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ABSTRACT 
 

The objective of this thesis was to implement an algorithm for topology 
optimization of 2-dimensional elastic structures subjected to multiple 
cases of loading. For this purpose, a computer program in Python was 
written.  
 
First, a brief description of structural optimization methods is given, which 
is then followed by more detailed description of topology optimization. 
After that, common problems that occur during the optimization process 
and their solutions are described. Finally, the validity of the program is 
checked using results available in literature and a comparison of structures 
obtained using single loading case and multiple loading case methods is 
presented. 
 
After a comparison of structures obtained using different methods it was 
concluded in what circumstances each method should be used. 
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1 INTRODUCTION 

Nowadays optimization of structures is particularly important. Not only 
does it reduce the material costs, but it also helps to improve mass, 
stiffness and other important structural characteristics. The main 
challenge in obtaining efficient structures is that their design is usually 
highly non-intuitive, especially if they are subjected to multiple loads or 
combinations of loads.  
 
Topology optimization is a tool which can be used at the conceptual phase 
of a design process to obtain an optimal structure which can serve as a 
starting point for further development. The essence of the method is for a 
given design space to provide such a material distribution that optimizes 
some parameter, called an objective function, or parameters of a system 
subjected to a set of constraints. In this thesis, the objective function was 
compliance. Compliance defines how much a structure deforms under 
loading, whereas the constraint function is the final volume of the 
structure. 
 
Many real-world structures might be subjected to multiple loads and all 
possible combinations of these loads. Single loading case method, if 
chosen for optimization of such structures, can be inadequate. This 
method assumes that all loads are acting simultaneously. To start with, it 
might be simply impossible to describe multiple loads assuming that all of 
them act at once. Some of these loads, for example, might act in different 
time and in different directions. If loads are equal and act on the same part 
of a body but are opposite to each other, applying these loads 
simultaneously will result in zero net force. But if different loads act on the 
different parts of a body and do not interfere with each other, such loading 
situation can be approximated by a single loading case. 
 
The problem is that if we try to optimize such a structure assuming that all 
loads are applied simultaneously, the result will be optimal only for this 
particular combination of loads. The main disadvantage of this kind of 
structures is that they might have high sensitivity to the loading pattern. It 
means that removing one or several loads might result in a structure with 
inacceptable performance for this new combination of loads.  

 
This is clear that if a structure is to be subjected to multiple loads which 
may act independently i.e. a multiple loading case, all combinations of 
loads must be considered. 
 
A computer program in Python was written to implement the optimization 
procedure. The program consists of two modules: first module is used to 
find displacements within a structure by means of finite element analysis, 
the second module is responsible for the optimization procedure and 
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changes parameters of the structure based on the information provided 
by the first module. 

1.1 Structural optimization 

Structural optimization is a set of methods and techniques which are used 
to find optimal layout of mechanical structures subjected to external 
and/or body forces. In this thesis, only cases with external loads are 
considered. 
 
There are three main types of structural optimization: size, shape and 
topology optimization. Different methods of optimization have difference 
optimization variables. If the structure in Figure 1 is to be optimized using 
size optimization, the heights of each block would be used as optimization 
variables. In shape optimization, the boundary of the structure is the 
optimization variable. In topology optimization the structure is divided into 
elements and the so called artificial densities of each element are used as 
design variables. 
 

 

Figure 1    From top to bottom: size, shape and topology 
optimization 

 
During size optimization, such properties of a system as: thickness, cross-
sectional dimensions, spring stiffness, hole diameter etc., are allowed to 
change in order to solve the optimization problem. It is commonly used, 
for example, in truss design to find optimal distribution of member areas 
and in finding optimal stacking sequence for composites. The main 
disadvantage of this method is that it does not change the boundaries of 
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the structure. An illustrative example here would be optimization of the 
cross-section of a beam, where starting with a hollow round cross-section 
you will still have the same kind of cross-section in the end of the 
optimization process but with, most likely, different dimensions. This leads 
to a result which is optimal only for the given initial layout of the structure. 
 
Shape optimization on the other hand allows the change of boundary 
shapes, which gives more design freedom and allows to obtain more 
complex and optimized designs. Continuing the previous example, here 
the boundaries of the circular cross-section would be allowed to change, 
nonetheless this method does not permit merging and removal of 
boundaries. This means that the resulting structure will also depend on the 
initial layout. 
 
To overcome the restrictions of size and shape optimization, topology 
optimization is used. Topology optimization is performed over a design 
domain subjected to a set of boundary conditions. During the optimization 
process, new boundaries can be created and old ones can be removed. 
Resulting structures usually have peculiar shape, which does not allow to 
use them directly. This method is primarily used in the beginning of a 
design process to obtain optimal layout of a structure, which then can be 
fine-tuned in order to comply with other possible constraints, such as 
manufacturing requirements etc. 

1.2 Brief history of topology optimization 

Pioneering work in topology optimization was made by Bendsøe and 
Kikuchi (1988). They used artificial composite material with microscopic 
voids. In order to obtain macroscopic properties of such material they used 
homogenization theory. The homogenization theory allows to obtain 
macroscopic properties of a composite material with microstructure 
consisting of periodic unit cells, based on the properties of these unit cell. 
Properties of one cell were calculated numerically for various sizes of voids 
and cell orientations and then interpolated to obtain continuous relation 
between density, orientation and mechanical properties of the cell. After 
that they formulated compliance minimization problem where design 
domain was discretized into finite elements. Material throughout each 
element had the same hole size and cell orientation, these properties were 
used as design variables in optimization process.  
 
Shortly after that what today is called the SIMP (Solid Isotropic Material 
with Penalization) method was presented by Bendsøe (1989), where 
artificial density function which relates element’s density and stiffness was 
introduced. The artificial density function makes contribution to stiffness 
from elements with intermediate values of density too costly in terms of 
their volume which promotes 0/1 distribution of densities among the 
elements. Artificial density was used as a design variable. The authors of 
Bendsøe (1989) noted that the method works very efficiently and results 
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in 0/1 distribution of densities almost for all element if so called 
penalization parameter is chosen to be high enough (much greater than 
one), but the problem was that there was no physical meaning for the 
intermediate values of density.  
 
Later Bendsøe and Sigmund (1999) showed that physical properties given 
by SIMP method can correspond to properties of a real composite material 
consisting of voids and some amount of material if penalization parameter 
is greater than some specified value which depends on the material’s 
Poisson’s ratio.  
 
Diaz and Bendsøe (1992) extended the homogenization method to handle 
multiple loading cases. They showed that only minor changes need to be 
made to the original method in order to find optimal solution. The authors 
of that paper also noted that structures obtained by single loading case 
method are usually not stable if the material distribution or loading 
pattern within them are perturbed even slightly and that it is possible to 
avoid this problem using multiple loading case method.  
 
A number of new optimization methods such as evolutionary structural 
optimization, soft kill option and level-set method were developed, but 
these methods are not considered here. A review of topology optimization 
methods can be found in Cazacu and Grama (2014). 

1.3 Applications of topology optimization 

Topology optimization was first presented as a tool for optimizing material 
layout for one specific purpose - make elastic structures subjected to static 
loadings as stiff as possible with some constraint on final volume. But in 
fact, the problem of distribution of a material in a design domain in order 
to obtain optimum solution which complies with some constraints can be 
extended far beyond this initial definition.  
 
For example, in Bendsøe et al. (2005) the authors found optimal material 
distribution for an acoustics problem, where the objective was to 
maximize wave energy passing through a specified part of the design 
domain and Bendsøe and Sigmund (2003) showed numerous other 
applications including the design of material microstructure and 
optimizing fluid flow. 
 
These are only a few examples of using topology optimization in different 
areas of physics and engineering. In this thesis, we were primarily 
interested in the optimization of elastic structures subjected to static 
loadings and volumetric constraints. To give some idea of what kind of 
optimization problems and constraints can be formulated for elastic 
structures, two different design problems with various objectives and 
various types of constraints are briefly presented. 
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1.3.1 Compliance minimization with volumetric constraints 

This is the first and most common type of topology optimization problem. 
It was first presented in Bendsøe and Kikuchi (1988) and still remains very 
popular. The goal of this optimization problem can be stated as follows: 
having a design domain subjected to external static loadings (tractions) on 
some part of its boundaries Γ𝑡 and subjected to some constraints on 
displacements on the other part of its boundaries Γ𝑢 such that Γ𝑡 ⋂ Γ𝑢 =
 ∅ (or simply saying Γ𝑡 and Γ𝑢 do not intersect), find such a material 
distribution within the design domain so that the objective function 
(compliance) is minimized and the final volume of the structure equals to 
some specified fraction of the initial volume of the design domain.  
 
An example of a design domain subjected to this type of constraints and 
optimized material distribution within this domain can be seen in Figure 2, 
where (a) is the initial design domain with tractions and displacement 
constraints, and (b) is the optimized material distribution within this initial 
domain. The volume of the optimized structure is 40% of the design 
domain volume. 
 

 

Figure 2     a) Design domain and boundary conditions b) Optimization 
result 

 
For this case the optimization problem in a discrete form is given as 
 
min
𝜌,𝐔

𝐅𝐓𝐔    

s.t    ∑ 𝜌𝑖

𝑁

𝑖=1

𝜈𝑖 ≤ 𝑉 

        (∑ 𝜌𝑖
𝑝𝐾𝑖

𝑁

𝑖=1

) 𝐔 = 𝐅 

        0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 1    𝑖 = 1, … , 𝑁 

 
Since only this type of optimization problem and its slight variations are 
considered in this thesis, a more detailed description of them will be given 
later. 
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1.3.2 Mass minimization with stress constraints 

This type of optimization problem can be described as finding the lightest 
structure such that some stress measure (typically von Mises stress) within 
this structure does not exceed a predefined maximum value (typically yield 
strength of the material).  
 
This optimization problem turns out to be more complicated than the 
previous one. First, it is susceptible to the so-called singularity 
phenomenon, which is a presence of non-zero stresses in elements with 
densities approaching zero. This problem was discovered in truss 
optimization with stress constraints and reasons with analytical example 
of this problem for a three-member truss are given, for example, in Bruggi 
(2008). Turns out that this topology optimization problem is also 
susceptible to this phenomenon under certain conditions (Duysinx and 
Bendsøe (1998)). The problem can be solved in several ways. One way is 
to use ε-relaxed formulation of stress constraints where optimization 
process is successively carried out for smaller and smaller values of ε using 
the previous results as a starting point for each new iteration. Another way 
is to use different conditions mentioned above. Such a method was 
proposed in Bruggi (2008) and has the name of qr approach. 
 
Another difficulty is the amount of constraints that have to be considered. 
Since stress is a local measure, stress in each element must be controlled. 
This requires lots of computation time and might make it difficult to find 
solution in adequate time limits. One approach to solving this problem is 
to introduce a global stress measure, namely a p-norm with p as large as 
possible. This method might not be particularly accurate as structures 
usually have elements with stresses ranging from zero to some large values 
which leads to over estimation of maximum stress within a structure. 
 
To solve the problem of lack of accuracy of global stress measure, cluster 
technique is used. Here elements are sorted according to their stress 
values and divided into clusters to which slightly modified global stress 
measure is applied. Clusters are formed so that values of stress in a given 
cluster are as close to each other as possible. This approach improves 
accuracy of the global stress measure and allows for more precise control 
over stresses in a structure while providing only a small number of 
constraints, which is equal to the number of clusters. 
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2 THEORY 

2.1 Formulation of optimization problem 

The following notation can be used to describe a problem of finding such 
x that minimizes the objective function 𝑓0(𝑥) and satisfies 𝑓𝑖(𝑥) and ℎ𝑖(𝑥) 
which are inequality and equality constraints respectively. It is common to 
refer to x as to a design vector. 

 
min

𝑥
𝑓0(𝑥) 

s.t.   𝑓𝑖(𝑥) ≤ 0     𝑖 = 1, … , 𝑚 
        ℎ𝑖(𝑥) = 0     𝑖 = 1, … , 𝑝 
 
Where m and p are the number of inequality and equality constraints 
respectively. 
This notation will be used to state the compliance minimization problem 
in the following section. 

2.2 Compliance minimization 

Compliance defines how much a body deforms under applied load in the 
direction of the load. This can be extended to a number of forces and 
displacements associated with these forces. 
Following the notation described above, we first need to define the 
objective function. The usual approach to this problem is to describe the 
objective function in terms of the work done by external forces on the 
structure we are trying to optimize. Since the forces are constant and do 
not depend on the design variables, the only parameter that can be 
changed in order to minimize the objective function is the displacement 
field. Thus, minimization of the objective function implies minimization of 
displacement of the points at which the loads are applied. 
 
To describe the work done by body forces and boundary tractions on a 
body at its equilibrium position, the following equation is used 
 

𝑙(𝑢) =  ∫ 𝒕 ∙ 𝒖

Γ𝑇

𝑑Γ𝑇 + ∫ f ∙ 𝒖

Ω

𝑑Ω 

 
Where 𝒕 is the boundary traction, 𝒖 is the displacement field at the 
equilibrium position, f is the body forces, Γ𝑇 is the part of the body surface, 
where tractions are defined and Ω is the body volume. Only the first term 
of this equation will be used as we don’t consider body forces in this thesis. 
 
The next step in describing the minimization problem is to define the 
constraint functions. In the case of compliance minimization, there are two 
main constraints. First, the body should be in equilibrium. To include this 
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constraint, the virtual work method is used. Second, the volume of the 
body should be less or equal to the specified value. 
 
Internal virtual work of an elastic body at equilibrium position under virtual 
displacement can be expressed as 

 

𝑎(𝑢, 𝑣) = ∫ 𝐸𝑖𝑗𝑘𝑙

Ω

𝜖(𝑢)𝑖𝑗𝜖(𝑣)𝑘𝑙 𝑑Ω 

 
Where 𝜈 is the virtual displacement, 𝐸𝑖𝑗𝑘𝑙  is the stiffness tensor and 𝜖𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖). 

 
According to the virtual work principle, a body is in equilibrium position if 
for any virtual displacement, internal virtual work equals to external virtual 
work. This allows to define the compliance minimization problem with 
volumetric constraints for an elastic body as 
 
min

𝑢∈𝑈,𝜌
𝑙(𝑢) 

s.t.    𝑎(𝑢, 𝑣) = 𝑙(𝑣) 
         𝐸𝑖𝑗𝑘𝑙 = 𝜌(𝑥)𝑝𝐸𝑖𝑗𝑘𝑙

0  

        ∫ 𝜌(𝑥) 𝑑Ω

Ω

≤ 𝑉 

        0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌(𝑥) ≤ 1 
 
Where 𝑈 is the set of kinematically admissible displacement fields, which 
means that displacements do not violate the imposed boundary 
conditions, 𝑉 is the final volume and 𝜌𝑚𝑖𝑛 is the minimum value of density, 
typically it is 10−3. 
 
When solving the above problem by means of FEM, discrete formulation is 
used 
 
min
𝜌,𝐔

𝐅𝐓𝐔    

s.t    ∑ 𝜌𝑖

𝑁

𝑖=1

𝜈𝑖 ≤ 𝑉 

       (∑ 𝜌𝑖
𝑝𝐾𝑖

𝑁

𝑖=1

) 𝐔 = 𝐅 

 

       0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 1    𝑖 = 1, … , 𝑁 

 
 
Where 𝐅 is the global loading vector, 𝑉 is the final volume and 𝐔 is the 
global displacement vector and also a solution of 𝐊𝐔 = 𝐅 where K is the 
global stiffness matrix. 
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2.3 Solution method 

Solution of this problem using optimality criteria method is given in 
Bendsøe and Sigmund (2003) where updating scheme for elemental 
density is described as 

 

𝜌𝑡+1 = {

max((1 − 𝜁)𝜌𝑡, 𝜌𝑚𝑖𝑛)      if   𝜌𝑡𝐵𝑡
𝜂

≤ max((1 − 𝜁)𝜌𝑡 , 𝜌𝑚𝑖𝑛)

min((1 + 𝜁)𝜌𝑡, 1)      if   min((1 + 𝜁)𝜌𝑡 , 1) ≤ 𝜌𝑡𝐵𝑡
𝜂

𝜌𝑡𝐵𝑡
𝜂

     otherwise

 

 
Where 𝜌𝑡 is the element density at iteration 𝑡, 𝜍 is a move limit, 𝜂 is a 
tuning parameter and 𝐵𝑡 is given as 
 

𝐵𝑡 =
−

𝜕𝑐
𝜕𝜌𝑒

𝜆
𝜕𝑉
𝜕𝜌𝑒

 

 

Where 𝜆 is a Lagrange multiplier found by bisection method to satisfy the 
volumetric constraints and partial derivative of 𝑐(𝜌) with respect to 
elemental density, which is also called sensitivity, is given as 

 
𝜕𝑐

𝜕𝜌𝑒
= −𝑝𝜌𝑝−1ue

Tk0ue 

 
Where 𝒖𝒆 is the vector of nodal displacements of an element and 𝒌𝟎 is the 
local stiffness matrix. 

2.4 Optimality criteria 

In order to solve the compliance minimization problem, optimality criteria 
method can be used. The method is based on using Lagrange multipliers 
technique and applying the KKT (Karush-Kuhn-Tucker) (Karush (1939)) 
(Kuhn & Tucker (1951)) conditions to find critical points of the problem. 
 
The optimization problem to be solved is given as 
 
min
𝜌,𝐔

𝐅𝐓𝐔    

s.t    ∑ 𝜌𝑖

𝑁

𝑖=1

𝜈𝑖 ≤ 𝑉 

       (∑ 𝜌𝑖
𝑝𝐾𝑖

𝑁

𝑖=1

) 𝐔 = 𝐅 

        0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 1    𝑖 = 1, … , 𝑁 
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First, we note that the displacement filed U which is used as an input for 
the optimization problem, is the solution of KU = F, thus the second 
constraint is satisfied automatically. So, the problem is reduced to  
 
min

𝜌
𝑐(𝜌, 𝐔(𝜌)) =  𝐅𝐓𝐔    

s.t    ∑ 𝜌𝑖

𝑁

𝑖=1

𝜈𝑖 ≤ 𝑉 

        0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 1    𝑖 = 1, … , 𝑁 

 
Now, we apply the method of Lagrange multipliers and construct the 
Lagrangian for this problem.  
 

ℒ(𝜌,  𝜆1, 𝜆−,   𝜆+) =  𝑐(𝜌) + 𝜆1(∑ 𝜌𝑖𝜈𝑖
𝑁
𝑖=1 − 𝑉) + ∑ 𝜆𝑖

−(𝜌𝑚𝑖𝑛 − 𝜌𝑖)𝑁
𝑖=1 +

∑ 𝜆𝑖
+(𝜌𝑖 − 1)𝑁

𝑖=1   

 
Then we apply KKT conditions which are given as 
 

∇𝑐(𝜌0) + ∑ 𝜆𝑖

𝐿

𝑖=1

∇𝑔𝑖(𝜌0) = 0 

𝜆𝑖𝑔𝑖(𝜌0) = 0    𝑖 = 1, … , 𝐿         

𝜆𝑖 ≥ 0    𝑖 = 1, … , 𝐿 

 
Where N is the number of elements, L is the number of constraints, gi is 
the constraint function and 𝜌0 is the critical point. 
 
From the KKT conditions we get the following system of equations 
 
𝜕𝑐(𝜌)

𝜕𝜌𝑖
+ 𝜆1𝜈𝑖 − 𝜆𝑖

− + 𝜆𝑖
+ = 0 

𝜆1 (∑ 𝜌𝑖𝜈𝑖

𝑁

𝑖=1
− 𝑉) = 0 

𝜆𝑖
−(𝜌𝑚𝑖𝑛 − 𝜌𝑖) = 0    𝑖 = 1, … , 𝑁 

𝜆𝑖
+(𝜌𝑖 − 1) = 0          𝑖 = 1, … , 𝑁  

 
For intermediate values of density i.e. 𝜌𝑚𝑖𝑛 < 𝜌𝑖 < 1 second and third 

constraints are not active, thus 𝜆− =  𝜆+ = 0 and we can write 
𝜕𝑐(𝜌)

𝜕𝜌𝑖
+

𝜆1𝜈𝑖 = 0 from which we get the following relation 
 

−
𝜕𝑐(𝜌)

𝜕𝜌𝑖

𝜆1𝜈𝑖
= 1 
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2.5 Material representation 

During the topology optimization process, we are primarily interested in 
the material distribution in the design domain i.e. where we have solid 
material and where we have voids. This way of material representation is 
called discrete. The most common way to solve this kind of material 
distribution problem is to replace the discrete representation of material 
density with a continuous one and introduce some form of penalization 
parameter which forces the resulting solution to obtain 0/1 values of 
density and avoid intermediate ones.  
 
One of the most popular methods used today to interpolate material 
density between 0 and 1 is the SIMP (Solid Isotropic Material with 
Penalization) method which was first presented in Bendsøe (1989). Using 
the SIMP model, stiffness tensor at a point is described as 
 

𝐸𝑖𝑗𝑘𝑙(𝑥) = 𝜌(𝑥)𝑝𝐸𝑖𝑗𝑘𝑙
0  

𝑥 ∈ Ω 

0 ≤ 𝜌(𝑥) ≤ 1 

𝑝 ≫ 1 

 

Where 𝐸𝑖𝑗𝑘𝑙
0  is the base material stiffness tensor, 𝜌 is element’s density, 𝑝 

is penalization parameter which is usually greater or equals to 3 (for 
material with Poison’s ratio equals 1/3) and Ω is the design domain. The 
reason why the penalization parameter should be greater than some value 
is discussed in Bendsøe (1999) where the problem of correspondence of 
physical properties of material with intermediate densities obtained by 
SIMP method to physical properties of real materials is investigated. The 
authors of that paper concluded that material with intermediate densities 
obtained by SIMP method can correspond to physical properties of some 
real composite materials with microscopic voids if the penalization 
parameter satisfies the following inequality 
 

𝑝 ≥ max {
2

1 − 𝜈0
,

4

1 + 𝜈0
} 

 
Where 𝜈0 is the Poisson’s ratio of the base material. 
 
It is shown in Figure 3 how this formulation penalizes intermediate values 
of density and forces the solution to obtain 0/1 form. 
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Figure 3     Effect of penalization parameter on density 

 

2.6 Finite element method 

FEM was chosen for the calculation of the displacement field. There are 
many different kinds of finite elements available, but among all of them 
the four node isoparametric quadrilateral elements were chosen as they 
offer a great combination of accuracy and computation speed, which 
compensates for the problems that arise from using this kind of elements. 
It is also sometimes important to depict the shape of a structure as 
accurately as possible. Even though the sides of the 4-node element are 
straight, many boundaries, including splines and circles, can be 
represented with sufficient accuracy if the number of the elements is large 
enough. 
 
Figure 4 shows how such elements as circles and splines are approximated 
using finite elements and how mesh size affects approximation quality. 
 
In order to discretize the optimization domain, Gmsh is used. Gmsh is an 
open-source software which allows, among other things, to generate a 
mesh of a geometry with high level of control over the mesh type and 
quality. After the mesh has been generated, a text file containing all the 
required information about the mesh is saved. The file is then read by our 
program to reconstruct the mesh and use it for finite element analysis. 
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Figure 4     Different mesh quality. Top: fine mesh, bottom: coarse 
mesh  

 

2.7 Mesh independency 

The optimization problem as stated above in its continuous form does not 
have a solution. It is caused by the fact that the continuous form has 
infinitely many design options which leads to creation of microstructures 
with an optimized use of material. (Bendsøe and Sigmund (2003)) The 
problem is that these microstructures are not isotropic and cannot be 
represented by the initial problem statement for isotropic materials. In 
discretized space, where the number of design options is finite, this 
problem manifests itself as mesh dependency.  
 
Due to mesh dependency one gets different optimal solutions to different 
mesh qualities with more and more fine-scale structure for increasing 
mesh quality instead of one unique solution but just more refined one.  
 
One of the simplest and most efficient ways to avoid mesh dependency is 
filtering of sensitivities. This method was proposed by Sigmund (1994). It 
is based on changing the sensitivity of a given element based on the 
weighted average of the sensitivities of its neighbors within a specified 
radius and can be stated as: 
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𝜕𝑐

𝜕𝜌𝑗

̂
=

1

𝜌𝑗 ∑ �̂�𝑖
𝑁
𝑖=1

∑ �̂�𝑖𝜌𝑖

𝜕𝑐

𝜕𝜌𝑖

𝑁

𝑖=1

 

 

Where N is the number of elements and �̂�𝑖 is given as 
 

𝐻�̂� = 𝑟𝑚𝑖𝑛 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗), {𝑖 ∈ 𝑁 | 𝑑𝑖𝑠𝑡(𝑖, 𝑗)  ≤  𝑟𝑚𝑖𝑛}, 𝑗 = 1, … , 𝑁 

 

The �̂�𝑖 operator turns to zero if 𝑑𝑖𝑠𝑡(𝑖, 𝑗) >  𝑟𝑚𝑖𝑛 and 𝑑𝑖𝑠𝑡(𝑖, 𝑗) defines 
distance between the centers of elements i and j. 

2.8 Checkerboard pattern 

An example of the checkerboard pattern can be seen in Figure 5. This can 
be viewed as an alternating sequence of solid and void elements. 
According to Sigmund and Peterson (1998) it was believed that this kind of 
material distribution represents optimized microstructure, but in a paper 
published by Diaz and Sigmund (1995) the reasons why checkerboard 
pattern occurs during the optimization process were investigated. There 
the authors stated that this arrangement of material is undesirable as it is 
caused by numerical instability and does not correspond to real properties 
of such kind of a structure. The stiffness predicted by the finite element 
method is much larger than the real stiffness.  
 
Investigation of four- and eight- node elements used with the SIMP 
interpolation scheme showed that for four node element values of 
penalization parameter larger than 1 result in a checkerboard pattern, the 
same kind of restriction is also valid for eight node elements, but maximum 
allowed penalization parameter in this case is larger and depends on 
Poisson’s ratio of the material. 
 
As stated above, one of the disadvantages of using four node elements is 
that they are susceptible to the checkerboard pattern. There is a number 
of ways to fix this problem, many of which are described in Sigmund 
(1998).  
 
Since we are already using the filter of sensitivities described above to 
ensure mesh independency, it was decided to employ this method against 
the checkerboard pattern too. In order to use the filter as a measure 
against checkerboards only and not set any mesh independency, it should 
be set in such a way that each element’s sensitivity depends on the 
sensitivities of 8 of its neighbors, but even with larger values of the filter 
radius it resolves the problem.  
 
This filter has been used in numerous works and has recommended itself 
as a simple and reliable tool to avoid the checkerboard pattern. 
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Figure 5     Checkerboard pattern 

 

2.9 Member size control 

Due to manufacturing limitations, there can be specific constraints and 
requirements to structures. One of these requirements is the minimum 
member size. Member size can be controlled using sensitivity filtering. By 
setting rmin to larger values, minimum member size correspondingly 
becomes larger. The results of the application of the member size control 
are presented in Figure 6. As can be seen, thin members in (a) are removed 
and replaced by thicker ones (b). All structures in Figure 6 have the same 
volume. 
 
It is known that as the filter radius approaches infinity, it tends to distribute 
densities evenly throughout the domain. From experiments with different 
filter radii it was noted, that after the filter radius becomes large enough, 
resulting structures have many areas with intermediate densities (Figure 6 
(c)).  
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Figure 6     Effect of increasing filter radius. a) rmin = 0.96, b) rmin = 
3.84, c) rmin = 7.68 

 
Another example is presented in Figure 7. The structure in (a) was obtained 
with filter radius value such that it prevents checkerboard pattern only. 
This structure has many fine members which are difficult to manufacture 
and, since buckling of the structure is not considered, these fine members 
might be unstable. To fix this problem we simply increase the filter radius. 
 
Structures (a), (b), (c) and (d) were obtained with filter radius 4, 6, 8, and 
12 respectively. As can be seen, members become thicker as filter radius 
increases, this leads to more stable structure which is also easier to 
manufacture. The main drawback of having thicker members is that the 
structure becomes less optimal. It can be seen if compliances of these four 
structures are compared. Taking compliance of (a) as 1, compliances of (b), 
(c) and (d) are 1.056, 1.111 and 1.233 respectively. 
 
More advanced techniques for member size control are available. These 
methods allow to control not only the minimum member size, but also 
things like minimum hole size, structural patterns, symmetry and even 
manufacturing process specific constraints. Usually these methods require 
some change of the original optimization problem statement and cannot 
be implemented as an add-on to the existing optimization code. 
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Figure 7     rmin increasing from (a) to (d). 

 

2.10 Multiple loading cases 

The optimization model for single loading case can be extended further to 
account for multiple loading cases. The importance of this can be seen in 
Figure 8, where a structure (a) is subjected to two concentrated forces 
which can act independently from each other. The Figure 8 (c) shows 
optimized material distribution for a single loading case, i.e. when all loads 
are applied simultaneously. As can be seen if the horizontal load is 
removed, the structure is subjected to high stresses at the root. This shows 
how ignoring different loading cases can lead to structures which are very 
sensitive to the loading pattern and can become highly non-optimal if the 
loading pattern for which optimization was performed is changed.  
 
As proposed in Diaz and Bendsøe (1992) to avoid this problem, the 
previously described algorithm can be modified to account for multiple 
loading cases. Only a few minor changes need to be made. First, a separate 
FEM model is used for each loading case. The objective function becomes 
a weighted sum of objective functions of each of these models, as well as 
sensitivity. The models share the same material density field which is 
changed during the optimization process. 
 
Updated objective function 
 

𝑐(𝜌) = ∑ 𝑤𝑖𝐹𝑖
𝑇𝑈𝑖

𝑁

𝑖=1
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Updated sensitivity 
 

(
𝜕𝑐̅̅ ̅

𝜕𝜌𝑒
)

𝑖

= ∑ 𝑤𝑗 (
𝜕𝑐

𝜕𝜌𝑒
)

𝑖𝑗

𝑁

𝑗=1

        𝑖 = 1, … , 𝐸 

 
Where N is the number of loading cases and E is the number of elements. 
 
The result of this improvement can be seen in Figure 8 (b). Now, comparing 
it with the result obtained using the single loading case, it can be seen that 
even if one of the loads is removed, the structure still works good and does 
not have points of high local stress (at the support). The drawback of the 
multiple loading case method is that the structure it produces is not as 
good as the structure produced by the single loading case method for the 
situation when all loads are applied at once. A more detailed comparison 
of the two methods is made in the next chapter. 
 

 

Figure 8     Comparison of single and multiple loading cases. 
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3 EXAMPLES 

3.1 Program validation 

In order to verify that the algorithm was implemented correctly, it was 
chosen to use standard cases which are available in literature.  The results 
can be seen in Figure 9. Available published results, which are depicted in 
black, were found in Biyikli and To (2014) and were compared with the 
results obtained with the help of our program. Even though different 
optimization algorithms were used, the results are mostly similar. Based 
on this it can be concluded that the algorithm described in the previous 
paragraphs was implemented correctly. 
 

 

Figure 9     Comparison with results from Biyikli and To (2014) 

3.2 Comparison of single and multiple loading cases 

This chapter describes the difference between structures obtained using 
single and multiple loading case optimization method. One of the most 
important parameters of a structure under loading are deflections and 
stresses produced within the structure. Despite the fact that the structures 
presented here were optimized with respect to their compliance only, 
stresses are still considered as important comparison criterion. 
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3.2.1 Example 1 

As the first example, we consider a simple block of solid material with 
height and width of 100 millimeters. The block is rigidly fixed on the left 
side and loaded by three concentrated forces of equal magnitude. The 
optimization results are shown in Figure 10. 
 

 

Figure 10 Optimization result for single loading case.                                       
a) optimization result and loads, b) stresses from the bottom load, 
c) stressed from the upper load, d) stresses from the right load, d) 
stresses from all loads applied simultaneously 

 

 

 

Figure 11     Optimization result of multiple loading case 

 
The quantities used for comparison are summarized in Table 1. 
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Table 1.  

 Single loading case Multiple loading case 

Loading Compliance 
[N-mm] 

 max(𝜎𝑣𝑀) 
[MPa] 

Compliance 
[N-mm] 

 max(𝜎𝑣𝑀) 
[MPa] 

All 0.332 7.5 0.468 9.3 

Upper 1.367 45.0 0.296 9.7 

Bottom 1.367 45.0 0.296 9.7 

Right 0.251 8.5 0.232 8.2 

 
Where 𝝈𝒗𝑴 is the von Mises stress. 
 
As can be seen in Table 1, in the case when all loads are applied 
simultaneously the first structure, which was optimized using the single 
loading case method, shows a better result than the second structure, 
which was optimized using the multiple loading case method. This is 
expected, since in the first case we solve one concrete problem and find 
the best solution for this problem, while in the second case we solve 3 
different problems and find a structure which is optimal for the case when 
each of these 3 loads can be applied independently from each other, but 
not for the case when all the loads are applied at once. 
 
From the optimization results it can be seen that the single loading case 
method is preferable when we can be sure that the structure which we 
want to optimize will be subjected only to one loading pattern for which 
the optimization process is performed. Otherwise, if the loading pattern is 
changed, high deflections and stresses can be expected. On the other 
hand, if it is known that the loading pattern is unsteady and can change, it 
is much more reasonable to use multiple loading case method. Even 
though this method produces structures which are not as good as those 
obtained using single loading case method, such structures are much less 
sensitive to changes in the loading pattern. 

3.2.2 Example 2 

The structure in Figure 12 was optimized using three different methods. 
The structure is subjected to two forces which can act independently from 
each other. The first method was the single loading case method, where 
all the loads are assumed to act simultaneously. The second method was 
the multiple loading case method, where the two loads are assumed to act 
separately. The third method was the multiple loading case method, but 
besides the two acting loads, another, third load was added. The third load 
was simply a combination of the two loads acting on the structure. Thus, 
we had three loading cases. 
 
The design domain was a block 200 by 100 mm with two holes. The block 
was rigidly fixed to the left hole and loaded at the right hole. There was a 
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ring of material around the hole on the right, elements within this ring 
were not changed during optimization. 
 

 

Figure 12   a) Design domain and boundary conditions b) von Mises 
stress from vertical load c) von Mises stress from horizontal load d) 
von Mises stress from both loads applied simultaneously 

 
Now, we present results obtained by different optimization methods and 
discuss differences between them. 

 

Figure 13   Single loading case optimization result 
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Figure 14   Multiple loading case (two loads) optimization result 

 

 

Figure 15   Multiple loading case (three loads) optimization result 

 
 
 
 
 

The quantities used for comparison are summarized in Table 2. 
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Table 2.  

 Single loading case Multiple loading case 
(two loads) 

Multiple loading case 
(three loads) 

Loading Compliance 
[N-mm] 

max(𝜎𝑣𝑀) 
[MPa] 

Compliance 
[N-mm] 

max(𝜎𝑣𝑀) 
[MPa] 

Compliance 
[N-mm] 

max(𝜎𝑣𝑀) 
[MPa] 

Vertical 4.700 29.4 3.285 15.5 3.394 18.3 

Horizontal 1.511 23.8 0.604 8.6 0.657 11.2 

All 3.279 16.7 3.882 21.2 3.549 18.2 

 
Comparison of the single loading case and the standard multiple loading 
case methods supports the conclusion made in the previous example. 
However, introduction of the third loading in the standard multiple loading 
case method noticeably influences the optimization result. The resulting 
structure, if compared against the standard multiple loading case method, 
has better performance in the case when all the loads act simultaneously, 
but worse performance when loads act separately.  
 
From the observations made in this and the previous examples the 
following can be concluded 
 

• Use single loading case method only if the loading pattern is known 
and is not expected to change. This method gives the best results 
for structures subjected to one loading pattern, but if the loading 
pattern is changed, performance of such structures Is usually 
inacceptable.  Example: Figure 13. 

• Use standard multiple loading case method if a structure is 
subjected to a number of loads and these loads are expected to act 
randomly and independently from each other. This method gives 
structures with much better performance for the cases when loads 
act separately from each other, but if the loads are applied 
simultaneously, such structures have worse performance than 
structures obtained using single loading case method. Example: 
Figure 14. 

• There is a third possibility that a structure is subjected to a number 
of loads which are mostly expected to act simultaneously, but the 
loading pattern still can occasionally change. To protect the 
structure against such sudden changes and still not to lose too 
much performance for the main loading case, multiple loading case 
method with additional loading can be used. The additional loading 
is essentially a combination of all loads applied to the structure. 
Structures obtained using this method still have good performance 
when loads act separately from each other or the loading pattern 
is changed, and are considerably better than the structures 
obtained using standard multiple loading case method for the case 
when all loads applied simultaneously. Example: Figure 15. 
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3.2.3 Example 3 

Sometimes structures are subjected to such a combination of loads, that it 
is impossible to even approximately describe this combination using the 
single loading case method, for this kind of situations the multiple loading 
case method is the only option that can be used for optimization. The 
single loading case method can’t be used here since some forces from 
different loading pairs act on the same part of the body and are parallel to 
each other. Simultaneous application of such interfering loading pairs 
might lead to the loading pattern which doesn’t represent the real loading 
situation. 
 
In this chapter, we present a structure subjected to four different 
combinations of loads.  
 
Initial geometry of the structure and all the combinations of the loads can 
be seen in Figure 16 and Figure 17 respectively. The structure is rigidly fixed 
to the two upper holes and is loaded by four pairs of loads acting on the 
two lower holes. 
 
As the result of the optimization process, we get a structure which is 
essentially a frame which consists of triangular elements (Figure 17). 
 

 

Figure 16   Dimensions of the design domain in Gmsh 
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Figure 17   Optimized structure and loading cases 

 

Using the three examples presented above the author attempted to 
demonstrate some of the strengths and weaknesses of different 
optimization methods and to make it more clear why and when one 
method can be more preferable than another.  

4 PROGRAM DESCRIPTION 

In this chapter, we discuss the structure of the program and the algorithm 
used. We also present an illustrative example to demonstrate the setting 
of an optimization case to show some capabilities of the program. 
 
Workflow 

1. Create the geometry and mesh in Gmsh 
2. Save the mesh in a text file 

3. Set the number of loading cases 

4. Set the boundary conditions, external forces and passive regions 

5. Set the filter radius 

6. Set the final volume fraction 

7. Select the number of iterations 

8. Start the optimization 

9. Save the result 
 

The process begins in Gmsh where we create the required geometry and 
make its mesh which must consist of four node quadrilateral elements 
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only. The mesh is then saved in a text file. Then we need to reconstruct the 
mesh and use it for FEM analysis. To do that, the saved text file is read by 
our program and all required information including nodal coordinates, 
element’s nodes and boundaries is saved.  
 
The next step is to set the number of loading cases, this defines the number 
of models used in the optimization process. If the number of loading cases 
is greater than one, LU decomposition of the global stiffness matrix is used. 
It allows to reduce the increase in calculation time due to introduction of 
new loading cases.  
 
To define boundary conditions, we use entity id’s which are provided by 
Gmsh and read from the saved text file. Each boundary has its unique 
entity id. Such boundary conditions as pin support, roller support and 
distributed loading are available.  
 
Then, if required, we set the radius of the filter of sensitivities. Finally, 
volume fraction for the final structure is set and the number of iterations 
is defined. After that the optimization process starts. After the 
optimization is finished, images with the optimized structure and stresses 
in this structure are shown. 
 
The sequence of actions during one iteration can be seen in the Figure 18. 
 

 

Figure 18   One iteration 
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4.1 Optimization example 

Now we consider one optimization case and go through the whole process 
from meshing to the final result. The structure in Figure 19 is fixed at the 
top edge and has 3 pairs of loads, areas with blue and green mesh won’t 
be changed during the optimization process, elements in these areas are 
called passive elements. 
 
First, we create geometry and mesh in Gmsh Figure 19. 
 

 

Figure 19   Mesh and loadings 

 

After that the mesh is saved in a text file from which our program can read 
it using command “fm.mesh("mesh.msh")” where fm is the name of our 
FEM module. As can be seen in Figure 19, the structure has three different 
loading pairs, so this case will be treated as multiple loading case. To set 
the number of loading cases, we use the following command “models = 
[fm.FEM(m) for i in range(3)]” one model is used for each loading case. To 
set displacement boundary conditions, “setbc(bc_id, bc_type)” command 
is used, where bc_id is the entity id of the boundary and bc_type is either 
1 (fixed), 2(fixed in x free in y) or 3(fixed in y free in x). The parts of the 
structure near the load application points are not allowed to change during 
the optimization process. To make these areas passive, we use the 
following command “setpasselems(plane_id)” where plane_id is the entity 
id of the plane which is will not be unaffected during optimization. To set 
loads “models[N].setload(bc_id, [load_x, load_y])” is used where N is the 
number of the model. The final steps would be to set radius of the 
sensitivity filter using “setfilter(r_min)” choose the final volume and 
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number of iterations. All code required to set up this case is presented 
below. 
m = fm.mesh("untitled.msh")  # read mesh 
models = [fm.FEM(m) for i in range(3)]  # set number of loading cases 
map(lambda x: x.setbc(12, 1), models)  # set boundary conditions to all 
models 
models[0].setpasselems(23)  # set passive elements 
models[0].setpasselems(25) 
 
models[0].setload(17, [-10., 0])  # set loads 
models[0].setload(6, [-10., 0]) 
  
models[1].setload(18, [0., 50]) 
models[1].setload(5, [0., 50]) 
 
models[2].setload(18, [0., -50]) 
models[2].setload(7, [0., 50]) 
 
models[0].setfilter(2*1.6)  # set filter radius 
 
The final step of the process is to get the results. To do that, we print an 
image with optimized material distribution. As can be seen in Figure 20 (a), 
the initial selection of the filter radius results into creation of fine structural 
members which might be undesirable. To get rid of these members, we 
increase the filter radius and get slightly different solution (b). The 
drawback of removing fine members is decrease in optimality of the 
solution. In this case structure (a) is slightly stiffer than structure (b).  
 
Due to the fact that the problem statement does not include buckling 
constraints, it requires some criticism in accessing the resulting structures 
as they might be unstable. In this case the optimized structure has a few 
long and slender members which might buckle during application of one 
or more loading pairs. 
 

 

Figure 20   Optimization result 
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5 CONCLUSION 

The objective of this thesis was to implement an algorithm for topology 
optimization of 2 dimensional elastic structures subjected to multiple 
cases of loading. The program was written in Python as this computer 
language offers great flexibility, simplicity and speed of development.  
 
The program consists of two modules, the first module is responsible for 
the finite element analysis and plotting of the results. The module provides 
means for computation and visualization of displacements and stresses as 
well as for visualization of optimization results. The second module is 
responsible for the optimization procedure. There such parameters as the 
final volume, the filter radius, the number of iterations, convergence 
criteria are given. The second module also provides all required 
information such as the boundary conditions, the external forces and the 
mesh file to the first module.  
 
Both modules use a number of external packages, numpy for array 
operations and array handling, scipy for operations on sparse matrices and 
matplotlib for plotting. 
 
After a comparison of several optimization cases where structures were 
subjected to multiple loads i.e. multiple loading cases, differences 
between structures obtained by the single loading case, the multiple 
loading case and the multiple loading case with additional loading methods 
were discussed and it was concluded when it is advantageous to use one 
method over another.  
 
The optimization algorithm implemented here is quite old and has been 
implemented almost in any CAD/analysis program. This leaves a lot of 
room for improvements of the program developed in this thesis. The 
optimality criteria method can be replaced by the method of moving 
asymptotes (MMA) (Svanberg (1987)) and other types of optimization 
problems can be implemented. Of particular interest is mass minimization 
with clustered stress constraints (Holmberg et al. (2013)) which provide 
better accuracy in accessing the maximum stress than the global stress 
measure and a lower computation time than local stress constraints. 
Further development of the program will be moving in the direction of 
implementing of these techniques.   
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