
Bachelor‟s thesis

Degree programme in Information Technology

Embedded systems

2017

Oskari Teeri

IMPLEMENTING A FAN
CONTROLLER

BACHELOR‟S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme in Information Technology | Embedded systems

2017 | 32

Oskari Teeri

IMPLEMENTING A FAN CONTROLLER

The purpose of thesis was to study and implement a fan controller which is controlled from the
USB port. Data structures and possible implementation methods were studied, particularly for
embedded systems.

The platform used in the thesis was Microchips AVR microcontroller, and its open source
libraries. ATMega32u4 was chosen for the microcontroller. The software was created during the
thesis. The software controls of the fan is based on user commands.

The LUFA was chosen for the USB control. The microcontroller receives user commands via a
USB-CDC protocol, which was available through the LUFA library.

The thesis studies data structures in theory, and their suitability in embedded systems.
Additionally, modern C++ is compared to the currently implemented C program. Finally, the
thesis discusses the suitability of the C++ for embedded platforms in general.

KEYWORDS:

AVR, C, C++, linked list

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Sulautetut ohjelmistot

2017 | 32

Oskari Teeri

TUULETINOHJAIMEN TOTEUTUS

Tämän opinnäytetyön tarkoituksena oli toteuttaa yleinen – sulautettuihin järjestelmiin soveltuva
projekti, käyttäen helposti saatavilla olevia avoimia ohjelmakirjastoja ja osia. Työ ei ollut
toimeksianto, vaan se toteutettiin itsenäisenä projektina. Opinnäytetyössä toteutettiin
tuuletinohjain, jota ohjattiin USB-väylän kautta annettavilla komennoilla. Tietorakenteita ja
mahdollisia toteustapoja tutkittiin erityisesti sulautettuihin järjestelmiin soveltuvalla tavalla.

Alustana käytettiin Microchipin AVR-mikrokontrolleria, ja sille tarkoitettuja avoimen lähdekoodin
kirjastoja. ATMega32u4 valittiin mikrokontrolleriksi, sen sisältämien ominaisuuksien vuoksi, ja
sille toteutettiin opinnäytetyön aikana ohjelma, jonka tarkoitus oli ohjata useita tuulettimia
käyttäjän komentojen perusteella.

Ohjelman USB-ohjaukseen käytetään LUFA-kirjastoa, joka on AVR-alustalle tarkoitettu avoin
USB-ohjelmakirjasto. Mikrokontrolleri vastaanottaa käyttäjän komennot USB-CDC-protokollan
kautta, jonka toteutus oli tehty LUFAssa. Lisäksi opinnäytetyössä tehtiin USB-ohjelmakirjastojen
välistä vertailua.

Opinnäytetyössä tutkittiin teoriatasolla tietorakenteita, ja niiden yleistä soveltuvuutta
sulautettuihin järjestelmiin. Erityistä huomiota kiinnitettiin linkitettyjen listojen toteutukseen. Työ
selvitti sulautetuissa järjestelmissä käytettäviä C- ja C++-standardeja, sekä niiden eroavaisuutta
tavallisen ohjelmistokehityksen näkökulmasta. Lisäksi vertailtiin modernia C++:aa ohjelman
nykyiseen, C-kieliseen toteutukseen. Lopulta tutkittiin C++:an yleistä soveltuvuutta sulautettuihin
järjestelmiin. Tähän kuului esimerkiksi C++:an turvallisuutta heikentävien ominaisuuksien
tutkiminen reaaliaikasysteemeissä.

C++-osuutta ei toteutettu työn aikana, vaan se perustui teoreettiseen pohdiskeluun.
Käytännössä työn aikana toteutettiin ainoastaan toimiva C-kielinen ohjelma. Työn tuloksia voisi
soveltaa samankaltaista C++-projektia suunniteltaessa.

ASIASANAT:

AVR, C, C++, linkitetty lista

CONTENT

LIST OF ABBREVIATIONS (OR) SYMBOLS 7

1 INTRODUCTION 6

2 REQUIREMENTS 7

1.1 Hardware 7

1.2 Software 7

1.2.1 Control commands 8

2 IMPLEMENTATION 10

2.1 Program flow 10

2.2 Parser 11

2.3 Queue 12

2.4 State machine 13

2.5 Generic 14

2.6 Improvements 14

2.6.1 More generic 14

2.6.2 Memory allocations 15

3 AVR 16

3.1 Bootloader 16

3.2 USB 2.0 17

3.2.1 ASF 17

3.2.2 LUFA 17

4 DATA STRUCTURES 19

4.1 Ring buffer 19

4.1.1 Drawbacks 20

4.2 Queue 21

5 DEVELOPMENT 22

5.1 Project files 22

5.2 SCM 22

5.3 Testing 23

6 C++ 24

6.1 Standard 24

6.2 Differences to C 24

6.3 Improving existing code 25

6.3.1 Binary literals 25

6.3.2 Smart pointers 25

6.3.3 Ring buffer 27

6.4 Time critical software 27

6.4.1 Virtual functions 29

6.4.2 Function pointers 29

6.4.3 RTTI 29

6.4.4 Exceptions 30

7 CONCLUSION 31

REFERENCES 32

ALGORITHMS

Algorithm 1. Implementation with modulo arithmetics. 20
Algorithm 2. Implementation with modulo arithmetics and bitwise AND. 21

APPENDICES

Appendix 1. Part list.

FIGURES

Figure 1. UML sequence diagram of the program functionality. 11
Figure 2. The data structure of the queue is a doubly linked list. 12
Figure 3. Singly linked list. 19
Figure 4. Ring buffer. 19
Figure 5. Weak pointer breaks the circular reference. 26
Figure 6. Memory layout for a std::array<int> arr{1,2,3}. 28
Figure 7. A container std::array<int,3> arr{1,2,3}. 28

TABLES

Table 1. State transitions of "set: fan1: LOW, fan2: MED". 13

LIST OF ABBREVIATIONS (OR) SYMBOLS

ASF Atmel Software Framework

BoM Bill of Materials

CR Carriage Return

DRC Design Rule Check

EDA Electronic Design Automation

IDE Integrated Development Environment

ISP In-System Programming

IEEE Institute of Electrical and Electronics Engineers

LF Line Feed

LUFA Lightweight USB Framework for AVR

MOSFET Metal Oxide Semiconductor Field Effect Transistor

OOP Object Oriented Programming

POSIX Portable Operating System Interface

PWM Pulse Width Modulation

RTOS Real Time Operating System

RTTI Run-Time Type Information

SCM Source Control Management

STL Standard Template Library

USB Universal Serial Bus

USB-CDC Universal Serial Bus Communications Device Class

UML Unified Modeling Language

UNIX Uniplexed Information Computing System

QoS Quality of Service

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

1 INTRODUCTION

The thesis tries to solve the problem of fan speed adjustment in different systems.

There is no universal standard of controlling Pulse Width Modulation (PWM) fans in

desktop computers. It is up to the operating system to provide the fan control

capabilities. Despite the fact that the thesis focused on controlling fans, the result could

have been applied elsewhere where PWM controlling is required.

The fan controller could have been inserted straight in to the motherboards USB pins,

or it could be controlled from external USB ports. The idea of the fan controller was that

it could have been assembled inside the desktop computer. The power of the fan

control is drawn from the USB port.

There are commercial fan controllers available, where the control is exerted by tuning

the potentiometers, but not through USB. Some operating systems have capabilities for

controlling fan speeds, but they are not guaranteed.

The user controls the fan speeds by sending commands via a terminal that is being

transmitted through USB-CDC protocol. The USB-CDC is meant for emulating old

terminals as a data transfer method.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

2 REQUIREMENTS

This chapter defines the project requirements, both software and hardware.

Requirements for the user interface and availability, such as command line and support

in various systems, are covered in this chapter.

2.1 Hardware

The need for embedded application comes from the surrounding physical world and

usually the software requirements are derived from the hardware requirements and not

vice versa.

There could be other defining factors for e.g.: price, schedule, standards, ethics and so

on. These factors are not essential in the sense of making a working prototype, but are

helpful in other areas.

The design principle for this project was to keep the hardware layout as simple as

possible, using the smallest amount of available hardware components. Using fewer

components in a design has its advantages; there are fewer spare parts to be worried

about in the future.

If there is a possibility to do hardware feature in software, it is worth implementing it in

software. This drastically reduces the amount of components being used. It also makes

the design cheaper, at least in theory.

The fans should be PWM controllable; not all fans are. PWM controlled fans can be

recognized from their pin count. Fans with three pins are usually PWM controllable,

and fans with four pins have usually feedback for automatically updating their speed.

2.2 Software

The fan controller should be controlled from the command line. The commands should

be close as possible to a natural language. The communication protocol should be

available for the most popular operating systems.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

The USB protocol was chosen for controlling the fans, due to its universal support in

almost any system. The goal was to be able to control the fans, despite of the

underlying system. Given the criteria, there were no better alternatives for

communication between the host and the device, other than USB.

The fan controller should be interfaced through a USB-CDC protocol. The CDC stands

for communications device class. Additional drivers might be needed, depending on the

host operating system. The USB-CDC drivers should be available on the most popular

operating systems.

2.2.1 Control commands

As the fans are controlled by different PWM channels, there needs to be an update

method for each of the PWM channel value. If the user wants to set a fan to a certain

speed, the correct register value needs to be updated – by scaling it – based on the

given per cent value. There needs to be an abstraction between the fan speed

percentage and the actual register value, since the user cannot remember all the

register values for different fan speeds.

There should be a way to set arbitrary number of fan speeds within a single command.

If every fan update required a different command, updating all the fans would be

inefficient and slow. Implementation needs to have a mechanism for updating all the

fans in one command.

The command structure should be command target value, where the target

argument flags fans urging for an update. The target argument should accept all

target flag for updating all the values at once.

The value argument is represented as a fan speed percentage from 0–100. The value

argument should accept low, med, high, default and auto keywords. The auto

keyword would be an optional argument, meant for future implementations, if the fans

ever set their own speed based on temperature.

The target argument should accept all keyword for updating all of the values at

once.

Valid example commands, by the given definition:

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

 set fan0: 30 – set fan 0 to 30 % PWM duty cycle

 set all: 50 – set all fans to 50 % PWM duty cycle

 set all: default – set all fans to default % PWM duty cycle

There needs to be a method for setting multiple targets and their values at once. The

command line should accept updating different targets separated by commas.

Valid example command, with commas added:

 set fan0: 30, fan1: 50 – set fan 0 to 30 % and fan 1 to 50 % PWM duty

cycle

Adding comma as a control character adds great flexibility for giving many arguments

at once. The command line syntax is now close to the given requirement: natural

language and self-explanatory.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

3 IMPLEMENTATION

This chapter describes how the program was implemented, and how the development

environment was configured. The implementation is reflected, and improvements

considered. The generic nature of the implementation is also discussed.

3.1 Program flow

The program has two C array buffers for catching the user input. The first buffer is

initialized for the ring buffer, which is implemented in LUFA. The second buffer is

initialized for the parser, which was implemented during the thesis.

The main program loop waits for CR and LF characters to appear in the data stream. If

the line end characters are detected, the second buffer is given to the parser. The

parser then tokenizes the strings in to chunks and then pushes them in to a queue in

the right execution order.

If the tokenized string is an available command and it is found from the function table,

then the function is going to be executed. If the tokenized string is not found from the

function table, the user will be notified by sending the malformed input message. The

notification is sent by printing the help command at the end user.

The program flow is described in the Figure 1 as a UML sequence diagram. It covers

key functionality of the modules from the perspective of the main loop after the line end

characters are detected.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

Figure 1. UML sequence diagram of the program functionality.

The queue elements are also in the sequence diagram for helping to understand

memory allocation semantics. The main loop is responsible of freeing the allocated

memory elements from the queue. After the user input is handled, the allocated queue

nodes are being freed with the queue_destroy function.

3.2 Parser

The parser uses srtok_r function for tokenization of the user input. The main string is

split by searching a special set of characters known as control characters, then doing a

new recursive search with a new set of control characters by nesting the earlier search.

This is repeated until all the "tokens" are collected. In this context, token means a

control character; space, comma, colon or command. Control characters are used for

separating commands.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

The parsing does not work with strtok, since it uses internal global variables, which

are by definition non-recursive and non-reentrant. This was the reason strtok was

replaced with strtok_r. Strtok_r is a IEEE Std 1003.1-1988 ("POSIX.1") extension

for the standard C and is implemented in the AVR's GNU C library called avr-libc. [1]

POSIX extensions are common, but the design goal should always be in standard C.

This is important, especially when the application requires portable and reliable code,

which is a common requirement for embedded software design. Shipped production

code should always be written in standard C. The parser was first implemented using

strtok, but then replaced with strtok_r, due to lack of capability in doing recursive

calls.

The parser could be implemented in other ways. One possible implementation could

have been input formatting with scanf, which is a "reverse operation" of the function

printf. This option was not studied during the thesis.

3.3 Queue

The queue is implemented as a doubly linked list. Nodes are added or removed as the

queue size changes (Figure 2). The arrows represent pointers, and the blocks

represent the queue elements.

Figure 2. The data structure of the queue is a doubly linked list.

Nodes of the queue and element data are allocated from the heap by a memory

allocation function called malloc.

The parsed commands and control characters are pushed in to the queue, despite the

fact that they might be invalid. Each queue element is searched from the function table,

and if they are found; the corresponding function is going to be executed. This is known

as dispatch table.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

If the user has given invalid data, the function is not found from the dispatch table, and

the program execution jumps to an error routine, which could be informing the user

about the malformed user input.

3.4 State machine

The state machine finds the correct function by iterating over the strings. The right

function is executed by its name. If the name is not found, then the command string is

not executed. A function can only be executed in a state where it is defined, since the

state machine limits all functions by their defined state. The function must be defined in

a state where it is being executed.

Valid commands will be executed if they are in a valid sequence and the state allows it.

In some case, even control characters might be executed. In the thesis, control

characters were only used for state changes. It is possible to bind any function to any

command or control character.

The state machine implementation has three valid states; CMD, TARGET and VALUE. The

valid commands can only be given in an order that fulfills the previously mentioned

state transition order. Valid commands could go through one, two or three states, but

they need to transition them in the right order. For example, the command help will go

through only one state; CMD, where it prints the help text for the user and finishes there.

Table 1 explains what state changes have been gone through by the valid example

command “set fan1: LOW, fan2: MED”.

Table 1. State transitions of "set: fan1: LOW, fan2: MED".

Input set : , :

State CMD TARGET VALUE TARGET VALUE CMD

As the Table 1 shows, every command starts and returns to a state called CMD. This is

the initial state, where state machine starts parsing the user input. The input arguments

fan1, LOW, fan2, and MED does not affect the state transitions, which is why they are

not shown in the Table 1. Only invalid input argument could affect the state transitions.

In the current implementation, invalid input simply returns to an initial CMD state.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

The state machine includes a fan_controller header file, which controls the fans.

This means the fan_controller has all the local data required for calculating the

PWM register values from per cent values. The fan_t structs are stored in an array as

instances, and accessed by their indexes.

3.5 Generic

Generic programming is a sub category of programming paradigm, where the goal is to

reduce the code duplication. It is an abstract concept, which aims for reusable code in

different use cases. Generic programming has different meanings, depending on the

context. For e.g.: between C and C++.

The function table implementation could be viewed as a generic implementation. It is

also known as a branch table, where the function pointers are stored in an array. The

array consists of struct pointers, which are constructed for mapping between the C

strings, and their corresponding function pointers.

3.6 Improvements

The existing program could be improved in different ways. This sub chapter introduces

possibly better approaches for implementing the program.

3.6.1 More generic

The parser control characters; comma, colon and space are statically implemented,

meaning they are not configurable by the programmer (without re-implementing the

parser). This is not a huge drawback, since the control characters are unlikely to

change between different implementation iterations.

This does not mean the programmer cannot change the state machine functionality.

The statically implemented part only concerns the control characters; comma, colon,

space and the logic behind of them being parsed.

The parser should be implemented as more generic, where everything is user

configurable.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

3.6.2 Memory allocations

The queue nodes and its elements were dynamically allocated by malloc. This should

be avoided in embedded programs, due to the nature of memory being fragmented

over time. Executing malloc might take varying amount of time, or it might even fail.

Considering the embedded applications, memory fragmentation is not a good thing,

since embedded programs could have years of uptime.

Hardware

The schematics were designed in Eagle. Eagle is electronic design automation (EDA)

software, meant for designing printed circuit boards and laying out the components.

Eagle was chosen for the thesis due to its popularity, free price and large component

libraries. Some manufacturers offer Eagle design rule check (DRC) file – a set of

guidelines meant for catching the errors made in the design phase.

The fans are driven by MOSFETs. The parts were collected from http://mouser.com,

with the bill of material (BoM) importer tool. All of the parts were listed in the Appendix

1. The parts were chosen based on their existing library implementations.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

4 AVR

This chapter gives general overview of the Atmel AVR ATmega32u4 microcontroller,

which was chosen for controlling the fans. It covers Arduino, bootloaders and USB

stack. Arduino is a development environment meant for hobbyists, but was used during

the thesis for prototype development. The software stack of Arduino Leonardo was not

used.

The main reason ATmega32u4 was chosen is because it had a built-in USB hardware,

USB software stack and 7 PWM channels [2]. It is possible to use components such as

hardware PWM multiplexers, but as the earlier „simple design‟ rule states: use as few

components as possible.

4.1 Bootloader

Every official Arduino product comes with a pre-installed Arduino bootloader.

Application code can be uploaded in to the Arduino only by using the Arduino IDE,

unless another bootloader or programmer is being used.

Arduino libraries are not suitable for industrial applications, as they are meant for

educational purposes only.

The ATmega32u4 flash memory has a separate section for the bootloader. It could be

write-protected, which prevents the bootloader flash section being overwritten while the

user application is being uploaded. The bootloader firmware can only be burnt if the

correct fuse bytes are being set. [2]

The flash section, reserved for the bootloader, can be overwritten with application code

if there is no need for advanced features. With this approach, maximal flash memory

for the user applications can be achieved. If there is no bootloader, the application

code must be uploaded by the ISP pins. [2]

The flash section size of the bootloader can be changed by programming the fuse

bytes. The bootloader program size must be less than the reserved bootloader size. [2]

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

4.2 USB 2.0

The USB 2.0 standard supports three types of throughputs [3]:

 low-speed (10 – 100 kb/s)

 full-speed (500 kb/s – 10 Mb/s)

 high-speed (25 – 400 Mb/s)

The ATmega32u4 USB implementation supports only low and full speed operations.

The USB 2.0 standard has two operating modes; device and host. Both host and

device applications are available in the ATmega32u4.

4.2.1 ASF

Atmel provides Atmel Software Framework for reducing application development time.

The ASF consists of ready-made software modules, which can be added to any project

inside the Atmel Studio IDE.

ASF software modules can be added inside the Atmel Studio IDE through ASF wizard,

which automatically includes necessary header files as module drivers. It is also

possible to download ASF as a standalone package if the development environment is

other than the Atmel Studio. ASF is available for GCC and IAR compilers.

The ASF has a software module for USB 2.0 drivers. Unfortunately, it does not support

the ATmega32u4, which belongs to the Atmel AVR8 microcontroller series. The USB

driver support is only available for XMEGA and the AVR32 microcontroller families.

Writing an USB driver for the ASF library is possible, but this option was not examined

during the thesis. The ASF was not chosen for the project, because it did not include

full support over the USB stack.

4.2.2 LUFA

LUFA (Lightweight USB Framework for AVRs) is an open source implementation of the

AVR‟s USB stack, licensed under the permissive MIT. Commercial license is also

available. It features open source bootloaders, demo USB projects, both device- and

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

host applications. There are lots of demo class driver implementations based on

different use cases.

The LUFA package contains open source bootloaders for different use cases.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

5 DATA STRUCTURES

This chapter discusses on abstract data structures, and how they were implemented

during the thesis. This chapter could be viewed as a general introduction to data

structures, and why they were chosen for the particular implementation.

5.1 Ring buffer

Ring buffer is a first in, first out (FIFO) abstract data type, derived from the singly linked

list (Figure 3).

Figure 3. Singly linked list.

The ring buffer is an optimal implementation solution for reading data streams in the

embedded systems. The difference between a singly linked list and a ring buffer is that

the ring buffer has no real end node (Figure 4).

Figure 4. Ring buffer.

Operations are constant time (), and they could be implemented as a fixed size

length for achieving maximum performance [4]. This also means ring buffers cannot

overflow.

The data is read from the USB port; byte by byte (or char by char in this case) and

pushed to the ring buffer as it arrives. The ring buffer implementation comes from

LUFA. The downside of using ring buffers is the need of second buffer for collecting the

characters, since C standard string manipulation functions only support manipulating

strings as arrays, where the memory layout is contiguous; every memory address is

next to each other.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

If C standard string manipulation functions supported singly linked lists or custom

iterators, this would not be the case. If the data arrives in a reversed order, extra buffer

might be needed for flipping the data.

One improvement could be implementing C standard string manipulation functions as

singly linked lists, so there would not be a need for extra buffers. C++ Standard

Template Library (STL) has the option of implementing custom iterators for every

container type, unlike C standard library, which only supports standard C arrays as an

input.

5.1.1 Drawbacks

Linked lists are not optimal when the nth element of the data structure is accessed

directly, since all the nodes need to be traversed (in the worst case scenario), which

makes the operation (), where is the traverse count [4]. In data streams, this is not

the common case, since the data needs to be accessed in a sequential order; from

front or tail – depending on the need.

There are many misguided ring buffer implementations available on the Internet [4].

The most common mistake is implementing the ring buffer as a standard C array, and

then using modulo arithmetic for accessing its elements. This is demonstrated in

Algorithm 1.

Algorithm 1. Implementation with modulo arithmetics.

buffer[index % BUFFER_SIZE];

In some implementations [4], modulo operation is used for preventing out of bound

access of the data structure. Modulo operations should not be used in performance

sensitive application. It makes the linked list implementation extremely slow, especially

for embedded platforms, where the instruction set is limited and compiler cannot

optimize the code properly.

In addition, the array access method of using modulo operation is also commonly

implemented with a bitwise AND operation (Algorithm 2), which optimizes modulo

operation, if and only if the size of the buffer is a natural number that is in power of 2.

[4]

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

Algorithm 2. Implementation with modulo arithmetics and bitwise AND.

buffer[index & (BUFFER_SIZE - 1)];

This optimization limits the possible buffer sizes to 2nd complement numbers [4], which

is unnecessary, because modulo operation in data stream buffers could be achieved as

varying fixed sized, by linking the first and the last node together.

The linked list implementation for modulo operation should only be implemented if the

data structure elements needs to be accessed in a sequential order, one by one. Data

streams are usually accessed one by one in a sequential order, so they could be

implemented as circular singly linked lists.

5.2 Queue

Queue is an abstract last in, first out (LIFO) data type, where doubly linked list

implementation is an optimal solution, since both directions need to be traversed.

The queue was implemented by dynamically allocating the node data for them. The

elements were also allocated dynamically, since their sizes were not known before the

tokenization of the user input string.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

6 DEVELOPMENT

This chapter introduces the development environment. The development environment

consists of project files, source control management and short description of testing.

6.1 Project files

The project files were organized in the following directory structure:

 lufa

 sch

 src

 tests

The lufa directory contains necessary parts of the LUFA, which are required by the

compilation process. This directory contents should not be touched, unless the USB

software stack implementation itself needs to be modified.

The sch directory is reserved for schematics included in the thesis.

The src directory contains essential parts of the project, including key functionality and

business logic. It also contains USB descriptor files, configuration files, makefiles and

any other project specific files.

The tests directory is reserved for separately testing independent parts of the software.

Embedded platforms are not optimal for testing purposes, since their input/output

accessibility is often limited, which is why the tests were designed to run also on a

desktop machine. The separation between business logic and hardware dependent

code eases the process of writing more portable code. The tests itself were written in

C, and should work in any platform with a C compiler.

6.2 SCM

The LUFA project is included as a git sub module, which is an optimal solution for

embedded projects, where the main project and the sub project requires isolation;

changes made in the sub module have no effect inside the main module.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

This is useful if the sub module is rarely updated and its maintenance work is done by

someone else. Therefore, sub module is an optimal solution for inclusion of sub

projects, which are not updated frequently. Sub projects could be: RTOS‟es, USB

software stacks, etc.

6.3 Testing

Each of the portable software parts were tested in a desktop environment before

flashing them in to the microcontroller. This eased the development process and

produced portable code by default. Program modules, using dynamic memory

allocations such as queues, were tested against memory leaks with valgrind. Valgrind

is an UNIX program for memory leak detection and profiling.

Measuring embedded code performance should be avoided in a desktop environment,

since the results might differentiate between different architectural systems [5]. Modern

processors with caching might produce unexpected results, compared to simple

architectures which usually do not cache memory.

Cheap and simple architectures, such as embedded 8-bit architectures, without

memory management unit do not have caching abilities. The performance difference is

most notable when the algorithm handles the input as a contiguous memory, such as

array, where caching becomes possible. Algorithms, such as singly linked lists, which

handle data via an indirect memory access, such as pointers, are not cache-friendly [5].

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

7 C++

This chapter gives common overview of general techniques for programming with C++

in embedded systems. The scope of this chapter is the thesis, but overall embedded

development is considered as well. Thought process of this chapter started as solving

the problems in the thesis, but then extended to thinking the theory between C and

C++. The thesis was entirely implemented in C, which makes the comparison between

C and C++ is purely theoretical.

7.1 Standard

It is important to mention which standard we are referring to. C++ has had major

changes over the years. The newest official standard is C++14, which has minor

changes and fixes compared to C++11, which was considered to be the greatest

change in the history of C++ [6].

Usually the compiler support drags behind new standards, especially in the embedded

platforms, where the new compiler support needs to be separately implemented. It is

unrealistic to assume that all the features from new standard are immediately

implemented as they arrive. The implementation lag has been reduced over the years,

but is still a valid concern.

An embedded developer needs to consider the risks every time a new software piece is

released; it is likely to contain more bugs, or even unsafe features, which will be

discovered in the future. Maturity of the software matters. Jumping to a new standard

for an embedded developer might be a risk.

For e.g. a new C++11 memory management feature, called std::auto_ptr, was later

deprecated in the C++14 standard [6]. The feature was discovered useless – using

std::shared_ptr and std::unique_ptr was recommended instead. _LÄHDE_

7.2 Differences to C

C++ is a programming language based on classes, or objects. It is also known as

Object Oriented Programming (OOP). The biggest difference between C and C++ is

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

the mindset, since they are semantically very similar languages, but in practice are

used very differently [6].

The main difference between C and C++ is how they interact with memory. In C++, the

objects are first constructed with a constructor and then automatically destructed via a

destructor when the object exits its scope.

In C, the memory allocation and freeing could be done anywhere in the program –

unlike in C++, where the ownership is usually much clearer; object allocates a certain

chunk of memory and it is also responsible of freeing it. C has structs, but they do not

have common routines like C++ objects, such as constructors and destructors.

The mindset between the two languages is completely different, although both C and

C++ could be programmed in a very similar manner – if needed [6]. C is a subset of

C++ features, but as the years have gone by, they have become a completely different

languages; from minor differences to major differences. The newer standards

differentiate the languages even further [6].

7.3 Improving existing code

This sub chapter estimates the benefits and drawbacks of using C++ in a modern

embedded development.

7.3.1 Binary literals

The new C++14 standard offers binary literals, which might be useful for embedded

development. They are calculated compile time. C has no official support for binary

literals. Only compiler dependent extensions are available.

7.3.2 Smart pointers

When using malloc/free in C, or new/delete in C++ – it introduces a problem: who is

responsible for the allocated memory? Is it caller's task of freeing the allocated

memory? In old C programs, this is usually implicitly stated in function names, such as

create_func or new_func, which return a pointer to an allocated memory.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

The new C++11 standard introduces smart pointers. They completely eliminate the use

cases of naked new. Newly written C++11 code should never use naked new operator

for dynamically allocating the memory. Only new operator inside smart pointers is

recommended. [6]

The C++11 standard introduced three important smart pointer types, which might be

useful for embedded programmer: std::shared_ptr, std::weak_ptr and

std::unique_ptr. The std::unique_ptr has zero overhead and frees the resource

when it exits scope [6]. It can be explicitly moved from scope to scope with std::move.

It is also a new C++11 feature.

The std::shared_ptr is meant to be used when the resource is being accessed from

multiple scopes. The std::shared_ptr has reference count, which means every time

the pointer is copied, the reference count is increased, and every time shared pointer

instance exits scope, the reference count is decreased. When the last reference of

std::shared_ptr exits the scope, the memory under std::shared_ptr is being

freed.

The std::weak_ptr is designed to be used with std::shared_ptr for avoiding

circular references. Circular references could happen (Figure 5), if the resource is

indirectly referenced back to itself, which causes memory leaks.

Figure 5. Weak pointer breaks the circular reference.

This is because the reference count will never achieve zero, which means the memory

is never freed. The std::weak_ptr was designed for breaking the circular references.

The std::shared_ptr introduces a small overhead [6], due to its reference counting

characteristics. Pointers and references should still be used in modern C++. If the

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

resource owning semantics is explicitly wanted, then the smart pointers should be

used.

7.3.3 Ring buffer

As the ring buffer chapter mentioned; C standard library is problematic. It only supports

string manipulation functions via character arrays, where the memory is always

contiguous. For e.g.: it is not possible to feed C standard library functions with strings

made of linked lists. It always must be a C array.

In C++, it is possible – without re-implementing the whole library. The only requirement

for a class is to implement begin and end iterators [6], so that the STL algorithms can

iterate any data type container.

The C++14 standard has a singly linked list implementation known as

std::forward_list [6], and it has already implemented begin and end iterators. All

the STL data types have a default iterator implementation. The std::forward_list

dynamically allocates memory, so it might not be suitable for embedded applications.

7.4 Time critical software

Time critical software is usually categorized under two types [7]:

 hard – missing a deadline is a total system failure.

 soft – missing a deadline reduces the QoS, but is still usable.

Many C++ features use dynamic allocations, and their inclusion to projects should be

carefully considered. Containers, such as std::array<T>, uses heap allocation

(Figure 6) for the element and node data.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

Figure 6. Memory layout for a std::array<int> arr{1,2,3}.

It is likely for an embedded developer to end up using only subset of features in C++

[7]. The Standard Template Library (STL) uses heap allocation on most of its default

containers, which limits the use cases of STL in real time systems.

In STL, there is one exception for allocating memory for containers: std::array<T,N>

(Figure 7). It allocates a fixed memory portion from the stack.

Figure 7. A container std::array<int,3> arr{1,2,3}.

As mentioned earlier: STL uses heap allocation for most of its default containers.

Fortunately, overriding the default allocators in C++ is possible, by doing an own

implementation of the allocator class. Implementing any allocator for any container in

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

STL is possible. For example: memory pool allocation scheme for a queue could have

been used.

7.4.1 Virtual functions

The virtual functions should be avoided when dealing with real time systems, because

the virtual function location needs to be discovered at run-time from the vtbls virtual

table. The vtbl table array consists of function pointers. Their implementation is

completely compiler specific [7]. Virtual functions are a low cost operation, so they

might be useful in some cases.

7.4.2 Function pointers

The C++11 introduced a std::function, which represents a modern function pointer.

It has a small overhead compared to naked C function pointers, but they are easier for

compilers to inline [7]. The C function pointers are stateless, unlike std::function.

The function and its parameters state could be saved within a std::bind. The state

machine function pointer implementation could have been improved; implementing it as

a std::function table, and binding each function to it. [7]

The fan controller struct implemented all of the fan actions as a separate function,

indexed from 0 to 7. With std::function and std::bind, only one function with

different parameter bindings could have been achieved.

All of the functions in fan controller were short, so they could have been implemented

as lambdas – a new C++11 feature. The auto keyword could have been used for

figuring out the types automatically by the compiler. It has zero overhead and is also a

new C++11 feature [7].

7.4.3 RTTI

In hard real time applications using run-time type information (RTTI) is forbidden, since

the operations are done run-time – as the name states [7].

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

RTTI could be disabled by the compiler flags [7]. Disabling it removes the possibility of

using std::dynamic_cast, which downcasts a derived class if it is possible. If the

base class has virtual methods, std::dynamic_cast could be used for figuring out

which virtual functions were implemented within the derived class.

7.4.4 Exceptions

In hard real time applications, usage of exceptions should be avoided, since their

execution path will be discovered during run-time [7].

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

8 CONCLUSION

The goal of the thesis was to implement a fan controller controlled via a USB-CDC. It

was first planned to achieve a physical working prototype, but only the software part

was achieved during the thesis. The Arduino Leonardo hardware was used as a base

prototype for development, but Arduino‟s software stack was not used during the

thesis. AVR Libc and LUFA were used as a software stack. AVR Libc has not

implemented STL, which means some parts in the thesis are not possible to implement

in AVR.

The thesis describes the design process of a fan controller and its design

considerations, particularly in the AVR platform. The general pro et contra for

implementing data structures in embedded systems are considered. The existing

software, alternative and possibly better implementation were weighted. The thesis

describes implementing a lexical parser and queue in depth.

Lastly, the existing C program is reflected to a modern C++ development, and how the

existing code could have been improved in C++. C and C++ development differences

are compared in general, in respect of embedded systems. Safety, performance and

memory considerations are discussed in the C++ chapter. The C++ and hardware

chapters were purely theoretical.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

REFERENCES

[1] Free Software Foundation. AVR Libc. Consulted 10.5.2017 http://www.nongnu.org/avr-
libc/user-manual/

[2] Axelson, J. 2009. USB Complete: The Developer‟s Guide. Fourth edition. Madison: Lakeview
Research LLC.

[3] Gunther, J. C. 2014. Algorithm 938: Compressing circular buffers. ACM Transactions on
Mathematical Software (TOMS) Vol. 40 (2) No. 17/2014, 1-12.

[4] Microchip. 2015. ATmega16U4/ATmega32U4. Datasheet. Consulted 10.5.2017
http://www.atmel.com/Images/doc7618.pdf

[5] Stourstrup, B. 2014. Are Lists evil? Consulted 10.5.2017
https://isocpp.org/blog/2014/06/stroustrup-lists

[6] Stroustrup, B. 2013. The C++ Programming Language. Fourth edition. Boston: Addison-
Wesley.

[7] Stroustrup, B. 2013. A Tour of C++. Fourth edition. Boston: Addison-Wesley.

[8] Meyers, S. 2012. Effective C++ in an Embedded Environment. Second edition. Presentation
material.

http://www.atmel.com/Images/doc7618.pdf
https://isocpp.org/blog/2014/06/stroustrup-lists

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Oskari Teeri

Part list

