

Khoa Bui

BLOGGING PLATFORM WITH JAVASCRIPT STACK

BLOGGING PLATFORM WITH JAVASCRIPT STACK

 Khoa Bui
 Thesis
 Spring 2017
 Bachelor of Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Bachelor of Information Technology

Author: Khoa Bui
Title of the bachelor’s thesis: Blogging Platform with JavaScript Stack
Supervisor: Lauri Pirttiaho
Term and year of completion: Spring 2017 Number of pages: 55 + 2 ap-
pendices

The aim of this bachelor’s thesis was to study the application of JavaScript in web
development, the advantages and drawbacks as if developing a simple web ap-
plication (a blog platform).

In the scope of this project, the author used ReactJS, Flux and SCSS in the
Frontend development, NodeJS, ExpressJS, MongoDB, Mongoose, JSON To-
ken in the Backend development, and Webpack and Babel in the Workflow de-
velopment. Additionally, the development technologies also included NGINX, Va-
grant and Webstorm (an IDE for JavaScript development).

And in the end of the project, there is a clearer overview on an alternative devel-
opment stack with primarily JavaScript programming languages and as a result,
a working blogging platform with JavaScript.

Keywords: Web Development, ReactJS, NodeJS, MongoDB.

 4

PREFACE

This Bachelor’s Thesis is a part of my study in the field Information Technology

at Oulu University of Applied Sciences, School of Engineering, Kotkantie Cam-

pus, during the Spring of 2017. The primitive objective of the project was to study

and extend the knowledge in understanding JavaScript web development stack

while implementing a simple blog platform with technologies.

I would like to express my thankful and respectful gratitude to Mr Lauri Pirttiaho

for the all the help and support in both technical and documentation parts of the

project.

Oulu, 12.4.2017

Khoa Bui

 5

CONTENTS

ABSTRACT 3

CONTENTS 5

VOCABULARY 7

1 INTRODUCTION 9

2 TECHNOLOGICAL INTRODUCTION 10

2.1 MongoDB 10

2.2 Redis 11

2.3 NGINX 11

2.4 ReactJS and Flux Architecture 12

2.5 SCSS and SMACSS 14

3 INITIAL SETUP 16

3.1 Remote Server Setup 16

3.1.1 NGINX 17

3.1.2 Let’s Encrypt. 18

3.1.3 PM2 20

3.2.1 Vagrant and Virtual Box 22

3.2.2 Project folder structural setup 22

3.2.3 Setup version control 23

3.3.1 Webpack 24

3.3.2 Utilization of modern technology with SCSS and ES6 25

3.3.3 Basic folder structure: 26

4 BACKEND DEVELOPMENT 27

4.1 INITIAL SETUP AND STRUCTURE 27

4.1.1 Babel compiler setup 27

4.1.2 ExpressJS application structure 28

4.2 ROUTING 29

4.2.1 Response 29

4.2.2 Access control 30

4.2.3 Middleware: 31

4.2.4 JSON Web Token 32

4.2.5 CRUD application: 33

 6

4.2.6 Naming convention 34

4.3 DATABASE 35

4.3.1 Introduction 35

4.3.2 Schema 35

4.3.3 Schema Reference 37

4.4 EVENTS 38

4.5.1 Static content caching 39

4.5.2 Database caching 40

4.5.3 General strategy 40

4.5.4 Cache management 41

5 FRONTEND DEVELOPMENT 44

5.1 ReactJS and Flux architecture 44

5.1.1 Frontend Routing 44

5.1.2 Components 46

5.1.3 Flux architecture 49

5.1.4 Markdown Editor 51

5.2 Style Implementation 53

5.2.1 Application structure 53

5.2.2 Layout 55

5.2.3 Browsers support: 57

6 CONCLUSION 59

REFERENCES 60

 7

VOCABULARY

Listed below are the abbreviations used in the whole document and their

respective full form.

Frontend the development of presentation layer which

contains mostly user interaction

Backend the development of data access layer which

contain database and business logic defined by

owner

JavaScript the programming language which is used in this

application, both frontend and backend

CSS Cascade Styles Sheet is style programming lan-

guage which allow developer to shape the user

interface of a web application

CSS3 the latest version of CSS

HTML Hyper Text Markup Language, a programing

markup for frontend side to instruct how the user

interface show appear.

MongoDB object-oriented database, which is classified as

NoSQL (None Sequel Database)

Redis An open-source, in-memory structure store,

used as database.

Vagrant an open-source program used for virtualization

WordPress an open-source blogging platform

PHP a programming language in backend develop-

ment

MySQL an open-source relational database structure

Webpack an open-source web bundler which bundling all

static content in frontend development

 8

ReactJS frontend JavaScript framework developed by

Facebook Inc.

DOM Document

Object Model

a programming interface for HTML, XML and

SVG documents

ITCSS a methodology to develop CSS and their prepro-

cessor language

SCSS and LESS open-source programming languages for higher

level of CSS which later compiles to CSS

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

UI User Interface

MIT Massachusetts Institute of Technology

Git Version Control Software

Github a web-based Git repository hosting service

NPM NodeJS Package Manager

ES6 EcmaScript Language Specification standard

 9

1 INTRODUCTION

In recent years, the development and accessibility of the Internet have been dra-

matically increased. Roughly forty percent of the world population has access to

the internet service (1.). More and more daily access to the internet has provoked

the increasing natural demand to share contents and ideas to the world wide web.

Among the publishing platforms, WordPress is known for being the most popular

publishing tool (43.).

WordPress, an open source platform to publish and manage content, is mostly

based on web (They did release the Calypso desktop program, which is based

on JavaScript as a version for their admin panel (2.)). In a web application, Word-

Press, despite of its popularity, uses a traditional LAMP stack (which comprises

of Linux, Apache, MySQL and PHP) for the backend and the frontend is flexible

depending on the customization of a developer and a user.

The LAMP stack is a very affordable and efficient technology (21.). However, in

the raising of new technologies, this thesis proposes a way to create and study a

platform for publishing a blog platform with JavaScript both frontend and backend.

The objective of this project is to demonstrate a new workflow for JavaScript de-

velopment in the web development and put the theory into building a blogging

platform system. The application allows a user easily publish their story and post

it via a web-based admin panel. It also allows a developer to maintain the appli-

cation at ease. The application has a rich frontend workflow which is built with

Webpack, PostCSS, and ReactJS. It uses ITCSS as the methodology behind the

CSS development. In the backend, the application applies the MongoDB as a

persistent mechanism, and ExpressJS as the framework based on NodeJS. It

also uses Redis as a caching strategy for a better performance.

 10

2 TECHNOLOGICAL INTRODUCTION

The technologies used in this application are quite new and trendy. It will clarify

the thesis if the technologies are quickly introduced.

2.1 MongoDB

MongoDB is one of the most famous member in the family of NoSQL (40.). The

raise of NoSQL is due to the demand gathering and storing massive information

every day and and the fact that the data keeps growing not only horizontally but

also vertically, which is quite unpleasantly to develop for a traditional SQL data-

base to implement and update (41.). NoSQL has provided a wide range of data-

bases,both structured and unstructured types. The flexibility and diversity they

offer for many implementation is very promising (22.).

Initially released by MongoDB Inc in the year 2009 (3.), MongoDB is the most

famous solution among NoSQL. MongoDB is classified in document oriented da-

tabase types, which contain the NoSQL database type which stores, retrieves,

and manages document-oriented information. MongoDB is classified as the same

group with SimpleDB (Amazon), RethinkDB, CouchDB (Apache), and Docu-

mentDB (Microsoft) (4.).

Currently, MongoDB Inc supports eight different products for MongoDB: Mon-

goDB Server, MongoDB Atlas, MongoDB Cloud Manager, MongoDB Ops Man-

ager, MongoDB Drivers, MongoDB Compass, MongoDB Shark Connector, and

MongoDB BI Connector (5.).

Differentiating from traditional databases such as MySQL or SQL server, Mon-

goDB does not have any relational constraints explicitly in across their docu-

ments. The relationship can be defined by a user by their own server program-

ming languages. This feature helps a database structure to be flexible for altera-

tion in the future because of the need of rapid data development in the technical

world. (41.)

 11

2.2 Redis

Categorized in a key-value database amongst the NoSQL family, Redis also

known as the REmote DIctionary Server (6.), is a database structure which is

open-source, networked, in-memory, and stores keys with an optional durability.

Redis, simply put, maps keys to a value. However, more than a regular memory

storage, it also supports other type rather than sorely strings (7.):

- Lists of strings

- Sets of strings (collections of non-repeating unsorted elements)

- Sorted sets of strings (collections of non-repeating elements ordered by a

floating-point number called score)

- Hash tables where keys and values are strings

- HyperLog: Logs used for approximated set cardinality size estimation.

With these features, Redis is usually used as a caching mechanism in a web

application due to its speeds, and durability.

Redis currently supports many programming languages, such as NodeJS, Java,

C/C++, PHP, Python, Scala, Ruby, Go, and Haskell.

2.3 NGINX

NGINX is a free, open-source, high-performance HTTP server and a reverse

proxy, as well as an IMAP/POP3 proxy server. NGINX is known for its high per-

formance, stability, rich feature set, simple configuration, and low resource con-

sumption (8.).

Nowadays, many web applications, especially big players in social media appli-

cation (46.), have to coopetic with the gigantic web traffic every day. NGINX, is

designed to tackle the scalability issue and concurrency problem in a web appli-

cation. Brilliantly storing the notorious C10K problem, NGINX has demonstrated

the power to harness a high traffic web application (8.).

Through times, a web application has changed dramatically. It has transformed

from a monolithic application to a dynamic web application which handles scala-

bility problems (Figure 1.)

 12

FIGURE 1. Monolithic and dynamic application transformation

2.4 ReactJS and Flux Architecture

ReactJS is an open-sourced JavaScript library, developed and maintained by Fa-

cebook Inc. Jordan Walke, a software engineer at Facebook, is credited for cre-

ating ReactJS as a component library for PHP (9.). ReactJS was first deployed

in Facebook newsfeed in 2011 and later in 2012. It is also used in Instagram.

Until 2013, ReactJS has been published and open-source at JSConf. (9.)

ReactJS has introduced the concept and implementation of Virtual DOM (9.). Vir-

tual DOM is an innovative improvement in DOM. It acts as an abstract layer for

DOM, which creates a drafted version of DOM tree for manipulation and later

renders the actual DOM tree. The Virtual DOM approach provides a tangible so-

lution for rich web application as it implements a constant and complex DOM

update. By implementing Virtual DOM, ReactJS has optimized applications both

the performance and maintaining and developing of applications(42.).

Differing from most JavaScript frameworks, ReactJS is considered as the view

part of application and it is able to adapt to most framework such as Back-

bone(MVC), Knockout(MV*) and AngularJS(MVV) to boost their speed of existing

applications.

Another famous feature comes along with ReactJS is JSX syntax. JSX is an XML-

like syntax. A hybrid syntax allows a developer to blend JavaScript and HTML

syntax together without touching an actual template. ReactJS supports both the

 13

vanilla JavaScript syntax and the JSX syntax. Therefore, in most cases of Re-

actJS application, there are no HTML files, except the HTML files that the Re-

actJS components are mounted into.

Despite the flexibility of ReactJS to adapt to any environment and framework,

Facebook developers also demonstrate their own architecture: Flux. Flux refused

to be defined as a framework but rather a pattern. Designed to work with an uni-

directional data flow in the ReactJS application, Flux minimizes the data flow

round trips in a web application (10.).

Ideally, a web application would be resolved around the single flow structure as

shown in figure 2 below:

FIGURE 2. Regular frontend application flow

However, as the application grows bigger and more complex, it is inevitable to

have a scenario where: the view triggers more than one action and recursively,

the actions also happen any time in the view part and ultimately, the application

flow will be generally depicted as shown in figure 3 below:

FIGURE 3. Flux application glow

 14

Flux structures are composed of Action, Store, Controller-View and Dispatcher.

Every Flux application has a single dispatcher to manage the data flow. It is the

registry of callbacks into the stores and it does not have any business logic. Sim-

ilar to the Model in the MVC architecture, Stores contains data and logic of appli-

cation and every time the data of the application has changed, it emits a change

event to a controller-view. The dispatcher API provides methods that allows us to

dispatch an event to the stores and pass a payload of data as the parameter,

which an action can be called. The creation of action is wrapped into a semantic

helper method which sends the action to the dispatcher. The controller-view usu-

ally contains the built-in methods in ReactJS library, such as setState, for-

ceUpdate.

The Flux pattern has many implementations, but in this project, Alt library is uti-

lized.

2.5 SCSS and SMACSS

CSS is a very essential component in web development. CSS extends the imple-

mentation of web application via predefined rules which instruct a browser to ren-

der to an end user. Through many upgrades and implementation, in the newest

version, CSS is quite extensive to implement frontend features. Nevertheless,

due to the lack of programming language features, such as inheritance, variables

and basic loops, it is not yet considered a programming language and regularly,

the development encounters unnecessary duplicated code blocks.

Fortunately, SCSS and LESS are the most popular solutions to address these

issues (44.). Categorized as a pre-processor CSS, they transform the abstract

syntaxes of CSS to actual CSS codes. Amongst the two candidates, according

to the author’s experience, SCSS is preferred as SCSS is much faster and be-

cause it has many plugins and libraries, famously mentioned as Compass. SCSS

actively supports many basic features of programming languages:

- Variables: SCSS supports different variables both in the predefined and

undefined form.

 15

- Nested: SCSS supports a nested CSS syntax block, creates a clearer

structure to CSS and implements many CSS design philosophies, such as

ITCSS, OOCSS, SMACSS.

- Mixins: Mixins helps to prevent a DRY (Do not Repeat Yourself) problem

in CSS as they create defined CSS code blocks, which can be later reused

across the application. Mixins also support arguments.

- Loops: SCSS supports three basic operations with loops: while, for, each.

- Selector inheritance: SCSS supports the DOM inheritance via a syntax

@extend syntax.

In our application, the thesis will introduce and apply the concept of CSS design

philosophy. CSS design philosophies are architecture mindsets for designing

CSS applications. There are many CSS design philosophies, such as SMACSS

(Scalable and Modular Architecture for CSS), OOCSS (Object Oriented CSS),

and ITCSS. In this project, the thesis decides to follow the SMACSS design phi-

losophy.

SMACSS designs the application with the folder structure. It comprises of five

basic folders (20.):

- Base: This folder contains the styles that define the basic appearance of

application such as body, HTML, link elements.

- Layout: This folder contains rules that define how pages instructs them-

selves part by part

- Module: The main purposes of this folder is the reusable, modular parts of

our design. They are the callouts, the sidebar sections, the product lists.

- State: This folder defines how the UI will be according to different state of

applications

- Theme: Finally, this folder defines the customization that heavily relies on

design of a specific application.

 16

3 INITIAL SETUP

3.1 Remote Server Setup

Vagrant has handled most of the synchronization between a server and a local

environment. Nevertheless, in order to deliver the web application toan end user,

the remote server also required to have some special configurations.

First and foremost, to deploy the application to the public, it is very important to

choose a Virtual Private Server (VPS) service that would fit the author’s need.

There are literally several VPS service providers that meet the demands of a

scalable, maintainable, secured and easily controlled via both a panel and com-

mand line access. However, after a deep research on both features and price,

Digital Ocean (https://www.digitalocean.com) was chosen as the service provider

in this application.

Also, in the matter of this application, the author also purchased a domain name:

cungdangxua.com.

Next, the essential software in the application should be installed and tested

properly. The sequence of actions is enlisted below:

- Installing NodeJS, MongoDB, Redis.

- Installing Git and setup authentication means to automatically check

whenever the project is updated.

- Installing NGINX and testing if it is working correctly.

- Installing PM2 as a NodeJS process manager.

- Purchasing a domain, in this case point its DNS toward the Digital Ocean,

so it can be used.

- Setup a secured connection(HTTPS) for the server with Let’s Encrypted.

-

To go to a further detail in each step would take redundant efforts while some of

the tasks are trivial. Hence, the thesis would only be specific in the complicated

ones.

 17

3.1.1 NGINX

NGINX is a free, open-source, high-performance HTTP server and a reverse

proxy, as well as an IMAP/POP3 proxy server. NGINX is known for its high per-

formance, stability, rich feature set, simple configuration, and low resource con-

sumption (8.).

After installing NGINX and checking if NGINX is working with the start and stop

command line in remote instance, then the application has to configure the

NGINX application setting so that it can be associated with the existing domain

and the NodeJS application. For starter, NGINX settings reside in two directories:

/etc/nginx/sites-enabled and /etc/nginx/sites-availables and both of these directories

need a root permission to edit and update.

To associate a domain to the application, one should duplicate the old configura-

tion blocks to a new one and name it as the domain name, in this case cung-

danxua.com.

 sudo cp /etc/nginx/sites-available/default /etc/nginx/sites-available/cungdangxua.com

Then update the configuration block must be updated with:

 root /var/www/public;

 server_name cungdanxua.com www.cungdanxua.com;

 location / {

 proxy_pass http://46.101.97.178:8080;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection 'upgrade';

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 # First attempt to serve request as file, then

 # as directory, then fall back to displaying a 404.

 try_files $uri $uri/ =404;

 }

 18

Also, a symbolic link between the files must be created:

 sudo ln -s /etc/nginx/sites-available/ cungdanxua.com /etc/nginx/sites-enabled/ cungdanxua.com

In this state, it is pointed as the domain. After the setting, the NGINX service is

restarted, then the changes can be applied correctly.

3.1.2 Let’s Encrypt.

Let’s Encrypt is a free, automated, and open certificate authority developed and

maintained by the non-profit Internet Security Research Group (ISRG) (11.).

Let’s Encrypt is free and open source and actively develop. It is a versatile tool

for this project to create an encrypted certificate, which can be used for the appli-

cation to run on the secured protocol (HTTPS).

Following the official documentation, the remote instance is updated with a new

software. However, once the software is installed, it is also advised to properly

configure the server to apply to the encryption to an HTTP connection.

Let’s Encrypt is equipped with a great plugin called Webroot. It is basically passed

as an option to the root folder of the application. Therefore, it can generate to

necessary files for the encryption parameters.

certbot-auto certonly -a webroot --webroot-path=/var/www/public -d example.com -d www.cung-

danxua.com

After running this command line, it will generate four essential files:

- cert.pem: Your domain's certificate

- chain.pem: The Let's Encrypt chain certificate

- fullchain.pem: cert.pem and chain.pem combined

- privkey.pem: Your certificate's private key

These files should be relocated to another location, ideally, to the in /etc/letsen-

crypt/archive folder. They should be linked to the /etc/letsencrypt/live/cung-

danxua.com folder. And to be extra careful with the application, another com-

mand can be utilized:

 19

 sudo openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048

The command is a 2048-bit Diffie-Hellman group encryption, which takes a few

minutes to complete the process.

After creating the encryption files, they should also be integrated with NGINX.

Again, the previous NGINX file is opened and commented out the original 80 port

block in the NGINX configuration.

listen 80 default_server;

listen [::]:80 default_server ipv6only=on;

Since secured ports of application are run in the 443 port, so one can base on

that and set up a new configuration:

SSL configuration

listen 443 ssl default_server;

listen [::]:443 ssl default_server;

ssl_certificate /etc/letsencrypt/live/cungdanxua.com/fullchain.pem;

ssl_certificate_key /etc/letsencrypt/live/cungdanxua.com/privkey.pem;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;

ssl_dhparam /etc/ssl/certs/dhparam.pem;

ssl_ciphers 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-

AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-

DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-

SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-

ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-

SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-

AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-

 20

SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:AES:CAMELLIA:DES-CBC3-SHA:!aNULL:!eNULL:!EX-

PORT:!DES:!RC4:!MD5:!PSK:!aECDH:!EDH-DSS-DES-CBC3-SHA:!EDH-RSA-DES-CBC3-SHA:!KRB5-DES-

CBC3-SHA';

 ssl_session_timeout 1d;

 ssl_session_cache shared:SSL:50m;

 ssl_stapling on;

 ssl_stapling_verify on;

 add_header Strict-Transport-Security max-age=15768000;

After the configurable block is updated, it should be wise to test the syntax error

with the command line: sudo nginx –t and to restart with the NGINX service after

checking successfully.

FIGURE 4. Secured appliction with Let's Encrypt

3.1.3 PM2

PM2 is a “production process manager for Node.js applications with a built-in load

balancer” (12.). The module helps the application with the availability by support-

ing a mechanism to reload it to eliminate downtime and to facilitate common sys-

tem admin tasks (12.).

Availability is an important aspect in web application and it should always be se-

riously considered in the software development and maintenance. Nevertheless,

it is only logical to have a backup plan for such scenario when the application has

failed to operate. One simple strategy for that is to restart the application when it

encounters critical errors. Fortunately, PM2 provides with a simple API to imple-

ment this strategy (12.).

 21

Apart from that problem, PM2 also supports the accessible means to control the

processes with NodeJS applications. In the scope of the application, it is compul-

sory to make a configured JSON file to define the service. Therefore, PM2 can

have a constant state of operation.

{

 "apps": [{

 "name" : "application",

 "script" : "./build/index.js",

 "args" : " --production 80",

 "watch" : true,

 "env": {

 "NODE_ENV": "development"

 },

 "env_production" : {

 "NODE_ENV": "production"

 }

 }]

}

3.2 BACKEND ENVIRONMENT SETUP

Local development environment and remote servers are usually different in many

aspects from the operating systems to the version and the compatibility of the

installed softwares. Therefore, it is quite time consuming to setup the web appli-

cation in the production environment once the local application has been devel-

oped and tested. To optimize the time and effort to develop and maintain the

software, it is wise to create a sandbox for the remote instance to synchronize as

much as one can to the local development process.

First and foremost, it is established in the beginning that the application will be

developed via a defined list of restrictions in a remote server:

- Operating System: Ubuntu 14.04 LTS (Long term support).

- Programming Language: NodeJS 6.0.5

- Database: MongoDB and Redis

- Nginx support

 22

The fundamental restrictions in both a remote and a local machine has to be

matched in order to minimize the differences and unexpected issues that crash

the application when deploying to the remote machine.

Already demonstrated before in this report, Vagrant and Virtual Box are respon-

sible for creating and maintaining the application state and hosting the applica-

tion locally.

3.2.1 Vagrant and Virtual Box

In the scope of development, Vagrant and Virtual Box are locked to version 1.8.1

and 5.0.16 respectively.

The instruction and development of Vagrant and Virtual Box in the official web-

sites can be found in the online official documentation (https://www.va-

grantup.com/docs and https://www.virtualbox.org/wiki/Documentation). How-

ever, to speed up the development process and remove any unnecessary has-

sles, it has been agreed to use the online tool to create a development environ-

ment with puphpet.com.

Puphpet.com is an online GUI tool which supports multiple configuration options

for Vagrant, it eradicates the redundant time for a newcomer to dig in and study

the Vagrant development environment.

3.2.2 Project folder structural setup

After the local environment initialization, the project can be safely started with the

development process.

In the NodeJS application, NPM command utilities can be used to manage the

application and packages. The application as a big module for NPM can be con-

sidered. The application uses the command npm start to start the procedure auto-

matically.

Expectedly after the process, the application got a package.json file, which contains

the required information that indicates the state of the application which is used

to maintain the synchronization between its local and remote environments. The

https://puphpet.com/

 23

information stored in the package.json file can be used later in the remote server to

recreate the installed modules that have been used in the local environment.

Thus, it is much easier for a deployment than transferring the entire local devel-

opment project to the remote environment. To further detail, the thesis will have

separate sections for the backend development and frontend development study

later in this report.

3.2.3 Setup version control

In order to maintain and have a flexible ability to keep in check the application,

the project will use version control softwares: Git and Github.

Git’s installation and setup is followed strictly in the official guideline installment

on their website (https://git-scm.com/doc).

In this project, the code is also updated regularly in the Github website for the

code management. It will act as a cloud and it will be integrated to the remote

server easily. There are two basic repositories for the projects:

- Vagrant Box: https://github.com/thomasbui93/thesis-vagrant

- Main project: https://github.com/thomasbui93/thesis-blog

In the first repository, the code is basically simple and does not need regular

update and maintenance. It will not be divided into multiple branches, at least in

the scope of this project.

In the second repository, the application is developed actively, therefore, it is only

logical to create three development branches:

- master: The production version of the application. It will be used in the remote

instance.

- frontend: All of the frontend development will concur in this branch, ReactJS

components and SCSS styles will happen here.

- backend: All of the backend development will be deployed in this branch.

3.3 FRONTEND ENVIRONMENT SETUP

https://git-scm.com/doc)
https://github.com/thomasbui93/thesis-blog

 24

The Frontend development has evolved rapidly in the past five years, from a very

basic DOM manipulation, such as jQuery and Prototype to a component based

library ReactJS, AngularJS, VueJS. Additionally, many new frontend workflows

have been demonstrated to the technology world how elegant it can be.

In the scope of this thesis, the application will establish the ideal workflow and

folder structure for the SCSS and ReactJS application.

3.3.1 Webpack

In many frontend applications, JavaScript and CSS are included in HTML files as

multiple separate files. This approach has a huge drawback because when a user

uses a bad internet connection, the web page is unavailable until connections are

ready and loaded. Therefore, it is quite bad for the user experience.

Nowadays, it is much more versatile than that.

One popular solution is RequireJS, which considers every file in its system as a

module and uses dependencies to decide which is the actual order for loading

the important files for a web page. RequireJS is originally used in backend

(NodeJS). But it is very flexible. The same concept is applicable to the frontend,

too.

Apart from a module loader workflow, there are many workflows that have fol-

lowed different approaching, such as bundling (Webpack and Rollup).

In this project, the project will follow the methodology and workflow which is rec-

ommended by Webpack.

Webpack simplifies the workflow by constructing a dependency graph of the ap-

plication and bundling the workphases in the right order. Webpack can be con-

figured to optimize the code and it also runs a development server that reloads

the code without a page refreshing (13.).

The core of the application frontend development workflow resides in the file

webpack.config.js. This file is in the root folder of this application. Webpack will

reply to the configuration of this file to define and shape this project into a working

 25

application. Generally speaking, webpack.config.js is a NodeJS module which

outputs the configuration object, which contain necessary parameter for config-

uring the frontend application.

Beside the handy configuration, Webpack also provides with an ecosystem of

plugins that provide many utilities to frontend development. In this project in par-

ticular, the project uses:

- Autoprefixer: Auto prefix for a aCSS stylesheet, fallback for an old

browser and cross browser issue.

- babel-core, babel-eslint, babel-loader, babel-preset-es2015, babel-

preset-react: Babel ecosystem for ES6 fallback

- CSS-loader, sass-loader, style-loader: Packing the CSS style into one

file.

- cssnano: Minify CSS.

- eslint, eslint-loader, eslint-plugin-react: eslint for this project.

- extract-text-webpack-plugin: support extracting inline CSS into a sep-

arate file.

- html-webpack-plugin: injects JS and CSS into a target HTML file.

- postcss-loader: Postcss supports for this project, Postcss is the exper-

imented CSS style for CSS4, which can be a fallback to a widely used

CSS3 version.

3.3.2 Utilization of modern technology with SCSS and ES6

As already demonstrated in the earlier chapters, SCSS and ES6 are used offi-

cially in this project development. Despite the fact that both technologies are not

widely supported in browsers however, with Webpack, both can be used normally

and later they will be transformed into the average and widely supported features

in browsers (45.).

Babel will be used to transform an ES6 JavaScript, JSX syntax into a normal

JavaScript syntax, so that a normal browser can support the application.

The command line below will monitor for file changes in the frontend application

and compile the code:

 26

webpack --watch --progress --profile --colors --optimize-occurence-order --optimize-

dedupe

3.3.3 Basic folder structure:

Without considering further the business logic of our application, the frontend part

of this project can be configured.

In the frontend, all of the static files including SCSS, JavaScript, JSX and images

will be hold under an ‘src’ folder. This folder is the center of the frontend develop-

ment and the code in this folder will be compiled into a working application by

Webpack. There are two folders in the src folder, one is scss and other is app.

They hold responsibilities for the style and JavaScript logic, respectively.

With SCSS development, the application will centralize all SCSS files into one file

src/scss/main.scss.

- This file will be the placeholder for all other SCSS files. The content and

logic of other SCSS files will be imported into this file.

- Each files should therefore serve for a specific purpose, except for those

holding general rules. There should never be a file holding many style rule

for different components.

- Variables should follow the lisp-case, in which every logical word should

be separated by a hyphen.

On the JavaScript side, since this application will implement the Flux architecture,

therefore the basic skeleton of the project can also be set from the beginning.

A Flux application, generally can have four types of classes: actions, compo-

nents, store, containers. Therefore, the application should have four folders spe-

cializing and associating with their functionalities, respectively. The project also

will have a folder which holds the utilities function and settings variables that are

used globally across the application.

And in this case, JavaScript will have a focal point in the src/app/index.js file,

which holds the general logic of this application.

 27

4 BACKEND DEVELOPMENT

4.1 INITIAL SETUP AND STRUCTURE

The backend of the application will be written entirely in the NodeJS programming

language. However, developing and maintaining the application from the scratch

would be rather complicated. Thus, the application will be built upon a framework

called ExpressJS and the entire architecture of this application will resolve around

the recommended structures for ExpressJS. Also, as mentioned in the earlier

chapter, the backend will also be written entirely in EcmaScript 2016 and later it

will be compiled to compatible code in the backward compatible JavaScript.

4.1.1 Babel compiler setup

To start the backend development process, one shall start with the Babel com-

piler integration setup in package.json. It should be noted that Babel only belongs

to development process and once the server operates, the code will be inter-

preted as EcmaScript 2015. Therefore, all modules belonging to the Babel inte-

gration will assign to the devDependencies of the package.json file.

As Babel also involves the frontend development workflow, therefore, the appli-

cation installs all of the Babel plugins for the frontend: babel-core, babel-eslint,

babel-loader, babel-preset-es2015, babel-preset-react, node-babel.

Once they have been installed in the local development, the developer shall cre-

ate the script for transforming all of the development backend script to the pro-

duction script and also for creating script for running the application in the devel-

opment and production mode. Respectively, they are aliased as:

- transform: the command converts the EcmaScript 6 code to compatible

code for NodeJS.

- production: the startup backend application for production, mostly used

in the remote server instance.

- start: startup the backend service for the development process.

 28

TheNPM (Node Package Manager) software allows a user to operate a custom

and complicated command via their aliases in the package.json file by simply

writing: npm run $_alias_$, where $_alias_$ represents the alias in the package.json file.

4.1.2 ExpressJS application structure

As mentioned earlier in the report, all of the backend development code is located

inside the folder ‘server’ and the hub of the application will centralize around the

file server/index.js. ExpressJS is an elegant backend JavaScript framework,

which is very flexible and agile enough to let a user to design their own architec-

ture of application. However, in the scope of this project, the application will follow

the recommended guideline of ExpressJS author to construct the application.

In the ExpressJS application, in particular, all of its routing is registered and con-

figured to be designed in index.js. However, traditionally, the controller for the

routing will be categorized in a specific folder, ideally separated by its routed

name. In this project, the controller for routing is established in a folder

‘server/routes’. To be more specific, ‘server/routes’ not only contains the control-

ler and models but also the middleware in the application, which will be demon-

strated in detail later in the report.

In term of persisting a database in the application, MongoDB has already been

demonstrated and appointed as the official database for the project. To get Mon-

goDB integrated with the ExpressJS, there are many options with all their pros

and cons. After researching and testing with the actual scenario implementation,

it was decided that MongooseJS (http://mongoosejs.com) would be best suited

for the application as it offers many layers of coupling and abstractions to Mon-

goDB for developing the ExpressJS project. With MongooseJS, in this applica-

tion, each model corresponding to controllers will be located in the same folder

as that controller, thus it will be easier for the code management.

One of the significant parts and one of the most useful feature of NodeJS is an

event system. It will be deeply explored and used in the project. The events con-

figuration and development will be held under the folder ‘server/events’, where it

will be categorized depending on what purposes it serve. Excluding the database,

 29

every application requires a customized configuration and this will be consistent

throughout the application. Without any exception, this project also holds its own

customized variables in a folder named ‘server/config’. In this folder, many varia-

bles are established in a way that later they can be used via importing and so that

the code would be much cleaner due to the prevention of repeating unnamed

constants. In this application, there are many repeated used variables:

- Database credential and configuration objects, including both Redis

and MongoDB

- Authentication token

- Authentication configuration settings.

- Static files settings.

4.2 ROUTING

After setting up the environment, it is logical to setup and create the fundamental

logic for this application: routes.

Routing refers to determining how an application responds at a client request to

a particular endpoint, which is a URI (or path) and a specific HTTP request

method (GET, POST, and so on) (34.). In a web application, routing is the funda-

mental entry point for the user to access the application. A normal user can ac-

cess the application via entering the URLs to their web browser so that the server

can send responses with HTML to display in their devices. Additionally, routing

also plays very important roles in the internet service. In this application, routes

are registered in the file: routes/index.js, complete code of the file will be included

in the appendix 1.

4.2.1 Response

Routing in this application, especially the backend routing protocol will only re-

sponse with the JSON object with the exception of the index URL, as it will serve

the most basic frontend static assets.

 30

JSON (JavaScript Object Notation) is “a lightweight data-interchange format. It is

easy for humans to read and write. It is easy for machines to parse and generate”

(14.).

Compared to normal HTTP responses such as a full page response, which ren-

ders all HTML and RSS feeds, JSON is the most lightweight response among

them all. Firstly, JSON is originated from the purpose of sending and receiving

data for software development, JSON has a slight advantage compared to XML

as it is lighter and easier to manipulate between frontend and backend sides, also

it fits right into this system because it is derived from JavaScript and it can simply

parse by the engine in both the frontend and backend. The HTML full rendering

is quite heavy for this web application and it would be a block to the performance

of the web product, since data can be transferred and requested by AJAX. There-

fore, a full rendering HTML would not fit into the context in the application, in

which the frontend will be designed in the Single Page Application and there will

be mainly the JSON response. Despite, JSON is a lightweight datatype, however,

recently, there is a new datatype , MessagePack (http://msgpack.org) in devel-

opment and it has already been installed in many applications. It is the fastest

and lightest datatype in a web application. However, MessagePack does not be-

long to the HTTP response field because it requires decoding and encoding in

both end. JSON does not claim to be the best in the HTTP response, because

every technology has its own advantages and disadvantages, but in the scope of

this application, JSON is a perfect fit for developing the technological stack.

4.2.2 Access control

In order to maintain the authenticity of a software product and especially a net-

work application, the application requires a proper authentication and an access

control mean to prevent illegal attempts to temper with the user content. The Ac-

cess control is a common concept not only in information technology but also in

other profession as well. Generally, the access control (AC) is a selective re-

striction of access to a place or a resource. The act of accessing may mean con-

suming, entering, or using. A permission to access a resource is called authori-

zation (15.).

 31

As stated in the original idea and statement, the application would need a private

zone for the user to edit and update their content and so that other public users

would not be able to temper this application unless they would be authenticated.

Therefore, in this simple situation, the application has two types of user, one is

an admin with all the rights to the application including: view, update, remove and

publish. Normal users have public access, and they can only view what has been

updated and published. The restriction does not mean that the authentication

method is ridiculously complicated. It means that the method should be simple

but it would be impossible to fake the user’s identity.

The methods of maintaining these rules will be handled below in the next two

sections: middleware and token authentication.

4.2.3 Middleware:

In this application, middleware acts as a bridge between the user’s request and

application. Middleware processes the requests and provides a response in an

efficient way.

ExpressJS is equipped with an implementation of middleware. It is simple and

yet very useful and importantly very flexible to manipulate and develop. In Ex-

pressJS, in particular, middleware is the functions that create a layer between

requests and responded objects of the controllers. Generally speaking, Ex-

pressJS is considered to be a giant middleware and it is composed of a series of

middleware.

Middleware functions can perform the following tasks: (16.)

- Executing any code.

- Making changes to the request and the response objects.

- Ending the request-response cycle.

- Calling the next middleware function in the stack.

Middleware in this application will render a layer between the controller. The more

abstract the middleware the lower priority it is considered to have and the one

with the lower priority. It will be executed first. In ExpressJS, in every middleware,

 32

it would be the best practice that it will end with the function next if it does not

return a response object.

Middleware adapts properly into this system to enforce the authentication meth-

ods in the application. The scenario requires every HTTP request that crosses

the admin panel to be authenticated. Therefore, the admin application domain

which is under the POST/PUT/DELETE methods will require authentication.

Every request matches the URL pattern ‘api/*’ with POST/PUT/DELETE will go

through the middlewares to check if the request is legitimated.

The ExpressJS middleware syntax is quite flexible so that it will accept the URL

patterns that would match the actual URL. Also it supports a regular expression

as a parameter, thus a developer can simply put ‘api/*’, and it will match all

needed URL.

However, the application cannot store the credential of the user in the frontend

section and use it as a parameter to authenticate multiple times. To enforce that

line of security the JSON web token must be used.

4.2.4 JSON Web Token

The JSON Web Token (JWT) is a compact, URL-safe means of representing

claims to be transferred between two parties. The claims in a JWT are encoded

as a JSON object that is used as the payload of a JSON Web Signature (JWS)

structure or as the plaintext of a JSON Web Encryption (JWE) structure. It ena-

bles the claims to be digitally signed or integrity protected with a Message Au-

thentication Code(MAC) and/or encrypted. (17.)

JWT has already been implemented in different programming languages (18.),

which makes it accessible in multiple platforms and applications. What people

praise is the simplicity and the security it has created for the web platform.

Authentication is probably the most common scenario for using JWT. Once the

user is logged in, each subsequent request will include the JWT, allowing the

user to access routes, services, and resources that are permitted with that token.

 33

Single Sign On is a feature that widely uses JWT nowadays, because of its small

overhead and its ability to be easily used across different domains (18.).

JWT only requires a user to sign in only one time and nothing is more irritating

than a multiple sign in every time a user needs to do their work.

In the scope of this application, it would require a well-known module for JWT for

NodeJS: jsonwebtoken (https://github.com/auth0/node-jsonwebtoken). And with

this module, it is not complicated to implement the check function:

const URL = './server/routes/user/confidential.json';

const JWT = "./server/routes/user/JTW.json";

import {checkAuth} from './user/user.controller';

export default (req, res, next)=>{

 let token = req.body.token;

 if(token===undefined || token === null){

 token = req.query.token

 }

 if(req.method !=='GET'){

 checkAuth(token).then((response)=>{

 next()

 }, (error)=>{

 console.log(error);

 res.status(403).json({

 message: "not authorized"

 });

 });

 } else {

 next();

 }

}

4.2.5 CRUD application:

In the heart of our application, the controller provides many endpoints for the

frontend to manipulate and develop. In this scope of application, it was chosen to

implement the CRUD concept in the term of accessibility.

The term CRUD was likely first popularized by James Martin in his 1983 book

Managing the Data-base Environment (19.), but later, CRUD is widely known and

implemented across the web realm. CRUD is an acronym, which refers to four

basic operations of a persistent storage: create, read, update and delete, respec-

tively.

 34

In this application, particularly, there are five actual end points:

- Creating an entry

- Reading all entry of a collection

- Reading one entry in a collection

- Updating one entry in a collection

- Deleting an entry

Each of these endpoints correspond to an actual controller for the scalability and

code management. As sample of the CRUD concept will be demonstrated in the

appendix 2.

4.2.6 Naming convention

Routing endpoints in this application will follow the CRUD fundamental implemen-

tation. Except the especial controller for the cache control and user management,

the URL system should follow the same pattern:

- Group routing should be located and configured in the routes/index.js:

app.all('/api/*', checkAuth)

app.use('/api/posts', postController);

app.use('/api/categories', categoryController);

app.use('/api/images', imageController);

app.use('/authenticate', userController);

app.use('/', allController);

app.use('/api/cache', cacheController);

As put in the above snippet, the namespace and root controller are registered in

file routes/index.js and exported as a module in ExpressJS for a later usage in

the routing configuration in ExpressJS. For example, all of the URL prefixed as

'api/categories' are associated with the module categoryController and in the cate-

goryController. There are methods to define the five basic endpoints operation.

And for the record, as the backend mostly serves as a service point, it can use

the prefix ‘api’ to all none index access in this application.

- Creating an entry: POST/PUT method to ‘api/root_path’, where

root_path is the URL fragment which is defined in index.js file.

- Reading all entry: GET method to ‘api/root_path’, where root_path is

the URL fragment which is defined in index.js file.

 35

- Reading one entry: GET method to ‘api/root_path/:id’, where root_path

is the URL fragment which is defined in index.js file and id is the proper

identification needed for the root_path to differentiate from each entry.

- Updating one entry: PUT method to ‘api/root_path/:id’, where root_path

is the URL fragment which is defined in index.js file and id is the proper

identification needed for the root_path to differentiate from each entry.

- Deleting one entry: DELETE method to ‘api/root_path/:id’, where

root_path is the URL fragment in which defined in index.js file and id is

the proper identification needed for the root_path to differentiate from

each entry.

4.3 DATABASE

4.3.1 Introduction

As introduced earlier in the report, MongoDB has many advantages that can be

harnessed and put into good use in this project. However, in order to integrate

MongoDB and NodeJS or ExpressJS, it requires a rather complex and unyielding

attempt which does not fit into the scope of this project. MongoDB in this applica-

tion will use MongooseJS as the integration party to have a proper abstraction to

this application database.

4.3.2 Schema

MongoDB is a very flexible application and it does not enforce the document

structure. However, it would be wise for the application to define a standard da-

tabase structure for the project. Fortunately, MongoDB provided such abstraction

and MongooseJS provides a Schema object that defines how the structure of a

collection would be and this Schema can be altered in the future development.

A schema in MongooseJS provides many options and types for an associated

collection, and every schema object will define each field configuration. For ex-

ample:

let Category = new Schema({

 createAt: {

 type: Date,

 36

 default: new Date()

 },

 title: {

 type: String,

 required: true,

 unique: true

 },

 description: {

 type: String,

 required: true,

 unique: true

 },

 url: {

 type: String,

 required: true,

 unique: true

 },

 color: {

 type: String,

 required: true,

 unique: true

 }

});

In the above snippet, the Category schema has five primary fields and every field

has its own definition. Every redundant field of a data object is saved into the

database which will be stripped down and which leaves only the defined field in

the Schema object. Each of the field has its own configuration object. For exam-

ple, it is a string data type and it has to be present in the model object and it

should be unique among its fellow documents. Nevertheless, the unique option

is not natively supported in MongooseJS, but it has a plugin that implements the

desired feature.

And after defining Schema, the schema object should be assigned to one Mon-

goDB collection for it to work correctly.

 export default mongoose.model('Category', Category);

 37

4.3.3 Schema Reference

In the database development, quite often the application requires some sort of

relation restrictions between collections, this is not an exception in this applica-

tion.

For example, there is a scenario that a blog post that belongs to a category. A

blog post and a category are represented by two collections: Blog and Category.

It is possible to assign a field of Blog schema to be a category. However, this is

not an optimized solution and rather a hazardous implementation of database

because the database has been unnecessarily repeated twice and every time, it

requires an update in one category and the application has to edit the object

twice.

A schema reference has been introduced as a native implementation for the re-

lation restriction between collections.

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin",

 "address_ids": [

 ObjectId("52ffc4a5d85242602e000000"),

 ObjectId("52ffc4a5d85242602e000001")

]

}

The above snippet demonstrates a document that has a reference field ad-

dress_ids. In this example, the address_ids field is an array that contains two

elements of ObjectId, which are used for identifying the document in MongoDB.

The two object identifications are belong to another collection. The configuration

allows the developer to save a database space and prevent meaningless and

redundant information to be save. Moreover, MongoDB allows the developer to

populate the objectId to be a full feature document.

 38

4.4 EVENTS

Famously known as one of the most defining feature in NodeJS, the event system

in NodeJS is very important and widely used among the web applications (45,

p.58). And practically, it has proved its usability and flexibility in this application.

NodeJS has a dedicated module for its event system called ‘events’. Only by

importing the module to the application, the developer can use all of its perks

from then on. However, it would be wise to create a single event instance and

use the same instance across the application.

import { EventEmitter } from 'events';

const eventEmitterInstance = new EventEmitter();

export default eventEmitterInstance;

Events can be emitted from anywhere in the scope of the application. And if there

is a listener to that event, it can be handled properly.

export default (eventEmitter)=>{

 "use strict";

 eventEmitter.on(VISITOR.ENTER, visitorEnter);

 eventEmitter.on(VISITOR.WANDER, visitorWander);

}

In the above snippet, for two events VISTER.ENTER and VISTOR.WANDER,

both have associated functions which will be called whenever these events are

emitted.

This feature adds to the NodeJS ecosystem another extra layer for the usability

and the decoupling of NodeJS application. It allows a user to put almost any cus-

tomization to the existing code and to extend the horizontal scope of application

by extending the listener of the operation it wishes to alter.

In this application, events involved as much as the backend codes and all the

events and their configuration reside under the folder /server/events and of

course, it will be exported as one in the index file.

 39

And due to the complexity of the naming convention, it is decided to use a con-

stant to name a convention. Every micro system of events has its own configura-

tion file to hold the constant of their own.

In this application, in fact, events represent in almost every controller and opera-

tion to a database. Every action in this application will emit an event that would

be caught and handled properly. The sample code of the events system will be

held under the appendix 2.

4.5 CACHING

In every application, especially in a web application, usability is the utmost im-

portant factor in the development and fine tuning. And statistically, a normal user

would give up before the web page has finished loading if the response time is

more than 3 seconds (37.). There are multiple segments in a web application that

affect the speed of an application and there are many solutions to address that

issue, but in this chapter, the thesis will discover the tactic of caching.

The Caching concept in a web application is relatively the same in many other

other software application fields. It stores the data of the component in a hard-

ware or software, which has a better response time. In the future, therefore the

speed is faster and this improves the application usability (38.). However, in a

web application, caching has many layers and the more thorough and meticulous

they are, the more performance wise the application will get.

In the scope of this application, however, there are static content caching, and

database caching, which are explained below.

4.5.1 Static content caching

Static contents in a web application are usually constant data, which has not usu-

ally being updated when the development circle has been closed. Therefore, it

would be safe to assume that in the production mode, every static content should

be compressed and cached to improve the web application performance.

Express has provided a simple solution to compress the static content, including

HTML, CSS and JavaScript files (39.):

 40

app.use(express.compress())

And also the caching functionality is included in the ExpressJS as a solution:

app.use(express.static(__dirname + '/public', { maxAge: oneDay }));

In the above line, the static content will be stored for one day whenever the

browser requests the application any static content.

4.5.2 Database caching

Previously in the report, the thesis already introduced Redis, an exceptional in-

memory database which is based on a key and a value. Redis has many imple-

mentations and integrations to a web application, but the standing application of

Redis is implementing a caching mechanism. The caching strategy of this appli-

cation will be based on Redis as an alternative database for a caching response.

In this application scope, the application would want a system that would cache

all of the post and category queries and responses to Redis and later it could

retrieve the data from Redis to utilize the speed of Redis rather than do the same

operation in the MongoDB application. And to a further extend, the application

would want the full control over the caching management system and a user in-

terface that allows the admin user to operate in the caching system.

4.5.3 General strategy

Thus, to implement a system that saves the response MongoDB data into a Redis

database is rather simple. However, to differentiate the response and identifying

the data, in order to send a quick response to the user, it would require some

configuration and setup.

In a common scenario, a user request for a blog post, a controller would send a

query to a database and process the collection response to send the result to the

user. In this case, it would be simple to store this collection query to the Redis

database. In another scenario, in similar case, a request for category for all posts

 41

from the category, the same solution would have to be saved to apply. Neverthe-

less, as Redis does not have a collection or table or any relatively concept re-

sembling distinct types of data, this is where the real challenge is in the strategy.

The solution to the problem has been used in almost in the very beginning of the

caching strategy, in the traditional caching in a file system: a cache tag. To differ-

entiate from each entry and later retrieve from Redis, a system of naming tag

should be put in place.

- Post tag: ‘POST_TAG’+ ‘POST_SLUG’

- Category tag: ‘CATEGORY_TAG’+ ‘CATGEGORY_SLUG’

The two systems will never overlap as long as the category prefix tag and post

prefix tag are not the same. And amongst the post and category entry, it will be

identified by the slug which is unique in every collection.

This approach is also rather simple for a controller to retrieve the Redis database

for the application via the slug parameter.

4.5.4 Cache management

Similar to the core collection, the caching entry should also support the CRUD

action for management. However, when implementing a different premise than a

normal one, the collection and caching have a distinct approach.

a. Creating an entry:

When creating a cache tag and entry, the application utilizes the event system of

NodeJS in this operation. In the post and category controller, before the response

object is sent to the customer, the application attachs an event emitter which

emits an event. Thus, in the event system, the application can listen to the event

and save the query and query result to the Redis database depending on which

controller they originated.

eventEmitterInstance.emit(CATEGORY.VISITED, posts, slug)

 42

const cacheID = prefix.post + doc.slug;

delete doc._id;

redis.set(cacheID, JSON.stringify(doc));

a. Deleting an entry:

To remove a cache entry in Redis, the same strategy can be applied for this case.

redis.del(prefix.post + doc.slug);

b. Updating an entry:

To update a cache entry in Redis, the same strategy can be applied for this case.

redis.set(prefix.post + doc.slug, JSON.stringify(doc));

c. Removing all types:

This operation could be a little tricky. At first, all of the matching tags for a type of

entry must be found and then they must be removed. Redis allows the user to

scan for a key by a regular expression:

redisClient.keys(prefixTag + '*', (error, keys) => {

 if (error) return next(error);

 deleteKeys(keys).then(()=>{

 return res.status(201).json(true);

 }, (error)=>{

 return next(error);

 })

})

d. Cleaning Redis database:

In some scenario, it is necessary to clean all of the data in the cached database.

if (req.body.cacheType === cacheType.POST) {

 cleanCacheType(prefix.post, res, next);

} else if (req.body.cacheType === cacheType.CATEGORY) {

 cleanCacheType(prefix.category, res, next);

} else {

 43

 redisClient.flushdb(function (error, response) {

 if (error) return next(error);

 res.status(201).json(response);

 });

}

 44

5 FRONTEND DEVELOPMENT

In this chapter, the thesis will demonstrate the frontend development section in

this application. Exceptionally, this application has been developed entirely in Ja-

vaScript and CSS, pure HTML will only be one file: src/index.html, which only

presents as a placeholder.

5.1 ReactJS and Flux architecture

In this chapter, the thesis will demonstrate the practical solutions for a web appli-

cation with ReactJS and Flux architecture.

5.1.1 Frontend Routing

In this application, routing is the most crucial part and makes no mistakes. The-

frontend section is not much different. For the context of this application, the pro-

ject will use the library react-router for managing routes.

Similar to most of the modern routing framework and library, a react-router de-

fines its URLs by a hash symbol (30.). Therefore, the URLs in a modern single

page application always contain a hash symbol (#) as a prefix. However, modern

browsers have allowed JavaScript to manipulate with the real URLs with the

HTML5 History API and remove the redundant symbols in the URI (31.). But due

to the browser compatibility, in this application, it will reply to this application in a

hash URL.

For the best practice, all frontend routes will be defined in the file src/app/index.js.

In this file, the whole frontend infrastructure and the site map is demonstrated.

This application requires a nesting routing and a react router provides enough

flexible API to be developed.

<Route path="/" component={App}>

 <IndexRoute component={Home}/>

 <Route path="articles" component={Articles}/>

 <Route path="articles/:category" component={ArticlesCategory}/>

 <Route path="article/:slug" component={ArticleContainer}/>

 <Route path="dashboard" component={Dashboard}>

 45

 <IndexRoute component={LoginContainer}/>

 <Route path="post" component={PostApp}>

 <IndexRoute component={PostManage}/>

 <Route path="new" component={CreatePost}/>

 <Route path="update/:id" component={UpdatePost}/>

 </Route>

 <Route path="media" component={ImageManage}/>

 <Route path="categories" component={CategoriesContainer}/>

 <Route path="cache" component={CacheManage}/>

 </Route>

 <Route path="about" component={About}/>

 <Route path="*" component={NotFound}/>

</Route>

And the routes structure will be mounted into a DOM, which is registered in the

src/index.js file:

const appHistory = useRouterHistory(createHashHistory)({ queryKey: false })

ReactDOM.render(

 <Router history={ appHistory }>

 { routes }

 </Router>

 , document.getElementById('content')

);

In a react-router, there are:

Route: a general ReactJS component that defines a path. It requires two param-

eters: a path, a string, which can use Regular Expression to generate URL, and

a component, a ReactJS component that will mount it into the application once

the route is requested.

IndexRoute: a more specific type of Route component. When dealing with a nest-

ing or multiple routing scenario, it usually requires an index page to be the parent

route to mount when an empty children path string is requested. In this case, if

an IndexRoute component is presented, it will render IndexRoute.

And usually, most likely to prevent crashing the application while the user

browses the application, the application will also define a NotFound component

when a requested URL does not match any routes.

 46

One other observation in this chapter would be that all of the components respon-

sible for a defining path in a react router, are either a static component, in which

the content is constant, or a container component, which will be explained in de-

tail in the next chapter.

5.1.2 Components

Components are the key feature and the principle design philosophy of the Re-

actJS library. ReactJS intended to split complex and enormous into small, reus-

able components that can be developed without being interfered with each other

(36.). And each of these pieces can scale and grow to a fit the application de-

mand. Internally, ReactJS provides an abstract class ReactJS.Component. This

class can be extended and implemented in the original one by putting the logic to

a function render:

export class App extends Component{

 constructor(props){

 super(props);

 }

 render(){

 return (

 <div>

 <NavMenu/>

 <div className="page__wrapper">

 { this.props.children }

 </div>

 <Footer/>

 </div>

)

 }

}

The output of the function render will mount the content into the DOM, which

eventually shows to the end customers.

But the magical logic is not dwelled in the render function. The crucial part, how-

ever belongs to the cycle of the ReactJS component. ReactJS component class

allows an extended class to override not only the render method but also other

important methods. These methods compose an extraordinary life cycle for that

component. In theory, ReactJS divides the methods group into three important

types:

 47

a. Mounting:

In this group of methods, ReactJS allows the developer to manipulate the process

when the application is created and inserted to the DOM. These methods are

called in the four events when the component is entered to the DOM.

- constructor: called before the component is created.

- render: called to insert the application to DOM.

- componentWillMount: called immediately before the component in-

serted into the DOM.

- componentDidMount: called immediately after the component ren-

dered into the DOM.

b. Updating:

These methods are responsible for developing the state and updating functions

in ReactJS DOM as they are presented at the key points of the update events

that happened to the component.

- componentWillReceiveProps: called once the application is about

to update their properties.

- shouldComponentUpdate: return Boolean, check if the component

should be updated to prevent too much repainting the component.

- componentDidUpdate: operates when the component has updated.

- render: also updates the content.

c. Unmounting:

- componentWillUnmount is present when the component is about to

removed.

The diversity of the API implemented by ReactJS provides a flexible ecosystem

to dealing with a complex UI development. However, there are also two significant

methods: setState and getState.

The ReactJS component has a very useful variable: state. The State represents

the status of the component and every time the state changes, the application is

updated. Hence, as the name suggested, the setState and getState provide the

 48

means to update the component by altering the state of the component (35.).

They do not take part in the life cycle of the component directly like the other

methods, setState and getState are usually used to implicate the application

events handling, as in these cases the property of the component does not

change.

Theoretically, the component is not categorized into different types. However, in

practice, it was decided to split the code into a readable structures and classify

the component into three types.

a. Static component:

The output of this component will not change in any circumstances. They are
usually deployed to a footer, a header or a static page such as not found page.
In this application, the whole footer and header as well as the static page are all

constructed by a static component.

b. Container Component:

These component is regularly associated to a Route for s react router and in fact,

it is only used for Route in this application context. The Container component

should not contain any logical functionality except authentication. It implements,

however, a shelter destination to support a child component to render its business

logic.

import ReactJS, { Component } from 'react';

import { NavMenu } from '../components/menu/NavMenu';

import { Footer } from '../components/menu/Footer';

export class App extends Component{

 constructor(props){

 super(props);

 }

 render(){

 return (

 <div>

 <NavMenu/>

 <div className="page__wrapper">

 { this.props.children }

 </div>

 <Footer/>

 </div>

)

 }

}

 49

c. Normal Component:

Functional and specific components are categorized in this type.

5.1.3 Flux architecture

Established in the preceding chapter, Flux is an outstanding frontend architecture

which is used in many huge web applications and in this application. It will imple-

ment the Flux structure for the blog platform with Alt.js

Alt.js is a small library which provides simple API to implement the Flux architec-

ture (33.). To integrate Alt.js into this system, the application has to initialize an

instance of Alt class:

import Alt from 'alt';

export default new Alt();

Ideally, every application will have one Alt instance and all the logic binding to

this instance. Every stores and actions will resolve around this instance. Techni-

cally, to declare an object that contains an actions logic, there is a simple API to

be used:

export default alt.createActions(ImageActions);

In the above snippet, while the ImageActions class defines a list of methods,

these methods will be used in the components. Every action defined methods

usually calls an event emitter:

requestList(){

 const actionDispatcher = this;

 this.dispatch();

 getImages().then((respond)=> {

 actionDispatcher.actions.receivedList(respond);

 }, (error)=>{

 actionDispatcher.actions.receivedError(error);

 })

}

Once, this.dispatch() is called, the actions have emitted an event for an associ-

ated store to manipulate.

 50

The store, with the same premise with actions, defines an object and later exports

it with a special method of the Alt.js library:

export default alt.createStore(ImageStore);

However, the store instance has to correspond with an action instance for it to

make sense to the application. Usually, this procedure is established in the con-

structor method of store:

constructor() {

 this.bindActions(ImageActions);

 this.imageList = [];

 this.loading = false;

 this.error = null;

}

The store, on other hand, also defines the important states of a component.

These state can be retrieved by call imageStore.getState(). The store e.g also

contributes to the life cycle in a component

_onChange(){

 this.setState(this.getCacheState());

}

componentDidMount() {

 CacheStore.listen(this._onChange);

}

componentWillUnmount() {

 CacheStore.unlisten(this._onChange);

}

With Alt.js, it is not necessary to bind the actions and store methods to each other.

Magically, when every method is defined in the action, it will be handled by an-

other method in the store which has the same name and a prefix ‘on’.

In this application, there are five entities:

- Post: holds logic and data of blog post

- Category: associates with a category handling

- Image: manages the image application

- Cache: caches control

- Authentication or Credential: manages the authenticated issue

 51

Each of these entities have their own stores and actions.

5.1.4 Markdown Editor

Apart from a regular implementation of category, post or image uploading and

handling, the most crucial component and system in this application is the text

editor, which follows the markdown syntax to convert the Markdown syntax to a

readable HTML.

Markdown is a syntax language that converts text to HTML with ease. It is written

and formatted closely to HTML itself (29.). Markdown was chosen for various

reasons in this project:

- Markdown is simple and quite easy to learn.

- Markdown compared to normal HTML and other type of markup

syntax, usually (WYSIWYG editor) is more light-weight (29.).

Hence, Markdown simplifies and reduces the data storage with

MongoDB.

- Markdown can be transform to meaningful HTML and text with

ease (29.).

The Markdown Editor component in this application is located in the file

src/app/dashboard/MdEditor.js.

i. Logical algorithm:

- Editable Content:

Markdown Editor is heavily relied on the component editbleContent.

Traditionally, whenever enter a long and customized text is entered to the

browser, the textarea element is used to handle this feature. However, textarea

does not provide a good user interface, hence the editor requires a different API

to implement the UI.

 52

HTML5 has provided a good impression to develop such API: contentEditable.

contentEditable is an attribute in the div component. When set to true, contentEdi-

table allows the user to edit the inner content without turning on the developer

mode in browsers (32.).

For further customization, in the application, the system also implements the Con-

tentEditable to handle an update from a parent scope. The ContentEditable com-

ponent will update every time the user keyboard is called and it will transform the

text into the html markup.

- Markdown customization

Implementing the normal user interface is not the ultimate goal. In the scope of

this application, the system also implements a programming language detection

and a syntax highlight for the scheme.

Natively, markdown allows the user to enter a block of code of a chosen lan-

guage. However, to go an extra mile, the application added a script to detect a

language and to add a color scheme to code block.

ii. User Interface:

Essentially, Markdown editor has two modes, one is a normal markdown markup

and the other is a preview mode, where the user can preview an output of what

they have been typing so far. The user interface of the editor also includes a small

button for the user to switch the panel between modes.

Additionally, the editor also allows the user to assign the post to a specific cate-

gory. A list category is dynamically rendered in the frontend. The post associated

with the category will also be presented in the category management.

The Markdown editor also supports the editing mode with a same procedure with

the creation of a post.

 53

FIGURE 5. Markdow editor

5.2 Style Implementation

ReactJS and the Flux architecture have a fantastic implement in the functionality

and usability. However, the good user experience does not implicate only JavaS-

cript, it also requires a charming semantic design. In this chapter, the thesis will

demonstrate the theory and practical implementation of CSS development in the

project. It will have the practical application of SCSS and SMACSS.

5.2.1 Application structure

In this application focal points of SCSS are concurred in the file

src/scss/main.scss. In this file, every major files and generic focal points will reg-

ister and present themselves for their ruling to show in the frontend.

Following SMACSS architecture, there are four main folders:

- Vendor: the third party modules files, in this case, it contains high-

light.scss(for mark up the code detection functionality).

- Base: it is utilized to establish the generic rules to future usage. This

case contains base.scss, color.scss, settings.scss and mixins.scss.

 54

- Modules: Every crucial files are located here. This folder also has a

focus point as main.scss and it is divided into smaller purpose-oriented

modules: news, posts, dashboard, etc.

- Layout: This folder comprises of the grid configurations. It should be

noted this application built the whole grid from the scratch.

Leaving other folders to a later examination, in this section, the base configuration

will be properly introduced.

a. Color.scss

Deserved its own spot in the application, color.scss define the color setting for
entire project.

/*------------------------------------*\

 color settings

------------------------------------/

$color-primary:#e45f4d;

$color-secondary: #191919;

$color-safe: #2ecc71;

$color-danger: #e74c3c;

$color-warning: #f1c40f;

$color-dashboard: #26519e;

$banner-background: #bdc3c7;

Structured for the functionality of the color and implication of their name, color

variables are grouped into three groups: theme specific colors, status specific

colors and uncategorized colors. By default, the primary color and the secondary

color will be utilized for most of the base component: button, paragraph, text,

menu, footer. Meanwhile, status specific colors are usually supported by a variety

of notifications, banner and status bars.

b. Settings.scss

Generalized as the one file to hold all the base variables from the entire project,

settings.scss also imports variables from all of siblings which have the same func-

tionality. But in this case, there is only one file color.scss

 55

c. Mixins.scss:

Normally, mixins would require a specific folder for managing the mixins system

for a better outcome. However, due to the simplicity of the application, it is settled

for a single file. In this file, every usable functions and mixins are declared in their

generic form to support all of the scenario in the components.

d. Base.scss

Base.scss defines the most generic element rules, such as fonts and generic text

settings.

5.2.2 Layout

Traditionally, a grid will be defined by regular bootstrap components. However,

as deemed redundant to a simple project, the application would adopt the new

API of CSS to develop our customized grid: flexbox.

Flexbox consists of flexible and useful features, provided by new web browsers.

It alters the old and out of dated rules for width and height supporting a much

clearer and extensive set of rules for defining the width and height of elements in

the layout (27.). And due to this reason, many developers and CSS framework

have already migrated to use Flexbox to implement their own grid. Even Boot-

strap 4 in the alpha release of its newest version is building the grid system based

on Flexbox (28.).

In this application, it is redundant to implement the complex grid to solve the lay-

out problems. An abstract layout development is extended to solve a specific

layout issue. The Flexbox grid would require a container and inside container

components. They have the direct child elements. The Container component is

the most important in the flexbox grid. It defines how the child render in a basic

and generic container:

position: relative;

width: 100%;

height: auto;

padding: 0.5em;

display: flex;

flex-wrap: wrap;

 56

margin: 0 auto 0 auto;

align-items: stretch;

Essentially, declared as a flexbox component, the container component also re-

quires another rule: flex-wrap: wrap. This rule allows thgrid to contain itself in the

given width and it does not grow the size bigger than that.

To extend our application to be much more specific, the grid also supports the

vertical align and horizontal aligns.

.flex-row{

 position: relative;

 width: 100%;

 height: auto;

 padding: 0.5em;

 display: flex;

 flex-flow: row wrap;

 margin: 0 auto 0 auto;

 align-items: flex-start;

 flex-direction: row;

}

.flex-column{

 position: relative;

 width: 100%;

 height: auto;

 padding: 0.5em;

 display: flex;

 flex-flow: row wrap;

 margin: 0 auto 0 auto;

 align-items: center;

 flex-direction: column;

 justify-content: center;

}

Based on the setup grid skeleton, any rule can be demonstrated in this applica-

tion. For example, upon the horizontal grid and the support of media query, two

columns and three columns grids are developed:

.col-1-2{

 width: 100%;

 @media (min-width: $grid-desktop-breakpoint - 1){

 width: 50%;

 }

}

and

.col-1-3{

 width: 100%;

 margin-bottom: 2em;

 57

 @media (min-width: $grid-tablet-breakpoint){

 width: 50%;

 }

 @media (min-width: $grid-desktop-breakpoint - 1){

 width: 33.33%;

 }

 &.md{

 @media (max-width: $grid-desktop-breakpoint - 1){

 width: 100%;

 }

 }

}

.col-2-3{

 width: 100%;

 @media (min-width: $grid-tablet-breakpoint - 1){

 width: 100%;

 }

 @media (min-width: $grid-desktop-breakpoint - 1){

 width: 66.57%;

 }

}

FIGURE 6. Category page layout

5.2.3 Browsers support

One of the most important aspect when it comes to the frontend development is

the browser support. Whether the application is sustainable across the browsers

or is it crashed in some of the browsers (23.). There is no exception in this appli-

cation. There are many flaws in this project as the application experiences some

advanced and experimental features in the web application with CSS.

To implement a cross browser development, this application requires CSS to

have prefixes automatically to match specific rules to all browser syntax. Luckily,

 58

the Webpack configuration already has a plugin that helped to prefix all syntax to

support the two latest versions in every browser (24.). Therefore, it was a relieve

for the browser support of this application.

 59

6 CONCLUSION

JavaScript is a magnificent programming language, suitable for the web applica-

tion and domain driven development. The simplicity and flexibility has been

demonstrated through time not only in this project but in many other open source

applications. Additionally, the community of developers experienced with JavaS-

cript is huge and still growing as it sees the potential of the said languages (24.).

In this application, the thesis also established an extensive frontend workflow to

eliminate the hassles in developing a single page application. Everything that

runs in the scope of workflow is automated. This leaves developers a lot of room

to develop the application logic and resolve the business.

The main aim of this project was to implement and explore the possibilities and

the API of JavaScript eco-system, but the application is a little bit simple than a

practical application. Nevertheless, due to flexibility and generic, abstract ap-

proach, there are possibilities to develop the application to be a full scale system.

 60

REFERENCES

1. InternetLiveStats.com. Number of Internet User. 2017. Date of retrieval:

02.04.2017

http://www.internetlivestats.com/internet-users

2. Automattic Inc. Introducing the New WordPress.co. 2017. Date of retrieval:

02.04.2017

https://developer.wordpress.com/calypso

3. Wikipedia. MongoDB – Wikipedia. 2017. Date of retrieval: 02.04.2017

https://en.wikipedia.org/wiki/MongoDB

4. Wikipedia. NoSQL – Wikipedia. 2017. Date of retrieval: 02.04.2017

https://en.wikipedia.org/wiki/NoSQL

5. Mongo, Inc. MongoDB Documentation. 2017. Date of retrieval: 02.04.2017

https://docs.mongodb.com

6. RedisLab. FAQ – Redis. 2017. Date of retrieval: 05.03.2017.

https://redis.io/topics/faq

7. Wikipedia. Redis. 2017. Date of retrieval: 05.03.2017.

https://en.wikipedia.org/wiki/Redis

8. NGINX Inc. Welcome to NGINX Wiki! | NGINX, 2017. Date of retrieval:

05.03.2017.

https://www.nginx.com/resources/wiki/

9. Wikipedia. ReactJS (JavaScript Library) – Wikipedia, 2017. Date of re-

trieval: 02.04.2017

https://en.wikipedia.org/wiki/ReactJS_(JavaScript_library)

10. Facebook, Inc. Flux | Application Architecture for Building User Interfaces,

2017. Date of retrieval: 02.04.2017

https://facebook.github.io/flux

11. Linux Foundation. Let’s Encrypt – Free SSL/TLS Certificates. Date of re-

trieval 05.03.2017

https://letsencrypt.org/

12. Strzelewicz, Alexandre (2017). Unitech/pm2: Production process manager

for Node.js apps with a built-in load balancer. Date of retrieval 05.03.2017

https://github.com/Unitech/pm2

 61

13. Koppers, T., Ewald, J., Larkin, S., Vepsäläinen, J.; Kluskens, K. (2017).

Get Started. Date of retrieval: 05.03.2017

https://webpack.js.org/guides/get-started/

14. JSON, 2017. Date of retrieval: 05.03.2017

http://www.json.org/

15. Wikipedia. Access Control, 2017. Date of retrieval: 05.03.2017

https://en.wikipedia.org/wiki/Access_control

16. Strongloop, IBM. Using Express Middleware, 2017. Date of retrieval:

http://expressjs.com/en/guide/using-middleware.html

17. Jones, M. B., Bradley, J., Sakimura, N. 2015. RFC 7519 - JSON Web To-

ken (JWT). Date of retrieval: 05.03.2017

https://tools.ietf.org/html/rfc7519

18. Auth0, Inc. JSON Web Token Introduction - jwt.io. 2017. Date of retrieval:

05.03.2017

https://jwt.io/introduction/

19. Wikipedia. Create, read, update and delete – Wikipedia. 2017. Date of re-

trieval: 05.03.2017

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

20. Snook, Jonathan. 2017. Book - Scalable and Modular Architecture for

CSS. Date of retrieval. 02.04.2017

https://smacss.com/book/categorizing

21. Wikipedia. LAMP (software bundling). Date of retrieval: 06.04.2017.

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

22. TheServerSide, Your Enterprise Java Community. How big data and dis-

tributed systems solve traditional scalability problems. Date of retrieval:

06.04.2017.

http://www.theserverside.com/feature/How-big-data-and-distributed-sys-

tems-solve-traditional-scalability-problems

23. Ochin, Jugnu Gaur. 2017. Cross Browser Incompatibility: Reasons and

Solutions. Date of retrieval: 09.04.2017.

http://www.airccse.org/journal/ijsea/papers/0711ijsea05.pdf

24. BuiltWith® Pty Ltd, Twitter Bootstrap Usage Statistics. Date of retrieval:

09.04.2017.

 62

https://trends.builtwith.com/docinfo/Twitter-Bootstrap

25. BuiltWith® Pty Ltd, JavaScript Usage Statistics. Date of retrieveal:

09.04.2017.

https://trends.builtwith.com/javascript

26. Sitnik, Andrey. 2017. Autoprefix. Date of retrieval: 09.04.2017.

https://github.com/postcss/autoprefixer

27. W3 School.com. CSS3 Flexible Box. Date of retrieval: 09.04.2017.

https://www.w3schools.com/css/css3_flexbox.asp

28. Twitter Inc. Bootstrap 4 Alpha. Date of retrieval: 09.04.2017.

http://blog.getbootstrap.com/2015/08/19/bootstrap-4-alpha

29. Wikipedia. Markdown. Date of retrieval: 09.04.2017.

 https://en.wikipedia.org/wiki/Markdown

30. Wikipedia. Single Page Application. Date of retrieval: 09.04.2017.

https://en.wikipedia.org/wiki/Single-page_application#Browser_history

31. Tennison, Jeni. 2017. Hash URIs. Date of retrieval: 09.04.2017.

https://www.w3.org/blog/2011/05/hash-uris

32. Mozilla. Contenteditable. Date of retrieval: 09.04.2017.

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attrib-

utes/contenteditable

33. Perez, Josh. 2017. Alt - Flux - Managing your state. Date of retrieval:

09.04.2017.

http://alt.js.org

34. Wikipedia. Routing. Date of retrieval: 09.04.2017.

https://en.wikipedia.org/wiki/Routing

35. Facebook, Inc. State and Life Cycle – React. Date of retrieval: 09.04.2017.

https://facebook.github.io/react/docs/state-and-lifecycle.html

36. Facebook, Inc. Components and Props – React. Date of retrieval:

09.04.2017.

https://facebook.github.io/react/docs/components-and-props.html

37. Kissmetrics. Speed is A Killer. Date of retrieval: 09.04.2017.

https://blog.kissmetrics.com/speed-is-a-killer

38. Wikipedia. Cache (computing). Date of retrieval: 09.04.2017.

https://en.wikipedia.org/wiki/Cache_(computing)

 63

39. StrongLoop, IBM. Production best practices: performance and reliability.

Date of retrieval: 09.04.2017.

https://expressjs.com/en/advanced/best-practice-performance.html

40. SolidIT consulting & software development. DB-Engines Ranking - Trend

Popularity. Date of retrieveal: 10.04.2017.

https://db-engines.com/en/ranking_trend

41. TheServerSide, Your Enterprise Java Community. Growing the demand

for NoSQL technology, and non-relational solutions. Date of retrieval:

10.04.2017.

http://www.theserverside.com/feature/Growing-the-demand-for-NoSQL-

technology-and-non-relational-solutions

42. Minnick, Chris. 2017. The Real Benefits of the Virtual DOM in React.js.

Date of retrieval: 10.04.2017.

https://www.accelebrate.com/blog/the-real-benefits-of-the-virtual-dom-in-

react-js

43. Q-Success Software Quality Management Consulting. Market share

trends for content management systems for websites. Date of retrieval:

10.04.2017.

https://w3techs.com/technologies/history_overview/content_management

44. Nolan, Ashley. 2016. The State of Front-End Tooling 2016 – Results. Date

of retrieval: 10.04.2017.

https://ashleynolan.co.uk/blog/frontend-tooling-survey-2016-results

45. Zaytsev, Juriy. 2017. ECMAScript 6 compatibility table. Date of retrieval:

10.04.2017. https://kangax.github.io/compat-table/es6

46. Chaffey, Dave. 2017. Global social media research summary 2017. Date

of retrieval: 10.04.2017.

 http://www.smartinsights.com/social-media-marketing/social-media-strat-

egy/new-global-social-media-research

47. Cogneau, Alexander. 2017. Node.js Events and EventEmitter. Date of re-

trieval: 10.04.2017.

https://www.sitepoint.com/nodejs-events-and-eventemitter

 APPENDIX 1

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/1

1. Complete code of routes/index.js for defining all routes:

import postController from './posts';

import categoryController from './categories';

import imageController from './images'

import userController from './user';

import checkAuth from './auth';

import allController from './all';

import cacheController from './cache';

export default (app)=>{

 app.all('/api/*', checkAuth)

 app.use('/api/posts', postController);

 app.use('/api/categories', categoryController);

 app.use('/api/images', imageController);

 app.use('/authenticate', userController);

 app.use('/', allController);

 app.use('/api/cache', cacheController);

}

2. CRUD controller:

import Post from './post.model';

import Category from '../categories/category.model';

import {prefix, POST, CATEGORY} from '../../events/config';

import redisClient from '../../config/redis';

import eventEmitterInstance from '../../events/events';

const index = (req, res, next)=> {

 Post.find({})

 .populate('category')

 .exec((error, posts)=> {

 if (error) {

 return next(error);

 }

 if (!posts) {

 return next(error);

 }

 res.json(posts);

 })

}

const showBriefs = (req, res, next) => {

 Post.find({})

 .limit(5)

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/2

 .sort({createdAt: -1})

 .select({content: 0, keywords: 0})

 .populate('category')

 .exec((error, posts)=> {

 if (error) {

 return next(error);

 }

 if (!posts) {

 return next(error);

 }

 res.json(posts);

 });

}

const update = (req, res, next)=> {

 let id = req.params.postId;

 Post.findById(id)

 .populate('category')

 .exec((error, post)=> {

 if (error) return next(error);

 if (!post) return next(error);

 post.update(req.body, {runValidators: true, context: 'query'}, (error,

pos)=> {

 if (error) return next(error);

 res.json(pos);

 });

 });

}

const create = (req, res, next)=> {

 let newPost = new Post(req.body);

 newPost.save((error, post)=> {

 if (error) return next(error);

 res.status(201).json(post);

 });

}

const remove = (req, res, next)=> {

 let id = req.params.postId;

 Post.findById(id)

 .exec((error, post)=> {

 if (error) return next(error);

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/3

 if (!post) return next(error);

 post.remove((error)=> {

 if (error) return next(error);

 res.status(204).end();

 });

 });

}

const getOne = (req, res, next)=> {

 const id = req.params.postId;

 redisClient.get(prefix.post + id, (error, postJSON)=> {

 if (postJSON) {

 console.log('from cache post')

 return res.json(JSON.parse(postJSON));

 } else {

 Post.findOne({slug: id})

 .populate('category')

 .exec((error, post)=> {

 if (error) {

 return next(error);

 } else if (post === null) {

 return res.status(404).json({

 msg: '404'

 });

 } else {

 eventEmitterInstance.emit(POST.VISITED, post);

 res.json(post);

 }

 });

 }

 });

}

const getCategoryPost = (req, res, next)=> {

 const slug = req.params.categorySlug;

 redisClient.get(prefix.category + slug, (error, postList)=> {

 if (postList) {

 console.log('from cache category')

 return res.json(JSON.parse(postList));

 }else {

 Category.findOne({url: slug}).exec((error, category)=> {

 if (error) {

 return next(error);

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/4

 }

 if (category === null) {

 res.status(404).json({

 msg: '404'

 });

 } else {

 Post.find({category: category._id})

 .populate('category')

 .exec((error, posts)=> {

 if (error) {

 return next(error);

 }

 if (!posts) {

 return next(error);

 }

 eventEmitterInstance.emit(CATEGORY.VISITED, posts, slug)

 res.json(posts);

 })

 }

 });

 }

 });

}

export {index, showBriefs, update, create, remove, getOne, getCategoryPost} ;

3. Events System:

import {CATEGORY, prefix} from '../config';

import redis from '../../config/redis';

const onNewCategory = (doc)=>{

 "use strict";

}

const onUpdateCategory= (doc)=>{

 "use strict";

}

const onCategoryRemove = (doc)=>{

 "use strict";

}

const onVisitCategory = (doc, slug)=>{

 "use strict";

 const cacheID = prefix.category + slug;

 console.log(cacheID);

 redis.set(cacheID, JSON.stringify(doc));

}

AN EXAMPLE OF A MULTI-PAGE APPENDIX APPENDIX 2/5

export default (eventEmitter)=>{

 "use strict";

 eventEmitter.on(CATEGORY.NEW, onNewCategory);

 eventEmitter.on(CATEGORY.UPDATE, onUpdateCategory);

 eventEmitter.on(CATEGORY.REMOVE, onCategoryRemove);

 eventEmitter.on(CATEGORY.VISITED, onVisitCategory);

}

