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Sammandrag:  

Metallformsprutning är en metod där man producerar metallkomponenter genom plast-

produktionstekniken formsprutning. Denna tillverkningsmetod möjliggör produktion av 

metallkomponenter med komplicerad design och låga toleranser tack vare formsprut-

ningsmaskinens funktionalitet och automation. Processen kräver dock några extra steg 

för att uppnå den slutliga komponenten. Syftet med detta examensarbete är att redogöra 

för hela metallformsprutningsprocessen och alla dess delmoment. En fördjupad insyn i 

varje enskild process och underliggande mekanismer presenteras.  Redogörelsen fokuse-

rar på optimeringen av processparametrar och på de komplikationer som kan uppstå i 

samband med den. Forskningen genomförs främst genom litterära studier av böcker, 

skrifter och tidigare forskningsarbeten. En ytterligare informationskälla är konsultering 

med experter och personer som jobbar inom metallformsprutningsproduktion. Förutom 

detta baseras sig informationen också på personligt åskådande av och deltagande i till-

verkningsprocessen. Det huvudsakliga målet med forskningen är att undersöka hur man 

inleder och verkställer optimeringen av parametrar i en metallformsprutningsproduktion. 

Forskningens resultat tyder på att en analys och en prövningsinriktad metod är mest gi-

vande. Arbetet avslutas med ett diagram över arbetsflödet i optimeringsprocessen. 
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Abstract:  

Metal injection molding is a manufacturing method for producing metal parts using the 

plastics injection molding technique. This manufacturing method allows to produce metal 

parts with complicated shapes and small tolerances, with the ease and automation of the 

injection molding machine. The process however requires some extra steps to accomplish 

this. The aim of this thesis is to cover the whole metal injection molding process and all 

the stages involved. An in-depth look at each individual stage and the mechanisms involved 

are presented. Throughout the review the focus is centered on the potential for process 

optimization as well as the complications involved. The research is approached primarily 

through the studies of literature on the subject of metal injection molding, this includes 

comprehensive books as well as research papers. Another source for information is through 

the consultation of experts and people who work with this manufacturing method. In an 

addition to this, personally witnessing and partaking in production is also used as a source 

for firsthand information. The main goal of the optimization-centered research is to explore 

how to approach an optimization of parameters in a metal injection molding production. 

The research results indicate an analysis heavy, trial and error approach being most feasi-

ble. The thesis concludes on a workflow diagram of the optimization process. 
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1 INTRODUCTION 

1.1 Aim 

The aim of this research is to provide an in-depth look at the metal injection molding 

process. It will examine the mechanisms behind the process and the parameters involved. 

Throughout the review the focus will be centered on the potential for process improve-

ments as well as the complications involved. The concluding task is to formulate a concise 

and general model for the optimization process. 

1.2 Background 

The background and idea for this thesis came about as a commission to optimize a com-

mercial metal injection molding production process. While doing research it became ev-

ident that there aren’t any rules or perfect formulas for calculating the optimal parameters. 

This led the research to be more focused on figuring out the approach for an optimization 

process. 

 

There is somewhat of a lack of information on the subject so any new research is valuable. 

The metal injection molding manufacturing method is quite complex and time consuming 

so by optimizing the process the benefits will be vast. For a producer of metal injection 

molded components the economical benefits will stem from a shorter process duration, 

smaller resource consumption and more reliable production. Improved mechanical prop-

erties of the produced parts can also be achieved by optimizing the process parameters. 

 

Another reason for this research subject is to raise awareness about the production 

method. Metal injection molding is a production method which might get easily over-

looked or not know about at all. There's value in simply shedding light and informing 

engineers on the technique of producing metal parts with a plastics molding machine. 



 

 

1.3 Method 

The approach for the research will be primarily through studying literature on the subject 

of metal injection molding. This will include comprehensive books as well as research 

papers. Another source for information will be consulting with experts and people who 

work with the manufacturing method. In an addition to this personally witnessing and 

partaking in MIM production will also be conducted in order to gather firsthand infor-

mation. The collected material will function as the basis for a reasoned conclusion. 

  



 

 

 

2 METAL INJECTION MOLDING 

Metal injection molding is a manufacturing method for producing parts made of metal. 

The Metal Injection Molding process is usually called by its short acronym MIM, as it 

will do in this work. MIM is a subcategory of the Powder Injection Molding (PIM) man-

ufacturing technique. PIM utilizes the plastics-production technology of injection mold-

ing with its feedstock consisting of a polymer and an inorganic material. The inorganic 

component of the feedstock can be a metal or a ceramic. (German & Bose, 1997, pp. 11-

13) 

 

The fundamental idea behind the MIM manufacturing method is to combine the shaping 

benefits of injection molding with the resilient mechanical properties of metals. This “best 

of both world” approach allows the production of complex and detailed metal parts with 

high strength and stiffness. Traditional casting methods requires the metal to be in a mol-

ten state during the casting, the metal powder and polymer feedstock used in MIM enables 

the molding process to be performed at much lower temperatures. (Heaney, 2012, pp. 1, 

109)  

 

Due to the multiple material consisting MIM raw material and the sub melting point tem-

perature of the molding process some extra steps are required in order to produce the 

finished part. The molding stage is quite a simple and straight forward process. It is done 

in the exact same way as regular injection molding of plastic parts: feedstock is loaded 

into the injection molding machine and the machine drives the screw filling the mold. 

Unlike injection molding of plastics, the molded part still needs to go through a few more 

steps to be complete. (German & Bose, 1997, pp. 133-135) 

 

The first stage following the injection molding is debinding. The debinding stage is de-

signed to get rid of the polymer binder material from the molded part, making it purely 

metal. After the binder material has been removed follows the final stage, sintering. At 

the sintering stage the now pure metal powder part is heated up to near melting tempera-



 

 

tures. The high temperature makes the particles of the metal powder fuse together, in-

creasing the density and strength of the part. A well performed sintering provides the 

MIM-produced part with properties similar to that of a die casted. (German & Bose, 1997, 

pp. 11-15) 

 

Figure 1. Metal injection molding process stages. (German & Bose, 1997, p. 15) 

2.1 Injection molding 

Injection molding is the principal manufacturing method used in plastics production. 

Since the MIM process starts out with a feedstock consisting of a substantial amount of 

polymer (40 vol.%) the injection molding stage in very similar to plastics molding. As 

only the binder component of the MIM feedstock will be molten during the injection the 



 

 

process can essentially be viewed as a normal thermoplastics injection molding. (Heaney, 

2012, pp. 110-112) 

 

The basic work principle of injection molding is fairly simple, heat up a material till it´s 

molten, then inject the liquid material into a mold with the desired shape, the material 

will adopt the shape of the mold and stay that why after it´s cooled back down into solid 

state. 

 

Metal injection molding is performed with the same injection molding machines as used 

in plastics production. Molding machines using a reciprocating screw is by far the most 

common in both plastics and MIM production. 

2.1.1 Injection molding machine 

An injection molding machine is the apparatus that helps shape and produce parts. The 

machine is made up of two main units, an injection unit and a clamping unit. The two 

units are focused on performing two different tasks which when combined will produce 

the parts. (German & Bose, 1997, pp. 133-136) 

 

Injection unit 

The main task of the injection unit is to heat up the feedstock and then force it into the 

mold. The injection unit controls features from feedstock viscosity to shot size. The unit 

consists of a few central components:  

Hopper: Is the container that sits above the machine and feeds granulates to the process 

Reciprocating screw: is the heart of the injection unit. It not only provides the push that 

forces the molten raw material into the mold its´s also the prime producer of heat. 

Barrel: is the casing around the screw, the barrel is covered in adjustable heating bands 

that keep the barrel at constant temperature. 

Screw motor: Provides the rotation for the screw.  

Injection cylinder: Moves the screw forwards and backwards inside the barrel. Also pro-

vides the thrust for the injection. 

Nozzle: Connects the barrel to the mold. Provides the final heating to the shot before it 

enters the cavity. (German & Bose, 1997, pp. 136-145) 



 

 

 

 

 

Clamping unit 

The main task of the clamping unit is to control the mold throughout the cycle. With the 

help of a hydraulic motor the clamping unit can open and close the mold. The most de-

manding aspect of the clamping unit is keeping the mold halves tightly together during 

injection and packing. The clamping unit also controls the part release trough moving the 

ejector rod and pins. (German & Bose, 1997, pp. 136-145) 

 

Figure 2. Injection molding machine (B.Rocky,2009) 

 

Molding cycle 

The molding cycle can be divided into different phases:  

1. Feedstock granulates are fed from the hopper into the heated barrel of the injection 

molding machine.  

2. A rotating screw inside the barrel crushes and melts the granulates. The rotating screw 

forces the molten material towards the end of the barrel right up to the mold, meanwhile 

the screw is moving back. 

3. A hydraulic ram forces the collected liquid-state material into the mold cavity.  Over 

90- 99% of the cavity will get filled. 

 



 

 

 

 

 

switch over (the second stage injection commences) 

4. The remaining < 10% of material is injected with high pressure. The high pressure 

forces the molten material into every corner and hard to fill place. Following the second 

stage injection a holding pressure is introduced to insure the molded melt doesn’t lose 

shape or shrink during solidification. 

5. Mold opens, ejector pins push the solidified part out from the mold cavity. 

6. Mold closes and cycle repeats. (Heaney, 2012, pp. 116-118) (Polyplastics, 2016) 

 

The above-mentioned cycle is roughly the same for both traditional plastics injection 

molding as well as metal injection molding. One difference though is that the MIM feed-

stock isn't completely molten during molding. Only the binder part of the feedstock will 

be molten while the powder stays in a solid pulverized form. (Heaney, 2012, pp. 116-118) 

2.2 Feedstock 

Feedstock refers to the raw material used in metal injection molding. The whole MIM 

process is essentially based upon the properties and constituency of the feedstock. The 

feedstock consists of two main components: a binder and a metal powder. Both compo-

nents provide their own unique function in the production process. (German & Bose, 

1997, p. 25) 

 

The feedstock is usually in the form of pellets similar to the granules used in plastics 

production. Since the feedstock itself plays such a central role in the MIM process, the 

characteristics of the feedstock will influence every step from start to finish. The influence 

that the feedstock will have on the molding process can be traced back to five main fac-

tors: 

 

 

 



 

 

•  Metal powder characteristics 

•  Binder composition 

•  Powder/binder ratio 

•  Mixing method 

•  Pelletizing technique 

(German & Bose, 1997, p. 43) 

Metal powder characteristics 

Powder is a term describing a collection of fine particles. The properties of a powder are 

a cumulative product of the particles characteristics. The particle characteristics will in-

fluence every step of the MIM process. Particle size and shape for instance will affect the 

interparticle friction, packing density, rheology and so on. The injection molding process 

will be affected by the above-mentioned characteristics by the ease of molding and tool 

wear. The metal type and grade will also play its part on the molding since it will influence 

the particle weight. (Heaney, 2012, pp. 50-55) 

 

Binder composition 

The second component to the feedstock is the binder. Although the binder is a disposable 

element during the MIM process its characteristics will have a fundamental impact on the 

whole production. The binder is composed of at least two different material. The material 

which makes up the binder will influence the binders melting point and rheology. The 

injection flow and operation temperature are directly influenced by the binder constitu-

ents as well. For a successful molding the melt needs to have the correct viscosity to fill 

the mold cavities fully yet not produce flash. The ratios of the different binder components 

will also affect the binder characteristics. Some ready-made feedstocks contain additional 

additives in the binder to help with mold release and injection. (Heaney, 2012, p. 70) 

 

Powder/binder ratio 

The ratio between how much powder and binder are in feedstock will influence its per-

formance. In order to have a successful molding process the two components need to have 

suitable proportions. Two much powder will cause problems with shape retention as well 

as being abrasive on the injection molding equipment. (German & Bose, 1997, p. 26) 

 



 

 

Figure 3. MIM Catamold feedstock granulates, 316L stainless steel (author,2017) 

2.2.1 Powder 

The metal powder portion of the feedstock is what provides the mechanical properties to 

the finished product. A produced MIM-part displays similar properties as the metal that 

the powder is made from. In principle any metal powder can be used in MIM production 

as long as it satisfies the following criteria; the powder particle size needs to be small, 

mix well with polymers, sinter to a sufficiently high density and have high enough melt-

ing and sintering temperature to not interfere with the debinding process. As an example, 

the widely used metals magnesium and aluminum are not common due to their low melt-

ing temperature and strong oxidation during sintering. Most commonly used alloys con-

sist of stainless steel, tool steel, copper, cemented carbides, titanium and other refractory 

metals. (Heaney, 2012, pp. 50-56) 

 

The characteristics of a powder are usually presented by describing the individual parti-

cles rather than a collective powder lot. The properties of powder can be boiled down to 

a few main characteristics: particle size, size distribution and particle shape. The sum of 

these characteristics result in the powder its packing density. 



 

 

 

Packing density describes how tightly particles can be packed together. Using a powder 

with high packing density is essential to the MIM process. A powder with high packing 

density will result in better sintering with less shrinkage. Using particles that can obtain 

a high packing density has also the benefit of increased interparticle friction. The friction 

between the powder particles will help keep the molded components intact during debind-

ing. (German & Bose, 1997, pp. 55-57) 

 

 

Figure 4. MIM Catamold feedstock (316L) under microscope. The shining orbs are metal particles. (author,2017) 

 

Particle size 

In theory, the particle size of a powder can be as big as 45μm but the ideal particle size 

for most alloys is below 22μm in diameter. A small particle is desired since it will increase 

the packing density and improve homogeneity in the feedstock. Some metals such as ce-

mented carbides can have particles less than 5μm. A powder with a small particle size 

also provides a smoother surface finish as well as being less abrasive to the injection 

molding machine. The only reason for choosing a powder with a larger particle size would 

be the lower initial cost. But in practice the production cost might not be much lower 

since larger particles have a tendency to cause difficulties during the injection molding. 



 

 

Smaller particles also have a greater surface area and consequently higher surface energy. 

High surface energy is favorable since it’s what drives the sintering mechanism.  (German 

& Bose, 1997, p. 58) (Heaney, 2012, pp. 51-52) 

 

Particle shape 

The shape of the particles have a huge impact on the success of the MIM process. The 

particles get their shapes from their manufacturing method. A spherical shape is desired 

for numerous reasons. A round shape will help the feedstock flow better during injection. 

Spherical particles also mixes well with the binder material as well as distributes evenly, 

resulting in good homogeneity. (German & Bose, 1997, pp. 58-60) 

 

Feedstock composed of powders with irregular particle shapes are nevertheless used reg-

ularly in MIM productions. The irregular shaped particles are shown to provide slight 

structural benefits to the molded part, helping the part keep its shape during debinding. A 

sphere shape is still preferred since it has descent shape retaining properties. The large 

surface area of a round particle increases the friction between particles in all directions, 

keeping it in shape. The inter-particle friction can be enhanced furthermore by reducing 

the particle size and thereby increasing the particle to particle contact. Spherical shapes 

can obtain quite high packing density amidst each other as well as obtain high solids 

loading when mixed with the binder material. (German & Bose, 1997, pp. 58-60) 

(Heaney, 2012, pp. 54-55) 

  

Size distribution 

In a batch of MIM powder, every particle won’t be the exact same size. This variance in 

size can be quite substantial and wort paying attention to. The size distribution in MIM 

powders are described by their D10, D50 and D90 value. The D10 value states the size 

that only 10% of the particles of a powder are below (e.g. D10 @ 4,6μm). D50 describes 

the mean particle size, in other word 50% of the particles are below this size (e.g. D50 @ 

11μm). D90 value is the size which covers 90% of the particles, only 10% of the particles 

in this powder batch will measure above this size (e.g. D90 @ 18μm). (Heaney, 2012, pp. 

53-54) 

 

 

 



 

 

Table 1. Example of MIM powder characteristics (German & Bose, 1997, p. 77) 

manuf. tech material type/grade vendor composition 

D10  

[μm] 

D50  

[μm] 

D90  

[μm] 

gas atomized 

stainless 

steel 
316L 

Ultrafine Fe/Cr/Ni/Mo 4,6 11 18 

water atomized 

stainless 

steel 17 -4 PH Mitsubishi Fe/Cr/Ni/Cu 4,8 20,7 50,9 

2.2.2 Binder 

The second component to make up the feedstock is the binder. While the metal powder 

is what provides the structural properties to the finished component the binder material 

won’t provide anything and in fact won’t be present in the end at all. The role of the binder 

is purely to provide the feedstock mix with moldability and shape retaining properties 

during manufacturing. The binder material plays a very decisive role and the success of 

the whole MIM operation is often dependent on the performance of the binder.  

 

The binder is made up of a combination of a few different materials, all with their own 

unique function. Typically a MIM binder consists of three main components; a polymer, 

a filler material and a surfactant. Of these three components the polymer and the filler 

material make up the vast majority of the binder. The filler material is usually some type 

of wax or wax-like material. The polymer and wax usually make up similar proportions 

of the binder. By having both components roughly the same quantity a good interconnec-

tion within each material is achieved throughout the molded part. Typically one of these 

major components will make up between 20 to 80% of the binder. Although even propor-

tions are desired complete miscibility isn’t. The differences in molecular weight and 

chemical structure keeps the polymer and wax from completely mixing together, which 

helps the binder components extract separately during debinding. A difference in melting 

point temperature between the components is the main attribute to facilitates the selective 

removal of separate components throughout the MIM process. Waxes tend to have low 

melting temperatures (< 100°C) while polymers tend to have higher (> 100°C). This im-

plies that the wax phase is the first one of the major components to be removed, this 



 

 

happens during the debinding. The conditions of the debinding aren’t harsh enough for 

the polymer to degrade. The polymer extraction takes place after the filler is removed and 

coincides with presintering. (German & Bose, 1997, p. 83) (Heaney, 2012, pp. 64-66) 

 

Although there’s an almost endless selection of polymers and filler materials to choose 

from there’s only a limited number of feasible combinations. The binder components need 

to have properties compatible with one another as well as function as a whole. The binder 

configuration also need to work with the powder and display good wetting. Approaching 

the binder composition from a practical angle, the foremost criteria of selection is based 

on the available debinding methods and the desired powder material. (German & Bose, 

1997, p. 83) (Heaney, 2012, pp. 64-66) 

 

Secondary binder 

The Secondary binders function is to provide structural strength to the molded MIM part 

during debinding and early sintering. Due to its crucial role as structural aid trough out 

the MIM process the secondary binder component is often referred to as “backbone”. The 

secondary binder is almost always made from a polymer. It’s usually the backbone poly-

mer that has the highest melting temperature of all the binder components. The polymer 

part of the binder is the trickiest and most time-consuming constituent to remove. 

(German & Bose, 1997, pp. 83-90)  

  

Polyethylene and polypropylene are the most frequently used binder polymers. They bear 

the ideal properties since they can provide the necessary structural strength while still 

being relatively effortless to remove. They have low melting temperatures and low vis-

cosity which provides for efficient molding. They also have good wetting so they mix 

well with the other binder-materials as well as the powder. Their short molecular chain 

lengths allow them to decompose with relatively small volume changes minimizing the 

chance of complications during debinding and sintering. PE and PP are also two of the 

most commonly produced plastics making them very inexpensive as binder material com-

ponents. They also create very little carbon contamination from the final burnout in the 

secondary debinding step. (Heaney, 2012, pp. 69, 144-146) 

 

 



 

 

 Primary binder 

The primary binder or “filler phase” is usually a wax or wax-like material. Its purpose is 

to provide moldability and structural strength while still being easy to remove. Unlike the 

polymer which also serves the same structural purpose the wax is completely removed 

during debinding. The filler phase along with the surfactant are often referred to as the 

primary binder. Waxes have melting temperatures much lower and degrade easier than 

polymers, this provides them to be removed separately. The low molecular weight of 

waxes makes them evaporate easily, this is a desired aspect since it helps during debind-

ing. Most commonly used waxes as fillers are paraffin wax, carnauba wax and bees wax. 

(Heaney, 2012, pp. 69, 136-141) (German & Bose, 1997, pp. 86-92) 

 

Surfactant 

As mentioned prior a typical binder consists of three main elements, of which the back-

bone polymer and the filler are the essential ones. The third and remaining component is 

the surfactant. A surfactant is a compound which lowers the surface tension between two 

liquids or between a liquid and a solid. In the case of metal injection molding the surfac-

tants function in the binder is to improve the wetting between the metal powder and the 

binder itself. A binder can be composed of only two materials as long as the filler material 

has properties that resemble that of a surfactant. A secondary function of the surfactant is 

to aid with tool release during molding. (German & Bose, 1997, pp. 86-92) (Heaney, 

2012, p. 69) 

 

Table 2.  Example binder constituents (German & Bose, 1997, p. 91) (Heaney, 2012, p. 81) 

316L     316L     316L   

starch 41 %  LDPE 45 %  paraffin wax 30 % 

glycerol 23 %  paraffin wax 45 %  

carnauba 
wax 10 % 

LDPE 29 %  stearic acid 10 %  bees wax 10 % 

citric acid 2 %     PP 45 % 

stearic acid 5 %     stearic acid 5 % 

        

17-4 ph     17-4 ph     copper   

paraffin wax 63 %  paraffin wax 55 %  paraffin wax 65 % 
microcrystalline 
p.w 16 %  

microcrystal-
line p.w 16 %  PE 30 % 

EVA 15 %  EVA 15 %  stearic acid 5 % 



 

 

HDPE 5 %  HDPE 5 %    

stearic acid 1 %  stearic acid 9 %    

        

        

iron-nickel     iron-nickel     iron-nickel   

paraffin wax 79 %  paraffin wax 79 %  paraffin wax 55 % 

EVA 20 %  HDPE 20 %  PP 25 % 

stearic acid 1 %  stearic acid 1 %  stearic acid 5 % 

      

carnauba 
wax 15 % 

        

HS12-5-5 HS steel     316L     316L   

HDPE 50 %  paraffin wax 65 %  paraffin wax 75 % 

paraffin wax 50 %  EVA 35 %  PE 20 % 

      EVA 5 % 

 

2.2.3  Powder Binder mix 

The ratio between metal powder and binder material is highly critical to the success of 

the whole MIM process. An unbalanced ratio between the two components will result in 

defects and improper shrinkage. Too little powder and excessive amounts off binder will 

lead to complications during molding. With excess binder in the feedstock the powder 

and binder will separate from each other during injection causing an uneven spread of 

metal particles. The excess binder will also result in low viscosity making flashing likely. 

A large enough binder excess can cause the parts to slump or completely collapse during 

debinding once the binder is getting extracted. Conversely if the ratio is off due to excess 

powder and insufficient binder empty voids inside the parts will occur. A part containing 

voids will easily crack during debinding. Other problems cause by excess powder are 

related to molding difficulties. The large amount of powder won't flow properly causing 

a multitude of defects. The optimal mixture ratio is at something called critical solids 

loading. Critical solids loading is the point where powder particles are packed by as 

tightly as possible together and binder material fills all the space between the particles. In 

other words all the particles are chained together by contact and the binder allocates all 

unfilled space leaving no room for voids. (German & Bose, 1997, pp. 26-28) (Heaney, 

2012, p. 73) 

 

 



 

 

excess binder   excess powder  critical 

 

Figure 5. Illustration of different powder/binder ratios. Black= metal particles, Gray=binder, White= voids 

 

2.3 Debinding 

Debinding is the process of removing the binder-material from the molded part. At the 

end of the debinding process the produced parts will be consisting purely of metal. The 

debinding process is perhaps the most critical step in MIM production. The success relies 

heavily on how carefully the binder is removed. During debinding the molded part must 

endure the stresses produced by the binder being extracted from within the part, while 

still maintaining its shape. The debinding process requires two steps: primary debinding 

and secondary debinding. The function of the primary debinding is to get rid of the filler 

phase and surfactants. The secondary debinding step is where the backbone binder is re-

moved and the sintering process sets in. It's during debinding that the binder portion of 

the feedstock goes from being the sole structural component to becoming fully disposa-

ble. (Heaney, 2012, pp. 133-134) (German & Bose, 1997, pp. 175-180) 

 

2.3.1 Primary debinding 

Primary debinding is the process of getting rid of the more easily removable binder com-

ponents. This part of the binder is referred to as: primary binder or soluble binder. The 

idea is to remove the primary binder efficiently and without damaging the part while 

concurrently creating a tunnel system for the backbone polymer to exit trough during 

secondary debinding. 



 

 

 

The debinding is performed either by thermal debinding or solvent based debinding. In 

the case of thermal debinding the molded part is introduced to an environment of temper-

ature high enough to make the primary binder evaporate away. In practice this is a very 

slow and time-consuming process since the temperature has to be low enough to not affect 

the backbone polymer. The evaporation also has to occur gradually, moving from the 

edges inwards in order not to not crack or distort the molded part. Due to the time con-

suming nature thermal debinding is rarely used in commercial production. (German & 

Bose, 1997, pp. 202-206) (Heaney, 2012, pp. 136-137) 

 

Solvent based debinding is the more modern approach for removing the primary binder. 

Rather than thermally evaporating the primary-binder solvent debinding relies on the 

chemical characteristics of the binder components. Solvent debinding works on the prin-

cipal of using a primary and secondary binder that aren't soluble by the same solvent. By 

introducing the molded part to an atmosphere consisting of a solvent the primary binder 

will react by losing its solidity and flowing out of the compact, creating a pore structure 

required for the final secondary debinding. The type of solvent used and the binder ma-

terials only work in certain combinations since they need to be completely compatible for 

the debinding to work. There are a number of different methods of introducing the molded 

part to the solvent.  

Since the binder-materials, solvents and the work method are so codependent and exclu-

sive to each other they are often referred as a collective system. In contrast to thermal 

debinding where the binder is removed as a vapor, solvent based extraction usually hap-

pens trough liquid flow. (Heaney, 2012, pp. 136-137) (German & Bose, 1997, pp. 202-

206) 

 

By the end of primary debinding all of the primary binder will have been removed and 

the part is now referred to as being “brown”. With all the filler phase removed the part is 

now full of pores trough out the part and the only thing keeping the part from falling apart 

is the backbone polymer. A part in the brown state is fragile and needs to be handled with 

care. In contrast to when the part was just molded (green) the brown part has a rougher 

surface and now feels metallic to the touch. (German & Bose, 1997, pp. 202-206) 

(Heaney, 2012, pp. 142-144) 



 

 

 

2.3.2 Solvent debinding systems: 

Wax based systems are perhaps the most common in commercial MIM production and 

is especially frequent in North America. As the name suggests this method is intended for 

feedstock consisting of a binder with a wax filler phase. This system is based around the 

waxes ability to dissolve easily. The procedure is quite simple and straightforward: the 

molded parts are immersed in a bath of solvent until the parts are completely primary 

binder free. The liquid solvent is usually kept at a temperature above the waxes melting 

temperature to accelerate the process. When the binder is completely removed the parts 

are taken out of the solvent and dried. (Heaney, 2012, pp. 137-138) 

 

To increase automation and reduce adverse environmental impact modern wax based 

debinding systems are closed-loop systems where the whole process takes place in a 

closed chamber. Trichloroethylene, tetrachloroethylene and 1-propyl bromide are some 

typical solvents that have been used in wax based debinding systems. These chemicals 

are excellent solvents for organic materials such as waxes. However due to their halogen-

ated chemistry they are considered a hazard to both the ozone layer as well as humans. 

The industry has almost entirely moved over to using less harmful organic solvents in-

stead. Acetone, heptane and isopropyl alcohol are some of the more prevalent organic 

solvents used in modern wax based systems. (Heaney, 2012, pp. 137-138) (German & 

Bose, 1997, pp. 192-197) 

 

A Water-soluble system works on the same principle as all solvent based systems, but 

the solvent in this case is just normal water. For this debinding method to work the pri-

mary binder needs to easily be soluble in water yet also function as a filler material. A 

typical primary binder for a water-based system is the polymer polyethylene glycol or 

PEG for short. (Heaney, 2012, pp. 141-142) 

 

The work process of a water-soluble system is quite straightforward: the molded green 

parts are submerged into a water bath until the primary binder has solved away, after the 

debinding is complete the parts are moved into an air oven to dry. Since the process 



 

 

doesn’t involve any hazardous chemicals nor precarious elements its common practice to 

use “home-made” equipment although commercial automated systems are available. 

(Heaney, 2012, pp. 141-142) (German & Bose, 1997, pp. 192-197)  

 

Supercritical solvent debinding is a highly technical and modern method of debinding. 

The idea is to use a supercritical fluid as solvent for removing the primary binder. Super-

critical fluid is a state that a gas obtains when its subjected to high temperature and pres-

sure at the correct ratio. Under normal conditions when a gas is pressurized it transitions 

into a liquid. But if the temperature is increased as well as the pressure the gas will be-

come supercritical. Supercritical fluid displays properties of both a liquid and a gas. They 

can bear the properties of a liquid solvent yet are able to permeate into an objects as if a 

gas. This is a desired property since it will accelerate the debinding process. (German & 

Bose, 1997, pp. 197, 215) 

 

The biggest downside of this method of debinding is the specialized equipment needed. 

The high pressure needed for the process also restricts the size of the debinding chamber 

and hence only small productions are feasible. (German & Bose, 1997, p. 198) 

 

Common solvents used in supercritical debinding are carbon dioxide, propane and Freon, 

all of which are gases at room temperature. Carbon dioxide is the most frequently used 

due to its environmental friendly nature. After the molded parts have been subjected to 

the supercritical liquid carbon dioxide and the primary binder is extracted from the parts 

the debinding chamber is depressurized back to atmospheric pressure and the carbon di-

oxide evaporates away. 

The soluble binder of supercritical debinding systems are usually made of wax. At the 

end of the debinding the wax can easily be cleaned from the debinding chamber. (German 

& Bose, 1997, pp. 197-198) 

 

 



 

 

2.3.3 Catalytic debinding system 

Catalytic debinding systems utilizes a combination of thermal and solvent debinding 

mechanisms. The system works by breaking down the polymer chains of the primary 

binder with the help of a catalyst. The catalyst is a chemical designed to lower the tem-

perature at which a polymer is broken back into its monomer form. (Heaney, 2012, pp. 

134, 139-140, 453) (German & Bose, 1997, pp. 197, 205, 216) 

 

 The temperature during the debinding process is lower than the softening temperature of 

the binder, for most polymers it’s around 120°C. The amount of catalyst used is relatively 

low and is in the form of vapor inside the debinding chamber. Since the debinding occurs 

from contact between the binder and the catalyst-vapor the progression of debinding is 

moving uniformly from the outsides of the parts towards the core. This uniformed pro-

gression avoids structural strength differences within the parts, reducing the chance of 

distortion. Since the temperature on its own won’t radically alter the binders structural 

integrity it can provide support longer into the debinding process. Another attractive at-

tribute of not letting the debinding occur purely from thermal exposure is the lack of 

vapor-pocket buildup, vapor building up from inside of a part can lead to the part crack-

ing. The catalytic debinding process resembles more a solvent debinding systems than a 

thermal one. The mechanism for removing the binder is based on catalyst-vapor entering 

the prose it has created and allowing the permeation of decompositions to exit trough 

them. In contrast to other solvent systems the debinding-time and progression isn't re-

stricted by the permeation of the solvent but rather the depolymerization rate. (Heaney, 

2012, pp. 134, 139-140, 453) (German & Bose, 1997, pp. 197, 205, 216) 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Catalytic debinding oven 

 

Figure 6. Catalytic debinding oven. (author,2016) 

 

1. Acid: contains the acid catalyst. Nitric acid commonly used as the catalyst. 

2. Pump: transports the acid catalyst from its container to the oven camber. The pump 

also controls the catalyst concentration. 

3. Fan: helps to spread the temperature uniformly throughout the chamber, helps the cat-

alyst vapor spread evenly, creates an air flow that helps the vapor escape from the com-

ponents pores. 

4. Nitrogen inlet: lets in inert nitrogen gas replacing all the oxygen, eliminating the chance 

of explosions. 

5. Heater: heats up the oven chamber. 

6. Support trays: batch debinding ovens are usually equipped with a tray system for easier 

loading. The parts usually sit on a ceramic base which is custom design to provide better 

support. 



 

 

7. Burner: the hazardous vapors formed from the debinding are lead out through a chan-

nel. At the top of the channel sits a burner with a pilot flame. The flame ignites the gas, 

burning it away. 

8. Control unit: a computer containing the process parameters controls the gas valves, 

acid pump, fan and heater. 

 

Catamold feedstock system 

 

Catamold is a catalytic feedstock system produced by the chemical giant BASF. It is the 

most widely used feedstock system in MIM production. The Catamold feedstock is com-

prised of a metal powder and a binder just like most other systems. The binder consists 

of Polyoxymethylene (POM) as binder. (Heaney, 2012, pp. 134, 139-140, 453) (German 

& Bose, 1997, pp. 197, 205, 216) 

 

Polyoxymethylene, acetal or polyformaldehyde is a thermoplastic with high strength and 

stiffness as well as good shape retaining properties. Although POM is a tough engineering 

plastic its polymer chain is vulnerable to degradation catalyzed by acids. This vulnerabil-

ity is what the debinding and feedstock is designed around. Nitric acid is the catalyst 

Catamold systems use for the debinding. (PlasticsEurope, 2016) (BASF, 2009) 

 

The debinding process of Catamold feedstock follows the same technique as most other 

catalytic system. The molded parts are introduced to a nitric acid atmosphere of a tem-

perature between 100°C and 140°C. The combination of the nitric acid and the tempera-

ture depolymerizes the POM by breaking up the polymer-chain into its monomer. The 

monomer of POM is called formaldehyde and is in a gas state at temperatures above 

−19°C. As the primary binder turns into formaldehyde gas it evaporates out from the 

pores of the molded part, leaving only the polyethylene secondary binder and metal pow-

der behind. The produced formaldehyde is a toxic and explosive gas, to avoid explosions 

the debinding chamber has inert nitrogen flowing through it during the debinding. To 

reduce the risk of toxic exposure the debinding ovens have an exhaust system through 

which the produced formaldehyde gas is cleanly burnt out. (Heaney, 2012, pp. 134, 139-

140, 453) (German & Bose, 1997, pp. 197, 205, 216) 



 

 

Due to the nature of the formed byproducts Catamold feedstock require ovens intended 

specifically for the system. The debinding-ovens tend to be batch ovens with at least some 

degree of computer automation. The automation controls parameters such as: chamber 

temperature, process times, catalyst feed rate, nitrogen flow and the exhaust burner. 

(BASF, 2009) 

 

Once the POM primary binder has been removed the now “brown” part accommodates 

an interconnected pore system similar to an anthill. The Catamold system does not have 

two separate primary/secondary binder materials. (Heaney, 2012, pp. 134, 139-140, 453) 

(German & Bose, 1997, pp. 197, 205) 

 

Depolymerization process 

 

 
 

Figure 7. The solid POM polymer with a melting point of 180°C is turned into Formaldehyde monomer with boiling 

point of −19°C by a nitric acid catalyst. (author,2016) 

 

Table 3.  Example debinding systems (Heaney, 2012, p. 144) 

Primary Secondary Primary debind Debind 
Debind 
rate 

binder binder method 
Tempera-
ture  (mm/h) 

     

Wax-based  Solvent   

Paraffin wax Polyproplene  Heptane 50°C 1,5 

Synthetic wax Polyproplene  
Perchloroeth-
ylene 70°C 2 

     

     

     

     



 

 

Water-soluble     

Polyetyhlenglycol Polypropylene Water 40°C 0,3 

Polyetyhlenglycol Polyoxymethylene Water 60°C 0,5 

     

Catamold     

Polyoxymethylene Polyethylene Nitric acid 120°C 1,5 

 

2.4 Secondary debinding 

Once the primary binder has been removed from the components the following step is 

secondary debinding. The aim of the secondary debinding process is to remove the sec-

ondary “backbone” binder from the components. Following the primary debinding the 

parts have become brittle as they are only held together by the backbone polymer and 

friction between the powder particles. The secondary debinding is done by thermal deg-

radation in conjunction with the sintering process. 

 

The secondary debinding takes place in the sintering furnace during the early stages of 

sintering. Since the backbone polymer is the main thing keeping the parts intact the pro-

cess requires a few things to occur. The secondary debinding can be viewed as a transition 

phase. In this phase the structural responsibilities of the binder is shifted over to the metal 

powder itself. This transition needs to happen with as little impact on the components as 

possible. As the binder is being removed the sintering process needs to set in motion in 

order for the parts not to crumble. (German & Bose, 1997, pp. 2012-206) (Heaney, 2012, 

pp. 144-145) 

 

The temperature inside the sintering furnace is not held at a constant throughout the 

debinding/sintering process. The temperature is held at a few different steps with each 

their own goal. The debinding starts with a slow up-ramping of the temperature inside the 

chamber. Once the evaporation temperature of the primary-binder is achieved it's custom-

ary to hold for a while to ensure complete removal. As the temperature reaches the evap-

oration point of the secondary binder the temperature ramping is put on hold once again. 

As the secondary binder is subjected to the energy rich atmosphere its polymer chain stars 

breaking up, evaporating the material. As mentioned prior the primary debinding process 

has left the produced parts filled with an interconnected pore system. These tunnels help 



 

 

the vapor to escape and prevents vapor-pockets from being formed. The temperature at 

this step is high enough for the powder particles to start producing diffusion-bonds be-

tween each other. By the time the binder has completely evaporated the diffusion bonds 

will be strong enough to support the component. (Heaney, 2012, pp. 144-145) 

 

Following the removal of the secondary binder and the formation of diffusion-bonds the 

process continues by increasing the temperature inside the furnace once again. This time 

temperature will be high enough to start the sintering process. 

 

Table 5. Secondary debinding (Heaney, 2012, p. 145) 

Secondary debinding temperatures of common backbone polymers: 

Secondary binder Thermal debinding temperature  

Polypropylene  450-500°C  

Polyethylene 500-600°C  

Polyacetal  300-450°C  

 

Figure 8.  Closeup microscope image of the surface of a debound (green) MIM component. (Catamold 17-4ph) (author, 

2016) 



 

 

2.5 Sintering 

Sintering is the process that gives MIM parts their strength. Up until now the parts have 

only been held together by particle friction and binder-material. The sintering process will 

transform the rigid powder compacts into proper solid metal objects. After sintering the 

produced parts will exhibit strength, hardness, ductility, wear resistance, conductivity and 

even visual resemblance similar to parts produced by conventional metalworking meth-

ods. 

 

Sintering is a thermal treatment that makes particles bond together. By subjecting the 

debound components to high temperatures, bonds between the metal powder particles 

will start to form. As the process goes on the particles fuse tighter and tighter together 

eliminating the pores created in the primary debinding. At some point all the pores will 

be gone and all the particles will be interfused into one dense and solid mass. As a con-

sequence the components will undergo rather drastic shrinkage. Although the sintering 

process will produce a solid metal object, the temperature during the process will never 

actually exceed the melting point of the material. The sintering temperature is a bit below 

that of the melting temperature. During sintering the compacts will be subjected to im-

mense amounts of stress, but since the particle-bonds at the same time become stronger 

the impact won't be as substantial as during debinding. (German & Bose, 1997, pp. 219-

222) (Heaney, 2012, pp. 147-148) 

 

Although sintering plays a big role in the MIM process, it's not to be considered a forming 

method. Sintering is a primarily a thermal treatment method for densification. The mech-

anism which makes the particles fuse together is not exclusive to metals, ceramics and 

polymer can also be sintered. And the sintering process is part of all powder injection 

molding productions. 

2.5.1 Sintering mechanisms 

Nature strives for a state of minimal energy. This strive for reaching a lower energy state 

is also the driving force behind sintering. All surfaces have surface energy. By reducing 

the surface area the energy will also decrease. As two particles fuse together their sum 



 

 

surfacearea will decrease, lowering the energy. The particle shape also helps drive the 

sintering process. The high stress held within a curved surface provides additional surface 

energy to spherical particles, therefore spherical particles are an advantaged. (German & 

Bose, 1997, pp. 222-223) 

 

 

Mass transport mechanisms 

The natural vibration of atoms combined with natures pursue for minimal energy result 

in mechanisms which makes the particles fuse together. These mechanisms have been 

broken down and isolated into six unique mass transport mechanisms. The mass transport 

mechanisms describe the movement patterns and flow of atoms that occurs between two 

particles. (Heaney, 2012, pp. 148-149) (German & Bose, 1997, pp. 222-226) 

 

During the sintering process the initial inter-particle activity is achieved by surface 

transport mechanisms. As the name suggests the particle fusion starts from the surface of 

the particles. As the sintering progresses mechanisms inside the particles begin to activate 

as well. The mechanisms that occur from inside the particles are known as bulk transport 

mechanisms. (Heaney, 2012, pp. 148-149) 

 

 Progression of particle diffusion: 

#1. Assuming that the feedstock has provided sufficient packing density of metal powder 

the particles will still make contact with each other following the debinding. This initial 

contact area functions as the foundation for fusion. (Heaney, 2012, pp. 148-149) 

 

 

Figure 9. Initial particle contact (author,2017) 

 



 

 

#2. Neck formation and early neck growth: during the first stages of sintering atoms from 

the surface of the particles begin to move to towards the contact area between the parti-

cles. Eventually enough atoms will have cumulated for a “bridge” to have formed be-

tween the particles. The atom at the contact area will start to form bonds with atoms from 

adjacent particles. During this necking process, the mass transport flow of atoms is only 

derived from the surface of the particles, hence the center of the particles will still have 

their original distance to each other. (Heaney, 2012, pp. 148-149) 

 

 

Figure 10. Necking (author, 2017) 

 

The mechanisms that are behind the sintering at this stage are collectively known as Sur-

face transport mechanisms. The surface transport mechanisms are devised by three main 

processes: evaporation/condensation, surface diffusion and volume diffusion. (Heaney, 

2012, pp. 148-149) 

 

 

#3. Neck growth: As the sintering has gone on for a while and “necks” between the par-

ticles have been formed the process will enter its later neck growth stage. At this point 

the surface transport mechanisms will no longer be the predominant driving force. The 

process is now primarily done by bulk transport mechanisms. The bulk transport mecha-

nism moves atoms from inside the particles rather than the surface. The flow of atoms is 

still in the direction of the necks, making the necks grow yet more. (Heaney, 2012, pp. 

148-149) 

 

 



 

 

 

Figure 11. Neck growth (author,2017) 

 

The bulk transport mechanism that take place during the late stage neck growth are: plas-

tic flow, viscous flow, grain boundary diffusion and volume diffusion. In contrast to the 

last stage the bulk transport mechanisms will cause the centers of the particles to move 

closer to each other. The activation energy for the bulk mechanisms are higher than for 

surface mechanisms, therefor initiate later into the sintering. In addition to the neck 

growth, pores will also get eliminated. As a consequence of the neck growth and pore 

elimination shrinkage will be observed. (Heaney, 2012, pp. 148-149) 

 

 

Figure 12. Late stage neck growth (author,2017) 

 

The mentioned mass transport mechanisms are present to a varying degree, dependent on 

the material and the sintering conditions. The different mechanisms work with their own 

particular methodology although they are driven by more or less the same force. By un-

derstanding which mass transport mechanisms are affiliated with what material one can 

design an optimal sintering atmosphere for the material in question. (Heaney, 2012, pp. 

148-149) 

 



 

 

 

 

 

 

 

 

 

 

A rundown of the mass transport mechanism, where they are prevalent and their signifi-

cance: 

 

 

Figure 13. Three particles display of all the possible transport mechanisms (German & Bose, 1997, p. 225) 

 

Evaporation and condensation (E/C): this mechanism is most prominent in volatile 

materials, meaning materials which will easily evaporate. The evaporation and conden-

sation mechanisms impact is practically nonexistent in typical MIM production sintering. 

Water, sodium chloride and titanium oxide however do display this behavior, especially 

pressure atmospheres. High performance ceramics such as silicon nitrate also displays the 



 

 

property of the evaporation and condensation mechanism and can therefore be sintered 

through an evaporation/condensation based process. (Heaney, 2012, p. 149) 

 

Surface diffusion (SD): As the name suggests thins mechanism takes place on the sur-

face of the particles. This mechanism is of much significance in MIM sintering since it 

primarily applies to crystalline solids. In the strive for lower surface energy atoms on the 

surface of the particles bounce along imperfections and eventually end up at the contact 

area between to particles. The atoms will settle at the contact area, and as more and more 

atoms cumulate a neck between the particles will start to form. Surface diffusion occurs 

already at low temperatures which is highly beneficial. By forming necks between the 

particles early it will help keep the debound powder intact minimizing the chance of shape 

defects and collapse. (Heaney, 2012, p. 150) 

 

Volume diffusion (VD): This mass transport mechanism applies to crystalline material. 

It works by using crystallographic defects as means of atom migration. Vacancies and 

dislocations in the crystalline structure motivates “free atoms” to move around. Volume 

diffusion occurs both on the surface of particles and from within. The mechanism con-

tributes to neck formation as well as densification. (Ehrhart, 1991, p. 88) (Schilling, 1978, 

pp. 69-70) (Heaney, 2012, p. 150) 

 

Plastic flow (PF): This form of mass transport occurs due to imperfections in the crys-

talline structure. Vacancies of atoms in the crystal lattice will allow atoms to “leap” over 

from adjacent rows filling the vacancy. This leap will result in the adjacent row now 

having a vacancy, which will set of a chain reaction of moving vacancy around. This 

vacancy-moving combined with the natural vibration of atoms help the particles fuse to-

gether. Plastic flow has shown to become the dominant mass transport mechanism in the 

presence of external pressure. (Heaney, 2012, p. 150) 

 

Viscous flow (VF): this mass transport mechanism applies foremostly to amorphous ma-

terials, hence it plays little significance in metal sintering. Amorphous material lack any 

sort of structure in its atom arrangement. An amorphous material can be thought of as a 

slow flowing liquid even though it assumes the shape of a solid object. Subjected to a 



 

 

temperature increase the viscosity of an amorphous material will decrease. As the viscos-

ity decreases the material will start to fuse together. (Heaney, 2012, p. 149) 

 

Grain boundary diffusion (GB): the lattice structure of a crystalline material isn't per-

fect throughout the whole material. The material is comprised of crystalline chunks 

known as grains. The area between these grains is a grain boundary. The grains won't fit 

perfectly together thus producing a channel. This channel allows atoms to move around 

with relatively low effort. The grain boundary accommodates the elimination of pores by 

helping atoms flow to them as well as providing passage to the surface for vacancies. The 

mechanism is somewhat similar to volume diffusion but due to the particulars of the grain 

boundary it has a lower activation energy. (Heaney, 2012, p. 150) 

 

2.5.2 Shrinkage and densification 

The process of sintering fuses the powder particles together and eliminates the pores cre-

ated during debinding. Naturally these occurrences will have an impact on the dimensions 

of the parts. The process will result in significant dimensional shrinkage. This shrinkage 

is not to be considered as a problem or concern but rather a side effect of increased den-

sity, which ultimately is the end goal. The success of a sintering operation is often actually 

measured by the change in density. (Heaney, 2012, p. 158) (German & Bose, 1997, pp. 

232-238) 

 

After the debinding process and prior to being sintered the density of the MIM compo-

nents are at around 60- 70% of theoretical. Once the components have undergone sinter-

ing their density will have increased to near 100%. (German & Bose, 1997, pp. 220-221) 

 

Although the amount of shrinkage caused by sintering is substantial it occurs uniformly 

trough out the whole component. The sintering will retain the shape and proportions of 

the component and only makes it smaller. The sintering shrinkage must be taken into 

account already when planning the mold tool. MIM tools are designed to be over sized in 

order to compensate for the shrinkage that will take place during sintering. (Heaney, 2012, 



 

 

p. 158) (German & Bose, 1997, pp. 232-238). The amount of shrinkage is feedstock spe-

cific, and is primarily determined by solids loading. With a typical feedstock consisting 

of around 60% solid powder and 40% binder by volume, shrinkage around 15% can be 

expected. A feedstock with lower powder volume for example 40%, shrinkage closer to 

25% is more realistic. (German & Bose, 1997, pp. 234-235) 

 

Feedstock vendors present the feedstock shrinkage on their material data sheet. But to 

acquire truly accurate and reliable shrinkage amounts is by empirically testing. The pa-

rameters used and the equipment itself will influence the shrinkage. Dimensional toler-

ances are extremely accurate and repeatable once a reliable shrinkage factor is known. 

Small screw threads and other low tolerance features are regularly produced with metal 

injection molding. (Heaney, 2012, p. 158) (German & Bose, 1997, pp. 232-238) 

 

The dimensional impact from sintering can be foreseen by taking into account the shrink-

age factor (Y). The shrinkage factor is based on the feedstock solids loading and the final 

density as well as theoretical density of the material. The shrinkage factor can be calcu-

lated using a simple formula: (German & Bose, 1997, p. 101) 

 

Y=Shrinkage factor (%, 0.0), Φ =feedstock solids loading, ρ=final density, ρ t =theoret-

ical density 

(German & Bose, 1997, p. 101) 

 

As mentioned sintering shrinkage is not seen as a problem nor an error, but rather a direct 

effect of density increase. This signifies the direct relation between amount of shrinkage 

and sintering performance. By simply measuring the dimensional change caused by sin-

tering a good idea of the successfulness is gained. The final density can be calculated 

using the dimensional change and density of the debound component. (German & Bose, 

1997, p. 221) 

 

δL= change in length, Lo=original length, ρG =green density, ρS= sintered density. 



 

 

 

(German & Bose, 1997, p. 221) 

Figure 14. Closeup microscope image of the same surface as (fig.8) after sintering. 

2.5.3 Sintering equipment and atmosphere  

All metals are to some degree vulnerable to oxidation. When a metal object oxidizes its 

structural properties are affected adversely, hence oxidation should be avoided. MIM 

parts are very sensitive to oxidation during production, especially during sintering. Oxi-

dation is a chemical reaction between the surface of a material and the oxygen in the air. 

The reaction takes place only at the exposed surface of an object which for a typical me-

tallic object implies the outer surfaces. Following the debinding and prior to being sin-

tered the MIM parts are essentially loosely packed powder structures filled with pores. 

The actual surface area is incredibly high as well as reaches trough out the whole part all 

the way down into the core. The sintering process also requires high temperatures which 

accommodates and drives an oxidation reaction. (Heaney, 2012, pp. 157-158) (German 

& Bose, 1997, pp. 242-244) 



 

 

 

In order to protect the MIM parts from oxidation during sintering the process is done in 

an oxygen free atmosphere. By flushing out all the oxygen from inside the components 

and the sintering furnaces oxidation can be avoided. The oxygen filled air is replaced with 

a less reactive gas such as nitrogen or hydrogen. The type of gas used depends on the 

metals reactivity. For highly reactive metals such as titanium which will even react with 

nitrogen the sintering is performed in a vacuum or halogen atmosphere. (Heaney, 2012, 

pp. 157-158) (German & Bose, 1997, pp. 242-244) 

 

The gases used for the sintering atmosphere can chemically differ quite drastically from 

each other. They work by different principles and are metal specific. The most commonly 

used atmospheres are nitrogen, hydrogen, carbon gases, argon, air and vacuum. (Heaney, 

2012, pp. 157-158) (German & Bose, 1997, pp. 242-244) 

 

Nitrogen 

Nitrogen is an inert gas, meaning it doesn’t easily react chemically. The working principle 

of using nitrogen as sintering atmosphere is based around replacement of oxygen. The 

idea is to fill the furnace with inert nitrogen gas in order to avoid a redox reaction between 

the metal powder and the surrounding atmosphere. Although nitrogen doesn't react with 

the metal it won't completely prevent oxidation from occurring. The elements found in 

the metal will start oxidation-reduction reactions with each other. For example, the carbon 

in carbon-steel will be consumed in a reaction with the oxygen found in the metal powder. 

Carbon containing steel can be nevertheless sintered in a nitrogen atmosphere by adding 

a calculated surplus of carbon to the powder mix. Typical metals sintered in nitrogen 

atmosphere are carbon steels and high alloyed carbon containing steels. (Heaney, 2012, 

pp. 161-166) (German & Bose, 1997, pp. 242-248) 

 

 

Hydrogen 

Hydrogen is regularly used as a sintering atmosphere. The principle behind a hydrogen 

atmosphere follows nothing like that of nitrogen, and in fact is quite the opposite. While 

nitrogen aims to stop reactions from taking place hydrogen relies on reactions occurring. 

The idea is to use hydrogen as a reductant and letting it get oxidized instead of the metal 



 

 

parts. By filling the sintering furnace with hydrogen gas any reaction between the differ-

ent metal components are circumvented. (Heaney, 2012, pp. 157,161-166) (German & 

Bose, 1997, pp. 242-248) 

 

 

For example, when sintering stainless steel a redox-reaction between the chromium and 

carbon would take place if hydrogen wasn't present. When sintering low carbon stainless 

steel and other low carbon alloys hydrogen is the preferred atmosphere. With that said 

stainless steel is regularly sintered commercially using nitrogen, resulting in decreased 

properties. (Heaney, 2012, pp. 161-166) (German & Bose, 1997, pp. 242-248) 

 

 

Argon 

The inert noble gas argon has a similar working principle as nitrogen, it relies on replacing 

oxygen. Argon is usually used for the most reactive metals. These metals contain alloys 

which won't get reduced by hydrogen and will react with nitrogen. Another reason for 

using argon instead of nitrogen is to avoid nitrogen pick up. Titanium and some super 

alloys require an argon atmosphere to be sintered properly. (Heaney, 2012, pp. 161-166) 

(German & Bose, 1997, pp. 242-248) 

 

 

Air/Vacuum 

Some rare metals do not require a special atmosphere and can be sintered with normal air 

in the furnace. This is primarily only the case for noble metals like gold and platinum. 

 

Removing the atmosphere altogether is also a way to protect the metal from oxidation. 

By producing a vacuum inside the furnace the oxygen will get removed. This method is 

used for the most reactive metals. Vacuum and argon atmosphere share the same material 

base. Expensive vacuum pumps and some additional equipment are need for this method. 

A more significant downside with sintering in a vacuum is the lack of proper heat distri-

bution. Without any atmosphere, heat is transferred purely by radiation, so the distance 

to heating elements etc. will have bigger impact. No convection or other flow is present 



 

 

either to help spread the heat. (Heaney, 2012, pp. 157, 161-166) (German & Bose, 1997, 

pp. 242-248) 

 

2.5.4 Equipment 

The sintering process is done with one main piece of equipment, the sintering furnace. 

The furnaces job is to provide and contain the sintering atmosphere. By providing a stable 

and repeatable sintering environment a successful MIM production becomes likely. Heat-

ing, atmosphere control and timing are the main contributions of the furnace. (German & 

Bose, 1997, pp. 239-241) 

 

The fundamental driving force behind sintering is heat. This is the primary objective of 

the furnace. Heating elements inside the furnace chamber supply heat for the process. The 

furnace walls provide an isolating enclosure, keeping the heat contained and constant. 

The heating elements are controlled by predetermined values fed by a computer. Temper-

ature measurements are collected from inside the chamber and processed by the control 

computer which reacts accordingly. (German & Bose, 1997, pp. 239-241) 

 

The atmospheres main purpose is to protect the metal parts from oxidation during sinter-

ing. Atmosphere control refers to the regulation of gases inside the furnace chamber. The 

furnace chamber separates the MIM parts from the outside air and acts as a container for 

a more suitable atmosphere. The furnace has gas lines connected to it. The furnace com-

puter unit controls gas valves while measuring units inside the chamber collect data on 

oxygen, hydrogen, nitrogen, dew content, chamber pressure etc. The computer acts ac-

cording to its cycle program and regulates based on gathered measurements. Aside from 

the furnace chamber itself another atmosphere related piece of equipment is a vacuum 

pump. It is essential for vacuum sintering but is also used as part of oxygen removal with 

other atmospheres. (German & Bose, 1997, pp. 240-242) 

 

Sintering furnaces come in two different types; batch and continuous. Although both have 

the same work principal and objective they look very different to each other. A batch 

furnace is a sealed (usually cylindrical) chamber with a robust door at one end. And a 



 

 

continuous furnace is a long construction with a conveyor running through it. A continu-

ous furnace resembles more a production line than a single piece of equipment. The di-

viding factors for choosing type of furnace are: production size, metal reactivity and pro-

duction flexibility. (German & Bose, 1997, p. 240) 

 

A continuous furnace is constructed of a few different chambers with a conveyor mecha-

nism between them. Typical chamber layout could be: pre-heating zone, sintering zone, 

cool down zone. The idea is to maintain constant automated production while minimizing 

down time. The foremost reason to use a continuous furnace is production size. If a large 

production of the same component and material is expected continuous is usually the way 

to go. The different cambers won't be perfectly sealed to the outside, so gas consumption 

is relatively high as well oxygen contamination. Vacuum atmosphere is seemingly also 

not possible. The large size of the furnace and heat-spill will also set certain requirements. 

(German & Bose, 1997, pp. 240-241) (Heaney, 2012, pp. 171-173) 

 

The batch furnace consists of one single chamber. It is less automated than a continuous 

furnace and requires manual restocking and unloading after each batch. The batch furnace 

doesn't utilize any sort of conveyor mechanism but simply has a tray rack in the center of 

the chamber. The furnace chamber is completely airtight and sealed off by a vault style 

door. This allows for better atmosphere control, and there for less oxidation. Most batch 

furnaces are capable of withstanding high pressure as well as vacuum. This entails pres-

sure assisted sintering and vacuum sintering are viable options. Although a reducing or 

inert gas is used, batch furnace cycles often include a vacuum stage to lower oxygen 

content. The batch furnace is best suited for a small production size of varying compo-

nents. Each type of product and material can have its own tailor made sintering cycle, 

optimizing results and run time. (Heaney, 2012, pp. 174-175) (German & Bose, 1997, p. 

239) 

 

It’s not only a suitable atmosphere that is required for successful sintering, the furnace 

material itself has to be compatible. Atmosphere, compact material, heating element ma-

terial and furnace material all have to be a suitable combination. If the atmosphere reacts 

with the chamber wall or heating elements they might get damaged. A reaction between 



 

 

the furnace and atmosphere can also produce chemistry which can affects the MIM com-

ponents adversely. Randall M. and Animesh Bose (1997:242) present in the book Inject-

ing Molding of Metals and Ceramics a PIM example where AlN sintered in nitrogen with 

molybdenum heating elements resulted in 98% density and only 78% when using graph-

ite. The two material regularly used for furnaces are graphite and refractory metal. In 

general, a refractory metal furnace tends to be more tolerant but also more expensive to 

acquire.  A refractory batch furnace is therefor the most flexible and optimizable type of 

sintering furnace. 

 

Figure 15. Batch sintering furnace (author,2017) 

2.5.5 Cycle 

The sintering cycle refers to the heating pattern a furnace follows during sintering. Tem-

perature ramping, holds and cooldown are all part of a sintering cycle. The cycle essen-

tially conveys a temperature over time relationship. It describes the rate of heating, cool-

ing and duration of holds as well as the temperature. Each material has its own sintering 

cycle. The temperature holds in the sintering cycle have specific goals. For example the 

early holds can be to eliminate leftover binder-material or burnout of carbon residue. The 

later holds tend to correspond with some mass transport mechanism. The holds will also 

insure that the whole MIM part has reached the same temperature. (German & Bose, 

1997, pp. 254-255) 



 

 

 

 

 

 

 

Example of sinter heating cycle: 

3°C/min  300°C + 1h hold 
3°C/min  500°C + 1h hold 
3°C/min  600°C + 1h hold 
5°C/min  700°C + 2h hold 
5°C/min  800°C + 2h hold 

5°C/min  900°C + 2h hold 
5°C/min 1050°C + 1h hold 

(Heaney, 2012, p. 456) 

 

The cycle is primarily based on the type of material that’s being sintered. Although to a 

lesser extent other factors such as particle size, part size and part geometry will influence 

sintering behavior as well. To truly have an optimized production all factors need to be 

taken into consideration. By using personalized cycles for each product, the best proper-

ties and shortest run time can be achieved. (German & Bose, 1997, pp. 254-255) 

 

 Empirically testing out different cycle adjustments is the foremost way to find optimal 

parameters. Although the cycle usually refers to temperature and timing, atmosphere con-

trol may also be included. The cycle can for example start with producing a vacuum inside 

the furnace chamber. The concentration of protective gas and pressure inside the furnace 

is included in the cycle instructions. The cooldown and ventilation at the end are also all 

part of the sintering cycle. (German & Bose, 1997, pp. 254-255) 

 

The whole sintering process is automated and controlled by a computer unit. The com-

puter follows a set of instructions fed by the operator. The instructions often are in the 

form of a table not much different from a Microsoft Excel sheet. The table consists of a 

parameter and its corresponding value and a time period. Measuring units inside the fur-

nace provides info to the computer which in order can respond by sending more current 

to heating elements or by opening gas valves. (German & Bose, 1997, pp. 254-255) 

  



 

 

 

3 PROBLEMS AND OPTIMIZATION 

The whole metal injection molding process is long and consists of several different ele-

ments. There's a lot which must go right and little that can go wrong in order to produce 

good parts. The extensiveness of the process and the little room for error makes problems 

likely. It's crucial to be able to identify the source of the problem and know how to fix/cir-

cumvent it. By ironing out the causes of problems the production should run smoothly 

and produce consistent identical parts. One shouldn't just settle for a working MIM pro-

duction but try to get it to be as optimal as possible. An optimal MIM process could for 

example entail: optimal product properties, consistency, production time or a combina-

tion/compromise of them all.  

 

Whether searching for usable MIM parameters or improving on old ones it’s important to 

inspect the result after each step. Errors caused during molding may only show up later 

at singeing, and it gets harder to pin point the cause the further the process moves along. 

A problem can be categorized either by its cause or how it manifests itself. (Heaney, 2012, 

p. 235) 

 

Problems associated with MIM and the optimization of the process are closely linked 

together. The best way to find better process parameters is by empirically testing out ad-

justments. As one starts fiddling around with the parameters of a working process prob-

lems are likely to arise. The following scenarios could for example occur: 

 

Cut down on debinding time → leaves binder behind → cause compacts to crack 

during sintering 

 

Cut down on debinding time + increase temperature → remove all binder + causing 

heat distortion to compacts during debinding 

 



 

 

As some aspects improve others might suffer, for example if the mechanical properties 

improve the success rate might suffer. In other words there’s a difference between opti-

mization of product properties and optimization of the process. Ultimately it’s a combi-

nation of both aspects, where the product quality is the priority. Optimizing the process 

essentially entails not wasting time and resources as well as not compromising quality. 

3.1 Molding problems 

Molding is the first step of the MIM process and problems can occur here already. Some 

of these problems take the form of typical molding defect while others can appear at a 

later stage in the process or only at final quality control. The molded components will 

serve as the foundation for the remaining steps, and just like a house with a poorly made 

foundation the whole thing might come crumbling down. The sooner defects are detected 

the less parameters are involved making it easier to fix the problem. There are of course 

also more immediate defects which can be observed prior to debinding and sintering. 

(Heaney, 2012, p. 235) 

3.1.1 Molding defects 

MIM molding defects are largely the same as the ones encountered in traditional plastic 

injection molding. The use of improper parameters such as temperature, pressure and shot 

size are all common causes of problems in traditional injection molding and they apply 

to MIM as well. The mold tool itself can cause defects by consisting of complex geometry 

or lacking adequate air channels. Most minor defect can be resolved by altering the tem-

perature-time-pressure relationship. (Heaney, 2012, pp. 129, 238)  

 

Incomplete fill  

As the name suggest this defect is related to the mold cavity not filling up completely and 

there by a defected part is produced. This defect is caused by the molten feedstock not 

reaching everywhere inside the cavity. The reason for this could be that the gate gets 

solidified before the cavity is completely filled or that the shot size is simply too small. 

Increasing the shot size, packing pressure, injection speed or molt temperature can fix the 

incomplete fill. Improving the molds air channels or increasing mold temperature might 



 

 

also be solutions. If the problems stem from material feeding, the issue might lie in the 

with feedstock or recovery backpressure. (German & Bose, 1997, pp. 155, 162-164) 

(Heaney, 2012, pp. 130, 238) 

 

 

 

Flash 

Flash is the buildup of excess material around the molded part. This is caused by material 

leaking in between the two mold halves. This usually happen when the pressure inside 

the mold is greater than the force keeping the mold together. By increasing the clamping 

force or decreasing injection speed and pressure, the mold should stay sealed better. The 

tool quality will also influence flashing. An uneven or dirty mold surface prevents a 

proper seal from forming, so using high quality clean tools are necessary. Using higher 

viscosity feedstock can also help flash from forming. Flash can also be cut off or ground 

away, this should be done prior to debinding. (Heaney, 2012, pp. 130, 242) 

 

Voids 

The formation of voids in the molded parts is usually caused by gas being trapped in the 

cavity. The source of this gas can be the binder-material itself or just air trapped on mold 

closing. Possible remedies could be: increasing hold pressure or decreasing injection 

speed. Both work by aiding the ventilation of trapped gas. Increasing the mold tempera-

ture might also help. If tool redesign is an option moving the gates or increasing their size 

can also remove this defect. (Heaney, 2012, pp. 131, 242) 

 

Weld lines 

This defect occurs when molten feedstock inside the mold is split up into different direc-

tions and comes together thereafter. At the point where the molten feedstock fronts collide 

a welding line defect can form. If the fronts aren't hot and runny enough the material won't 

bond back together properly. This will create a weak point in the molded part. The feed-

stock being too cold is essentially the cause of this defect. By making sure the feedstock 

is hot enough at the point when the fronts collide this defect can be avoided. Increasing 

mold and/or feedstock temperature can be a solution. Another approach is to decrease the 

fill time and thereby avert the feedstock from cooling down and becoming viscous. This 



 

 

can be done by increasing injection speed or enlarging the gates. (Heaney, 2012, pp. 131, 

240-243) 

 

 

 

 

Sinks 

Sinks are defects that taken the shape of indents on a molded part. They are not caused 

by incomplete fill but uneven shrinkage during cooling. By increasing the packing pres-

sure and/ or packing time the component is more likely to keep its correct shape while 

solidifying. Reducing mold temperature can also provide for a more uniformed shrinkage. 

(Heaney, 2012, pp. 131, 142)  

 

Cracking 

If the parts come out of the mold as cracked pieces it's most likely an ejection issue. MIM 

parts are more brittle than pure polymer ones so the ejection is more critical. Increasing 

the mold heating or using less packing pressure will help with releasing the parts from 

the mold, lowering stress from ejector pins. The brittle nature and heavy weight of the 

metallic components will put them at risk of cracking after injection too. As the mold 

opens and the parts are ejected they should land as gently as possible. This might require 

construction of additional ramps and cushioning for the part collector system. (Heaney, 

2012, p. 130) 

 

Warping 

Warping in the molded part is either caused by an ejection issue or by uneven pressure in 

the component. Since the feedstock is partially metal powder the parts will accumulate 

heat well, which is problematic during ejection. Not only can ejection cause the hot 

molded part to crack but also warp. By increasing cool time or reducing mold heating, 

warping should stop. A pressure gradient within the part might also cause the part to warp, 

this can be corrected by decreasing the hold pressure. (Heaney, 2012, p. 131) 

 

Powder/Binder separation 



 

 

This defect entails that the powder and binder of the feedstock get separated from each 

other during injection. The low viscosity binder and the heavy powder particles behave 

differently when passing a narrow point in the mold. The binder flows easily trough while 

the powder moves slowly. This will cause a higher concentration of binder to collect at 

far corners of the component while the powder will collect near gates and narrow point. 

This is primarily a cosmetic issue, but in extreme cases it can influence the final strength 

of the MIM part. By reducing the injection speed the feedstock components won't separate 

as easily. (Heaney, 2012, p. 239) 

3.2 Debinding problems 

It’s during debinding that the parts experience the largest amount stress of the MIM pro-

cess. Removing the binder will expose any molding defect by amplifying them, poten-

tially removing all structural integrity, resulting in collapse. The heavy weight of the 

metal powder make the components prone to deformation, but by having a well molded 

part and using the correct parameters the debound part should come out as intended. To-

wards the end of the debinding cycle the pre-sintering starts to set in, strengthening the 

brittle compacts. Debinding is a long and time consuming process, and it should be done 

slowly to avoid defects. Although the process should progress slowly the long duration 

will also signify a room for improvements, speeding up the process by just a few percent 

a lot of time can be saved. (Heaney, 2012, pp. 243-244) (German & Bose, 1997, p. 210) 

 

3.2.1 Debinding defects 

Defects that occur during debinding are caused by the stresses involved. It's not only 

gravity and the decreasing amount of binder that makes the components vulnerable do 

defects during debinding. The binder extraction itself causes stress inside the parts. And 

the harsh energy rich atmosphere accommodates for uneven thermal expansion and other 

problems. In general the most common debinding defects are cracking and distortion. The 

type of defect dependents on the debinding method. Thermal and solvent debinding tend 

to have different defects. A common debinding method is to utilize both thermal and 

solvent debinding in a two stage debinding process. With a two stage debinding process 



 

 

the problems of both methods are faced. Debinding is in the middle of the molding-

debinding-sintering chain and therefor any minor defect can cause problems during the 

following sintering process. Defects will also of course have been inherited from previous 

molding step and may only show up now. (Heaney, 2012, pp. 243-244) (German & Bose, 

1997, p. 210) 

 

Thermal debinding  

The number one cause of thermal debinding defect is too rapid heating. The process needs 

to be very slow in order to avoid defects, even several days long debinding times are not 

unheard of. Thermal debinding works by degradation of binder components into gas. If 

the gas buildup is big and proper pores channels have not formed yet pressure inside the 

parts will create stress. The pressure buildup can lead to cracks and blisters. By decreasing 

the heating rate the gas buildup won't be as rapid, solving the problem. If the parts end up 

distorted or bent the solution is likely to be the same. By utilizing some sort of ceramic 

support for the parts, risk of distortions occurring is reduced. A good air flow around the 

parts will help remove the formed gas faster thereby reducing the pressure inside. 

(Heaney, 2012, pp. 245-248, 259) (German & Bose, 1997, p. 211) 

 

Solvent debinding 

Most defects that occur in solvent debinding aren't directly related to the debinding pa-

rameters. Feedstock constituency and molding are primarily the cause of the defects. The 

binder components may not be perfectly compatible with each other or the solvent. If 

some binder component gets extracted at an ill-fitting time the part can lose its structural 

integrity. An improper combination of backbone polymer and solvent is also a cause of 

defects. Solvent entering the binder causes the polymer to swell, the larger the expansion 

the greater the stress. A large enough expansion may lead to permanent defects. The most 

commonly encountered defects in solvent debinding are slumping and cracking. It's likely 

that these defects can't be mended by adjusting process parameters since they are likely 

cause by binder chemistry or high molding pressure. Adjustments to the molding cycle 

or switching feedstock/solvent will sort these problems. (Heaney, 2012, pp. 244-245, 249) 

(German & Bose, 1997, p. 211) 

 

 



 

 

Catalytic debinding  

The catalytic debinding method is more advanced and more gentle than thermal or solvent 

debinding. Catalytic debinding has a higher tolerance for the parameters and is less likely 

to produce defects. The catalytic process is a combination of both thermal and solvent 

debinding. But it doesn't directly suffer from the problems of each. In contrast to thermal 

debinding the catalytic method creates gas from the surface inwards, meaning trapped gas 

won't a problem. The temperature during the process isn't very high as well so thermal 

distortion is not likely. The swelling problem will also not be as prominent in catalytic 

debinding since all the action takes place on the surface. The problems that do occur are 

basically a combination of both thermal and solvent although they are more rare. (Heaney, 

2012, p. 244) 

3.3 Sintering problems 

The sintering process in last stop in the MIM cycle. It's now that the components get their 

final strength and the results are reviled. Since this is the final process this is also where 

minor defects introduced during previous processes will show up. The sintering working 

principle is based on densification and shrinkage. Accordingly the most common sinter-

ing defects will also be related to dimensional control. Another typical cause of sintering 

problems is the atmosphere. For a successful sintering atmosphere control is essential. 

This requires the gas chemistry and concentration to be correct. In addition to dimensional 

and atmosphere related defects the familiar molding and debinding defects: cracking, dis-

tortion and blisters etc. are all common during sintered as well. (German & Bose, 1997, 

pp. 249-250) 

3.3.1 Sintering defects 

Dimensional defects 

If the sintered part comes out as too large or small it's usually viewed as a tool design 

error. By not foreseeing exactly how much larger the mold should be designed the pro-

duced part will have incorrect dimensions. The size can be adjusted to some degree by 

increasing or reducing the sintering temperature. If the part doesn't shrink uniformly 

throughout, it's likely to be caused by uneven heat exposure. One area of a part might be 



 

 

in the “shadow” of another part. This can be resolved by simply moving the piece. In-

creasing the sintering time can also be a cure. This allows the temperature to spread 

evenly throughout the part. If the shrinkage isn't uniformed in height and width it's prob-

ably due to gravity. By adding extra support, this problem can be avoided. (German & 

Bose, 1997, pp. 249-252) 

 

Atmosphere related defects 

Since the MIM parts are so chemically vulnerable during sintering, it important to use a 

suitable atmosphere. A lot of sintering defects stem from having improper chemical re-

actions between the metal parts and the atmosphere. The redox reaction that will take 

place should be accounted for. If the concentrations aren't correct defects will occur. If a 

stainless steel loses to much of its carbon it indicates that a reaction with oxygen has taken 

place. This can be corrected by either using a surplus of carbon of deceasing the oxygen 

in the atmosphere. Or if the oxidation isn't uniformed the gas flow has to be increased or 

the parts moved around. If the parts get oxidized, oxygen might be leaking into the sin-

tering furnace or the atmosphere doesn't contain enough reducing agent. (German & Bose, 

1997, pp. 241, 245) (Heaney, 2012, pp. 262-263) 

 

Low density 

If the density after sintering isn't as high as desired, adjusting the heating rate can alter 

the densification. By increasing the peak sintering temperature there should also an in-

crease of density, or alternatively increasing the length of the peak temperatures duration. 

If a sintered part has variations in density it's likely caused by uneven heating of the fur-

nace. (German & Bose, 1997, p. 252) (Heaney, 2012, p. 262) 

 

Low properties 

Low properties refers primarily to poor mechanical strength of the produced parts. This 

could be caused by incomplete densification. Increasing the sintering temperature should 

remedy this. Conversely too intense heating produces poor properties too due to grain 

growth. Grain segregation during cooling can also occur, this has a negative impact on 

the properties. Adjustments to the cooling parameters should fix it. Finding a suitable 

sintering cycle will help with most strength related defects. (German & Bose, 1997, pp. 

252, 254) 



 

 

 

Large pores 

If the sintered parts have large pores or hole in them it could either be due to a feedstock 

mixing problem or oversintering. If oversintering is the cause it's related to grain growth. 

Reducing the heating rate should ease grain growth. (German & Bose, 1997, p. 252) 

 

Cracking  

Too rapid heating is a common cause of crack formation. By decreasing the heating rate 

at early sintering the components will have the time to build up strength before they get 

subjected to great stress. The formation of oxides can cause the MIM part to crack as well. 

Using a suitable atmosphere will minimize oxidation. (Heaney, 2012, p. 259) (German & 

Bose, 1997, p. 251) 

 

It's likely also that the cracks that appear following sintering may have been caused al-

ready during molding, the sintering stress just makes the defects more pronounced. 

 

Distortion 

Various reasons can cause the parts to get distorted during sintering. A common cause is 

related to gravity and the component support. By orientating the parts in a way that pro-

vides the most amount of support for the heaviest areas the risk of distortion is lower. A 

product-specific support tray minimizes distortion the most. A support that follows the 

part shape grantees support for the whole part. Although a large support surface is gener-

ally a good thing it can be the cause of distortion as well. The shrinkage that occurs during 

sintering means that the part will have to “move” in relation to the surface. If the friction 

between the support surface and part surface is too large it will cause distortion to the 

component shape. This can be fixed by using a smoother support surface. (German & 

Bose, 1997, p. 251) 

 

If the sintering cycle goes through too high temperatures and too much of the metal enters 

a liquid phase the structural integrity of the part is lost. This means distortion is very 

likely. An uneven heating can cause distortion as well. By making sure that temperature 

is as uniformed as possible thermal gradients are less likely. 

 



 

 

3.4 Monitoring 

Monitoring refers to the practice of analyzing the MIM parts progression and final result. 

The primary aim is to observe and diagnose defects. It also provides a numerical value 

on the success rate of the MIM process. Since metal injection molding is such a long 

process it's important to keep a close watch on how the process progresses. After each 

step a set of analysis methods can be applied to evaluate the success of the previous pro-

cess. If a problem or defects arises a good monitoring practice will provide essential in-

formation resulting in a quick fix. Constant monitoring is crucial when changes to process 

parameters are being done. In other words optimization goes hand in hand with good 

monitoring practice. Analysis methods are often labor intensive as well as time consum-

ing this can make them quite costly. Once a good and reliable process setup is found 

monitoring becomes less important. This is especially the case for simple products with 

low consequences from failure. 

 

Although the end result is what actually only matters each individual process has its own 

set of criteria and analysis methods. This helps identify the source of a defect rather than 

just a defected end-product. The analysis techniques aim to answer two main questions: 

how well did the process accomplish its task and did any defects get formed. For example, 

debinding analysis seeks to answer the amount of binder removed as well as the formation 

of cracks and weld lines. If both are within their tolerances it can be assumed that the 

debinding process will not be the reason for subsequent problems or poor end results. 

(Heaney, 2012, pp. 254, 258) 

 

3.4.1 Molding 

The molding process objective is to produce the shape and foundation for the end-product. 

The degree of success is measured by how well the molded part has accomplished the 

desired shape and the dimensional accuracy. By visually looking at the molded part and 

measuring its dimensions one can conclude how well the molding went. A better and 

more effective way is by simply measure the parts mass with a scale. A variation in mass 

will indicate an abnormality in volume. If the volume is incorrect it is caused by a molding 



 

 

defect or a dimensional error. For a more precise measure of density a pycnometer instru-

ment can used. (Heaney, 2012, pp. 260-263, 259) 

 

The injection molding machine itself functions as type of monitoring instrument. The 

machine will monitor parameter values and changes throughout its cycles. If a value 

doesn't stay within its given tolerance the parts will be disqualified. Typical parameters 

that should be paid extra attention to are variations in shot size, screw torque and switch-

over pressure. (Heaney, 2012, pp. 260-263, 259)  

 

A visually inspection is sufficient enough to detect most molding defects. Cracking, blis-

ters weld lines, powder/binder separation and voids all have a visual element to them 

which can easily be spotted if they are sever enough. If the products are intended for high 

consequence use such as medical or aerospace x-ray analysis could be implemented. 

(Heaney, 2012, pp. 261-263,259,260) 

3.4.2 Debinding 

The debinding process is designed to remove the binder from the molded part. So logi-

cally the test associated with debinding are aimed to measure the extent to which binder 

material has been removed. The amount of binder removed can be measured using a scale. 

By measuring the weight loss caused during debinding and comparing it with the feed-

stock powder/binder weight ratio the amount of binder remaining can be calculated. 

 

The most common debinding defects are blisters and cracks. A visual inspection is suffi-

cient method for detecting them. Thermal debinding as well as a pre-sintering step will 

both cause some shrinkage to occur. To make sure that the magnitude of the shrinkage is 

according to what’s intended a linear measurement can be done. A linear measurement 

can also determine if any distortion or warping has happened. (Heaney, 2012, pp. 

262,259,260) 



 

 

3.4.3 Sintering 

The goal of the sintering process is to give the MIM parts their strength. It accomplishes 

this by removing pores and fusing powder particles together. This will result in an in-

creased density. By measuring the density of the part and comparing it with the theoretical 

density of the material the extent of the sintering can be determined. A pycnometric test 

is a common way to study the density. A visual inspection of the parts will expose the 

common defects such as voids and cracks. By looking at the microstructure one can de-

termine if the parts are getting over- or undersintered. A microscope will show how well 

the grains sit together as well as any grain boundary growth. Pores, voids and other small 

defects can also be detected using a microscope. 

 

Although the shrinkage associated with sintering isn't a defect in itself, improper dimen-

sions are. Sintering is the last step in the process and it provides the final dimensions to 

the part. A linear measurement of critical dimensions can be done to make sure the parts 

satisfy their required tolerances. (Heaney, 2012, pp. 262-263,259,260) 

3.4.4 Inspection / Final testing 

A final inspection of the end result is common practice. The extent of the inspection de-

pends on how critical the parts end use is. For high consequence parts, analysis methods 

such as x-ray can be used to make sure they are defect free. For most components a quick 

visual inspection and a linear measurement of the part size is sufficient. Application spe-

cific test such as surface finish or corrosion resistance are also done as part of the final 

inspection. 

 

Destructive tests are the best way to makes sure the produced parts satisfy the mechanical 

properties required. Tensile testing and three-point bending are good example of this type 

of testing. These tests won't identify defect, but will answer the ultimate and most im-

portant question: are the produced part strong enough. By pushing the parts beyond their 

limit we will learn how strong they truly are. The strength of a MIM part comes from how 

well it has been produced, in other words the weakness of a MIM part is the sum of all 

the defects combined. Tensile testing and three-point bending tests are highly valuable 



 

 

whenever parameters have been changed or a new part is put into production. (Heaney, 

2012, pp. 259, 262-263) 

 

4 OPTIMIZATION OF PARAMETERS 

 

With a grasp on the MIM defects and monitoring methods the next step is optimization. 

Optimization of the MIM process means finding the most efficient parameters. The prem-

ier goal is usually to minimize the process run-time while not compromising quality. This 

can be accomplished by cutting away excessive run-times or by increasing the intensity 

of the process. Another optimization goal could be merely focused on improving part 

properties. 

 

Finding the optimal process parameters is a highly empirical task. Knowledge about the 

feedstock characteristics and behavior will only provide basic guidance for setting up a 

debinding process. Same goes for singeing and the mass transport mechanisms involved. 

Since an empirical trial and error approach is how the optimization needs to be done a 

good understanding of defects and monitoring techniques outweigh the knowledge of the 

exact mechanics behind the process. 

 

The best way to approach the optimization is by focusing on one process step at a time. 

If changes are done to both singeing and the debinding process at the same it's harder to 

evaluate the effect of the adjustment. Also, if parameters of the debinding process are 

changed the monitoring should be focused on debinding related defects. By focusing on 

a low number of parameters at a time the result are going to be more valuable and the 

variables less overwhelming.  

 

The best indicator for how the optimization is progressing are defects. By analyzing de-

fects when they appear and measuring mechanical strength of the finished parts an indi-

cation of which direction the process in moving can be concluded. Hence the great im-

portance of monitoring techniques and ability to recognize defects and their potential 

causes. 



 

 

4.1.1 Molding 

Optimization of the molding parameters usually aims to improve properties of end prod-

uct or to make the injection molding as reliable and defect free as possible. Cycle-time 

reduction is usually not a high priority since it's quite insignificant compared to the overall 

duration of the whole MIM process. By finding a reliable set of parameters which produce 

defect free part a more significant time-save is achieved. It is critical to have a molding 

setup that's defect free since it's the first step in the MIM process and everything will be 

built on this foundation. The same goes for part properties, the molding step has surpris-

ingly large influence on the end products mechanical properties. 

 

An example that shows how properties may be optimized by molding parameters is the 

research paper: Optimization of Injection Moulding Process Parameters in MIM for Im-

pact Toughness of Sintered Parts by P. Pachauri and Md. Hamiuddin. The paper high-

lights how the impact strength of a MIM part can be improved just by optimizing molding 

parameters. The research reveals that the biggest factors on impact strength are injection 

pressure, mold temperature and powder loading. 

 

Figure 16. Mean impact energy absorbed (Pachauri & Hamiuddin, 2015) 

 



 

 

Each product will have its own optimal set of molding parameters. Part size, geometry 

and feedstock are only some of the factors that will have influence on parameters. The 

parameters found in the research paper might also only specifically improve impact 

strength and not the other mechanical properties. 

4.1.2 Debinding 

Debinding is a long process that subjects the molded parts to high internal stress. The 

main focus of an optimization would be on minimizing occurrence of defects and cutting 

down process duration. As there are many different debinding methods the parameters 

involved can be vastly different. One thing they all have in common is the long run-time. 

They're all also prone to producing defects because of the high stress involved with ex-

tracting binder. The high likelihood of defects becomes more evident as parameters are 

being readjusted and optimized. A common contradiction that occurs when optimizing 

any debinding method is the conflict between minimizing process duration vs. minimiz-

ing defects. In a sense, each goal is a cause against the other. 

 

In the case of minimizing process duration, the first step is to cut off any excess run-time, 

and the second step is to increase debinding intensity and thereby cutting down time even 

further. An increase in intensity will create greater stress resulting in increased risk of 

defects. 

cut down time → binder left → increase intensity 

increase intensity → cracking, distortion, other defects 

 

The idea is to find an optimal “middle ground” which doesn't produce defects while get-

ting rid of the binder in the shortest time possible. It's not just as simple as increasing 

intensity until defects start to appear. The optimal intensity of a debinding cycle won't 

follow a linear increase path. Factors such as binder constituency and powder character-

istics will shape the optimal path into a specific way. A cycle with a customized set of 

parameters will be optimal. The optimal heating pattern for thermal debinding avoids all 

the problem areas while still cuts as close as possible to save time. (German & Bose, 

1997, pp. 198-200) 



 

 

 

Figure 17. Thermal debinding heating path. (German & Bose, 1997, p. 199) 

 

The main influencer on the debinding process is the exposure. It's made up of the param-

eters intensity and duration. Intensity entails temperature or solvent concentration, de-

pending on the debinding method. The best way to find out the optimal parameters for a 

debinding process is trough empirical test and monitoring. If a short process duration is a 

low priority the best approach is to use an excessively long debinding time since over-

debinding doesn't produce defects. 

4.1.3 Sintering 

The sintering process has perhaps the biggest impact on the products properties after feed-

stock characteristics. The goal of a sintering process optimization is usually to achieve 

the best properties possible in shortest amount of time. Of the two properties are the first 

priority. Since the sintering procedure is so long there's going to be potential for cutting 

off excess run-time. Just as with debinding the process duration can be sped up by in-

creasing intensity.  

 

The goal with sintering is to increase the components density. The higher the density is 

the stronger the properties of the sintered part will be. The following graph shows the 

relation between density, time and temperature. An increased temperature will allow for 



 

 

better density. The restricting factor on the temperature are defects. If the heating rate is 

too rapid defects such as cracking and distribution are likely to occur. If the peak temper-

ature isn't high enough the metal particles won't fuse together properly no matter how 

long the sintering goes on, leaving the density too low resulting in poor properties. 

 

Figure 18. Density over sintering time. (Heaney, 2012, p. 159) 

Once the parts have reached their peak density for the given temperature the densification 

stops and any further sintering won't increase the density. For an optimal process duration, 

this is when the sintering should stop and the cooldown stage commence. The graph above 

highlights a theoretical area where the sintering should stop in order to achieve good parts. 

If the sintering process continues for too long it will result in “oversintering”. Oversinter-

ing is a defect caused by grain growth in the microstructure. Grain growth causes reduced 

mechanical properties in the produced parts. (Heaney, 2012, pp. 158-159) 

 

The optimal strength requires the grain size to be as small as possible and the density to 

be as high as possible. A density between 95- 100% of theoretical is typical for a well-

produced MIM part with good properties. The graph below shows the correlation between 

density and grain growth inside the “acceptable parts zone” near the end of a sintering 

process. (Heaney, 2012, pp. 230-231) 

 



 

 

Figure 19. Plot of minimum grain size for specific density of 17-4ph stainless steel. (Heaney, 2012, p. 231) 

The graph below shows a rough example of what a typical heating pattern would look 

like. It highlights the scale and ratio of the heating rate, peak temperature duration and 

cooldown rate. This sample cycle could be optimized by cutting the peak time as short as 

possible and increasing heating rate just up to the point where defects start to form for 

instance. 

 

 

 

 

 

Figure 20. Sinteing heating pattern for high denisty low grain size 17-4ph. (Heaney, 2012, p. 231) 

 

Empirical tensile tests are the best way of determining how well the components have 

been sintered. Microscopy can also be a useful tool for looking and measuring grain 



 

 

growth. Finding the optimal parameters for a sintering cycle requires multiple series of 

test runs and analysis. 

 

5 RESULTS 

The optimization of a metal injection molding process turns out to be a quite labor intense 

and long process. There are no simple and concise calculations which can provide the 

optimal parameters, but merely function as guide lines. Finding the best parameters is a 

process in itself. The task of optimization is highly empirical and relies heavily on anal-

ysis and defect recognition. The research concludes that optimization of MIM parameters 

follows a certain work flow. This work flow is best illustrated in the form of a logic dia-

gram.  

 



 

 

The following diagram show a rough idea of how to approach an optimization of MIM 

process parameters: 

 

Figure 21. Optimization logic diagram (author,2017) 



 

 

•  New parameter: represent that a change has been done or needs to be done to a 

process parameter. This is also where the optimization begins.  

• Analysis: means the parts a being studied in order to find defects and to evaluate 

the success of the previous process. Common analysis methods for each process 

are mentioned under the Monitoring chapter. 

• Defects: distortion cracking, voids etc. Defects also include incomplete process 

such as binder leftover or insufficient densification. 

• Repeat: the process should be repeated until satisfactory results are found. 

• Production: once it's believed optimal parameters have been found or it's not wort 

continuing searching further the new parameters are to be used in production. 

• Start # 1 / 2 / 3: corresponds to the start of a specific process stage. If the optimi-

zation is only directed at a specific process the steps above its corresponding start 

point can be ignored. 

 

6 DISCUSSION AND CONCLUSION 

The aim of the research was to find a way to optimize the parameters of a metal injection 

molding process. I was expecting to come across a quick and easy method for figuring 

out what parameters should be used. But it didn't turn out to be that simple, no formula 

and calculation could take all the variables into account. It became evident that optimiza-

tion of the MIM parameters should be approached as a trial and error exercise.   

 

The end result displays how to go about doing an optimization or adjustment of MIM 

parameters. The result is very general and applies to any debinding and sintering method. 

Each debinding method could have its own more specific guide. The diagram shouldn't 

be followed too rigorously, it should only be a tool for conveying the logic and mindset 

behind starting optimizing an already functioning production.  

 

With so many parameters and variables, achieving the perfectly optimal process is ex-

tremely demanding if not impossible. And the whole point of optimizing the MIM process 

is to be more resourceful and to cut down on process time. One could continue trying out 

changes to the process forever but at some point more time will have been spent on the 



 

 

optimization than what the improved process will save. The risk of analysis paralysis 

should be kept in mind whenever changes are being done to a functioning production. 

7 SUGGESTION FOR FURTHER WORK 

A more specific guide for each debinding method and sintering furnace type should be 

researched. Also, a more in-depth look at a specific parameter would be valuable. Com-

puter simulations and optimization should also be looked into further. 

 

The feedstock is what makes the whole MIM process possible and alternative applications 

for it should be looked into. The ease of shaping and good mechanical properties of the 

end-product provided by the feedstock could possibly be used in other manufacturing 

methods. The most topical would be to see if MIM feedstock could be used for metal 3D 

printing. 
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