

Eeva Haataja

Displaying N-depth Parent Hierarchy in sObject
Field

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Technology

Thesis

1 May 2017

 Abstract

Author(s)
Title

Number of Pages
Date

Eeva Haataja
Displaying N-depth Parent Hierarchy in sObject Field

32 pages + 1 appendix
1 May 2017

Degree Bachelor of Engineering

Degree Programme Media Technology

Specialisation option Digital Media

Instructor(s)

Harri Airaksinen, Principal Lecturer

The goal of the project was to find a solution to display identification numbers of parent
record hierarchy in Salesforce Custom Object text field. The requirement was that the depth
of record hierarchy is not fixed and the number of characters used in field is the maximum
character number of the longest available text field.

Project development environment was Salesforce, which is the leading CRM-software. De-
velopment was managed in Developer Edition sandbox and data model followed Salesforce
model. Configuring object to track n-depth hierarchy is not common, therefore, the aim of
this study was to do a research on issues related to n-depth Object hierarchy.

Firstly, each possible event for record was designed to a chain of events. After the first
phase, restriction in Salesforce environment was discovered based on what problems the
project might face. The discovery phase excluded approaches, but also brought up re-
strictions that cannot be avoided and thus, need to be noted when developing.

The third phase was to build a Process for each chain of event. Development for Au-
tolaunched Flow followed, since Process needs to launch a Flow to complete record update.
A clear and reliable solution was sought when developing a Flow. The last part of the solution
development was Apex Trigger for event when the record should be deleted. The purpose
of the Trigger was to delete the connection between record and its child records and then
update the child records. A previously built Process was utilized when updating child rec-
ords.

As a result of this study, a solution which meets the core criteria of the project was found.
However, some risks were detected, which denotes that the solution might not apply to a
larger scale. The solution discovered can be optimized and improved, though. The project
was made for a software start-up company, which is focused on developing Salesforce ap-
plications.

Keywords Salesforce, sObject, CRM, Apex Trigger, Process Builder, Au-
tolaunched Flow

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Eeva Haataja
Rajattoman syvyisen hierarkian esittäminen sObjectin kentällä

32 sivua + 1 liite
1.5.2017

Tutkinto Insinööri (AMK)

Koulutusohjelma Mediatekniikka

Suuntautumisvaihtoehto Digitaalinen media

Ohjaajat

Yliopettaja Harri Airaksinen

Insinöörityön tavoitteena oli löytää ratkaisu esittää itseensä viittaavan Salesforce-objektin
tekstikentällä datahierarkiassa ylempien tallenteiden identiteettinumerot tekstimuodossa.
Vaatimuksena oli, että hierarkian tulee olla rajaamaton ja rivin merkkien määrän suurin sal-
littu.

Toteutusympäristönä oli Salesforce, joka on johtava asiakkuudenhallintajärjestelmä (custo-
mer relationship management, CRM). Kehitysympäristönä toimi Salesforcen Developer Edi-
tion, ja datamallinnus on Salesforcen mallin mukainen. Salesforcen ympäristön objektin kon-
figurointi rajaamattoman syvyiseen hierarkiaan ei ole tavanomaista, joten tämän insinööri-
työn tarkoituksena oli selvittää, kuinka ratkaista siihen liittyvät käyttöongelmat.

Ensin projektissa suunniteltiin jokaiselle objektiin liittyvälle tapahtumalle, kuten luomiselle,
poistamiselle ja päivittämiselle, vaatimusketju. Seuraavana vaiheena kartoitettiin ympäristön
rajoittavat ominaisuudet, jotka voivat haitata ratkaisun löytymistä. Kartoituksen tavoitteena
oli sulkea pois lähestymistapoja, mutta se toi myös esille huomioon otettavia rajoituksia, joita
ei voitu välttää. Muun muassa tietokannan hakuihin ja toimintoihin liittyi paljon Salesforcen
asettamia rajoituksia. Kartoituksen jälkeen kehitettiin Salesforcen Process Builder -työka-
lulla tapahtumaketju jokaiselle objektin tapahtumalle paitsi tallenteen poistamiselle. Seuraa-
vana oli vuorossa automaattisesti käynnistyvän kulun kehitys sille, kuinka tallenne päivite-
tään ajantasalle. Kulkukehityksessä pyrittiin selkeään ja luotettavaan tulokseen. Viimeisenä
vaiheena oli luoda Apex-käynnistin tallenteen poiston tapahtumaketjulle. Apex-käynnistimen
tehtävänä oli poistaa yhteys alemman kerroksen tallenteiden ja poistettavan tallenteen vä-
liltä ennen tallenteen poistamista.

Insinöörityö tuloksena syntyi toimiva ratkaisu, joka vastasi projektin päätavoitetta, eli objektin
tekstikentälle pystyi luomaan tallenteen ylempien tallenteiden identiteettinumerot. Ratkai-
sussa huomattiin kuitenkin riskejä, kun tallenteiden määrä oli suuri tai hierakia oli rakennettu
syväksi. Löydettyä ratkaisua on mahdollista vielä kehittää paremmaksi riskien vähentä-
miseksi sekä tapahtumaketjun kulun nopeuttamiseksi. Insinöörityön oli tilannut ohjelmisto-
alan start-up-yritys, joka on painottunut Salesforce-sovelluksen kehitykseen.

Avainsanat Salesforce, CRM, asiakkuuksienhallintajärjestelmä, sObject,
Apex-käynnistin, Process Builder

Contents

Abbreviations

1 Introduction 1

2 CRM Systems 2

2.1 Defining CRM 2

2.2 Features in a good CRM system 3

2.3 CRM Software 3

2.4 Why Salesforce 4

3 Salesforce environment 6

3.1 Salesforce success platform 6

3.2 Salesforce Lightning 7

3.3 Force.com 8

3.4 Salesforce Customer Success Platform 9

4 Development in Salesforce 11

4.1 Custom objects 11

4.2 Salesforce Object Query Language 15

4.3 Governor limitations 16

4.4 Apex Trigger 18

4.5 Process Builder 19

4.6 Visual Workflow 20

5 Project and its results 21

5.1 Project problem definition 21

5.2 Project solution approach 23

5.3 Project results 28

6 Conclusion 29

References 30

Appendices

Appendix 1. Process Builder View

Abbreviations

CRM Customer Relation Management.

ID Identification.

PaaS Platform as a Service

SaaS Software as a Service

Org Environment organization in Salesforce.

SOQL Salesforce Object Query Language.

API Application Programming Interface

DML Data Manipulation Language

1

1 Introduction

The topic of the project was to set up a custom field to display a concatenated string of

parent record IDs, where the depth of the record hierarchy is not limited. This project

emphasised scalability and reliability of data. The goal was to be able to create an update

and delete records while maintaining correct hierarchy display. Before starting the pro-

ject, no scalable solution was known, since most straightforward approaches had major

scalability issues and restrictions. Moreover, there was no guarantee that configuring

custom field to show parent IDs in n-depth was even possible.

The project is made for young start up, Flowhaven Oy. Company was founded in early

2016. Flowhaven provides brand productization platform. Since Flowhaven is a

Salesforce partner and naturally the product is utilizing Salesforce environment. This

project serves as a technical enhancement needed by the company. A field that contains

concatenated string of parent IDs can be utilized in multiple areas. In case of project

success, it enables more scalability to the usage of record hierarchies. However, the

hypothesis is that no scalable solution can be found since Salesforce has restrictions

regarding n-depth record hierarchies.

The current solution to display hierarchy IDs, is to use formula field to fixed depth. The

purpose of the project is to find out if this field can display n-depth hierarchy by configur-

ing. Related concerns are, whether the populated data is reliable and accurate. Another

concern is that the solution is scalable and can be optimized later. If no proper solution

cannot be found, the project needs to answer why this is the case and whether there is

a possibility it can be done by using another method.

2

2 CRM Systems

2.1 Defining CRM

CRM comes from Customer Relationship Management. The definition of the term can

vary. Adrian Payne defines CRM as a strategic management of customer relations. CRM

can include technology needed for management, such as CRM system. In this definition

CRM is more than customer management but not a relationship marketing as shown in

Figure 1. [1, p. 22-23]

Figure 1. Modified from Handbook of CRM. [1, p. 22]

The definition is made to fit its purpose for the company. CRM can also be defined as a

business strategy, which takes into account the life-cycle of customer relationship. It can

also be a tool that helps to market to customers in correct time and channel. The third

explanation could be just simply marketing that is data-driven. There are plenty of other

definitions that have small nuance different. [1, p. 19]

Salesforce defines CRM more as a technical aspect as that is their asset but the defini-

tion is also aligning with the same definition as Payne’s. For Salesforce, CRM is a strat-

egy to manage customer relationships by using technology. Technology can be an Excel

sheet when CRM is in small scale but actual customer relationship management will

happen with proper management tools. [2]

Relationship
marketing

Customer
relationship

management

Customer
Management

3

2.2 Features in a good CRM system

Adrian Payne states that there are three different types of CRM, which will be combined

in a successful CRM system. The first one is operational CRM. It is specified to automate

processes in sales, marketing and customer service. The second one is analytical CRM.

It uses data to give out information that might been missed, and does calculation about

which customer is more profitable, among other things. It can even predict customer

needs. The third one is collaborative CRM, which means communication between cus-

tomers and employees of the company. Together analytical CRM can use data, which

has been inserted in operational CRM and operational CRM can use collaborative CRM

to automate messaging, or even help in trouble situations.

A good CRM system is not only about the features it carries. It requires daily active users

and relevant data to process. If only few employees use the CRM system, the effect is

quite small. The goal of CRM system is to use it efficiently and utilize data imported by

all users.

CRM Software is always an investment for a company. The value of investment for CRM

Software is difficult to calculate. It depends on how much time is saved by using the

operational automation and collaborative channels. Also, the value depends on whether

the sales have increased when relying on analysed data and whether the quality of cus-

tomer data is maintained. Also, customer satisfaction quality is one aspect that matters.

Nowadays, mobility is needed. Installing a software to a local computer and reach the

data only when accessing work on a computer in an office is no longer efficient. Proper

CRM solution enables cloud computing, so that the system can be accessed and used

through multiple devices, even on mobile. [2] It is no surprise that the CRM software with

most active users have a web browser based entry to the data and mobile applications

for major mobile operating systems [3].

2.3 CRM Software

Building an own CRM system can be costly. Therefore, there is a market for CRM soft-

ware because not only Salesforce is providing tool for customer relationship manage-

ment. They have plenty of competitors. Currently Salesforce is growing and taking a big

4

leading position in CRM solutions. Capterra has made a ranking list of CRM software.

Ranking is based on the number of customers, number of users and social presence. In

social presence Facebook likes, LinkedIn followers and Twitter follower were counted on

top of reviews in Capterra site. Results are from July 2016. [3]

Table 1. Modified form Capterra chart, version July 2016. [3]

Software Customers Users Rank in Capterra

Salesforce 150 000 7 200 000 1

Zoho 80 000 20 000 000 2

Microsoft Dynamics 40 000 4 250 000 4

SAP 10 000 8 000 000 6

Capterra has ranked Salesforce as number one CRM software. Salesforce had 150 000

customers and 7 200 000 active monthly users in 2016. Zoho, which is in second place

in Capterra charts, is also a web-based software like Salesforce. Zoho had less custom-

ers, only 80 000, but 20 000 000 active users, which is a lot more than Salesforce. Mi-

crosoft Dynamics is fourth. It had 110 000 less customers than Salesforce and only 4

250 000 active users. SAP, which is a well known ERP software, has a CRM side as

well. SAP is only ranked as sixth in Capterra charts. SAP had only 10 000 customers but

800 000 more active users than Salesforce.

Zoho and Salesforce both have mobile applications. Where Zoho has multiple types of

applications, Salesforce has focused on Salesforce1 application. The volume of the us-

age can be seen even in application level. Salesforce1 has more than a million active

monthly users [4]. Alone in Google Play Salesforce1 application is in 1 000 000 to

5 000 000 downloads group. Zoho CRM application has significantly less, since it is in

100 000 to 500 000 downloads group. [5, 6]

2.4 Why Salesforce

The latest released Fiscal Year results look quite bad for Salesforce. Income from oper-

ations is barely 2 % of revenues in 2016 fiscal year which ended January 31st. For fiscal

year 2017 which ended January 31st, the percentage is even lower, less than one per-

centage. However, Salesforce has invested 251 827 000 000 dollars on development

5

from previous year. That means Salesforce can afford huge investments to improve their

service. Also, they have innovations coming up.

Table 2. Data collected from Salesforce Fiscal year report. Numbers are in thousands and

currency is US dollar. [7]

 Fiscal Year 2017 Fiscal Year 2016

Total Revenue 8,391,984 6,667,216

Marketing cost 3,918,027 3,239,824

Development investment 1,208,127 946,300

Operating cost 967,563 748,238

Einstein, Artificial Intelligence, is one of Salesforce’s newest innovations. Tony Prophet,

Chief of Equality in Salesforce, said in Amsterdam Salesforce World Tour 2017 that Ein-

stein is making Salesforce the smartest CRM [4]. Einstein is not a smart chatbot, but it

is an AI that predicts and calculates the data that is given. It is improving the operational

CRM side and analytical side of CRM. Building own artificial intelligence is costly and

can explain the increasing investments in development.

Einstein is mostly working in background, Lightning on the other hand is more visible.

Lightning is another development project in Salesforce. It renews the way Salesforce

pages are created, structured and loaded. Salesforce classic is no doubt an old fash-

ioned user interface, so with Lightning the visual appearance is brought to today’s stand-

ards. Lightning pages are responsive and fitting all size of displays. Lightning is not di-

rectly improving any of the three types of CRM but it is more like a brand uplifting. Light-

ning is making page loading faster, so overall performance is improved. These two pro-

jects, Einstein and Lightning, are now both ready for all customers to use, so the next

years will show if the investment was profitable.

On administrator and development side, Salesforce has certification exams and active

forums. Expertise is widely shared online and through Salesforce events where commu-

nity is kept alive. Moreover, Salesforce sandboxes offer a customizable platform where

to develop additional features to Salesforce org or to AppExchange for others to use.

Downside of Salesforce are the limitations which apply to development and usage. This

causes complicated configurations. In turn, limitations in an environment are the key why

Salesforce apps are running securely.

6

Salesforce CRM Software does meet the criteria of features in a good CRM system. That

does not directly mean that Salesforce is a good CRM software. It can grow expensive

since pricing is done by user per month and price gap between editions is enormous.

Moreover, some features need add-ons, which can be expensive.

3 Salesforce environment

3.1 Salesforce success platform

Figure 2 shows how Salesforce has built its platform. The structure is layered into five

different levels: Multitenant infrastructure, Data services, Artificial Intelligence Platform

services, Development Platform and Salesforce Applications. These five levels are

called the five success platforms in Salesforce.

One of key features is multitenant architecture. With multitenancy, Salesforce can flexibly

split its resources to tenants. To avoid any tenant to dominate the resources, there are

governor limitations, which are covered in chapter 4.3. Multitenancy is cost-efficient be-

cause a company who is using the CRM software does not need to maintain servers and

operating updates of the service. [8]

Figure 2. Salesforce success platform structure modified from Prophet’s presentation. [4]

7

Thunder is an event processing engine. With Thunder, IoT Events can be scaled to wide

extent in real time. Thunder contains CRM data, users email, calendar and social data.

Thunder connects events which are happening in IoT Cloud in real time. When adding

events to data points in Thunder, user can get personalized actions. Thunder is the base

of the data services in Salesforce customer success platform. [9]

On top of Thunder there are artificial intelligence platform services. It consists of Einstein,

predictive analysis and machine and deep learning. This layer is studying the data which

is in Data service. Without this layer, end users would get a lot of information that is

difficult to handle. Artificial intelligence platform analyses what is relevant and important

information for the user and can even enrich the data to the end user. This means the

user does not need to calculate the data points and meanings together since AI has done

it already for the user.

Predictive analysis is an important matter. It learns patterns, habits and predicts behav-

iour so an enterprise can react or prepare for future events. Opportunities can be de-

tected easily and marketing can be optimized when relying to predictive analysis. It can

be time saving and increasing chances to have positive impact on customer relation-

ships.

3.2 Salesforce Lightning

The third layer in customer success platform is the development layer, which this project

is also focusing on. This layer contains Lighting, Force.com, AppExchange and Heroku.

In this thesis Heroku will not be covered. As mentioned earlier in a previous chapter,

Lightning has recently been added as a feature in Salesforce. It is going to replace

Salesforce Classic. Salesforce Classic is the name of the platform which has been used

as a standard in Salesforce. It looks like it is only about user interface but compared to

Lightning, it deals with also performance. Lightning brings new items to Salesforce: Light-

ning experience, Lightning components, Lightning Connect and Lightning Design Sys-

tem. [10]

Lightning Experience is the user interface designed to look better and make work more

efficient. A Lightning component can replace the usage of a Visualforce component,

8

which can be used on multiple pages. The difference is that a Lightning page loads com-

ponents faster and displays component dynamically when loaded.

Lightning Connect is used when external application is needed. This could be the case

when there is data in an enterprise resource planning (ERP) system. Salesforce Light-

ning Connect supports table integration from SAP, Microsoft Dynamics and more.

Lightning Design System is a pallet of CSS framework, icons and fonts. Also, Design

tokens are included. CSS framework helps the developer to define the main UI compo-

nents like headers and elements. Visual grid layouts and adjustments belongs under this

framework. Icons ease the pain to visualize an action or button shorter manner than

words. Salesforce provides a set of icons in PNG or SVG versions. The style of icons is

naturally consistent with Lightning experience. [11]

3.3 Force.com

Force.com, which is mentioned in Development platform level, is a Platform as a Service.

Platform as a Service is shortened to PaaS. As figure 3 shows, it is a service where

application and data can be developed and customized. More specifically, PaaS provides

a platform where example runtimes, middleware security, database and networking is

already provided. In Force.com this means, when developing application, most of the

application is already done. [8, 12]

9

Force.com even offers standard data structures and security settings so developing

would be focused on the application itself. Building the application takes less time and

connecting to database is securely done by Salesforce since Salesforce offers a devel-

oping platform.

Figure 3. Difference between PaaS and SaaS [13].

Force.com has been also called as Software as a Service, which means that even appli-

cations are managed by Salesforce. This perspective is understandable, since

Force.com is responsible for distributing software services on mobile and different de-

vices. The term SaaS is mostly leaning to Salesforce.com side, which is the CRM Soft-

ware name for Salesforce. Moreover, SaaS in Salesforce is Salesforce Customer Suc-

cess Platform, which is above Development Platform. [14]

3.4 Salesforce Customer Success Platform

On top of the Salesforce success platform are Salesforce Applications, which are the

Salesforce Customer Success Platform. Salesforce has developed tools for managing

business in various areas. Each product has its own license and pricing table. The price

is user and monthly based and varies between editions. Salesforce has the following

products:

10

 Sales

 Service

 Marketing

 Community

 Analytics

 Apps

Products can be used in Salesforce Organization of the customer. Organization, usually

referred as Org, in Salesforce means the tenant environment itself. Salesforce has dif-

ferent editions for orgs. For example, Developer Edition Orgs are free and anyone can

create one. Depending on the edition there are limitations how much the user can do

inside the org or how many active users can be created. [15]

Organization manages the application, communities and users who are engaged in en-

vironment. To customize org, admin can create own solutions by building own app. An-

other option is to install application from AppExchange. AppExchange is like any appli-

cation store. Some applications are free and some have a price tag. Application pack-

ages are developed by different resources. AppExchange does not only offer applica-

tions, but also components and consulting services. Together these are called offerings.

Application in AppExchange are using Salesforce platform and they are standalone so-

lutions. All applications in AppExchange are built by Salesforce Partners and gone have

through security review. In other words, all applications are accepted by Salesforce. To

pass this review, the code needs to be secure enough and implemented by following

best practices. All Apex classes inside the package needs to have at least 75 % test

coverage. Test coverage is met when Test Apex Classes are testing all methods and

operations inside Apex classes by using test data and scenarios.

Applications can be unmanaged or managed packages. An unmanaged package is not

hiding the code, so the org which installs it, can modify it. Application provider cannot

11

update an unmanaged package unlike managed packages. Managed packages also

protect the code by hiding it. Since it cannot be edited, upgrades to existing package are

possible. [16]

An organization can install as many offerings as it wants, but inside the organization

license limitations. There is a limitation how many custom objects an organization can

have and custom objects of an installed package are counted. Apps and tabs of a man-

aged package are not counted against license limitations. [17]

4 Development in Salesforce

If AppExchange does not have a solution for Org, it can develop their own solution. An-

yone can develop own applications in Salesforce. Salesforce has its own object-oriented

programming language called Apex. Apex is similar to Java programming language. It is

directly compatible to Force.com components, such as database. No database pass-

words or connectors are needed since Force.com copes with the security.

4.1 Custom objects

Objects in Force.com database are called sObject. Objects are either standard or custom

objects. sObjects are Salesforce objects, which follow Salesforce’s own logical data

model. Salesforce offers plenty of standard objects and fields, which are commonly used

for example, in Contract and Product objects. This project is using a custom object, since

content is not specified and creating independent custom object allows different kind of

structures. [18]

Custom object does not mean it is totally customizable, it also has mandatory standard

fields such as ID, Created by and most importantly Name field. Name field can be an

automated number or text field of 80 characters. Standard fields are common fields used

in all types of objects and therefore, they are not restricting the customization. [19]

Both standard and custom objects can have a selection of custom fields to be configured.

There are multiple types of custom fields to use. Relevant custom fields considering this

project are:

12

 Checkbox

 Formula

 Lookup Relationship

 Master-Detail Relationship

 Roll-up Summary

 Text

 Text Area

 Text Area (Long)

 Text Area (Rich)

Checkbox is typical Boolean Checkbox, in a way that it can have only two types of values,

true of false. Checkbox can be set to null value in Apex Class but that equals to false

value. In this thesis project, checkbox is used to check if the record has been updated or

needs an update.

There are multiple types of Text fields and the major difference is the maximum length

allowed. Text Area (Rich) allows even to have text styling code. The shortest text field

type has maximum limit of 255 characters. This field can be used in SOQL queries to

filter results like in Code Example 1. Filtering of text field can be done by using compar-

ison type LIKE. LIKE supports percentage character and underscore wildcards. Percent-

age wildcard indicates that zero or more characters can match. Underscore wildcard on

other hand, can match only one character. In code example 1, query return only Sample

Object records which Sample Text field starts with Sampl. Comparison type is case-

insensitive.

13

 Code example 1. SOQL query of Sample Object records.

Lookup relationship and master-detail relationship are similar, but also different. If an

object has a master-detail relationship, it is a required field to create a record. Security

rules are extended from master object to detail object. Lookup is a in a way a neutral link

to another object and a not required field unless otherwise stated. [20]

As Figure 4 shows, if an object is a master side of the master-detail relationship, it can

use Roll-Up Summary Field. Roll-Up can summarize set of detail records into one field.

For example, Roll-Up can count all related detail records into integer value to tell how

many detail records there are. Other options are to calculate maximum, minimum value

of the detail records or sum values up. Lookup relationships are not valid for Roll-Up

Summary Field and detail records need to be directly related to the master record. [21]

Figure 4. Difference between roll-up summary and formula field.

SELECT

 Id,

 SampleText__c

FROM

 SampleObject__c

WHERE

 SampleText__c LIKE ’Sampl%’

14

In most cases a formula field can be implemented when Roll-Up cannot be used. For-

mula can refer to another direction, to master relationship form detail or to parent lookup

object as in figure 4. Figure 4 illustrates how Roll-Up refers to detail records but a formula

is going do another direction, towards parent record. Many detail records can refer to

one master record. Also, Lookups are one to many relationships. [22]

Formula can generate different types of values, for example checkbox, text or number.

Formula has its own syntax to use different type of values. Formulas can be used to

display manipulated values of other fields or calculated results of related fields. Formula

field can refer even to fields inside a related lookup, or even a lookup of a lookup.

Code example 2. Formula to calculate total price for different cases.

Formula syntax has operations for example for math, text and logical operations. Code

example 2 is presenting CASE formula which is a logical operation. It calculates the total

price of the order, including product price and postal fee, and returns number value. The

two first cases are for Postal Type text value. The last row is for cases which are not

matching predefined cases, in this example Fast Delivery or Courier.

A natural way to display a field which is populated in parent corresponding field, is a

formula field type where result value would be text. However, since each record field is

built by a parent record it is not that straightforward because of restrictions. A formula

field cannot refer to itself, not even indirectly. Therefore, it is not possible to manipulate

field records using a related record’s corresponding field.

A formula field can contain a maximum of 3 900 characters. It contains spaces, returns

and comments. It is long and can reach many levels in n-depth hierarchy. However, as

long text is not supported, the longest text formula can create, is 255 characters long.

255 characters is enough up to 13 record IDs, which are 18 characters long and have

“greater than” – sign after each ID number.

CASE(Postal_type__c,

'Fast Delivery', Sending_Product__r.Price__c + 80,

'Courier', Sending_Product__r.Price__c + 60,

Sending_Product__r.Price__c)

15

4.2 Salesforce Object Query Language

Apex uses SOQL and SOSL instead of SQL. These languages are used to retrieve data

from Force.com database. SOQL stands for Salesforce Object Query Language and it

is used when the object is known. SOSL, Salesforce Object Search Language is for

cases when a specific object is not defined in query. [23]

Code Example 3. Example of a SOQL query.

SOQL must have at least a SELECT -statement and a FROM -statement. As the code

example shows, query can contain many more statements. In SELECT statement all API

Names of the fields, that are needed to fetch from database, are presented. Fields from

lookups or even their lookups fields can be referred. Lookup or master-detail relationship

child records can be fetched only by using nested query. Nested query automatically

SELECT

Id,

Name,

CreatedBy.Name

Status__c,

Parent__r.Name,

Parent__r.RelationSample__r.RiskStatus__c,

(SELECT

Id,

Name,

description__c

FROM childObjects)

FROM

SampleObject__c

WHERE

status__c!=’Terminated’

OR

EndDate__c > TODAY()

ORDER BY

 Name ASC

LIMIT

100

16

filters the results to be relevant to the parent record. WHERE -statement can be used if

results need filtering. The code example filters according to status or end date.

The result amount can be limited if needed and order can be ascending or descending

according to any field mentioned in SELECT -statement. In code example 3, the query

will give List of Sample Custom Object with maximum of 100 records, excluding child

records in inner query. Results are in a list in ascending order by Name of the record.

Custom objects have __c – suffix in their API Names. Parent fields are referred by first

mentioning the API name of the field where lookup to parent takes place. Instead of using

custom object normal suffix after API name, __r suffix is used. Letter R means relation-

ship. However, the target field is using C-letter after API Name. Standard fields do not

use any underscore suffixes, like in the example code CreatedBy.Name is written.

Example code 3 has a nested query inside parentheses. Nested queries have some

limitations. Nested queries can be made only to children records. Therefore, accessing

fields in children records is difficult and might be done only by making separate SOQL

calls. If children records need to be fetched, it can be better to start the query from chil-

dren, since getting parent data is easier than children data.

SOQL calls can be made inside for-loop section, however, this is not a good practice and

will be discussed in code security review. Moreover, having SOQL in for-loop is a risk,

since action will fail in case governor limitations for SOQL are hit.

4.3 Governor limitations

As Salesforce is a multitenancy platform, transactions in the Org have limitations. This

makes sure that no Org will monopolize the resources. One transaction is one chain of

operations in one unit. For example, Apex code that creates a record and fires a trigger

which updates another record is one transaction. Triggers, Processes, Flows and Apex

Classes are all included in Apex limitations. [24]

Governor core limitations are limiting one transaction. Therefore, it is a good practice to

split enormous operation units into smaller ones or optimize the code. For example, fol-

lowing items are limited:

17

 SOQL queries called

 Number of Records retrieved

 Number of DML statements

One transaction can call SOQL queries synchronously 100 times in total. In case where

n-depth hierarchy is retrieved, this limit is soon reached if bad quality coding is practiced.

Queries inside a for-loop are not recommended and it will be noted in security scans.

Queries can retrieve only 50 000 records in total per one transaction.

Only 150 DML statements are allowed in one transaction. Such as, delete, insert and

update are counted against DML limitations. 150 is a low number when big number of

records are being manipulated. Therefore, statements need to be bulkified to avoid hit-

ting the limits. One statement can update multiple records if they are in one list of object.

18

4.4 Apex Trigger

Apex code can be tied to sObjects by using Apex Triggers. Apex Triggers are fired before

or after a change is detected in records of the related sObject. Triggers are needed when

data in the record affects another record or needs validation. Example code 4 is made

for Sample custom object specific which is triggered only after Sample record has been

updated. Example trigger manipulates child records if a new status of the triggered rec-

ord is terminated. [25]

Code Example 4. Apex Trigger example for Sample custom object.

Triggers can be fired by mass action, for example mass update. Therefore, as you can

see in example code 4 in row 3, the records which fired the Trigger are collected before

doing the query in line 10. In the example code 4, only records which status has been

changed to Terminated are collected.

Trigger sampleTrigger on Sample__c (after update){

 Set<Id> recordIds = new Set<Id>

 for(Sample__c record:Trigger.new){

 if(record.status__c == 'Terminated'){

 recordIds.add(record.Id);

 }

 }

 List<ChildObj__c> childrenRecords = [

SELECT

Id,

childStatus__c

FROM

ChildObj__c

WHERE

parentId IN :(recordIds)];

 for(ChildObj__c child:childrenRecords){

 child.childStatus__c = 'Cancelled';

 }

 update childrenRecords;

}

19

Trigger can use previous values of the record or new values. Old values can be referred

to with an old-variable and new values with a new-variable. Old-variable can be used

only to update and delete triggers. New-variable can be used to insert, update and un-

delete triggers. [26]

Some assignments can be implemented with Formula and Trigger exclusively. For ex-

ample, this status change can be done in formula, but in that case, the field is Read Only

so the user cannot update the field directly. Trigger can only manipulate fields which are

not Read only fields. For example, user can later change the childStatus__c to something

else, which can be either a security risk or a wanted feature. Depending on the use case

formula or trigger is selected to do the job.

Trigger has some more advantages compared to formula field. A Trigger can use child

values, unlike formula. Since Trigger uses Apex language it is in a way more flexible than

Formula which has a restricted amount of methods. Moreover, Apex Trigger can refer to

a static method in any public Apex Class in the org.

Using Trigger to update the record which triggered the Trigger can be complicated. After

an update, it is not possible since it will cause an infinite loop. Moreover, Trigger cannot

even be structured in this way, since an error will prevent saving. The only solution is to

add the value into the new record details before update.

In case the trigger is supposed to update n-depth child values which are referring to

parent value, updating comes more difficult. Since the trigger is triggered before updat-

ing, there is no guarantee that the children will get the right value from parent. Before

update, SOQL queries are retrieving data that is currently valid, which in this case is old

data.

4.5 Process Builder

Process Builder is a workflow tool which has a business like approach. The process

builder is visual, and therefore, no coding is needed. The purpose of the tool is to auto-

mate business workflow that is usually done manually, such as sending emails or invoke

a process. With process builder it is also possible to create or update a record. [27]

20

An automated process can be launched only through record changes or another process.

This means processes are tied to record events. A record which has started the process

goes first through the criteria steps. The other parts of the criteria are important since the

process goes from top to bottom and only the first match is noted. In case a record meets

a criterion, in the process it will execute the actions which are made for specifically for

that criteria. If no criteria are met, no action is executed.

Processes can be activated and inactivated. It is important not to have overlapping pro-

cesses active the same time since the order of the processes cannot be guaranteed.

Activation can be done even at version level. A new version is created each time a pro-

cess is edited.

Process builder is in a way a linear approach, meaning that it does not bend to compli-

cated workflows. Therefore, a process can call Apex classes or launch an autolaunched

flow if more steps are needed to accomplish the result.

When designing the processes, and combining it to workflows it is important not to make

the workflow executed in the same cases as the processes. It cannot be predicted which

one launces first. The same goes for triggers. Therefore, it is good practice not to have

overlapping flows and processes or triggers in the org. [28]

4.6 Visual Workflow

Visual workflows are more complex to implement than process builders. However, it of-

fers more flexibility. There are three types of flows: Flow, Autolaunched Flow and User

Provisioning Flow. Normal Flows always requires user interaction. Autolaunched Flow is

the opposite, since user interaction is not allowed. User Provisioning Flow is for third-

party services, which are not covered in this project. [29]

User interaction is required when Flow uses screens, steps or choices. When creating

autolaunched flow, these elements cannot be used. Best practises recommend to use

steps when designing the flow. However, this might cause issues when converting the

flow to autolaunched flow. Process builder might not recognize the autolaunched flow

since there is trace a that it has been a normal flow.

21

Flows have also versioning, but it is not mandatory in similar way as processes. A devel-

oper can save the edit as a same version or as a new version. Naturally only one version

can be active in one Flow. Multiple flows can be active at the same time.

When Autolaunched flow is launched from Process, there are fields where variables

needed for the flow are inserted. Values can be dynamically assigned from the related

record. Autolaunched flow can be called from Apex Class by using Flow URL. Variable

needed for the flow to execute are added to the link. Code example 5 describes the

structure of Flow URL. The first flow is declared and after the second slash API Name of

the called flow is expressed. After question mark the variables are mentioned. Value is

assigned after variable name and “is equal” -sign. Other variables can be sent by adding

“and”-sign between the variable assignments.

Code Example 5. Example of a flow link. [30]

5 Project and its results

5.1 Project problem definition

The goal of this project was to create an automated process that updates specific sObject

fields individually. A custom field contains parent objects’ ID numbers in order, separated

by “greater than” -sign and the last ID would be its own ID. Figure 5 is the sample of a

record, which is in fourth level in the hierarchy tree.

Figure 5. Example of a record.

Flow Object has three custom fields required for this project. The most important one is

a lookup field which is referring to itself. It must be a lookup relationship, since a master-

detail relationship cannot be made for an object itself. With a lookup relationship, records

/flow/SampleFlow?recordId=a025800000CPQg5&newStatus=Terminated

22

can be connected to each other and hierarchy is possible. Another custom field is Long

Area Text field which has maximum amount of characters available. We cannot use

standard Text field since it is limited to the maximum of 255 characters. 255 characters

can contain the maximum of 13 level hierarchy if IDs are displayed in 18 characters. If

IDs are displayed in 15 characters, hierarchy level can be up to 16.

To keep track of updated records, there is a checkbox field named is Updated. When it

is true, the record should be up to date. If it is false, the record needs to be updated.

These fields help identifying records which are pending for update.

In case of insert, a record can have a parent but it is not necessary. When there is no

parent, a hierarchy field contains only its own ID number. In a situation when a record

has a parent object, it will inherit its parents’ hierarchy field and add “greater than” -sign

as well as its own ID number to last. The same method can be implemented for display-

ing record names instead of ID numbers. However, to maintain accuracy, this project is

using ID numbers to track hierarchy. Record names might change and be duplicates, but

ID numbers are static and unique.

In case a parent record has been changed, the hierarchy field and its child hierarchy

fields needs to be updated to new hierarchy. Update needs to run until there are no more

children found in the hierarchy. This part is the most difficult one and can easily hit gov-

ernor limits.

In case a record deletion there are at least two ways to update child records. One is to

clear a child-parent field and another one is to replace the field to the parent of the de-

leted record. This project is using the first mentioned logic.

This project can be implemented for other purposes as well. Similar methods can be

used to count the depth of the current record in hierarchy. Instead of adding identification

numbers, it would add number values based on what is in parents’ respective field.

With this ID hierarchy field, Apex code can split the string to set of ID values and query

records that contain the following value. ID hierarchy fields cannot be filtered if they are

a Long Text Area, children cannot be fetched by searching the records with the same

beginning in hierarchy field. However, this project is focusing on getting parent values

over child values.

23

5.2 Project solution approach

During this project one approach came out reasonably easy to configure. It was also n-

depth scalable but it might hit the SOQL limitations quite fast. It is a mixture of a Process

builder, automated Flow and Apex trigger. Process builder, shown in appendix 1, is going

through the possible scenarios when hierarchy field needs editing. It then calls Flow that

generates the new hierarchy text. In the end, it also alerts related child records that they

need an update by updating “is Updated” -field to false. These children go through the

Process builder process as well. This process will loop until all children related to are left

updated. Trigger is only needed to clear out the relation between to-be-deleted record

and its children which triggers Process builder.

When a record of Flow Object is being created or updated, it will start a process which

can be called a Hierarchy Process. Hierarchy Process is set up always to start in cases

when Flow Object type of record is being created or any its fields have been changed.

This means DML calls insert, upsert and update will start the process for the Flow Object

record.

Process builder has four scenarios listed. It goes from top to bottom as you can see the

flow in attachment 1. The first one has a case which checks if the record “is Updated” -

field equals false and the record has a parent. Then it will call a linked automated flow.

Autolaunced flow was named as a Hierarchy Flow. Hierarchy Process will give two val-

ues to Hierarchy Flow: ID of the record which started the Hierarchy flow and the hierarchy

of its parent.

If the first condition is not matching the record, there is a second scenario. This scenario

is checking if the record field “is Updated” equals false, but does not have a parent rec-

ord. In this second case, Hierarchy Process will send only the ID of the record which

started the process to the autolaunched flow. The flow is the same Hierarchy Flow, but

because the hierarchy string is not sent, Hierarchy Flow will act differently. These first

two cases cannot be combined, even though they are launching the same flow. The

reason is that if Hierarchy Process tries to assign null value to Hierarchy Flow, it will

cause an error. An error would be thrown every time the parent field is null and no record

can be created.

24

If the first two criteria are not met, the record has been manually edited and “is Update”

-field is not set changed true. In these cases, Hierarchy Flow checks if parent exist has

it changed. In Apex Trigger this would be comparing New value and Old value. If a parent

is changed and the record still has a parent, Hierarchy Process will launch Hierarchy

Flow. Process will send the ID of the record and hierarchy string of its parent.

Fourth and last criteria is for cases when a parent record has been deleted or record

does not have a parent anymore. Hierarchy Flow checks if the parent has changed and

the parent field must now be null. If conditions are met, Hierarchy process will send to

Hierarchy Flow only the ID of the record which started the process.

In a case when none of the criteria is met, the process is stopped. Notice that the record

will only match a maximum of one criteria in the process. The order of the cases can

affect the results, but in this project, it had no significant influence. The only influence is

the performance difference, when the most common case is placed first.

Hierarchy Flow requires at least the record ID to go through the whole flow. Hierarchy

string is conditional for the flow to start, but naturally it is required if the parent record

exists. As you can see from figure 6, the first item to check is if parent exists. “Has

parent” -result is met if hierarchy string is not null. If the string is null, no parent exists. If

the record has a parent, the flow is updating the hierarchy string by adding a first “greater

than” -sign and the record ID to the end of hierarchy string. If the record has no parent it

will start the hierarchy by adding only its own ID to hierarchy string.

A created or an updated hierarchy string is added to record when record is updated in

the next step. During the record update, also the “is Updated” -field is updated to be true.

Updating the record is one DML statement and it is counted against governor limitations.

25

Figure 6. View of the hierarchy flow.

After record update, Hierarchy flow moves to fast lookup the group of records. Fast

lookup will fetch children of the record which started the current flow. Fast Lookup is one

SOQL call and is counted as one against governor limitations. Fast lookup collects re-

sults to sObject collection which is Flow Object type.

Decision will follow fast lookup. Decision checks if children exist. If sObject collection is

empty, flow will end, since there is no assigned next step for the scenario. If sObject

collection is not empty, it means the record has child records or a child record. This

scenario will lead to looping step.

26

In the next step, the flow will loop through the child records and changes the value of “is

Updated” -field to false. To avoid conflicts it is important to collect the children into an-

other sObject collection of Flow object type. When testing the Hierarchy Flow, there was

an issue when changing value in the looping record. Therefore, after updating the value

to record level loop is adding the record to another sObject collection.

When a loop has iterated through all children and has added them one by one to other

sObject collections it has one more step. Last step is to Fast Update the records in sOb-

ject collection. Children could be updated inside the loop by using Record Update, but

that is consuming DML statements. With Fast Update all records can be updated against

governor limitation by using only one DML statement. Bulkifying the DML statement is

the key factor to make the flow possible.

After the Hierarchy Flow ends it might start another Hierarchy Process. This happens in

the cases children are found and is Updated field is updated to false. Child records are

meeting the first criteria in Hierarchy Process which launces the Hierarchy Flow again.

This is looping until no children are left to update.

Figure 7. The order of operations in Process to Flow.

Figure 7 illustrates how all records which have started the process will do the steps in

process before launching a flow. In the autolaunced flow an operation is done to each

record before moving to next operation. Flows have been bulkified for a long time but

only since Salesforce Winter ’16 update processes have also been bulkified [31]. Child

27

processes and flows are running alongside after the update. This means the hierarchy

tree is being updated level by level in sync.

In case of record deletion, Hierarchy Process will not be called first. That requires an

Apex Trigger to start updating hierarchies. When a record is going to be deleted, it is

important to handle child records first to ensure hierarchy will not break because of de-

letion. A Flow Object has an Apex Trigger updateChildrenBeforeDeletion tied and active.

Trigger is only triggered before record is deleted as can be seen in Code example 6.

Code example 6. Apex Trigger for Flow Object for before record delete event.

Trigger which is specified as before delete, collects all to-be-deleted records, meaning

that single and bulkified deletions are supported. After collecting record IDs to ID Set, it

calls the database. SOQL is used since Object is known and filtering ID values are

known. Query is getting children of soon-to-be-deleted records. Only first level of children

are found by this query.

trigger updateChildrenBeforeDeletion on Flow_object__c (before

delete) {

 //catch all deleted to set

 Set<Id> delIds = new Set<Id>();

 for (Flow_object__c delObj : Trigger.Old){

 delIds.add(delObj.Id);

 }

 //query children records

 List<Flow_object__c> children =

[SELECT id

FROM Flow_object__c

WHERE Parent_Flow_Object__c IN :delIds];

 //change the updated value

 for(Flow_object__c child : children){

 child.Parent_Flow_Object__c = null;

 child.is_Updated__c = false;

 }

 //bulk update children records

 update children;

}

28

All queried records are collected to a list of Flow Object. Inside a for-loop, records are

being iterated through it. Parent Flow field is set to null and “is Updated” -field is changed

to false for each record in the list. After for-loop, records are mass updated to database.

Mass update is consuming only one DML statement. Once children records are updated

bulkified Hierarchy Flow starts for each of the records. Process and flow will loop as in

any other case. After all children in all levels are updated, the record which triggered the

Apex Trigger can be deleted. If errors occur in any part of the process or flow, parent

record will not be deleted as all database changes are rolled back. Accuracy of the da-

tabase can be maintained only if Before Delete Event is used over After Delete.

5.3 Project results

Populating hierarchy in various hierarchy depths was successful. Accuracy was main-

tained. However, there are concerns about the scalability of the solution. It might meet

the governor limitations if there are many records. Unlimited professional environment,

however, can use the solution which was discovered in the project. Governor limitation

do not apply in unlimited professional edition and therefore, looping queries is not a prob-

lem.

Looping process and flow are not the best practice, especially when there are queries

and ML statements inside. However, one approach tried to minimize the looping, at least

avoiding going back to Hierarchy Process. This approach was to update children in n-

depth in one flow. There was Fast lookup inside a loop, but it would have been called

only after hierarchy level is looped through. In other words, if hierarchy is six level deep

Fast update would have been called only six times. However, this flow was overly com-

plicated and mixed up the ID hierarchies and sometimes it even missed some records.

This alternative approach was not as reliable as the flow which starts another process.

The approach presented in this study can be optimized and developed to be faster. Es-

pecially, when Salesforce platform improves in data processing there can be more op-

portunities and solutions to populate hierarchy to a string. Previous update, Winter ‘16

version already improved the process in Process Builder since it got an update to bulkify

processes.

29

Comparing fixed maximum depth in formula field to n-depth solution, formula seems to

be more reliable, faster and less risky. N-depth solution can provide deeper hierarchy

but when hierarchy is likely to not cross 15 levels, formula is the solution. It is also a good

question whether the hierarchy should be that deep. Moreover, formula text field gives

more functionalities to use in SOQL queries.

6 Conclusion

As this project faced continuous restrictions, it seems it is too difficult to display the hier-

archy to configure the one single field. Some vulnerabilities were discovered, and the

major one was uncertainty in scalability. There was not enough information about the

bulkifying improvement of Process Builder and its impact to project results. Moreover,

since Salesforce debug logs could not give information about how close the implemen-

tation was to hit governor limitations, solid information of the scalability could not be cal-

culated. However, the solution did meet the core requirements which were set for this

project.

After finishing the project, I met Jack van Dijk in Salesforce World Tour in Amsterdam on

9th of March 2017. He is a Salesforce Cloud Architect in Salseforce. Mr. van Dijk agreed

that this project might have some issues when configuring the field. He pointed out an-

other approach to display the hierarchy. Lightning component could be successful be-

cause it shows up to date visualization of the hierarchy instead of custom field. Since the

project was to configure a custom field, Lightning component was not considered. More-

over, Lightning was still at beta stage when the project was started. Additionally, Lighting

component would not have solved the scalability limit in other purposes where the cus-

tom field would have been utilized, for example in Apex Classes. [32]

30

References

1 Payne, Adrian. Handbook of CRM: Achieving Excellence in Customer Manage-
ment. Great Britain: Butterworth-Heinemann; 2008.

2 What is CRM [online]. Salesforce.
URL: https://www.salesforce.com/eu/crm/what-is-crm.jsp. Accessed 11 April
2017.

3 Hollar, Katie. Top CRM Software [online]. Capterra. 7 July 2016
URL: http://www.capterra.com/customer-relationship-management-software/
#infographic. Accessed 11 April 2017.

4 Prophet, Tony. 2017. Chief Equality Officer, Salesforce, United States. Presenta-
tion, 9 March 2017.

5 Salesforce1 [online]. Google Play.
URL: https://play.google.com/store/apps/details?id=com.salesforce.chatter&hl=fi.
Accessed 13 April 2017.

6 Zoho CRM [online]. Google Play.
URL: https://play.google.com/store/apps/details?id=com.zoho.crm&hl=fi.
Accessed 13 April 2017.

7 Cummings, J., Farber, D. 2017. Salesforce Announces Fiscal 2017 Fourth Quar-
ter and Full Year Results [online]. Salesforce Investor. 38 February 2017.
URL: http://investor.salesforce.com/about-us/investor/investor-news/
investor-news-details/2017/Salesforce-Announces-Fiscal-2017-Fourth-Quarter-
and-Full-Year-Results/default.aspx. Accessed 11 April 2017.

8 The Force.com Multitenant Architecture [online]. Salesforce Developers.
URL: https://developer.salesforce.com/page/Multi_Tenant_Architecture.
Accessed 11 April 2017.

9 Products – Thunder [online]. Salesforce.
URL: https://www.salesforce.com/products/platform/products/thunder/.
Accessed 11 April 2017.

10 Lightning Design System: Understanding Key Principles behind the Design Sys-
tem [online]. Salesforce Trailhead.
URL: <https://trailhead.salesforce.com/modules/lightning_design_system/
units/lightning-design-system1. Accessed 11 April 2017.

11 Icons [online]. Lightning Design Systems.
URL: https://www.lightningdesignsystem.com/icons/. Accessed 11 April 2017.

12 PaaS Multi Tenancy [online]. Oracle.
URL: http://www.oracle.com/technetwork/topics/cloud/
paas-multi-tenancy-092593.html. Accessed 11 April 2017.

31

13 Haby Azure team. What’s the difference between different cloud services like
IaaS, PaaS and SaaS? [online]. Hanu Software. 16 august 2012.
URL: http://hanusoftware.com/
whats-the-difference-between-different-cloud-services-like-iaas-paas-and-saas/.
Accessed 13 April 2017.

14 Butler, Brandon. PaaS Primer: What is platform as a service and why does it mat-
ter? [online]. Network World. 11 February 2013.
URL: http://www.networkworld.com/article/2163430/cloud-computing/
paas-primer--what-is-platform-as-a-service-and-why-does-it-matter-.html.
Accessed 11 April 2017.

15 Products [online]. Salesforce.
URL: https://www.salesforce.com/products/. Accessed 11 April 2017.

16 Understanding Packages [online]. Salesforce Help.
URL: https://help.salesforce.com/articleView?id=sharing_apps.htm&type=0.
Accessed 12 April 2017.

17 AppExchange – FAQ [online]. Salesforce.
URL: https://www.salesforce.com/solutions/appexchange/faq/. Accessed 11 April
2017.

18 sObject Types [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/
apexcode/langCon_apex_SObjects.htm. Accessed 11 April 2017.

19 Custom Field Types [online]. Salesforce Help.
URL: https://help.salesforce.com/articleView?id=custom_field_types.htm&
language=en&type=0. Accessed 11 April 2017.

20 Relationships Among Objects [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/
relationships_among_objects.htm. Accessed 12 April 2017.

21 Roll-Up Summary Field [online]. Salesforce Help. URL:
https://help.salesforce.com/articleView?id=fields_about_roll_up_summary_fields
.htm&type=0. Accessed 12 April 2017.

22 An Introduction to Formulas [online]. Salesforce Developers. May 2016.
URL: https://developer.salesforce.com/page/An_Introduction_to_Formulas.
Accessed 12 April 2017.

23 SOQL and SOSL Queries [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/
apexcode/langCon_apex_SOQL.htm. Accessed 12 April 2017.

24 Execution Governor and Limits [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/
apexcode/apex_gov_limits.htm. Accessed 11 April 2017.

25 Triggers [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/
apexcode/apex_triggers.htm. Accessed 11 April 2017.

32

26 Trigger Context Variables [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/
apexcode/apex_triggers_context_variables.htm. Accessed 11 April 2017.

27 Process Automation: Automate Basic Business Processes with Process Builder
[online]. Salesforce Trailhead.
URL: https://trailhead.salesforce.com/modules/business_process_automation/
units/process_builder. Accessed 11 April 2017.

28 Process limits [online]. Salesforce Help.
URL: https://help.salesforce.com/articleView?id=process_limits.htm&
language=en_US&type=0. Accessed 11 April 2017.

29 Flow Types [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/
atlas.en-us.salesforce_vpm_guide.meta/salesforce_vpm_guide/
vpm_admin_flow_type.htm. Accessed 11 April 2017.

30 Set Flow Variable from a Flow URL [online]. Salesforce Developers.
URL: https://developer.salesforce.com/docs/
atlas.en-us.salesforce_vpm_guide.meta/salesforce_vpm_guide/
vpm_url_setvar.htm. Accessed 11 April 2017.

31 Reduced Chances of Hitting SOQL Limits in Processes [online]. Salesforce Re-
lease Notes.
URL: https://help.salesforce.com/articleView?id=000230637&type=1.
Accessed 13 April 2017.

32 van Dijk, Jack. 2017. Salesforce Cloud Architect, Salesforce, Netherlands. Con-
versation, 9 March 2017.

Appendix 1

1 (1)

Process Builder View

