
 

 
 
 
 

                     

 

 

 

 

 

Dependency Injection in Unity3D 
 
 
 

Niko Parviainen 
 
 
 
 
 
 
 

Bachelor’s thesis 
March 2017 
Technology, communication and transport 
Degree Programme in Software Engineering 
 
 
 



 
 
 

Description 

Author(s) 

Parviainen, Niko 
Type of publication  

Bachelor’s thesis 
Date 

March 2017 

Language of publication:   
English 

Number of pages  

57 
Permission for web publi-

cation: x 

Title of publication  

Dependency Injection in Unity3D 
 

Degree programme  

Degree Programme in Software Engineering 

Supervisor(s) 

Rantala, Ari 
Hämäläinen, Raija 

 
 
Assigned by 

Psyon Games Oy 

Abstract 

The objective was to find out how software design patterns and principles are applied to 
game development to achieve modular design. The tasks of the research were to identify 
the dependency management problem of a modular design, find out what the solutions 
offered by Unity3D are, find out what the dependency injection pattern is and how it is 
used in Unity3D environment. 

Dependency management in Unity3D and the dependency injection pattern were studied. 
Problems created by Unity3D’s solutions were introduced with examples. Dependency in-
jection pattern was introduced with examples and demonstrated by implementing an ex-
ample game using one of the available third-party frameworks. The aim of the example 
game was to clarify if the use of dependency injection brings modularity in Unity3D envi-
ronment and what the cost of using it is. 

The principles of SOLID were introduced with generic examples and used to assist depend-
ency injection to further increase the modularity by bringing the focus on class design. 

Dependency injection with the help of SOLID principles increased the modularity by loosely 
coupling classes even though slightly increasing the overall complexity of the architecture. 
Increased loose coupling and separation of concerns brought by SOLID principles were im-
portant aspects for modularity which dependency injection cannot bring on its own. 

 

Keywords/tags (subjects)  

game development, software design patterns, software design principles, software archi-
tecture 
 
 Miscellaneous 

 

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb
https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb


 
 
 

Kuvailulehti 

Tekijä(t)  

Parviainen, Niko 
Julkaisun laji  

Opinnäytetyö, AMK 
Päivämäärä 

Maaliskuu 2017 

Sivumäärä  

57 
Julkaisun kieli  

Englanti 

 Verkkojulkaisulupa 

myönnetty: x 

Työn nimi  

Riippuvuusinjektio Unity3D-ympäristössä 
 

Tutkinto-ohjelma  

Insinööri (AMK), ohjelmistotekniikan tutkinto-ohjelma 

Työn ohjaaja(t)  

Ari Rantala 
Raija Hämäläinen 

 
 
Toimeksiantaja(t)   

Psyon Games Oy 

Tiivistelmä  

Työn tavoitteena oli selvittää, miten ohjelmistokehitysmalleja ja -periaatteita voidaan so-
veltaa pelikehitykseen tavoiteltaessa modulaarista arkkitehtuuria. Tehtäviin kuului tunnis-
taa luokkariippuvuuksien hallinnan ongelma modulaarisessa arkkitehtuurissa, selvittää 
Unity3D-ympäristön tarjoamat ratkaisut, selvittää mikä on riippuvuusinjektiomalli ja kuinka 
sitä käytetään Unity3D-ympäristössä. 

Luokkariippuvuuksien hallintaa Unity3D:ssä ja riippuvuusinjektiomallia tutkittiin. Unity3D:n 
esittelemien ratkaisujen ongelmat tuotiin esille esimerkein. Riippuvuusinjektiomalli esitel-
tiin esimerkein ja demonstroitiin kehittämällä esimerkkiprojektina peli käyttäen yhtä saata-
villa olevaa kolmannen osapuolen sovelluskehystä riippuvuusinjektiolle. Esimerkkipelin ta-
voitteena oli ottaa selvää, tuoko riippuvuusinjektion käyttö Unity3D-ympäristössä modu-
laarisuutta pelikehitykseen ja millä hinnalla. 

SOLID-ohjelmistokehitysperiaatteet esiteltiin esimerkein ja tuotiin riippuvuusinjektion tu-
eksi korostamaan modulaarisuutta siirtämällä huomiota myös luokkasuunnitteluun. 

Riippuvuusinjektion käyttö yhdessä SOLID-periaatteiden kanssa tuo modulaarisuutta sito-
malla luokat löyhästi toisiinsa, vaikkakin samalla nostaa arkkitehtuurin monimutkaisuutta 
kokonaisuudessaan. SOLID-periaatteiden tuoma laaja löyhien sidosten määrä ja vastuiden 
erottelu olivat tärkeitä osia modulaarisuutta, jota riippuvuusinjektio ei itsessään voi tuoda. 

Avainsanat (asiasanat)  

pelikehitys, ohjelmistokehitysmallit, ohjelmistokehitysperiaatteet, ohjelmistoarkkitehtuuri 
 
 
Muut tiedot  

 

http://www.finto.fi/


1 
 

Contents 

Terminology ............................................................................................................ 5 

1 Introduction .................................................................................................... 6 

2 Difficulties in Game Development.................................................................... 7 

3 Programming in Unity3D ................................................................................. 9 

4 Managing Dependencies in Unity3D .............................................................. 12 

4.1 Find -methods ............................................................................................ 14 

4.2 Singleton Pattern ....................................................................................... 15 

5 Dependency Injection .................................................................................... 18 

5.1 General ...................................................................................................... 18 

5.2 Advantages of Dependency Injection........................................................ 21 

5.2.1 Extensibility ........................................................................................... 21 

5.2.2 Testability and Mocking ........................................................................ 21 

5.2.3 Late Binding .......................................................................................... 22 

5.3 Problems with Dependency Injection ....................................................... 22 

5.3.1 Complex Composition Root .................................................................. 22 

5.3.2 MonoBehaviour components in Unity3D ............................................. 23 

6 Dependency Injection Frameworks ................................................................ 24 

6.1 General ...................................................................................................... 24 

6.2 Zenject ....................................................................................................... 25 

6.3 Adic ............................................................................................................ 27 

6.4 Forms of Dependency Injection ................................................................ 28 

6.4.1 Constructor Injection ............................................................................ 29 

6.4.2 Field/Property Injection ........................................................................ 29 

6.4.3 Method Injection .................................................................................. 30 



2 
 

 

7 The Principles of SOLID .................................................................................. 31 

7.1 General ...................................................................................................... 31 

7.2 Single Responsibility Principle ................................................................... 31 

7.3 Open / Closed Principle ............................................................................. 35 

7.4 Liskov Substitution Principle ..................................................................... 37 

7.5 Interface Segregation Principle ................................................................. 39 

7.6 Dependency Inversion Principle ................................................................ 40 

8 Test Project.................................................................................................... 41 

8.1 Design and Requirements ......................................................................... 41 

8.2 Tools and Technology ................................................................................ 42 

8.3 Implementation ......................................................................................... 42 

8.3.1 Application Flow ................................................................................... 43 

8.3.2 Entities .................................................................................................. 45 

8.3.3 Wavelength Modifying ......................................................................... 47 

8.3.4 Game State ........................................................................................... 48 

8.3.5 Inspector Friendlyness .......................................................................... 49 

8.3.6 User Interface ....................................................................................... 50 

8.4 In Action ..................................................................................................... 51 

9 Conclusions.................................................................................................... 52 

References ............................................................................................................ 55 

 

Figures 

Figure 1. Hello World example for Unity........................................................................ 9 

Figure 2. Scene Hierarchy and Inspector in Unity ........................................................ 10 

Figure 3. MonoBehaviour with fields to fill in the Inspector ....................................... 10 

Figure 4. Implementation of a MonoBehaviour with fields ......................................... 11 

Figure 5. MonoBehaviour with serializable classes as fields ....................................... 11 



3 
 

 

Figure 6. Field of a class-type displayed in the Inspector ............................................ 12 

Figure 7. MonoBehaviour with interface field ............................................................. 13 

Figure 8. Interface is not displayed in the Inspector. ................................................... 14 

Figure 9. Demonstrations of Find-methods ................................................................. 15 

Figure 10. Implementation of the singleton pattern ................................................... 16 

Figure 11. Singleton used in a unit test ........................................................................ 17 

Figure 12. Example of dependency injection ............................................................... 19 

Figure 13. Injecting a dependency ............................................................................... 19 

Figure 14. Inversion of control using events. ............................................................... 20 

Figure 15. Messy looking Composition Root ................................................................ 23 

Figure 16. Dependency bindings set using Zenject ...................................................... 24 

Figure 17. Demonstration of Zenject's Unity specific features .................................... 26 

Figure 18. “Hello World” example using Zenject ......................................................... 27 

Figure 19. "Hello World" example using Adic .............................................................. 28 

Figure 20. Constructor injection ................................................................................... 29 

Figure 21. Field injection .............................................................................................. 30 

Figure 22. Method injection ......................................................................................... 30 

Figure 23. Class with several responsibilities ............................................................... 33 

Figure 24. Responsibilities removed from the base class ............................................ 34 

Figure 25. Responsibilities in separates classes ........................................................... 35 

Figure 26. Badly designed class easily violating OCP ................................................... 36 

Figure 27. More friendly design for new types ............................................................ 36 

Figure 28. Unexpected behavior introduced by empty method ................................. 37 

Figure 29. A try to model the real world ...................................................................... 38 

Figure 30. Multiple interfaces defining smaller capabilities ........................................ 40 

Figure 31. Dependency Inversion demonstrated as a class diagram. .......................... 41 

Figure 32. Bindings for the ResourceContainer ........................................................... 44 

Figure 33. Usage of the ResourceContainer................................................................. 44 

Figure 34. Composition of the photon entity ............................................................... 46 

Figure 35. Example of fetching entities with specific capability .................................. 47 

Figure 36. Snippet defining winning condition ............................................................ 48 

Figure 37. Configurable settings in the Inspector ........................................................ 49 

Figure 38. Photon entity's installer script .................................................................... 50 



4 
 

 

Figure 39. Snippet of photon emitter rotation logic with mouse ................................ 51 

Figure 40. Screenshot of the final product before starting the game ......................... 51 

Figure 41. Screenshot of the final product while playing ............................................ 52 

 

  



5 
 

 

Terminology 

API 

Application Programming Interface is a set of methods usable by a client. 

Entity 

In Unity3D, an instance of GameObject-class representing any object in the game. 

Dependency 

Class A requiring another class or an interface to perform its function makes class A 

dependent on the class or interface. 

DI 

Dependency Injection, a software design pattern where dependencies of a class are 

supplied (injected) from the outside. 

IoC 

Inversion of Control, a software design pattern where flow of control is inverted 

when compared to traditional procedural programming. 

Pure DI 

Use of dependency injection without third-party dependency injection tools. 

(Seemann 2014.) 

Scene 

File in Unity3D where all entities are stored in a hierarchy. 

Unit Test 

Piece of code where output / behavior of a single method is validated. 

Lazy initialization 

Programming technique where the object is instantiated when requested instead of 

instantiating beforehand.  
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1 Introduction 

Psyon Games is a Finnish Jyväskylä-based start-up games company. Their main cause 

is to develop games based on real science to teach and inspire players about differ-

ent science topics while having fun. Getting people interested in science through 

games is a great idea; however, game development is not easy and making a game 

fun is not a particularly easy task. The constant flow of changes to find the most fun 

combination of game mechanics can be a very difficult and long process. From a pro-

grammer’s perspective, these constant changes present a difficulty: the written code 

should be as effortless as possible to adapt to the constantly changing requirements. 

This bachelor’s thesis aims to identify and solve the technical aspects of the problem 

in Unity3D environment in particular. Unity3D is a popular free and commercial game 

engine which has been used for several popular games such as Cities: Skylines, Fire-

watch and Kerbal Space Program (Games Made with Unity n.d). 

Chapter 2 chapter introduces the difficulties that arise in game development from a 

programmer’s perspective and identifies the technical difficulties. As the thesis fo-

cuses on Unity3D, the basics of programming in Unity3D are introduced next. After 

the basics, an introduction of the tools Unity3D provides or the techniques that are 

often used in Unity3D as solutions for technical problems are presented. 

After describing these common ways and the problems they cause, dependency in-

jection pattern is demonstrated as a solution for the problem. Additionally, the SOLID 

principles are introduced to get more out of dependency injection by bringing focus 

to class design. Next, the dependency injection in Unity3D is demonstrated with the 

usage of third-party tools called dependency injection frameworks. 

The methods are demonstrated by building a simple Unity3D game prototype using 

one of the dependency injection frameworks available for Unity3D. The aim of this 

project was to create a loosely coupled structure for the game which would be easy 

to change and extend. 
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2 Difficulties in Game Development 

In software development, the goal is to fulfill a business need. Therefore it is possible 

to create a fairly straight-forward specification and schedule to complete every re-

quired task the business needs require. If the application performs the tasks and out-

puts valid data according to the specification, it fulfills the needs. (How is game de-

velopment different from other software development 2011.) 

In game development, the business need is fun. There can be a specification and 

schedule to implement everything that is needed to the game; however, this does 

not guarantee the game is fun to play. Writing a technical specification for fun is not 

an easy task. (How is game development different from other software development, 

2011.) 

The lack of specification for fun is one of the difficulties in game development as the 

game may be changed drastically during the development in order to find the correct 

gameplay mechanics for a fun experience. 

There are cases of changing the game drastically even after it has been published, 

e.g. Diablo 3 by Blizzard Entertainment. Diablo 3 featured an auction house where 

the players could sell in-game items they had found for real money or for the cur-

rency used in-game. When Diablo 3 launched, it received much criticism and one of 

the targets was the auction house. Blizzard Entertainment responded to this by com-

pletely removing the auction house from the game almost two years after the game 

was released. (Hight 2013.) 

The auction house is not the only feature that changed in Diablo 3 after its release. 

The game is currently different from the version of the release day. (Kaiser 2016.) 

Information about the technical details of Diablo 3 are not available; however, from 

the developer’s perspective situations like this may still raise questions about how to 

deal with such cases as smoothly as possible. Cases like removing an auction house 

have business related concerns but also engineering concerns. How to design the re-

quired systems so that they can be extended, replaced or completely removed as the 

case was with Diablo 3? Modularity is a key aspect of such design. 
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In object-oriented code, classes need to know about other classes and there are 

many ways to create the relations between them, and there are many ways to design 

the classes itself. If the relationship between classes cannot be removed without 

modifying the classes a great deal, it is not a modular design, which could possibly be 

the result of tightly coupled classes, classes with low cohesion and the lack of Inver-

sion of Control (IoC). 

Tightly coupled classes  depend on each other directly. If making a change in one 

class requires changes to another class, there is coupling. It is clear that tight cou-

pling does not favor modularity. (Durand 2013.) 

Low cohesion in a class means that the class does several things that are not related 

to each other very well. It is difficult to see what the responsibility of the class is as 

parts of it are arbitrarily grouped together. (Skrchevski 2015.) When a class does too 

many things, it may lead many other classes to depend on it, which makes all the 

classes dependent on this single class, thus decreasing modularity. 

Inversion of Control is a generic software design pattern where the flow of control is 

inverted by using events, triggers, callbacks or similar concepts. Subscribing to an 

event to perform additional actions instead of modifying the method that could raise 

the event increases modularity as the method raiser does not need to know about 

the subscribers. (Fowler 2005.) 

Robert C. Martin (n.d) said whenever a nasty batch of tangled legacy code is brought 

on the screens, the results of poor dependency management are experienced. Poor 

dependency management leads to code that is hard to change, fragile, and non-reus-

able. 

It can be stated that the problem is the dependency between classes and the man-

agement of dependencies. Class A needs the functionality provided by class B to per-

form an action, however, the requirement is to allow that without sacrificing modu-

larity. Instead of tight coupling and low cohesion, the aim is exactly the opposite: 

high cohesion and loose coupling. 

The symptoms of a bad dependency management are rigidity and fragility. In rigidity, 

making a change in one method requires changes in another class and possibly the 
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changes in this other class require changes to another etc. The change affects the de-

pendencies deeply. In fragility, changes to a class cause something that seems to 

have no relationship with the changed class to break. (Martin 2014.) 

Before introducing the tools provided by Unity3D to solve the problem, the next 

chapter introduces the basics of programming in Unity3D. 

3 Programming in Unity3D 

Unity3D is based on entity framework where new behaviors are added to entities by 

attaching components to them. In Unity, entities are called GameObjects and compo-

nents are called MonoBehaviours. (Mandalà 2012a.) 

GameObjects can be created programmatically or manually with the editor. 

GameObjects can also be saved as prefabs which can be used to programmatically 

instantiate multiple GameObjects with a specific set of MonoBehaviours in them. 

Instantiated GameObjects are stored in and available from the Scene. GameObjects 

can also be nested, thus one GameObject can act as a parent for multiple GameOb-

jects. This forms the hierarchy of current entities in the Scene. (Unity - Manual: The 

Hierarchy Window n.d.) 

Figure 1 shows a MonoBehaviour component for a “Hello World” program. 

 

 

Figure 1. Hello World example for Unity 

 

The GameObject with the “Hello World” component in the hierarchy and in the In-

spector is illustrated in Figure 2. The Inspector tool also shows a Transform-compo-

nent being attached which is a mandatory component for every entity. 
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Figure 2. Scene Hierarchy and Inspector in Unity 

 

The Inspector tool is used to set the data in the components of the entities. In Figure 

3, the public fields of a MonoBehaviour can be filled by using the Inspector tool, 

which makes it easier for designers without programming experience to work with 

the design choices of a programmer. Unity also allows the creation of customized In-

spector tools. These custom Inspectors can be used to add buttons or display addi-

tional fields for more complicated components. 

 

 

Figure 3. MonoBehaviour with fields to fill in the Inspector 
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Figure 4 shows the code for the MessageDisplayer MonoBehaviour. 

 

 

Figure 4. Implementation of a MonoBehaviour with fields 

 

The Inspector is also able to display regular classes when they are fields of a Mono-

Behaviour and they have the Serializable-attribute (Figure 5). 

 

 

Figure 5. MonoBehaviour with serializable classes as fields 

 

This feature can be used to insert the values of the fields of the object right from the 

editor as seen in Figure 6. 
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Figure 6. Field of a class-type displayed in the Inspector 

 

MonoBehaviours are instantiated by Unity itself, however, MonoBehaviours can 

hook into two different phases of the process by creating methods called Awake or 

Start. The Start-method is used in the previous examples (Figure 1, Figure 4). There 

are also methods such as Update, FixedUpdate and LateUpdate to perform actions 

periodically. Awake is called first, even if the component were to be disabled. Start is 

called next but before the next Update. (Unity - Awake and Start n.d) 

The next chapter covers how to manage dependencies in Unity3D using the tools 

provided by Unity or using the instructed ways. 

4 Managing Dependencies in Unity3D 

Unity3D does not provide a very large set of tools for handling dependencies. 

Unity3D provides find methods like GameObject.Find and Object.FindObjectOfType 

which can be used to satisfy dependencies. Another easy way to get certain objects 

available for other objects is to use the Singleton pattern. (Mandala 2012a.) 
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Unity3D does neither provide a single entry-point to the application, which makes 

the managing of dependencies even more difficult as there is not that much control 

over what is instantiated and when (Mandalà 2012b). It is possible to hook into dif-

ferent stages of the start-up process by creating Awake and Start methods in Mono-

Behaviour derived classes which are then attached to GameObjects in the Scene. 

However, Unity has full control over the actual instantiation of these MonoBehav-

iours in GameObjects. 

There is also the editor tool called Inspector which is used to visually drag and drop 

object references for other objects. It is a good tool for designers and not really 

meant for handling all the dependencies. The reference setting is limited only to ob-

jects that are visible in the editor, which are Unity3D’s MonoBehaviour and GameOb-

ject classes. 

A real downside is that the Inspector is not capable of displaying interfaces; meaning, 

even if one’s MonoBehaviour based class were to implement an interface and an-

other MonoBehaviour based class had a dependency on that interface as seen in Fig-

ure 7. 

 

 

Figure 7. MonoBehaviour with interface field 

 

The dependency will not show up in the Inspector as seen in the example (Figure 8). 
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Figure 8. Interface is not displayed in the Inspector. 

 

Following sections describe the Singleton pattern and the find methods commonly 

used for handling dependencies in Unity3D game development. 

4.1 Find -methods 

GameObject.Find method looks for the desired object from the Scene hierarchy. The 

method accepts a string as a parameter and tries to find a GameObject with that 

string as its name. Another find method is the Object.FindObjectOfType method 

which similarly tries to find an instance of the desired class from the Scene hierarchy. 

The problems in the GameObject.Find method are easy to see. It looks for the name 

of the GameObject in the Scene hierarchy based on a string, which is not very ideal 

as there can be many objects with the same name. In such a case, it returns the first 

one it finds. Relying on string names may cause errors that can only be detected on 

run-time and not during compiling if the object cannot be found. If the object is 

found, this object then must be checked with GetComponent method to get the pos-

sibly desired component. Additionally, the method is slow, which leads to poor per-

formance. (Mandalà 2012a.) 

Similarly, the Object.FindObjectOfType method returns the first object it finds in the 

Scene hierarchy. Unity documentation warns that this method is also slow (Unity - 

Manual: Object.FindObjectOfType n.d.). The method also only accepts types derived 
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from the Object-class, which means instances of classes implementing a certain in-

terface cannot be looked for. 

 

 

Figure 9. Demonstrations of Find-methods 

 

Both of these methods are clumsy for managing dependencies as the returned in-

stance may vary during runtime by outside factors. This can potentially make their 

usage quite dangerous. Unity documentation guides to use the singleton pattern for 

most cases (Unity - Manual: Object.FindObjectOfType n.d.). 

4.2 Singleton Pattern 

Singleton pattern can be implemented in many ways; however, the main idea is the 

same in every implementation. In the example (Figure 10), the singleton pattern is 

accomplished with the generic singleton class.  This implementation lazily initializes 

an object from the desired class and stores it privately in a static field. Then the same 

instance can be accessed by other classes via the public static property. This is the 

main point of the singleton pattern: to give a global access to one and only instance 

of a class, the singleton. (CSharp in Depth 2011.) 
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Figure 10. Implementation of the singleton pattern 

 

The Singleton pattern is very simple and can be learned and used with very little ef-

fort, which might make it a tempting design choice. However, even if it presents very 

simple design, it brings more complicated problems that may be hard to see at first. 

These problems are all related to modularity. One problem is that the access to the 

object is global. It does not have any restrictions. It makes it possible to access the 

singleton from anywhere, which makes it very difficult to maintain any architecture 

as the developers can do anything they want. When every developer does everything 

differently in a tight project schedule, a clear architecture cannot be established. 

(Mandala 2012a.) 

Singleton also makes it difficult or nearly impossible to create proper unit tests, con-

sidering e.g. the situation in the example (Figure 11). The Client class uses the Server 

singleton, and the server makes a connection to an actual server. If the server is of-
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fline, the unit test fails which does not tell if the method does what it should. An-

other problem would be if the Server singleton preserves a state which could possi-

bly affect other unit tests (Densmore 2004). 

 

 

Figure 11. Singleton used in a unit test 

 

Additionally, having unit tests pass or fail depending on the factors outside the scope 

of the unit test is not efficient. It would be much more convenient to be able to re-

place the Server class with a fake class. This fake class could be set to always provide 

valid or invalid data. Then the unit tests could indicate in a much clearer way that the 

Client class handles the data correctly. This approach is discussed in more detail in 

Chapter 5. 

Another view to the same problem of Client class always using the Server-class is if 

the Server class is replaced with another implementation, it also requires changes to 

the Client class or any other class using the Server class. It may not be a big task to do 

in the early development; however, later it would be a nightmare for the program-

mer. 
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It can be concluded that the tight coupling between Client and Server classes is caus-

ing problems and clearly reduces the modularity. 

5 Dependency Injection 

5.1 General 

Dependency Injection (DI) is a more common pattern in software development but it 

can also be used in Unity3D for game development. It is a promising pattern for de-

pendency managing to achieve modular code. DI is often called a fancy term for sim-

ple concept. 

DI takes a simple but different approach to the problem. Instead of class A instantiat-

ing or fetching the dependencies, these dependencies are “injected” from the out-

side for the class A. Injecting means passing an instance of a class for another class, 

usually as a parameter in the constructor. (Shore 2006.) 

In the example (Figure 12), the Singleton example (Figure 11) is replaced by DI for 

better flexibility and loose coupling. In the example, Client class depends on the 

IServer interface instead of directly depending on a specific class. The usage of inter-

face abstraction makes the Client class unaware of the implementation details of the 

interface. 
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Figure 12. Example of dependency injection 

 

This loose coupling gives the developer freedom to create the FakeServer class for 

testing purposes as seen in Figure 13. Then the developer can create the “normal” 

Server-class which implements the same IServer interface for the actual application. 

When it is possible to swap implementations easily, the modularity is already greatly 

improved. 

 

 

Figure 13. Injecting a dependency 

 



20 
 

 

However, this relies heavily on the fact that the interfaces are well designed. 

Changes in the interface may cause difficulties. This subject is presented in more de-

tail in Chapter 7. 

In technical terms, what DI does is called Inversion of Control (IoC) which is a more 

generic pattern of inverting the control of something as compared to traditional pro-

cedural programming. IoC helps keeping classes with high cohesion and loosely cou-

pled. (Inversion of Control 2016.) 

For example, the usage of events achieves IoC. In the example below (Figure 14), the 

upper class diagram is converted to use events to achieve more modularity. It can be 

seen from the diagram that the control between Orc class and DeathAnimation and 

AchievementManager classes is inverted. The event raiser does not need to interact 

with or even know about the objects interested in its event. In other words, the 

event raiser is unaware of the observers. Similarly, the inversion of control is present 

in dependency injection: a class depending on an interface or another class does not 

determine which instance it is going to use. Once again in other words, the class de-

pending on the interface is unaware of the actual implementation. 

 

 

Figure 14. Inversion of control using events. 

 

Building a game or application by using dependency injection entirely raises a ques-

tion where all the objects should be created. According to Mark Seemann (2011), the 

Object Graph should be composed as close as possible to the application’s entry-
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point. For example, for a console application it would be the Main method. This spe-

cial place is called the Composition Root. When objects are injected for other objects, 

they form a graph of dependencies called the Object Graph. 

However, in Unity3D, there is not a single entry-point as stated before, which may 

create complications if considering using dependency injection without any third-

party tools. Third-party tools for DI called Dependency Injection Frameworks can be 

used with Unity3D to help with the entry-point problem. More information about the 

frameworks is found in Chapter 6. 

5.2 Advantages of Dependency Injection 

When using dependency injection with interface abstraction, the code becomes 

loosely coupled, which allows the developer to replace implementations of compo-

nents to another implementation as seen in Figure 12. While being able to swap 

components is an advantage itself, it can be seen as different advantage depending 

on the perspective. 

5.2.1 Extensibility 

Loose coupling helps with extending the application or game. In game development 

where the requirements may change a great deal during the lifetime of the project, 

this can be very useful. An old component not meeting the new requirements can be 

substituted with a new one. 

Depending on the situation, the old component could also be extended by using the 

decorator pattern. In decorator pattern, a new implementation of the same interface 

is created, however, it will have a dependency on the old one. In other words, the 

new one works as a wrapper for the old one. The new implementation then uses the 

old one and adds the new behavior. (Shvets n.d.) 

5.2.2 Testability and Mocking 

Unit testing becomes much easier as the developer can change the implementations. 

For example, to test if a component of the application correctly processes certain 

data. Instead of fetching the data from a real database, the developer can create a 



22 
 

 

fake class (a mock) which creates the data in code without accessing a database. The 

test becomes more reliable as the functionality of the database does not affect the 

test. (Baharestani 2013, 27) 

5.2.3 Late Binding 

If using a dependency injection container, the container is expected to return an in-

stance of the given type. The decision of the type can be delayed to the runtime, 

which gives the ability to create a configuration to determine which type to use with-

out needing to recompile the application. (Baharestani 2013, 28) 

5.3 Problems with Dependency Injection 

When using dependency injection without any third-party frameworks or libraries, as 

Pure DI, there are couple of problems. One of the problems is Unity specific problem 

and another one a more generic problem. A third-party dependency injection tool 

can be used as a solution for both problems. Below these problems are described in 

more detail. 

5.3.1 Complex Composition Root 

When not using a DI framework, the Object Graph is created at the Composition 

Root manually. If the project is big and has many dependencies, the Composition 

Root may become very big and even difficult to maintain. 

The next example (Figure 15) has an EnemyManager class which has the responsibil-

ity to keep track of all enemies in the level. There is no need for more than one Ene-

myManager class, therefore, the only instance is injected for anything that needs the 

manager. In this example, the number of other classes that depend on the Enemy-

Manager class is high and injecting them one by one creates a messy looking and less 

maintainable entry point. 
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Figure 15. Messy looking Composition Root 

 

In a larger project, the number of classes depending on the EnemyManager class 

could be much higher. Injecting them manually one by one would create a Composi-

tion Root that is very difficult to read. 

5.3.2 MonoBehaviour components in Unity3D 

In Unity3D when the game is launched, there is not much control over what happens 

as there is not a single-entry point to the application (Mandalà 2012b). Instead every 

GameObject’s MonoBehaviour component can implement special methods that 

Unity itself calls to hook custom operations by the developer into certain points of 

the initialization. The Composition Root is an important part when using DI for the 

entire application or game. 

Another problem related to the MonoBehaviour class is the fact that they are at-

tached to GameObjects and Unity3D itself instantiates them, the control of injecting 

dependencies in the Composition Root is lost. (Mandalà 2012b.) 

To solve these problems, there are third-party tools that can be used. These tools are 

called Dependency Injection Frameworks. They provide various of methods to create 

complex dependency injections with less code. They also provide more than the tra-

ditional constructor injection. The frameworks targeted for Unity3D also help with 

the entry-point problem. 
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6 Dependency Injection Frameworks 

Dependency injection frameworks are also known as IoC Containers or DI Containers. 

6.1 General 

DI containers are a piece of software that handle the resolution of dependencies in 

objects. They hold the information about dependencies that can be injected into an-

other object by demand. (Adic Documentation 2016.) 

The dependencies are determined by configuring the container by setting various 

bindings. A binding is the definition of the relationship between the requested de-

pendency and the injected dependency. For example, a class may depend on an in-

terface, thus the binding defines which instance is injected to satisfy that depend-

ency. 

A previously introduced problem of a complex Composition Root (Figure 15) can be 

simplified with a DI container a great deal. The following example (Figure 16) demon-

strates bindings with Zenject. Now, the same instance of EnemyManager and Player 

classes are injected with a single line of code for any number of classes. This means 

that the classes depending on EnemyManager do not need to be referred to in the 

bindings. Any class that has dependency to the EnemyManager will have the same 

instance injected by the framework. 

 

 

Figure 16. Dependency bindings set using Zenject 
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The following chapters introduce a few of DI containers targeted for Unity3D. They 

are not for Unity3D only but many of them are built on the research done by Sebas-

tian Mandalà. The research was to provide proof of concept of using dependency in-

jection in Unity3D. All the frameworks are very similar to each other and all of them 

support the injection of MonoBehaviour scripts. They all do the same thing, however, 

have slightly different features and syntax. 

6.2 Zenject 

Zenject is a dependency injection container targeted especially for Unity3D. It is built 

on the work of Sebastian Mandalà and inspired by another DI container called 

Ninject. (Zenject Documentation 2016.) 

Some mobile games for Android and iOS are using Zenject. The most famous of them 

is Pokemon Go by Niantic Labs. (Zenject Documentation 2016.) 

Zenject comes with additional features to make the development for Unity3D easier. 

These features are meant to reduce the amount of MonoBehaviour based classes by 

bringing some of the MonoBehaviour features for normal C# classes. 

Zenject provides ITickable, ILateTickable and IFixedTickable to bring the MonoBehav-

iour class features of Update, LateUpdate and FixedUpdate to normal classes. Imple-

menting these interfaces in a regular class and setting the binding as shown in the ex-

ample is enough. (Zenject Documentation 2016.) 

Another feature is the IInitializable interface, which can be used to create initializa-

tion logic for objects. Initialization should not be executed in the constructor as it 

would occur in the middle of Object Graph creation which could cause problems. In-

stead, the interface can be used in the same way as the other interfaces as seen in 

Figure 17. The initialization is then executed after the whole Object Graph is created. 

(Zenject Documentation 2016.) 
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Figure 17. Demonstration of Zenject's Unity specific features 

 

The last additional feature is the support of C#’s IDisposable interfaces which can be 

used to do clean up after a scene is changed or the application is closed or any other 

reason that causes the object to be destroyed. (Zenject Documentation 2016.) 

Figure 18 shows a “Hello World”-program in Unity3D with Zenject. SceneContext is 

created in the editor and the HelloWorldInstaller is attached to any GameObject and 

reference to the component is set to the SceneContext. 
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Figure 18. “Hello World” example using Zenject 

 

6.3 Adic 

Adic is a dependency injection container targeted for Unity3D and any other C# pro-

ject. It is based on the DI container by Sebastiano Mandalà and studies of Strange-

IOC. The main goal of Adic is to be simple to use and extend. 

Adic comes with additional features like Zenject. When Zenject comes with ITickable 

interfaces, Adic comes with identical features with IUpdatable, ILateUpdatable and 

IFixedUpdatable. In addition to those same features as in Zenject, Adic comes with 

IPausable to detect when application is paused, IFocusable to detect when applica-

tion is focus is changed and IQuitable when the application exists. As in Zenject, im-

plementing the interface and binding it in a container is enough to use them. (Adic 

Documentation 2016.) 

Figure 19 shows a “Hello World” program for Adic. The context root inherited from 

ContextRoot is attached to a GameObject. The Init method would contain initializa-

tion code to start the game, however, for an example this simple nothing is required. 
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Figure 19. "Hello World" example using Adic 

 

6.4 Forms of Dependency Injection 

Dependency injection containers present additional ways to inject dependencies. 

Probably the most common way, already introduced in Figure 12 is the constructor 

injection. Each of the forms of injection is present in each of the introduced frame-

works. 

Constructor injection should be the first choice for injection as it is the most portable 

one and it guarantees the non-existence of circular dependencies. 
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6.4.1 Constructor Injection 

When an instance is created, dependencies are injected in the constructor. In the ex-

ample (Figure 20), dependencies B and C are passed as parameters to A which has 

dependencies on them. 

 

 

Figure 20. Constructor injection 

 

The constructor injection is the simplest form of injection and does not require any 

kind of framework to work. However, in Unity3D, this cannot be used as MonoBehav-

ior classes should not have constructors as it may create unexpected behavior. In-

stead the method injection is preferred for MonoBehaviours (Adic Documentation 

2016). 

6.4.2 Field/Property Injection 

In the field or property injection, the dependencies are injected directly into the 

fields. In the example, B and C fields are marked with an “Inject” attribute of the 

framework such as Zenject (Figure 21). The attribute tells the IoC container that a de-

pendency must be injected for the field or property. 
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Figure 21. Field injection 

 

This approach is sometimes used when the constructor injection starts looking 

messy, i.e. has many dependencies injected. However, the messy constructor is usu-

ally a sign of bad code, which could mean that the class does far too many things, 

which then again hurts modularity. (Kainulainen 2013.) 

More about improving class structure to improve modularity and to use dependen-

cies injection more efficiently is found in chapter 7. 

6.4.3 Method Injection 

Method injection is similar to constructor injection, except it is also used with IoC 

containers. Similarly to field injection, the Inject-attribute is used to tell the frame-

work of required injections. 

 

Figure 22. Method injection 

Method injection is often recommended to use for MonoBehaviours in Unity3D as it 

is closest to the constructor injection. (Zenject Documentation, 2016). 

There are still ways to get more out of dependency injection by considering the way 

classes and interfaces are structured. For example, if one class does too many things, 

it will result in many other classes to depend on it, even if they are using only a small 
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part of its functionality, and if almost every class depends on a certain class, it re-

duces modularity. This is something dependency injection cannot solve on its own. 

The next chapter introduces a collection of software design principles to improve the 

class and interface structure to further improve modularity and get more out of de-

pendency injection. 

7 The Principles of SOLID 

7.1 General 

SOLID is an acronym introduced by Michael Feathers for a collection of design princi-

ples named by Robert C. Martin. The acronym stands for Single Responsibility Princi-

ple (SRP), Open / Closed Principle (OCP), Liskov Substitution Principle (LSP), Interface 

Segregation Principle (ISP) and Dependency Inversion Principle (DIP). (SOLID 2017.) 

The purpose of these principles is to make it more likely for the programmer to write 

systems that are easier to maintain and extend over time (SOLID 2017). Some of 

them may seem identical with each other; however, they still cover different aspects. 

Just like DI, these principles are more common in software development but nothing 

stops using them in game development as well. 

Dependency injection with interface abstraction is one way to apply the dependency 

inversion principle. Following the other principles allows to get more out of depend-

ency injection as they point the developer towards writing more modular and main-

tainable code. These principles are not laws but more like guidelines (Durand 2013). 

In some scenarios, it may not be the best solution to follow them, however, one can 

be sure that it is not a bad solution either. 

Following chapters explain and demonstrate each principle in game related cases. 

For simplicity, the examples are not directly Unity3D related. 

7.2 Single Responsibility Principle 

The single responsibility principle states that every class should have only one reason 

to change: the class has only one responsibility. Following this principle helps to 
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avoid creating a god-class, a class with far too many responsibilities. (Durand 2013.)  

Following this principle also helps to write unit tests easier as the classes are signifi-

cantly smaller when they have only one concern. 

Responsibilities can be thought as people with different roles. Somebody may have 

one role and somebody else two or more roles. These people want changes to the 

code depending on their role. (Martin 2012.) 

For example, some artist wants to change that numerical health presentation of ene-

mies to a health bar. The game designer wants to make changes to the way damage 

is calculated. Yet another role wants to change the format of data persistence. 

Making one of those changes should not require changes in another area. When SRP 

is applied, it helps to reduce fragility. Fragility means when one makes changes in 

one class or method, some feature that seems to have no relation with the change 

breaks. (Martin 2012.) 

Following example (Figure 23) shows a simple class that has too many responsibili-

ties. The Character can attack, take damage and greet. It also validates the health 

that is set. The class is simple but it has too many responsibilities already, it can be 

changed for more than one reason. For example, the attacking logic or health valida-

tion may change. Both are completely unrelated; the attack logic has nothing to do 

with validation of health value. 
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Figure 23. Class with several responsibilities 

 

The following example (Figure 24) shows the same Character class but stripped from 

other responsibilities. 
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Figure 24. Responsibilities removed from the base class 

 

Other responsibilities are divided into multiple classes (Figure 25). For example, to 

change the health validation, one only needs to touch the HealthComponent class 

and to change the attack logic, one touches the CombatComponent class. However, 

there is still room for improvements in the example as it is not following all the other 

principles. 
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Figure 25. Responsibilities in separates classes 

  

7.3 Open / Closed Principle 

Open Closed Principle states that classes should be open for extension but closed for 

modification (Durand 2013.), which means one should be able add new features 

without modifying already existing code. 

Following example (Figure 26) shows a class where another overloaded method 

needs to be added to handle a new kind of character; it requires modifying of already 

existing code which violates the principle. For example, adding a NeutralCharacter 

would require changes. 
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Figure 26. Badly designed class easily violating OCP 

 

In the next example (Figure 27), the problem is solved by a simple interface. When 

the method takes an interface as parameter, it does not need to care about what 

class it is handling as long as the class implements the interface. Because of this, new 

types can be created and used without modifying the existing code. Another way 

would be to use an abstract base class. 

 

 

Figure 27. More friendly design for new types 
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7.4 Liskov Substitution Principle 

Liskov Substitution Principle states that if type S is a subtype of type T then type T 

can be substituted by type S (Durand 2013). This means that when a method has a 

parameter of type T and a type S is given as the parameter, the result should be ex-

pected to be the same without exceptions. Following this principle can help to avoid 

creating code that is misleading in that sense. 

The reader is asked to consider the following example (Figure 28). IEnemy defines 

the behaviors of enemies: attacking and moving. It may seem fine, however, unex-

pected behavior is introduced by the EvilTree because even if it is an enemy, it is not 

supposed to move. As IEnemy requires the EvilTree class to implement the Move-

method, this would result in an empty method, however, such a method is very con-

fusing for someone else to read, and the result would not be expected either. 

 

 

Figure 28. Unexpected behavior introduced by empty method 
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The unexpected behavior is the cause for violating the principle. A workaround 

would require the type to be checked for EvilTree in special cases; however, this 

would violate the previously introduced Open / Closed Principle where one should 

not need to modify existing classes to introduce new features. (Durand 2013.) 

From unit testing point of view, the unexpected behavior can be understood better 

as a problem. One could imagine a case where it was to be tested if every IEnemy 

type of unit moves correctly. Looping through a list of IEnemy objects and calling the 

Move-method for each will cause the test to fail if there is an enemy like the EvilTree 

which would not move to the desired position. 

This problem often occurs when trying to model the real world in code. The next ex-

ample (Figure 29) tries to define birds as classes and interfaces. IBird interface says 

that birds sing and fly, which sounds acceptable at first, however, penguins are also 

birds; however, they are not capable of flying. 

 

 

Figure 29. A try to model the real world 

 

Another similar problem with the same idea is the rectangle and square problem, 

where square is a subtype of rectangle. Setting the width of square also sets the 
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height, which may cause unexpected behavior when passing square as a substitute 

for a method which accepts rectangles. (Durand 2013.) 

It can be said that objects in the real world may have a clear relationship but in ob-

ject-oriented design the relationship should depend on the object behavior instead 

(Ancheta 2015). 

The solution for the problem is to not define methods in interfaces that cannot be 

implemented in all the classes. Also, avoiding trying to model the real world may help 

as seen in the example (Figure 29). This principle is one of those where there proba-

bly are going to be multiple solutions depending on the situation. For the problem in-

troduced in Figure 28, the next principle (Interface Segregation Principle) may offer a 

suitable solution. 

7.5 Interface Segregation Principle 

Interface segregation principle states that a client should not be forced to depend 

upon interfaces that they do not use (Durand 2013). This is similar to Single Responsi-

bility principle by being about roles. 

In the previous example (Figure 28), an assumption was made that every enemy can 

move, however, the EvilTree type should not. Nevertheless, it still has the move 

method which it does not need. Therefore, it is violating ISP in addition to LSP. ISP 

can be applied as a solution by splitting the IEnemy interface into smaller interfaces. 

In the next example (Figure 30), the IEnemy interface has been split into smaller in-

terfaces that define smaller behaviors. Now, the Wolf and EvilTree both can attack 

but only the Wolf type implements the IMovable interface. Now, the EvilTree will not 

have methods it does not need. 

 



40 
 

 

 

Figure 30. Multiple interfaces defining smaller capabilities 

 

In a real case scenario, the interfaces would most likely introduce more than one 

method. For the sake of simplicity, only one is introduced in the example. 

7.6 Dependency Inversion Principle 

Dependency Injection is one way to easily follow this principle if interface abstraction 

is also applied. DIP states two things. First, high-level modules should not depend on 

low-level modules. Both should depend on abstractions.  Second, abstractions should 

not depend on details. Details should depend on abstractions. 

(Durand 2013.) 

In other words, instead of class A directly depending on class B, an abstraction is 

used between them. Dependency injection example (Figure 12) already follows this 

principle by using the interface IServer. Now, the Client class (high-level module) de-

pends on the abstraction. And the FakeServer class (low-level module) implements 

the interface. Dependency inversion of Figure 12 is visualized in the Figure 31. 
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Figure 31. Dependency Inversion demonstrated as a class diagram. 

 

DIP may look very similar to DI; however, they are very different things. DIP does not 

care about when or where the dependency is instantiated. DI on the other hand does 

not care about the abstraction. However, DI with DIP is a great deal more useful be-

cause the abstraction brings loose coupling. 

8 Test Project 

The test project is to create a simple game prototype using Zenject as the depend-

ency injection container. 

8.1 Design and Requirements 

The game is called Mirror Puzzle. the player controls photon emitters and tries to 

shoot photons to correct photon receivers using mirrors which reflect the photons. 

The player has a limited amount of tries and must manage to land photon in each re-

ceiver to complete the game. Photon receivers only accept photons of specific wave-

length. The player can alter the wavelength of the emitted photons by changing the 

amount of energy supplied to the photon emitters. Higher energy input results in 

shorter wavelength in photons and vice versa. The wavelength is visualized for the 

player as a color. 
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On the technical side, the aim is to create entities and systems as loosely coupled as 

possible. It should be possible to implement new features without any or with mini-

mal changes in existing code. The implementation should also take advantage of de-

pendency injection and aim to follow the principles of SOLID. 

The technical design should not limit the options for art or game designers. Unity3D’s 

Inspector tool should be usable to configure visuals and implementation details. 

8.2 Tools and Technology 

The design choices take the advantage of C# 6.0 features which are not supported by 

Unity’s .NET 2.0/3.5-like API compatibility. However, there is a special editor-only 

beta version of Unity (5.5.0b9) that has .NET 4.6 compatibility. This version is re-

quired. As a side note, the beta release uses an updated garbage collector which runs 

in a special debug mode, which decreases the overall performance. (Chambers 

2016). 

Adic was the first choice for dependency injection container. It has method descrip-

tions available in IntelliSense and is very well documented, however, it requires a 

separate Inject method call in MonoBehaviour Start methods which eventually lead 

to change the choice of the dependency injection container to Zenject. Zenject is also 

very well documented; however, lacks the method and method parameter descrip-

tions for IntelliSense. 

Microsoft Visual Studio 2015 Enterprise with Tools for Unity is used as the main de-

velopment environment for programming. Git with GitHub is used as the version 

control. 

8.3 Implementation 

In the following chapters, the most interesting points and features are explained in 

detail. First the application flow is explained without going too deeply into details 

and then specific areas are explained in more detail. 

The project with all its source code is available at GitHub for free. 
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8.3.1 Application Flow 

The game starts with Zenject reading the bindings set in various Installer scripts. 

These bindings determine how the dependencies are injected. First, bindings are set 

in GameInstaller. After all bindings, various initializations are run before the game is 

playable. 

As designers need to insert photon receivers, photon emitters, mirrors and walls 

around the Scene using the Unity editor, the first action is to fetch these Entities for 

the EntityManager, so other systems can get their hands on these Entities. Addition-

ally, EntityManager needs to get hold of Spawners that spawn Entities which should 

be available via the EntityManager. These actions are done by the SceneEnti-

tyTracker and EntityManagerInitializer classes that are instantiated as singletons by 

Zenject. The next steps are followed with more initialization process for round man-

aging, resource managing and exchange managing. 

Round managing contains initialization for the dependency injection layer for storing 

the instances meant for win and lose conditions in an instance of ConditionCon-

tainer. This class and its instance are meant for the bindings as a helper. Because 

there needs to be only one instance of win and lose conditions that systems can ob-

serve, they are stored in this helper object for easier access. The ConditionContainer 

object can then be used in Installer scripts to get the specific instance using Zenject’s 

FromResolveGetter method on it. The initialization is demonstrated in Figure 32 with 

identical case with the Resource managing. 
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Figure 32. Bindings for the ResourceContainer 

 

Additional initialization for round managing is in EmitterTrigger and RoundResetter 

which listen to OnRoundStart and OnRoundEnd events in the IRoundManager imple-

mentation. Round ending is determined with separate end condition which is ob-

served by the IRoundManager implementation. Win and lose conditions also listen to 

the OnRoundEnd event. 

Resource managing has the exactly same helper “pattern” used for storing instances 

of energy and charge Resources. The helper class is ResourceContainer for these in-

stances. Figure 33 demonstrates the usage of the ResourceContainer helper for set-

ting the Resource instance for displaying energy in the UI. 

 

 

Figure 33. Usage of the ResourceContainer 

 

Exchange management has initialization for exchanging energy resource to wave-

length in photon emitters. ExchangeInitializer creates the ResourceWave-

lengthExchange objects for every photon emitter. These exchange objects can then 

be used by other systems to exchange energy Resource to specific photon emitter’s 
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wavelength. One of these systems is the ExchangeItemLister, which creates UI ele-

ments for each exchange object to allow the player to affect the wavelengths of the 

photon emitters. 

After all initializations, the game is playable. However, nothing happens without 

player input. The player can manipulate the wavelength of photon emitters, rotate 

the photon emitters or emit photons from every emitter to try to solve the puzzle. 

By moving the sliders on the left, the UI script commands an exchange object do an 

exchange by sending a value based on the value of the slider. In the prototype, the 

only exchange objects are instances of the ResourceWavelengthExchange. 

The player can also rotate the photon emitters. Clicking an emitter enables the 

mouse-based rotating and moving the mouse commands an emitter to rotate to look 

at the mouse position. 

To solve the puzzle, the player can click the button on the bottom of the screen. This 

button commands the IRoundManager implementation to start a round. As men-

tioned before, at initialization, EmitterTrigger starts listening for the OnRoundStart 

event and causes all emitters to emit single photons. Then again, the IRoundManager 

implementation listens for the end condition to trigger which causes the round to 

end and possibly win and lose conditions to be met. If win or lose conditions are not 

met, nothing happens, except the cleaning done by RoundResetter. Win and lose 

conditions are listened by the UI elements. 

8.3.2 Entities 

Entities can differ a great deal, and it is possible that the definition of any entity 

could change during the development. Entities can also share same behaviors. For 

this reason, the capabilities of an entity are composed instead of inherited by using a 

concept called mixin. In practice, units of functionality are created in separate classes 

and then instances of these classes are used by a parent class (Mixin 2017.). It is simi-

lar to multiple inheritance; however, without actually inheriting anything. In addition 

to composition, all entities inherit from a base Entity class which brings OnDestroyed 

event for each entity. This event can be listened to know when specific entity on 

completely removed from the Scene. 
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In this mixin implementation, the interface segregation principle can be seen easily 

as different behaviors are defined by interfaces. The parent class for specific entity 

implements each of the behavior interfaces the entity requires and also has a de-

pendency on each of those interfaces. The interface implementations on the parent 

class forward each method, property and event to the corresponding dependency. 

This also enforces the usage of dependency inversion. However, this may create a lot 

of boilerplate code for the parent class, however, it also brings the ability to change 

the behavior logic without needing to modify the parent class. Another benefit is that 

the exactly same behavior logic can also be used by multiple entities. Additionally, 

the behavior logic can be changed in runtime. Figure 34 demonstrates the mixin’s 

parent class (Photon) and its composed capabilities of IMovable, IRotatable, IKillable 

and IWave. 

 

 

Figure 34. Composition of the photon entity 

 

When each entity implements several interfaces, it also makes it easy to get every 

entity that share same behavior. For example, to get each entity that can rotate or 

move. The EntityManager can be used to get every instance as seen in Figure 35. It 
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also makes it clear for the developer to understand what each entity is capable of do-

ing. When systems are favored to depend on interfaces instead of concrete entity 

classes, removing a behavior from an entity, automatically rules out the entity from 

the system. In an ideal case, removing a behavior from entity would not require any 

changes in any system. However, this is difficult to achieve. 

 

 

Figure 35. Example of fetching entities with specific capability 

 

The Wall entity is slightly different as it is so simple that it does not do anything else 

except destroy any entity that touches it. However, even though it differs slightly 

from other entities, it would be very easy to extend its capabilities in the same way 

as others. 

8.3.3 Wavelength Modifying 

Wavelength modification of the photon emitters is considered as an exchange be-

tween a certain resource and the wavelength. Therefore, there is an interface called 

IExchangable that can be implemented to create a specific kind of exchange and by 

calling the Exchange-method of the instance will know how to perform an exchange. 

In the case of wavelength, there is ResourceWavelengthExchange instance that holds 

the reference to the IWave implementation and any IResource implementation. A 

factory can be used to create the exchange class instance for specific IWave imple-

mentation. For ResourceWavelengthExchange, the dependency injection bindings 

are set to always inject the Resource instance for energy. 

The resources are implementations of the IResource interface. The resources can be 

used by calling the Spend method and gained by calling the Restock method. In an 

exchange, Spend method and Restock method are called based on the amount given 

as a parameter for the Exchange method. The negative value will cause Resource to 

be gained from the wavelength and vice versa. 
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Exchange logic is quite simple in the prototype, however, more complex exchange 

logic could be created with the same interface. For example, an exchange with ratio 

between two resources. 

8.3.4 Game State 

The game does not directly have a class that has the responsibility of changing or 

maintaining the state. The closest thing to such a system is the implementation of 

IRoundManager, which can be observed for round starting and ending. States for 

winning or losing do not exist but there are classes implementing the ICondition in-

terface for those scenarios. Classes implementing this interface can be observed for 

the condition to be met. For example, there are WinCondition and LoseCondition 

classes which can be observed for player winning or losing. This allows new “states” 

to exist without modifying any existing code, however, by creating a new ICondition 

implementation which represents specific case which can be observed for triggering. 

WinCondition triggers when a round ends and every receiver has received some-

thing. LoseCondition triggers when one or more receivers have not received any-

thing, and there are no more charges left. Round ending is triggered by EndCondition 

which triggers when there are no more photons at the level or every single one of 

them has been received. In Figure 36, take from WinCondition class demonstrates 

the logic for winning the game. 

 

 

Figure 36. Snippet defining winning condition 
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8.3.5 Inspector Friendlyness 

Every entity has its own Zenject installer script. These installer scripts are based on 

the MonoBehaviour class, and they can contain public fields that are exposed for the 

Inspector. The installer is placed in its own GameObject under the entity itself. 

As seen in Figure 34, the photon is composed of implementations of IRotatable, 

IMovable, IWave interfaces and more. In Figure 37, it can be seen that there are set-

tings exposed for the Inspector for many of those implementations in the installer. 

 

 

Figure 37. Configurable settings in the Inspector 

 

The developer can use the Inspector to configure the objects that compose the en-

tity. Values set are then injected to the objects. Bindings to inject the set values are 

defined in the installer script as seen Figure 38. The Figure 38 also shows that each 

implementation has its own Settings class, which makes it easier to add new fields to 

specific settings without needing to modify multiple files. 
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Figure 38. Photon entity's installer script 

 

8.3.6 User Interface 

The user interface (UI) is very simple and small and does not contain any complicated 

parts. However, the UI is a good example of Inversion of Control as it is the most 

outer layer. This means only the UI knows about the inner components such as Win-

Condition or LoseCondition. Nothing knows about the existence of the UI. The UI 

only observes inner components and makes changes on its own based on the ob-

served events. 

For example, when the player starts a round by clicking the button on the bottom of 

the screen, the button does not do anything else but tells the RoundManager to start 

a round. The RoundManager then spends one of the charge resources. Another UI 

component observes the charge resource and updates the value in the text element. 

The rotation of emitters is also part of the UI layer. Mouse input is caught and used 

to rotate an emitter as seen in Figure 39. 
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Figure 39. Snippet of photon emitter rotation logic with mouse 

 

8.4 In Action 

Figures 40 and 41 present the game as it is seen in the editor. In Figure 40, the game 

has not been started. The objects created at runtime are not present, placeholder 

texts are visible and the photon emitter and receivers do not have their colors set. 

 

Figure 40. Screenshot of the final product before starting the game 

 

In Figure 41, the game has been started in the editor. The player has rotated one of 

the photon emitters and changed the energy input for the photon emitters to change 

the wavelength. If the player clicked on the “Emit Photon” button, the player would 

win. 



52 
 

 

 

 

Figure 41. Screenshot of the final product while playing 

 

9 Conclusions 

The usage of dependency injection along with the SOLID principles as a solution for 

the dependency management is debatable. In Unity3D, a dependency injection 

framework is almost a mandatory requirement if considering to use dependency in-

jection. The way Unity way works makes it difficult to use dependency injection with-

out a framework. Mainly the problems are created by the lack of single entry point 

and MonoBehaviour instantiation. These problems increase the complexity of using 

the frameworks. The learning curve for dependency injection and especially the 

frameworks is already high and the increased complexity in Unity may make simpler 

solutions like the singleton pattern tempting. 

However, the Zenject documentation (2017) said it well that when the project size 

grows, using singletons makes the code unwieldy. Good code is basically synonymous 

with loosely coupled code and to write loosely coupled code, you need to be aware 
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of the dependencies and code to interfaces. With singletons, it is not always clear 

what the dependencies are as singleton can be referred to anywhere in the code. 

With DI framework, the management of dependencies requires some more work, 

however, at the same time forces developers to be aware of the dependencies. It 

also forces to code to the interfaces. By declaring all the dependencies as constructor 

parameters, it basically means "in order for me to function, these contracts have to 

be fulfilled". These constructor parameters might not actually be interfaces or ab-

stract classes; however, this does not matter because in an abstract sense, they are 

still contracts, which is not the case when creating them within the class or using 

global singletons. 

Personally, I agree with the Zenject documentation that using dependency injection 

is worth it. Even if the design in the test project is not perfect and may have design 

flaws, it would not require huge changes in the code itself to change the way things 

work as everything is separated fairly well by their responsibilities, and all the de-

pendencies are injected. However, dependency injection on its own is not enough. If 

I had not have tried to follow the SOLID principles at all, the benefits from depend-

ency injection would not be as clear or even there. Class design plays a very im-

portant part in dependency management because it defines the dependencies be-

tween classes and interfaces. Dependency injection plays its own part in how the de-

pendencies are resolved. 

For quick prototyping, it might be better to use other methods like the singleton pat-

tern. However, refactoring to dependency injection would be a wise choice. Proto-

typing with dependency injection might also work well, even though being slightly 

slower. 

My previous experience with dependency injection has been in the pure form (Pure 

DI) without frameworks which may have caused partially inefficient usage of the 

framework. Like the usage of the ResourceContainer (Figure 32), which might be a 

result of not knowing enough about the framework. However, I think building a game 

on the current design would be quite enjoyable to work with and in overall, a fairly 

good level of modularity was reached. The UI is the most modular part as nothing de-

pends on it. It can be removed without requiring any changes anywhere else. 
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Some of the less modular parts are caused by not using an interface for dependen-

cies which are not too bad in the test project. For example, in Figure 36, the Photon-

Receiver class is used directly even though using the generic IReceiver interface 

would increase modularity. It would be a very simple change but at the same time, 

this is a great example of why to use extra effort for abstraction. 
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