_chromium -37% 15,084,903 9,551,819 69,481

Match common_firefox -37% 15,031,823 9,509,700 20,079

Match existing_file -79% 1,409,579 293,638 10

Match non_existing_file -79% 1,405,771 295,710 2,523

Match existing_file_with_globs -82% 1,692,467 299,461 2,824

Match existing_family -10% 326,661 292,995 993

Match not_existing_family -6% 474,051 446,242 2,616

Sort common_kde_1 -28% 19,163,212 13,821,311 1,759

Sort common_kde_2 -21% 12,623,249 10,021,203 117,270

Sort common_firefox_1 -28% 19,126,093 13,817,795 68,154

Sort common_firefox_2 -27% 20,201,083 14,776,120 82,414

Sort common_firefox_3 -19% 12,489,881 10,136,953 95,042

List empty_pattern 2% 7,065,266 7,231,435 45,431

List existing_file -1% 1,587,054 1,573,899 21,114

List not_existing_file 1% 1,578,804 1,594,913 57,576

List existing_file_with_globs -1% 1,479,631 1,466,482 15,976

List existing_family -1% 261,303 259,634 4,249

List not_existing_family -4% 256,553 247,386 13,296

Table 5 shows the effects of value preprocessing on the benchmarks. The

Match and Sort benchmarks benefited heavily as they perform many property

comparisons. The times of List benchmarks did not change significantly

because fonts are compared using a different method in FcFontList as is

described in chapter 2.1.3 FcFontList.

3.4.3 Reducing heap allocations

Fontconfig defines a structure FcStrSet, which holds a set of strings, and

FcStrList, which serves as an iterator for FcStrSet. These structures are

used widely across fontconfig. The primary way of iterating over FcStrSet is by

25

creating FcStrList using FcStrListCreate and destroying it after using

FcStrListDone.

The creation function allocates FcStrList on heap, even that in most cases it

is only needed locally and it is destroyed in the same scope. It could be easily

stored on stack to reduce the amount of dynamic allocations.

To make that possible, the (de-)initialization of FcStrList was refactored out of

the -Create and -Done functions into new -Initialize and -Release

functions. All code using FcStrList was updated to store it on stack whenever

possible.

None of the benchmarks have shown any significant speedup or slowdown.

While there is not any improvement measured by the benchmarks, it is a good

practice to remove dynamic allocations if possible. The allocator is shared with

the rest of the application. Thus, reducing the amount of allocations and

deallocations made by fontconfig may reduce heap fragmentation and have a

positive effect on the rest of the application. (Error: Reference source not found)

3.4.4 Refactoring FcStrCaseWalkerNext

FcStrCaseWalkerNext is a function which walks a string and retrieves the next

character converted to lowercase. It can optionally skip some specific

characters (for example spaces). It is the building stone of fontconfig's string

comparison and string hashing functions.

While the previous optimizations greatly reduced the amount of string

comparisons and thus, the amount of invocations of this function, it is still

present in many hot paths. Therefore, it was beneficial to fine tune it.

The main pain point of FcStrCaseWalkerNext was its ability to skip over

characters. The function takes a string called delims containing all characters

that should be skipped. When the function retrieves the next character, it checks

whether it is present in the delims string using the strchr function. Currently,

fontconfig used this function in three modes: not skipping over any characters,

skipping over space and, in one rare case, skipping over space and a dash

character. Therefore, the delims was at most a two-characters-long string.

26

As optimization, the FcStrCaseWalkerNext function was split to three separate

functions, each optimized for its own purpose:

• FcStrCaseWalkerNext: Does not skip over any characters.

• FcStrCaseWalkerNextSkipDelim: Skips a single given character.

• FcStrCaseWalkerNextSkipDelims: Can skip an arbitrary amount of

characters. However, it is expected that the list of delimiters is small (in

practice, currently, at most two delimiters), thus calling a standard

strchr function would be incredibly wasteful. Instead, the equivalent of

strchr is open-coded inline.

This lead to a slight increase of code size and code duplication, which is a

tradeoff for faster code. In case of very hot code paths, it is worth the

performance improvement.

TABLE 6. Speed comparison of the effects of FcStrCaseWalkerNext

optimization.

Function Pattern % Before [ns] After [ns] σ [ns]

Match common_kde -6% 332,228 311,323 902

Match common_gnome -6% 9,411,893 8,802,655 2,714

Match common_chromium -7% 9,551,819 8,886,549 2,526

Match common_firefox -7% 9,509,700 8,844,730 1,070

Match existing_file 1% 293,638 289,621 23

Match non_existing_file 1% 295,710 293,542 389

Match existing_file_with_globs 3% 299,461 291,578 992

Match existing_family 3% 292,995 282,928 966

Match not_existing_family 3% 446,242 430,772 318

Sort common_kde_1 -6% 13,821,311 13,039,643 687

Sort common_kde_2 -8% 10,021,203 9,196,111 6,319

Sort common_firefox_1 -6% 13,817,795 13,015,027 2,444

Sort common_firefox_2 -7% 14,776,120 13,750,692 6,708

Sort common_firefox_3 -10% 10,136,953 9,145,413 18,151

List empty_pattern -10% 7,231,435 6,490,128 2,528

List existing_file -43% 1,573,899 896,997 13,842

List not_existing_file -44% 1,594,913 894,718 47,873

27

Function Pattern % Before [ns] After [ns] σ [ns]

List existing_file_with_globs -42% 1,466,482 844,987 1,002

List existing_family -17% 259,634 215,111 172

List not_existing_family -17% 247,386 205,800 2,038

Table 6 shows the speedups after the described optimizations. The List

benchmarks received the most significant speed increase as they do not use

the preprocessed values and compare all string properties using their raw

values, therefore invoke the FcStrCaseWalker function most often.

3.4.5 Micro-optimization in FcCompareValueList

FcCompareValueList compares two lists of values by comparing every value

from the first list with every value from the second list. Each comparison of two

values gives a score representing their closeness and the smallest closeness is

returned.

The function contains two nested cycles – an outer one iterating over one list

and an inner one over the other list. The function is used in the way that the list

28

iterated in the outer cycle originates from a pattern and usually contains tens of

values, while the list iterated in the inner cycle originates from a font and usually

contains a single value.

Switching the lists in the inner and outer cycles has no effect on the

functionality, but it improves the performance as the cycle with more iterations

becomes tigther. As FcCompareValueList is called many times per query, this

micro-optimization has a visible effect on the overall performance.

TABLE 7. Speed comparison of the effects of FcCompareValueList

optimization.

Function Pattern % Before [ns] After [ns] σ [ns]

Match common_kde -1% 311,323 307,688 436

Match common_gnome -38% 8,802,655 5,420,507 4,584

Match common_chromium -38% 8,886,549 5,505,153 2,841

Match common_firefox -36% 8,844,730 5,626,977 16,454

Match existing_file -1% 289,621 285,435 20

Match non_existing_file -2% 293,542 287,079 456

Match existing_file_with_globs -1% 291,578 287,306 358

Match existing_family -1% 282,928 279,377 750

Match not_existing_family -1% 430,772 425,758 302

Sort common_kde_1 -26% 13,039,643 9,670,799 385

Sort common_kde_2 -21% 9,196,111 7,292,789 28,721

Sort common_firefox_1 -26% 13,015,027 9,658,356 18,380

Sort common_firefox_2 -25% 13,750,692 10,381,704 44,043

Sort common_firefox_3 -18% 9,145,413 7,504,562 13,353

List empty_pattern -2% 6,490,128 6,378,110 2,463

List existing_file 0% 896,997 897,239 595

List not_existing_file 0% 894,718 893,086 57,168

List existing_file_with_globs 0% 844,987 840,859 2,400

List existing_family -1% 215,111 213,489 1,969

List not_existing_family 0% 205,800 205,551 110

Table 7 shows the speedups of the described optimization. The functions that

invoke FcCompareValueList most often naturally benefited the most. The List

benchmarks were not affected as they do not call the function at all.

29

3.4.6 Reduce FcObjectFromName call amount

Each font property in fontconfig has a name, which is a string, and an id, which

is a number. A property id can be found from the given name using a function

generated by gperf. Some functions, such as FcFontList, retrieve a

FcObjectSet object, which holds a list of strings representing the requested

properties of fonts to be returned.

FcObjectSet stores properties as strings and every place, which needs to work

with the properties stored inside, must convert them from strings to ids. This

causes the same property name to be looked up many times during a single

query. Although the gperf generated function is quite fast, it would be faster if

the conversion did not have to be done more than once.

Unfortunately, the internals of the FcObjectSet structure are exposed in the

public API, therefore it is not possible to modify them without breaking

compatibility.

As a compromise, a new structure called FcObjectIdSet, which holds object

ids, was added. FcObjectSet serves as a public mutable facing representation

of object set and is converted to a private immutable FcObjectIdSet in entry

point functions. All remaining code was modified to use FcObjectIdSet and all

redundant object name lookups were eliminated.

The benchmarks have shown only a small speed increase (-5%) for the

List/empty_pattern benchmark. Other benchmarks were affected even less.

3.4.7 Hint branch predictor

Modern processors have a deep instruction pipeline. In order to keep the

optimal perfomance, the processor tries to keep the pipeline filled at all times. If

it encounters a conditional jump, it will predict whether it will be taken or not and

speculatively execute the following instructions. If it determines that its

prediction was incorrect, the results of the speculatively executed instructions

are thrown away and the correct ones are executed instead. The time executing

the thrown away instructions was wasted. It is therefore important to minimize

the amount of mispredictions.

30

Most compilers have intrinsics that allow a programmer to specify whether a

condition is likely or unlikely to be true. These intrinsics affect the structure of

generated assembly code, which improves the instruction cache utilization and

may hint the branch predictor, too. A commonly used name for such intrinsic is

__builtin_expect and it is often wrapped in macros called likely and

unlikely. (8)

Such intrinsics are widely used in the Linux kernel code and in some

performance-sensitive user space code. However, they should be used sparsely

and with care as a badly estimated probability of a condition may hurt the

perfomance instead of improving it. (9)

Intrinsics are compiler specific and may cause portability issues. Luckily, the

__builtin_expect intrinsic can be replaced with an empty macro without

affecting the code functionality on compilers which do not support it.

As an experimental optimization, __builtin_expect was added to few hot

paths in FcCompareFamily, FcCompareValueList, and

FcStrCaseWalkerNext functions.

TABLE 8. Speed comparison of the effects of adding __builtin_expect.

Function Pattern % Before [ns] After [ns] σ [ns]

Match common_kde -1% 308,819 305,621 1,179

Match common_gnome -3% 5,558,880 5,390,364 12,425

Match common_chromium -2% 5,603,347 5,466,933 18,512

Match common_firefox -3% 5,616,794 5,437,409 18,152

Match existing_file 1% 288,278 290,082 552

Match non_existing_file 1% 289,415 291,189 812

Match existing_file_with_globs 0% 289,198 290,071 392

Match existing_family 0% 280,991 279,957 479

Match not_existing_family 1% 427,278 430,985 1,695

Sort common_kde_1 0% 9,614,146 9,600,108 26,576

Sort common_kde_2 0% 7,252,703 7,227,746 33,155

Sort common_firefox_1 0% 9,637,490 9,645,399 15,793

Sort common_firefox_2 0% 10,343,469 10,295,519 23,886

Sort common_firefox_3 1% 7,460,484 7,500,646 80,453

31

Function Pattern % Before [ns] After [ns] σ [ns]

List empty_pattern -2% 6,046,645 5,904,154 104,021

List existing_file -9% 915,556 835,606 2,010

List not_existing_file -9% 913,972 834,267 3,022

List existing_file_with_globs -8% 860,183 794,640 1,165

List existing_family 0% 211,736 211,330 184

List not_existing_family -1% 205,281 203,930 159

Table 8 shows that the benchmarks that call the affected functions the most

improved the performance as expected.

The effect of the optimization done in the FcCompareFamily function can be

seen in the generated assembly code. As shown in Figure 9, the function starts

by checking whether the preprocessed value contains the expected hash and

by comparing the hashes of the two values together. If the hashes differ, the

value 1.0 is returned, meaning that the strings are different. If the hashes are

missing or equal, the strings are compared fully.

32

static long
FcCompareFamily (FcValue *v1, FcPrepValue *p1, FcValue *v2,
FcPrepValue *p2)
{
 if (p1->type == FcPrepStrHashIgnoreBlanksAndCase &&
 p2->type == FcPrepStrHashIgnoreBlanksAndCase))
 {

// If hashes are not matching, return fast
if (p1->str_hash != p2->str_hash)
 return 1.0;

 }

 /* rely on the guarantee in FcPatternObjectAddWithBinding that
 * families are always FcTypeString. */
 const FcChar8* v1_string = FcValueString(v1);
 const FcChar8* v2_string = FcValueString(v2);

 if (FcToLower(*v1_string) != FcToLower(*v2_string) &&
*v1_string != ' ' && *v2_string != ' ')

 return 1.0;

 return FcStrCmpIgnoreBlanksAndCase (v1_string, v2_string) != 0;
}

FIGURE 9. The FcCompareFamily function prior to optimization.

The corresponding assembly code is in Figure 10. The instructions on 1f5c3-

1f5cb correspond to the first if. The p1->type is tested and if it is not equal to

FcPrepStrHashIgnoreBlanksAndCase (constant 0x3), the execution jumps to

the full comparison, otherwise it continues to the next instruction. Then the

same comparison is done for p2->type. The instructions on 1f5cb-1f5d3

correspond to the second if. The p1->str_hash and p2->str_hash are

compared and if they are not equal, the execution jumps all the way down to the

end of the function where it returns the value 1.0. If they were equal, the

execution continues down to the full comparison.

In the common case both of the hashes will be present and will not be equal.

Therefore, the most common execution path will be going directly from the

instruction 1f5c0 to 1f5d3, then jumping to 1f669 and then returning from the

function on the following instruction. It can be seen that the most common

execution path is divided in half by rarely executed code. This means that more

memory has to be accessed while executing the function, possibly slowing the

execution down due to a less effective cache utilization.

Figure 11 shows the function after adding the likely macro.

33

1f5c0: mov %rdi,%rax
1f5c3: cmpl $0x3,(%rsi) ; First comparison in first if
1f5c6: jne 1f5d9 ; First comparison in first if
1f5c8: cmpl $0x3,(%rcx) ; Second comparison in first if
1f5cb: jne 1f5d9 ; Second comparison in first if
1f5cd: mov 0x4(%rsi),%esi ; Second if
1f5d0: cmp 0x4(%rcx),%esi ; Second if
1f5d3: jne 1f669 ; Second if

1f5d9-1f668: ; Omitted many instructions doing the full comparison

1f669: movsd 0xd70f(%rip),%xmm0 ; Return 1.0
1f671: retq ; Return 1.0

FIGURE 10. Assembly of FcCompareFamily function prior optimization.

The corresponding assembly is in Figure 12. It is almost the same as before the

optimization, but the most common execution path is now in one coherent

block. The code of the full comparison does not need to be loaded in the

common case.

34

static long
FcCompareFamily (FcValue *v1, FcPrepValue *p1, FcValue *v2,
FcPrepValue *p2)
{
 if (likely (p1->type == FcPrepStrHashIgnoreBlanksAndCase &&
 p2->type == FcPrepStrHashIgnoreBlanksAndCase)))
 {

// If hashes are not matching, return fast
if (likely (p1->str_hash != p2->str_hash))
 return 1.0;

 }

 // Rest of the function remains the same
}

FIGURE 11. The FcCompareFamily function after optimization.

1f5c0: mov %rdi,%rax
1f5c3: cmpl $0x3,(%rsi) ; First comparison in first if
1f5c6: jne 1f5de ; First comparison in first if
1f5c8: cmpl $0x3,(%rcx) ; Second comparison in first if
1f5cb: jne 1f5de ; Second comparison in first if
1f5cd: mov 0x4(%rsi),%esi ; Second if
1f5d0: cmp 0x4(%rcx),%esi ; Second if
1f5d3: je 1f5de ; Second if
1f5d5: movsd 0xd70f(%rip),%xmm0 ; Return 1.0
1f5dd: retq ; Return 1.0

1f5de-1f664: ; Omitted many instructions doing the full comparison

FIGURE 12. Assembly of FcCompareFamily function after optimization.

3 RESULTS

3.5 Total speedup

TABLE 9. Speed comparison before and after all optimizations.

Function Pattern % Before [ns] After [ns] σ [ns]

Match common_kde -98% 16,979,822 305,621 1,612

Match common_gnome -68% 16,774,682 5,390,364 2,031

Match common_chromium -67% 16,674,855 5,466,933 3,678

Match common_firefox -65% 15,668,690 5,437,409 4,090

Match existing_file -81% 1,527,992 290,082 7

Match non_existing_file -81% 1,529,358 291,189 2,009

Match existing_file_with_globs -84% 1,824,564 290,071 834

Match existing_family -27% 383,132 279,957 1,183

Match not_existing_family 14% 377,222 430,985 776

Sort common_kde_1 -49% 18,755,030 9,600,108 477

Sort common_kde_2 -42% 12,424,092 7,227,746 6,285

Sort common_firefox_1 -48% 18,721,599 9,645,399 5,156

Sort common_firefox_2 -48% 19,694,770 10,295,519 33,127

Sort common_firefox_3 -38% 2,127,628 7,500,646 29,890

List empty_pattern -15% 6,925,237 5,904,154 6,341

List existing_file -46% 1,557,534 835,606 207

List not_existing_file -46% 1,559,173 834,267 72,968

List existing_file_with_globs -45% 1,445,537 794,640 297

List existing_family -18% 258,622 211,330 461

List not_existing_family -18% 248,760 203,930 431

Table 9 shows the total speedups of the benchmarks before and after all

optimizations. With the exception of Match/not_existing_family, all benchmarks

received significant speedups. Match/not_existing_family is an artificial

benchmark and even with the 14% slowdown, it is still very fast compared to

others.

35

3.6 Speedups in real-world scenarios

A method described in chapter 3.2 Determining most common uses was used to

collect the fontconfig queries done by various Linux graphical applications.

These queries were replayed and benchmarked with fontconfig before and after

the optimizations. Table 10 shows the speedup of the measured real-world

actions in absolute numbers.

TABLE 10. Speedups of real-life scenarios

Action Queries Speedup

[ms]

Starting Kate (KDE text editor) 5x Match, 1x Sort, 1x List 92.82

Starting Konsole (KDE terminal emulator) 3x Match, 2x Sort, 1x List 67.90

Starting Dolphin (KDE file browser) 2x Match, 1x Sort, 1x List 42.80

Starting Kmail (KDE email client) 6x Match, 9x Sort, 1x List 161.03

Starting KDevelop (KDE IDE) 14x Match, 2x Sort, 1x List 251.31

Starting VLC (media player) 3x Match, 1x Sort, 1x List 59.47

Starting Nautilus (Gnome file browser) 4x Match 45.54

Starting Octave 6x Match, 1x List 69.33

Starting NetBeans (Java IDE) 3x Match 34.15

Starting LibreOffice Writer 32x Match, 1x List 365.32

Opening document in LibreOffice Writter 24x Match 273.22

Opening font menu in LibreOffice Writter 15x Match 170.76

Starting GIMP (image editor) 14x Match, 1x List 160.40

Starting Inkscape (vector editor) 23x Match, 2x List 262.86

Starting Chrome 20x Match, 14x Sort, 1x List 346.67

Opening google.com in Chrome 3x Match, 3x Sort 59.43

Opening facebook.com in Chrome 19x Match, 24x Sort 418.53

Starting Firefox 6x Match, 11x Sort 160.99

Opening google.com in Firefox 3x Sort 25.28

The total startup time of selected applications was measured to get an idea of

the significance of these speedups. In contrast with a single function, which has

a clearly defined beginning and end, the startup of a graphical application is

less clearly defined. The start can be easily defined as the moment when the

36

application's process was started. However, the end needs to be recognized by

the user because there is no signal given by the application when it is ready.

One measureable moment is when the application registers its main window in

the window manager. However, many applications display their window early

but take an additional time before they are fully initialized and useable by the

user.

To get a proper idea of the timing from the point of view of the user, the

measurement was done by recording the computer screen with a camera. The

recorded video was used to measure the time from the application command

submission to the moment when the application window was fully rendered.

Table 11 shows the measured times together with the improvement. This

experiment was done with the original version of fontconfig.

TABLE 11. Startup times of selected applications with original fontconfig

Application Startup time [ms] Speedup [ms] %

Gimp 1,900 160 8%

VLC 400 59 15%

Dolphin 433 43 10%

37

4 CONCLUSION

After working with fontconfig code, it became apparent that it was not designed

with performance in mind. It is possible that the original author did not anticipate

the amount of fonts or the complexity of rules it is going to be used on. In

addition, the public API exposed too many internal details, which made it difficult

to make improvements without breaking the backwards compatibility.

Nevetherless, it was possible to achieve significant speedups just by optimizing

the existing code while keeping the same data structures and nearly the same

algorithms. Although not all of the optimizations brought speedups noticeable by

the end user, they will improve the feeling of responsiveness of the system and

the will also save energy.

A full reimplementation could bring further improvements for the cost of

breaking the backward compatibility. If such a step is taken, it would be a good

idea to clean up the public API and remove the functionality that is not

commonly used or does not belong to the scope of a font database. A new

reimplementation could be a simple wrapper around some embedded database,

such as SQLite.

38

REFERENCES

1. Packard, K. 2002. Font Configuration and Customization for Open

Source Systems. Date of retrieval 03.04.2017

http://www.phoronix.com/scan.php?page=news_item&px=Apple-No-

More-PowerVR

2. triskelios@gmail.com. 2014. ChromeOS needs supported method to

install new fonts. Date of retrieval 03.04.2017

https://bugs.chromium.org/p/chromium/issues/detail?id=320364#c4

3. Tizen Project. 2012. API Reference. Date of retrieval 03.04.2017

https://developer.tizen.org/development/api-references/native-

application?redirect=/dev-

guide/2.3.0/org.tizen.native.mobile.apireference/group__OPENSRC__F

ONTCONFIG__FRAMEWORK.html

4. Packard, K. 2016. Fontconfig. Date of retrieval 03.04.2017

https://www.freedesktop.org/wiki/Software/fontconfig

5. Kroah-Hartman, G. 2004. Modifying a Dynamic Library Without Changing

the Source Code. Date of retrieval 03.04.2017

https://www.linuxjournal.com/article/7795

6. Google Inc. Benchmark Support Library. Date of retrieval 03.04.2017

https://github.com/google/benchmark

7. Walls, C. 2017. Dynamic Memory Allocation and Fragmentation in C and

C++. Date of retrieval 03.04.2017

https://www.design-reuse.com/articles/25090/dynamic-memory-

allocation-fragmentation-c.html

39

https://www.design-reuse.com/articles/25090/dynamic-memory-allocation-fragmentation-c.html
https://www.design-reuse.com/articles/25090/dynamic-memory-allocation-fragmentation-c.html
https://github.com/google/benchmark
https://www.linuxjournal.com/article/7795
https://www.freedesktop.org/wiki/Software/fontconfig
https://developer.tizen.org/development/api-references/native-application?redirect=/dev-guide/2.3.0/org.tizen.native.mobile.apireference/group__OPENSRC__FONTCONFIG__FRAMEWORK.html
https://developer.tizen.org/development/api-references/native-application?redirect=/dev-guide/2.3.0/org.tizen.native.mobile.apireference/group__OPENSRC__FONTCONFIG__FRAMEWORK.html
https://developer.tizen.org/development/api-references/native-application?redirect=/dev-guide/2.3.0/org.tizen.native.mobile.apireference/group__OPENSRC__FONTCONFIG__FRAMEWORK.html
https://bugs.chromium.org/p/chromium/issues/detail?id=320364#c4
mailto:triskelios@gmail.com
http://www.phoronix.com/scan.php?page=news_item&px=Apple-No-More-PowerVR
http://www.phoronix.com/scan.php?page=news_item&px=Apple-No-More-PowerVR

8. Drepper, U. 2007. What Every Programmer Should Know About Memory.

Date of retrieval 03.04.2017

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

9. Kerrisk, M. 2012. How much do __builtin_expect(), likely(), and unlikely()

improve performance?. Date of retrieval 03.04.2017

http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html

40

http://blog.man7.org/2012/10/how-much-do-builtinexpect-likely-and.html
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Benchmark code APPENDIX 1/1

#include <benchmark/benchmark.h>
#include <fontconfig/fontconfig.h>

void FontMatch(benchmark::State& state, bool apply_substitutions,
const char* pattern_name)
{
 FcPattern *pattern = FcNameParse((FcChar8*) pattern_name);

 if (apply_substitutions) {
 FcConfigSubstitute(nullptr, pattern, FcMatchPattern);
 FcDefaultSubstitute(pattern);
 }

 while (state.KeepRunning()) {
 FcResult result;
 FcPattern *found = FcFontMatch(nullptr, pattern, &result);
 FcPatternDestroy(found);
 }

 FcPatternDestroy(pattern);
}

/* Benchmarks based on real application usage */
BENCHMARK_CAPTURE(FontMatch, common_kde_1, true,
"Noto Sans:pixelsize=13:file=/usr/share/fonts/truetype/NotoSans-
Regular.ttf:index=0");
BENCHMARK_CAPTURE(FontMatch, common_gnome_1, true,
“Tahoma-
9:slant=0:weight=80:width=100:pixelsize=12:verticallayout=False:dpi
=96:lang=c:prgname=gedit");
BENCHMARK_CAPTURE(FontMatch, common_chromium_1, true,
"Noto Sans-
9.99976:slant=0:weight=80:width=100:pixelsize=13.333:verticallayout
=False:dpi=96:lang=en-us:prgname=chromium");
BENCHMARK_CAPTURE(FontMatch, common_firefox_1, true,
":pixelsize=13");

/* Artificial benchmarks */
BENCHMARK_CAPTURE(FontMatch, empty_pattern, false, "");

BENCHMARK_CAPTURE(FontMatch, existing_file, false,
":file=/usr/share/fonts/truetype/NotoSans-Regular.ttf");
BENCHMARK_CAPTURE(FontMatch, not_existing_file, false,
":file=/usr/share/fonts/truetype/DoesNotExist.ttf");
BENCHMARK_CAPTURE(FontMatch, existing_file_with_globs, false,
":file=/usr/share/fonts/*/NotoSans-Regular.ttf");

BENCHMARK_CAPTURE(FontMatch, existing_family, false, "Noto Sans");
BENCHMARK_CAPTURE(FontMatch, not_existing_family, false, "Does Not
Exist");

void FontSort(benchmark::State& state, bool apply_substitutions,
const char* pattern_name)
{
 FcPattern *pattern = FcNameParse((FcChar8*) pattern_name);

 if (apply_substitutions) {

Benchmark code APPENDIX 1/2

 FcConfigSubstitute(nullptr, pattern, FcMatchPattern);
 FcDefaultSubstitute(pattern);
 }

 while (state.KeepRunning()) {
 FcResult result;
 FcFontSet *set = FcFontSort(nullptr, pattern, FcFalse,
nullptr, &result);
 FcFontSetDestroy(set);
 }

 FcPatternDestroy(pattern);
}

/* Benchmarks based on real application usage */

// Observed at least in kate, dolphin, ark, konsole, kcalc
BENCHMARK_CAPTURE(FontSort, common_kde_1, true,
"Noto Sans:slant=0");
BENCHMARK_CAPTURE(FontSort, common_kde_2, true,
"Liberation Mono,monospace:slant=0");

// Observed in Firefox
BENCHMARK_CAPTURE(FontSort, common_firefox_1, true,
"-moz-default:scalable=True:lang=en-us");
BENCHMARK_CAPTURE(FontSort, common_firefox_2, true,
"sans-serif:scalable=True:lang=en-us");
BENCHMARK_CAPTURE(FontSort, common_firefox_3, true,
"monospace:scalable=True:lang=en-us");

/* Artificial benchmarks */

BENCHMARK_CAPTURE(FontSort, empty_pattern, false, "");

void FontList(benchmark::State& state, bool apply_substitutions,
const char* pattern_name)
{
 FcPattern *pattern = FcNameParse((FcChar8*) pattern_name);

 if (apply_substitutions) {
 FcConfigSubstitute(nullptr, pattern, FcMatchPattern);
 FcDefaultSubstitute(pattern);
 }

 FcObjectSet *object_set = FcObjectSetBuild (FC_FAMILY,
FC_STYLE, FC_FILE, (char *) 0);

 while (state.KeepRunning()) {
 FcFontSet *set = FcFontList(nullptr, pattern, object_set);
 FcFontSetDestroy(set);
 }

 FcPatternDestroy(pattern);
}

/* Benchmarks based on real application usage */

Benchmark code APPENDIX 1/3

BENCHMARK_CAPTURE(FontList, empty_pattern, false, "");

/* Artificial benchmarks */
BENCHMARK_CAPTURE(FontList, existing_file, false,
":file=/usr/share/fonts/truetype/NotoSans-Regular.ttf");
BENCHMARK_CAPTURE(FontList, not_existing_file, false,
":file=/usr/share/fonts/truetype/DoesNotExist.ttf");
BENCHMARK_CAPTURE(FontList, existing_file_with_globs, false,
":file=/usr/share/fonts/*/NotoSans-Regular.ttf");

BENCHMARK_CAPTURE(FontList, existing_family, false, "Noto Sans");
BENCHMARK_CAPTURE(FontList, not_existing_family, false, "Does Not
Exist");

int main(int argc, char** argv)
{
 FcInit();

 benchmark::Initialize(&argc, argv);
 benchmark::RunSpecifiedBenchmarks();

 FcFini();
}

	1 introduction
	2 Background
	1.1 Motivation
	1.2 Fontconfig
	1.2.1 Function
	1.2.2 Configuration

	2 Analysis
	2.1 Main entry functions
	2.1.1 FcFontMatch
	2.1.2 FcFontSort
	2.1.3 FcFontList

	2.2 Disk IO

	3 Optimizations
	3.1 Reimplementation consideration
	3.2 Determining most common uses
	3.3 Benchmarks
	3.4 Optimizations
	3.4.1 Rewriting FcFontMatch algorithm
	3.4.2 Value preprocessing
	3.4.3 Reducing heap allocations
	3.4.4 Refactoring FcStrCaseWalkerNext
	3.4.5 Micro-optimization in FcCompareValueList
	3.4.6 Reduce FcObjectFromName call amount
	3.4.7 Hint branch predictor

	3 Results
	3.5 Total speedup
	3.6 Speedups in real-world scenarios

	4 Conclusion

