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Abstrakt 

Detta examensarbete gjordes på uppdrag av Wapice Ltd. Syftet med examensarbetet 

var att skapa en webbapplikation för övervakning av Service Desk-systemet som idag 

används hos Wapice Ltd. Det nya systemet kompletterar det befintliga och innehåller 

nya användargränssnitt för att övervaka statusen av Service Desk-systemet i realtid. 

 

Examensarbetet resulterade i en webbapplikation som tillåter användare att skicka nya 

supportärenden och visa sina egna supportärenden. Administratörerna har tillgång till 

statistiska uppgifter om supportförfrågningarna, vilket hjälper till med beslutet om vilka 

förfrågningar som ska lösas först. 
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This Bachelor’s thesis was made on behalf of Wapice Ltd. The aim of the thesis was to 

create a web application for monitoring the service desk system currently deployed at 

Wapice Ltd. The new system complements the existing one, providing new user 

interfaces for monitoring the state of the service desk in real time. 

 

The thesis resulted in a web application that allows users to submit new support tickets 

and view their own tickets. The administrators have access to statistical data about the 
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SMS   Short Message Service. 

RAM   Random Access Memory. 

XML   Extensible Markup Language. 

API   Application Programming Interface. 

REST   Representational State Transfer. 

SQL   Structured Query Language.  

JSON   JavaScript Object Notation. 

Array   Systematically arranged data in rows and columns. 

SASS   Syntactically Awesome Style Sheets. 

CSS    Cascading stylesheets. 

DOM   Document Object Model. 

LDAP   Lightweight Directory Access Protocol.  

URL   Uniform Resource Locator. 

Regex   A regular expression, search pattern. 

IDE   Integrated Development Environment. 

CRUD   Create Read Update Delete. 

Duty Officer Person responsible for tickets escalated by the end user. 

NULL A special marker and keyword indicating that something has no 

value. 
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1 Introduction 

This chapter consists of background information on the commissioner. 

1.1 Commissioner 

Wapice Ltd was established 1999 in Vaasa, Finland. Wapice is an independently and 

privately-owned company. Wapice is a software company providing solutions to domain 

leading companies globally. Wapice currently employs over 320 experts in seven locations 

around Finland. [1] 

1.2 Background 

Wapice has deployed a service desk system for managing support requests internally and for 

customer support requests. The IT-department which is responsible for managing these 

requests needed a tool that would help them monitor and prioritize incoming requests. 

For Wapice, one of the most problematic parts about administrating a service desk system is 

to choose which tickets to solve first. It might not always be the most recently submitted 

tickets that are the most urgent. The tickets are prioritized according to severity but the 

deployed system had no good way of showing an overview of the newest tickets and their 

respective severities. 
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2 Task 

The task was to develop a web application through which end users can file support tickets 

to the service desk. The IT-admins wanted statistical features for monitoring the state of the 

service desk and for prioritizing tickets. This would make it easier to determine which tickets 

to solve first. 

2.1 Previous solution 

The previous solution was a service desk system. Even though the previous solution had 

many wanted features, the previous system lacked a way of displaying the new tickets in a 

graphical way. Instead it displayed the new tickets in a list. 

2.2 Requirements 

The end user should be able to create new tickets and view their own tickets. They should 

also be given the option to escalate their own tickets to a service manager for further review 

in urgent cases. 

The administrators should be able to see the overall status of the service desk system. This 

includes charts for all tickets created and closed the past month and all the newly created 

and successfully closed tickets in the system cumulatively since system deployment. A 

graphical overview of the tickets in the severity groups should be displayed to the 

administrators with the option to filter out certain tickets based on the queue that they belong 

to.  

Administrators should be able to select a person that becomes the active duty officer. The 

duty officer will get an SMS upon a ticket escalation, which the end user can do in urgent 

situations when the ticket is not processed in a reasonable time. 

2.3 Aims and goals 

The aims of this thesis are to make the service desk easier to use for the end user. Give the 

administrators more analytic tools for better overall system monitoring. The web application 

developed should not replace the previously deployed system, it should complement the 

existing system by providing new features and simplify the interaction with the system both 

for the end users and the administrators. 
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3 Theory 

This chapter consists of theory about the technologies used to create the web application. 

3.1 HTML 

Hyper Text Markup Language (HTML) is the building blocks used for creating websites. It 

defines the elements in the page but not the styling. Elements are represented by starting and 

closing tags. Browsers do not display the tags, but use them to render the content inside of 

them per the standard and browser specifications. Examples of content that can be displayed 

with HTML tags are images, videos, links and forms. [2] 

Code example 1. Basic structure of a HTML document containing an unordered shopping list. 
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3.2 CSS 

Cascading Style Sheets (CSS) is a scripting language that is used to define the graphical 

properties of HTML elements such as color, placement, size, font and margins. To apply a 

style to an element, CSS uses rule sets. Rule sets are blocks of code that contain selectors 

that point to a class, ID or type of element. Inside of the rule set are properties and values. 

The CSS can be defined in a HTML document, but it is more common to store it in a separate 

file and use an include statement in the HTML document in which the styles should be 

applied. 

Code example 2. Basic structure of a CSS file containing rule sets for elements in code example X. 
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3.3 SASS 

Syntactically Awesome Style Sheets (SASS) is a scripting language that compiles down to 

CSS and controls the look of web elements. It includes more functionality than CSS, for 

example nesting of selectors and the possibility to use variables. Colors for example can be 

stored in variables for later use. If the colors needed to be changed in the future, they can be 

replaced in one location in the code. It is possible to divide the SASS code into smaller files 

for easier management, these files would then get included in a main file that in turn gets 

compiled to one CSS file. The code becomes reusable with SASS. [3] 

Code example 3. Basic example of SASS with nesting and a variable for the color attribute. 

 

Code example 4. Compiled CSS of the code in example 3. 
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3.4 JavaScript 

JavaScript is an object-oriented scripting language. It can be run inside a host environment 

(typically a web browser). JavaScript can control the behavior of web pages and provide 

interactivity. It is more commonly used as Client-side JavaScript which can be used to 

control a browser and its Document Object Model (DOM). For example, responding to user 

events such as mouse clicks, form input, and page navigation. [4] 

In this thesis jQuery was used. It is a JavaScript library which simplifies DOM manipulation 

and event handling. For example, selecting elements can be done with far less code than in 

JavaScript.  

Code example 5. Toggling the visibility of an element with jQuery and JavaScript. 

 

 

Server-side JavaScript has become more common nowadays. It extends JavaScript itself by 

supplying objects relevant to running JavaScript on a server. One example of such a server-

side JavaScript runtime is Node.js, it is built on top of Google Chrome’s V8 JavaScript 

engine. Node.js uses a non-blocking I/O system, no task is blocking the execution of another. 

Contrary to traditional web server technologies, where every connection creates a new thread 

or process which uses the servers RAM and finally will use up all the available memory,   

Node.js only uses a single thread to support up to tens of thousands concurrent connections. 

[5] 

Node.js combined with other technologies can provide a full stack web development 

environment, one stack is MEAN (MongoDB, Express.js, Angular.js, Node.js). 
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3.5 Ajax 

Asynchronous JavaScript and XML (AJAX) enables a website to request partially new data 

to parts of a page. Without having to reload the whole page. Since AJAX is asynchronous, 

the request will run in the background and the user’s browser will continue with the 

processing of other events. This technique was used in this thesis project to fetch data for 

the charts and data tables displayed in the application. [6] 

 

 

Figure 1. Example of how an AJAX request is processed. [7] 

 

Code example 6. Example of an AJAX request for ticket statistics data using jQuery. 
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3.6 PHP 

PHP short for PHP: Hypertext Preprocessor is a server-side scripting language. It is 

interpreted on the server and the result is sent back to the user’s browser as standard HTML. 

The user does not see the server side code. PHP can interact with many popular databases 

such as MySQL. PHP enables a web application to make use of user sessions to store user 

specific information. One of the more popular use cases for PHP is to use it within the LAMP 

(Linux, Apache, MariaDB / MySQL, PHP) stack, which is the case with this web application. 

[8] [9] 

Code example 7. PHP document containing an unordered shopping list rendered using an array. 

 

 

The code example above contains both HTML and PHP code. The PHP code is run on the 

server and standard HTML is sent back to the browser.  
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3.7 REST API 

Representational State Transfer (REST) is an API (Application Programming Interface) that 

allows two systems to talk to each other.  REST API’s are stateless, meaning that each 

request made to the API contains all information necessary to fulfill the request. No session 

or state can be stored on the server side. [10] 

REST API’s are commonly accessed by an URI (Uniform Resource Identifier). REST can 

use HTTP methods to achieve CRUD (Create Read Update Delete) operations. 

 

Table 1. REST actions and their CRUD equivalents. 

HTTP method CRUD 

POST Create 

GET Read 

PUT Update / Replace 

PATCH Update / Modify 

DELETE Delete 

 

Using these methods, it is possible to expose an applications data through a REST API. This 

allows any other application to interact with the data that is provided by the API. 

3.8 Web service 

A web service is a communication method used to enable two systems to talk with each 

other. In this web application, a web service is used to expose certain ticket details through 

its REST API. This in turn gives the web application the capability to use information stored 

in the service desk database and use that information to draw charts and display data in any 

preferred way. 
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3.9 JSON 

JavaScript Object Notation (JSON) is a lightweight data-interchange format. Compared to 

for example XML, JSON does not use opening and closing tags which makes it more 

readable. XML must be parsed with an XML parser. JSON can be parsed with a standard 

JavaScript method. 

JSON is language independent. It can be fetched from a server and parsed. It consists of two 

types of structures. A collection of name and value pairs which can be compared to an 

associative array in other programming languages. The second structure type is an ordered 

list of values, which in other programming languages could be called array. [11] 

Code example 8. Example of JSON data containing details of two tickets. 

 

Code example 9. Example of XML data containing details of two tickets. 
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3.10 SQL 

When information in an application needs to be stored in a way that it persists, a database is 

a standard way of achieving this goal. A database is a collection of data. Databases consist 

of tables which in turn consist of rows and columns. Each row is a representation of a record. 

SQL, short for Structured Query Language is used for accessing and manipulating database 

systems such as MS SQL Server, MySQL and MariaDB. SQL uses queries to perform 

actions on a specified database. The queries can be complex and specific data can be fetched 

or changed.  

To be able to uniquely identify records stored in a database table, a primary key is used. The 

primary key must be unique, it cannot be empty or NULL. Only one primary key column 

can exist in a database table. One common way of implementing a primary key is to use an 

automatically incremented number. Whenever a new record is inserted, the database creates 

a new automatically incremented number as the primary key for the record inserted. 

Code example 10. SQL select statement example. 

 

Table 2. SQL result, one row is returned with the student named Victor. 

ID (Primary Key) Name Age 

1001 Victor 24 
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3.11 Authentication 

This chapter consists of the basic theory behind the authentication methods used. 

3.11.1 LDAP 

LDAP, short for Lightweight Directory Access Protocol is used for reading and writing to 

Active Directory. LDAP directory server stores data hierarchically. It is commonly used to 

store information about an organization and its assets and users. [12] 

3.11.2 Shibboleth 

Single sign-on (SSO) is a method that allows users to authenticate once in a service or web 

page and gain access to other services with a single authentication. Shibboleth is a web-

based SSO. It provides SSO to services outside of the user’s origin while still protecting their 

connection.  [13] 

3.11.3 SAML2 

SAML, short for Security Assertion Markup Language is a standard method used for logging 

users in to an external destination.  

One major advantage of this system is that the user does not have to type in their credentials 

when accessing a resource outside of the origin, due to the SSO (Single sign-on) login 

standard. [14] 
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3.12 Sanitization 

When dealing with applications in general, one should never trust user input or for example 

session based variables. Sanitization is the removal of malicious code from the used input. 

User input can be forms that the user has filled in and submitted. User input can also be 

parameters in the URL. Always sanitize user input, escape characters, and use prepared 

statements to prevent attacks against the system for example malicious code injections. 

For sanitization, a separate class was used. An instance of this class exists in the main 

controller index.php which can be applied to any input or session variable to ensure that the 

input does not contain any malicious code or characters. 

Code example 11. Example of a sanitation class in PHP. 

 

  
 

The sanitation class example above contains two out of several methods used for sanitizing 

data. These two methods can sanitize usernames and email addresses by replacing the 

characters that do not match the regex, with an empty character. 
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4 Development tools 

This chapter consists of the development tools and environment used in the development 

process. 

4.1 Development environment 

The development environment used was a LAMP stack. This stack was chosen due to it 

being familiar to the development team and the amount of documentation available. 

Development took place in Windows and code ready to be tested was pushed to the 

development environment, which was a separate server dedicated to the testing of this 

application. 

4.2 Visual Studio Code 

For code editing (VSC) Visual Studio Code was chosen. It is a free text editor which is cross-

platform and has a built-in package manager for adding more functionality to the editor. The 

editor is lightweight and very customizable due to the amount of community made packages 

that can be installed to extend the functionality of the editor. VSC is a more lightweight 

alternative to the full featured IDE Visual studio. 

4.3 Materialize framework 

Materialize was chosen as the front-end framework for the project. One great advantage of 

using a framework is not having to invent the wheel all over again. The framework provides 

styled, standard HTML elements out of the box. This means that there are predefined styles 

for elements like buttons, form elements and navigation elements. One thing to keep in mind 

when using any kind of framework that provides styling, is to only use the styles as a 

foundation. In this project, the styles were customized to better reflect the company’s style 

guide line. If the styles where to be left unmodified it results in the application looking as 

many other sites built with the same framework. 

Materialize contains a responsive grid system like many other front-end frameworks, for 

example like in Bootstrap and Foundation. This makes it relatively easy to build a responsive 

web application that will adapt its layout to the screen on which it is displayed on. 
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Material Design is a design language developed in 2014 by Google. The design is bold, 

graphic and intentional. An emphasis on user actions makes core functionality immediately 

apparent and provides waypoints for the user. [15]  

Modern web design nowadays is leaning towards material design and this framework 

implements that well. One other popular framework choice would have been the twitter 

bootstrap framework, due to it being the industry de facto standard for web front-end 

development. [16] 

4.4 NPM 

NPM, short for Node package manager is a way of bringing in packages of code into a 

project. These packages contain code for solving very specific problems. NPM is part of the 

Node.js system itself. 

The main benefit of this system is that it is possible to use packages that provide special 

functionality to your project. The packages can easily be managed, updated and deleted 

through the NPM. Chances are that common functions that the project requires, have already 

been written by someone else, thus there is no reason to reinvent the wheel. Instead, include 

the package with NPM and use the provided functions. The package names and version 

numbers are stored in a package.json file in the project directory. [17] 

Code example 12. Example of a package.json file containing the gulp and gulp-sass packages. 
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4.5 Gulp 

Gulp is a JavaScript development tool that can help automate the most common tasks in a 

web development project. These tasks can include but are not limited to, compiling SASS to 

CSS. Minifying files, watching the filesystem and executing tasks on file changes. Minifying 

files, referred to as minification is the process of removing all unnecessary characters from 

the source code to be minified, but maintaining the source codes functionality. Characters 

that can safely be removed in minification are comments, white space and line breaks. The 

result of minification is a smaller file size. This comes in play when a user visits a web site 

and the browser downloads the requested files. If these files are smaller, the page will load 

faster. 

In this project, Gulp was used to compile the SASS down to CSS every time a SASS file 

was changed on save. This way the projects different page and component styles could be 

divided up into their own separate files for easier management. [18] 

Once Node.js is installed, Gulp can be installed globally from the terminal with the 

following command:  

 

 

To include Gulp into the projects package.json file. The following command is used: 

Code example 13. Example of a gulp file that contains two build tasks, sass and sass:watch. 
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To execute the sass:watch task defined in the gulpfile, the following command is used in the 

terminal: 

In this case gulp would have started the sass:watch task that would compile all the SASS 

automatically when it detects a file change in the project. The execution of the task would 

continue until it is explicitly stopped by the user. 

4.6 Testing tools 

This chapter consists of information about the tools used to test the web application. 

4.6.1 Chrome Developer Tools 

Chrome is a web browser developed by Google. It initially launched back in September of 

2008. Since then, Chrome has taken the lead in the web browser market share. In January of 

2017, Chrome had a web browser market share of 58,4%. [19] 

Chrome developer tools is the built-in toolset in the chrome browser. It is especially useful 

when testing and debugging web applications. It can be used to change CSS directly in the 

browser, one can copy the parameters from the development tools and implement the 

changes in the code. This makes debugging style issues much faster that doing it the old way 

of updating the CSS code in the project and viewing the changes in the browser afterwards.  

An even more powerful feature is the network tab. It displays all the assets that are requested, 

fetched, and loaded in to the user’s browser. It is possible to record all the page network 

activity. This becomes important when for example reviewing time consuming queries. The 

developer tools show how long an individual request is taking. It therefore becomes easier 

to compare different methods of acquiring data, one can test different design patterns and 

algorithms and benchmark them against each other.   
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4.6.2 Postman 

Postman is an application used for making requests to web services using their application 

programming interface (API’s). Postman works by specifying a URL and a method. 

Additional data can be provided if one is for example making a POST request. Headers can 

also be added to the requests. This ease of use makes testing API’s very fast and easy. 

Requests can be saved for later use and testing. 

 

Figure 2. Example GET request in Postman. The result is JSON data. 
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5 Solution 

This chapter consists of information about the planning and practical implementations of the 

application. 

5.1 Planning 

The planning process consisted of several meetings with the team involved in the 

application, were the application design was planned based on the requirements set by the 

project manager. Application design mockups were created in the planning process using 

basic HTML layouts to get a feel for how the application would look. These layouts could 

be changed fast and they were iterated upon several times. 

The planning process did not stop when the implementation of the application started. 

Instead, the planning process continued along the whole project. This way the 

implementations could be reviewed by the development team and possibly altered.  

Every week the implemented functions where reviewed. New tasks were assigned and the 

planning of new tasks began.  
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5.2 Application design 

Page access is divided into two categories. Administrators have access to all pages. Including 

the pages which contain analytical information about the service desk system and ticket 

details of all the tickets in the system. The normal users only have access to the main page 

where they can create new tickets and to the my open tickets page, where they can view all 

the tickets that they have created. 

 

 

Figure 3. Page access diagram. 
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The index.php file serves as the applications main entry point, it is the applications main 

controller. Here the main session is established. All the required objects are instantiated. 

Validation is done to check whether the user is an admin or a normal user, this will restrict 

access to the administration pages in the application for the normal users. The information 

about the users is fetched from an LDAP server. 

 

Code example 14. index.php serving as the applications main controller. 
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5.3 Navigation and language management 

The application display language gets determined by the session variable named lang 

which is a URL parameter. If this session variable is not set by the user then the case might 

be that the user has set the preferred language in a previous session, thus saving the 

language setting in a cookie in the user’s browser. If the language setting cannot be found 

in neither of the variables, then the application will default to English. 

 

Page and language parameter example. 

 

 

In the code example above, the user would be served the main page in English. The strings 

for each language are stored in separate language configuration files containing 

multidimensional arrays. 

 

Example language configuration,  a string stored in a multidimensional array. 

 

Code example 15. index.php determining the language of the application. 

 

 

https://baseurl.domain/index.php?page=main&lang=en
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Page routing is achieved with a URL parameter as shown in the Page and language parameter 

example. 

If this parameter is set, it is sanitized to prevent any malicious code injections. Then the user 

gets redirected to the requested page, stated in the switch case. Some pages have a script 

associated with them. This is to minimize the amount of JavaScript that each page must load 

in. However, if the parameter is not set the main page is shown. Both administrators and 

normal users have access to the main page. 

Code example 16. index.php determining which page to serve to the user. 
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5.4 Data fetching 

Data in the application is fetched through the service desk REST API. To handle these 

requests in the application, a handler class is used. The handler class has several methods 

for fetching different data from the API. To be able to display details about specific tickets, 

a handler class method is used that returns an array of all the ticket ID’s that matches the 

search query give in the request. 

 

Example of a search query for tickets having a closed state: 

 

Example response containing an JSON array of the ticket ID’s whose state is closed: 

 

Fetching details of the tickets is done by using a handler class method which can fetch 

ticket details in batches. The reason for this is that the API cannot handle a request that 

consists of all the ticket ID’s in the system all at once. The request containing the ticket 

ID’s would be too large. The limitation here is due to the maximum character length that 

the web service can handle in the request URL. 

The API can safely handle the fetching of details for 500 tickets per request. When 

requesting ticket details the application sends a request to the API containing a maximum 

of 500 ticket ID’s. The API in return responds with the detailed information about the 

requested tickets. This recursive data fetch is a better way of fetching ticket details, than to 

request details for one ticket at a time. 
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5.5 Service desk portal 

The main page of the application is called service desk portal. It serves as a tool to the end 

user for filing new tickets to the service desk. There are categories for each type of ticket 

that the user can choose from in an accordion menu. A general service ticket can be 

categorized into one out of four different severity queues.  

The severity queues have two deadlines associated with them, first response time and 

resolution time. Deadline times are relative to the creation time of a ticket. These deadlines 

serve as goals for the service desk agents solving the tickets.  

First response time marks the time when the ticket should have been replied to and the work 

solving the ticket would have begun. Resolution time is the total amount of time that it should 

take to solve a ticket in a severity queue. It is possible to file more specific tickets such as 

access right changes, purchases, user account management and permission changes. These 

tickets will have the same deadline times as severity queue three, which serves as the default 

severity queue that should be used in most cases. 

 

 

Figure 4. The main page of the application, used to file new tickets. 
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The deadline times for the severity queues are the following: 

Table 3. Severity response and resolution times. 

Severity 1 First response time: 30 minutes. Resolution time 1 hour. 

Severity 2 First response time: 6 hours. Resolution time 8 hours. 

Severity 3 (Default) First response time: 16 hours. Resolution time 40 hours. 

Severity 4 First response time: 40 hours. Resolution time is not defined. 

Scheduled case by case. 

 

If the user has open tickets in the service desk, then the five newest open tickets are 

displayed at the bottom of the main page. 
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5.6 Open tickets 

The My open tickets page shows all the open tickets belonging to the user. The tickets are 

displayed in a table format with cells displaying the tickets internal service desk ID, ticket 

title, status, queue, and age since creation. For each ticket, there is the possibility to escalate 

the ticket to a service manager if the resolution of the ticket is taking too long and the 

problem that the ticket should resolve is urgent and important. 

The user can also access their closed tickets from the main menu. This redirects the user to 

the existing service desk customer front-end. This section was not implemented as a separate 

page in this web application, but it is considered as a future implementation. 

 

 

Figure 5. My open tickets page, displaying one test ticket. 
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5.7 Ticket escalation 

From the My open tickets page the user can escalate tickets to a service manager or duty 

officer. The escalate button opens a modal with a text area where the user should describe 

the problem and why it is critical that the ticket gets solved as fast as possible. This system 

is in place in case of tickets that are filed because of critical problems, not being resolved in 

a reasonable time. Finally, the user confirms the escalation by clicking on the escalate button 

in the modal. The modal text submission is handled with Ajax as shown in the example 

below. 

Code example 17. Ticket escalate functions. 

 

The Ajax POST request gets sent to the script escalation_tools.php where it gets processed 

and the escalated ticket gets updated with a new article telling that the user has escalated the 

ticket. The ticket also gets moved to a separate queue for escalated tickets. 
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Figure 6. Escalate to service manager modal in the My open tickets page. 

 

When the ticket gets escalated, a duty officer gets an SMS about the escalation. The SMS is 

sent by a script that was in place before this application was being developed. The duty 

officer can be set from the administrator configuration page in the web application. The page 

displays a list of persons belonging to a duty officers LDAP group. The assignment of a new 

duty officer is done by selecting a new person from the list and confirming the change by 

pressing set. 
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Figure 7. Duty officer assignment page. 

 

Table 4. Database table of the current duty officer. 

NewDutyOfficer TimeUpdated ID UserWhoUpdated 

PersonName2 2017-03-17 13:24:22 1 PersonName1 

 

The current duty officer is stored in one row in a database. When a new duty officer is 

assigned by an administrator from the duty officer page the row gets updated. 

Duty officer table columns: 

• NewDutyOfficer – Who is assigned as the new duty officer. 

• TimeUpdated – The time when the update took place. 

• ID – Primary key, never changes. 

• UserWhoUpdated – Who did the duty officer change? 
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5.8 Charts 

The charting library NVD3.js was used to visualize data. It is based on the D3.js library. It 

can be installed and saved as a project dependency with NPM using the following terminal 

command: 

 

5.8.1 Ticket overview charts 

The ticket overview page consists out of two line charts. The first one displays new and 

closed tickets for the past month. The second chart displays new and closed tickets 

cumulatively since the deployment of the service desk system. Both chart have a horizontal 

timeline beneath. The timeline determines the size of the time axis that is used in the chart. 

The timeline can be changed by dragging its starting and ending points. 

 

Figure 8. Ticket overview page. 

 
 

 

Figure 9. Ticket overview page, cumulative chart displaying new and closed tickets, since deployment of the 

service desk system. 
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Figure 10. Ticket overview page, chart displaying new and closed tickets past month. 

5.8.2 Ticket queues charts 

The ticket queues page consists out of four scatter charts with the same design, but different 

data. These charts display all the tickets belonging to a severity queue, there are four severity 

queues in total. The tickets are displayed as circles. If the user hovers over a circle, additional 

ticket information is displayed. The information displayed in the hover state is the ticket ID, 

the ticket age, the queue that the ticket belongs to and the ticket title. One severity chart may 

contain tickets from multiple queues. The charts are updated in real time with Ajax calls. If 

a circle is clicked, it redirects the user to the internal service desk page containing all 

information about the ticket. 

The circles may have one out of three possible colors. When a ticket or circle is created, it is 

initially displayed in a green color. This due to the ticket’s age has not surpassed the first 

response time, which is displayed as a horizontal yellow line. When the tickets age is 

between the first response time line and resolution time line, the ticket is displayed in a 

yellow color. Finally, when the tickets age surpasses the response time it is displayed in a 

red color. However, if a ticket gets successfully closed at any time, the ticket or circle is 

automatically removed from the chart. 
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Figure 11. Ticket queues page, displaying tickets as color coded circles. 

5.8.3 Conversion of data for the ticket overview charts 

The ticket count past month chart uses date time as its x-axis. The y-axis displays the total 

amount of new and successfully closed tickets for a given date. The second chart ticket count 

cumulative, displays all new and successfully closed tickets cumulatively on a given date 

since the deployment of the system. 

For the ticket count past month chart, only the data from the past month needs to be fetched 

from the API. This is done by passing in a parameter into the request that filters out all tickets 

that have a created at timestamp older than 50000 minutes. For the ticket count cumulative 

chart, the parameter is not used. This way all the tickets are fetched. 

Since the charts display the newly created tickets per day and the successfully closed tickets 

as separate data series on their own lines, the requests are separated for each of the data 

series.  
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The difference between these two requests is the API parameter called StateIDs which 

determines which ticket state the returned tickets will have. For new tickets StateIDs=1 is 

used and for successfully closed tickets StateIDs=2 is used. 

Code example 18. Fetching ticket details for successfully closed tickets from the service desk API. 
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Once the ticket IDs and the ticket details have been fetched, an array containing a key named 

x and the ticket date time value in the format Y-m-d is created. This array can contain 

multiple occurrences of the same date time value. 

Code example 19. Creating a temporary array containing the created date time of the tickets. 

 

 

A temporary array is created containing a key value pair. The key is x and the value is a date 

time in the format Y-m-d. The length of the array is 31, the maximal amount of days in a 

month. This array length determines the amount of days that the chart is finally going to 

display. The value y gets initiated to the integer 0 for all array entries. This value is a counter 

of how many of the tickets fetched that have the same date time. 

Code example 20. Creating an array of date times ranging from today back 31 days. 
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The final array is created by counting the occurrences of the same date time in Code example 

18 and incrementing the counter by one for each occurrence. Finally, the key x containing 

the date time gets formatted to a UNIX timestamp in milliseconds. The reason for this is that 

the charting library expects date time values in this time format. 

The process differs for the ticket count cumulative chart and the array length is the total count 

of all days since system deployment. The y value gets cumulatively added for each day. 

Code example 21. Counting how many tickets that have the same date time for the past month chart. 

 

 

Code example 22. JSON output from the calculations where the x-value is the date time in milliseconds since 

the UNIX epoch. The y value is the total count of tickets on that date. 
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5.8.4 Conversion of data for the ticket queues charts 

Data for the four charts is comprised of x and y values. Where the y value is a relative value 

between the created at time and the resolution time * 1.5. The reason for the resolution time 

being one and half times greater is so that if there are many tickets which have surpassed the 

resolution time. The tickets would have some extra graphical space in the top of the chart 

where they could be displayed, otherwise the red resolution time line would be at the very 

top of the chart. 

The x value is a generated value between one and twelve. The x value determines the circles 

positon in the x-axis. There can be a maximum of twelve tickets in one chart that have a 

similar y-value that aligns them to the same line in the y-axis. These tickets would get 

distributed in the x-axis and assigned x-values from one to twelve. The positioning system 

of the circles is dynamic in the sense that it will rearrange all circles when an update of the 

chart occurs. If new circles are added or if circles are removed, then the position of all circles 

will get re-evaluated to display them all correctly.  
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5.8.5 Ticket queues selection 

If the user would like to filter out certain queues from any of the charts in the ticket queues 

page, they can do this through the queue filter menu at the top of the page. This menu shows 

all the available queues that belong to the four severity queues. The users filter choice is 

stored in a cookie, so that the same filter will be applied the next time the user visits the 

page. To change the filter setting the user marks checkboxes for the desired queues and 

finally applies the changes with the change queues button. 

Due to the large number of available queues to choose from in the filter menu, there are 

buttons in the queue selection menu for checking or unchecking all queues. From the start, 

there is a default filter configured. The user can revert to this filter by clicking on the defaults 

button. 

 

 

Figure 12. Ticket queues page filter menu. 

 

 



39 
 
If the cookie is not set and the queues currently displayed are the predefined queues from 

the main configuration. Then the script fetches the default queues from the main 

configuration. This scenario would take place if the user has not chosen any filter and the 

page gets refreshed. 

If the queues currently displayed are the same as in the main configuration and the user’s 

cookie is set. This scenario would take place when the user initially visits the page. Then the 

script fetches the queueID’s from the user’s cookie and parses them and the script proceeds 

with updating the charts with the queues specified by the user’s cookie. The cookie can be 

set with no queues in it. This would make all the charts display no data. 

Queues chosen in the filter by the user, gets passed to from the JavaScript handling the filter 

menu to the PHP script that fetches and parses new data based on the filter selection. the 

PHP script starts off by checking if the queues fetched are not empty and different from the 

default queues in the main configuration of the web application. If this is true, the script 

continues updating the charts with the queues specified by the user. This scenario would take 

place when the user would have chosen a new filter and confirmed it.  
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6 Result and discussion 

This chapter consists of the results, problems encountered and discussion. 

6.1 Result 

The resulting application fulfilled the requirements. The application was taken into 

production when it was finished. The application has enabled the service desk agents to 

prioritize tickets more easily by having access to the graphical representations of the tickets, 

thus the service desk system has become more efficient since users do not have to wait as 

long for their tickets to get solved. Due to the new analytics tools such as the ticket charts 

and status view, it is now possible to spot problems faster than before. 

6.2 Problems encountered 

The largest problem encountered in the development process was the lack of documentation 

on how the deployed service desk system worked. It was quite difficult to fetch large 

amounts of data from the service desk web service without any significant delay. The 

solution to this problem was to divide the data to be fetched into smaller chunks. This way 

it was possible to recursively fetch the ticket ID’s and then the details for each ticket. 

6.3 Further development 

A feature that could be implemented, is the displaying of the users closed tickets instead of 

redirecting the user to the service desk customer frontend. 

General optimizations to the recursive queries for fetching ticket details should be done to 

improve the overall user experience and to minimize loading times. The limitations of API 

request optimization, may lay in the capabilities of the API itself. 

The Gulp.js workflow could further be improved. A task for automatic minification of 

JavaScript files could be added. To save some prototyping time, live reload could be used in 

a Gulp task. Live reload refreshes the web browser whenever a file changes, so that the 

change in code is instantly shown in the browser. This enables faster iteration of design 

ideas. 
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6.4 Discussion 

At the start of this project, PHP was chosen as the main language for the application backend. 

It was used without any framework. It could have been better considering future feature 

implementations to have used a small framework to structure the application in a more 

modular and easily upgradable way, for example by using the Slim framework. Although it 

has been easy to implement new functions in the application, due to the backend that has 

been custom written for this application. 

The JavaScript charting library chosen was NVD3.js while it provides easy to use standard 

charts. The library itself is not the best choice when it comes to developing custom charts, 

such as the ticket queues chart in this thesis. A better choice for building custom charts would 

have been the library D3.js on which NVD3.js is based on. D3.js has its own disadvantages 

one being that its learning curve is quite steep compared to simpler alternatives. 
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