

Security audit of website based on WordPress

Sergey Alto

 Bachelor’s Thesis

 Degree Programme in

 Business Information Technology

 2017

Abstract

 26 May 2017

Author

Alto Sergey

Year of entry

2015

Degree programme

Business Information Technology

Report/thesis title

Security audit of website based on WordPress

Number of pages
and appendix pages

53 + 8

Thesis advisor

Olavi Korhonen

This Bachelor’s thesis discovers how to check security level of website based on Word-

Press content management system. Many websites are using WordPress CMS today; it

means that security is the one of most important things to consider.

The main purpose was to collect information about possible ways of testing security level,

how to predict different kind of attacks exist today and improve level of security protection.

The thesis consists of 3 parts:

Theory section, which consists of theoretical research of WordPress platform, its core com-

ponents and discovering ways of possible attacks.

Empirical part, which includes information about possible attacks and security checks and

design of a security testing cases.

Third part is implementation of previous part, which demonstrate methods and tools on the

real website. Results are collecting and placing into final report that contains analysis of

test outcomes and recommendations for security improvement. Work for thesis have done

in time from March to May of 2017.

The material was collected as follows:

Online sources were used to collect ideas and build the plan of security audit.

Free and open-source tools have been used for practical implementation.

Finally, the conclusion of the thesis indicates achieved outcomes and evaluates project

work.

Keywords

WordPress, security, vulnerabilities, threats, audit.

Table of contents

1 Glossary .. 1

2 Introduction ... 3

3 Environment .. 4

4 Theoretical framework ... 5

4.1 CMS .. 5

4.2 WordPress .. 6

4.3 WordPress History .. 7

4.4 WordPress structure and installation ... 10

4.4.1 Database ... 11

4.4.2 Set of files and folders with a code. .. 12

4.4.3 WordPress extensions ... 13

4.4.4 Dashboard ... 14

4.5 Possible ways to hack ... 14

4.5.1 Getting access to SQL database .. 14

4.5.2 Getting access to WordPress dashboard ... 15

4.5.3 Getting access to core files and folders of WordPress 16

4.5.4 Checking WordPress platform, plugins and themes vulnerabilities 16

5 Empirical part .. 17

5.1 Strategy .. 17

5.2 Test cases design ... 17

5.2.1 Information gathering ... 18

5.2.2 WordPress folder locations and its accessibility 21

5.2.3 Extensions vulnerabilities test .. 22

5.2.4 Brute force user’s attack test .. 23

5.2.5 Discovering the scripts of Website. .. 24

5.2.6 SQL Injection and common SQL attack’s test .. 26

5.2.7 XSS attack test .. 27

5.2.8 File upload test ... 28

5.3 Preparing to testing. .. 28

6 Security audit report 1 ... 29

6.1 Test case 1 implementation. Gathering information... 29

6.1.1 Running the test 1 .. 29

6.1.2 Analysis of the test 1 results ... 33

6.1.3 Recommendations for security protection improvement 37

6.2 Test case 2 implemetation. WP-folders location and its accessibility test 38

6.2.1 Running the test 2 .. 38

6.2.2 Analysis of the test 2 results ... 39

6.3 Test case 3. Extensions vulnerabilities detection .. 40

6.3.1 Running the test 3 .. 40

6.3.2 Analysis of the test 3 results ... 40

6.3.3 Recommendations for security improvement .. 42

6.4 Test case 4 implementation. Brute Force attack .. 43

6.4.1 Running the test 4 .. 43

6.4.2 Analysis of the test results 4 ... 43

6.5 Test case 5. Discovering the scripts of Website. ... 44

6.5.1 Running the test 5 .. 44

6.5.2 Analysis of the test 5 results ... 44

6.5.3 Recommendations for security improvement. ... 44

6.6 Test case 6. SQL injection attack .. 45

6.6.1 Running the test 6 .. 45

6.6.2 Analysis of the test 6 results ... 45

6.7 Test case 7 implementation. Cross site scripting attack test................................ 46

6.7.1 Running the test 7 .. 46

6.7.2 Analysis of the test 7 results ... 46

6.8 Test case 8 implementation. File upload test .. 46

6.8.1 Running the test 7 .. 46

6.8.2 Analysis of the test 8 results ... 47

6.9 Common test’s results and security audit outcomes. ... 47

6.10 Testing outcomes. ... 48

7 Security audit report 2 ... 49

7.1 Test case 1 implementation. Gathering information... 49

7.1.1 Running the test 2.1 ... 49

7.1.2 Analysis of the test 2.1 results .. 50

7.1.3 Recommendations for security improvement. ... 52

8 Conclusions .. 53

References .. 54

Appendix A. Description of database tables of the WordPress. .. 57

Appendix B. Description of core files and folders. .. 61

1

1 Glossary

Browser, web browser – software application for retrieving, presenting and traversing in-

formation resources on the World Wide Web.

CMS – content management system, an application that supports creation and modifica-

tion of digital content.

Cross-site scripting (XSS) - a vulnerability, which enables attackers to inject client-side

scripts into web pages to bypass access controls such as the same-origin policy.

CSS – cascading style sheets, style sheet language used for describing the presentation

of a document written in a markup language.

Domain Name System (DNS) - a hierarchical decentralized naming system for

computers, services, or other resources connected to the Internet or a private network.

Domain, domain name – identification string that defines a realm of administrative auton-

omy authority or control within the Internet. Domain names are formed by the rules and

procedures of the Domain Name System (DNS).

DOM - Document Object Model, is a programming interface for HTML and XML docu-

ments.

IP address – an identifier assigned to each computer connected to the network (including

the Internet).

GMT – Greenwich Mean Time, the international civil time standard used as a basis for all

time zones in the earth.

Hosting – service allows individuals and organizations to make their website or files ac-

cessible via World Wide Web.

HTML – hypertext markup language, standard markup language for creating web pages

and web applications.

HTML/CSS – combination of two web oriented languages are commonly used for web de-

sign.

HTTP – hypertext transfer protocol, application protocol for exchange and transfer hyper-

text.

HTTP request – message sending to server contains requested address off webpage and

set of parameters.

Hypertext – text with links (hyperlinks) to other text displayed on a computer display or

other electronic devices. The reader can access immediately all links, because they can

be activated by mouse, keyboard, sensor or other type of input devices.

Linux – operating system assembled under the model of free and open-source software

development and distribution.

https://en.wikipedia.org/wiki/Code_injection

2

OS – operating system, software manages computer hardware, distribute its resources

and provides common services for computer programs.

PHP – server-side scripting programming language.

Ping time – the length of time it takes for signal to be sent plus the length of time re-

sponse have been received.

Post (in WordPress) – single webpage in WordPress.

Relational database – database, which has data organization based on relationships.

The idea of organization is presence of data in one or more tables. Every table has unique

key which identifies each of row.

Same-origin policy - a concept in the web application security model. permits scripts

contained in a first web page to access data in a second web page in the web browser.

Security – protection of website or computer system from the theft of damage to their in-

formation, software or hardware.

Sidebar – Vertical column located on the left side or on the right side of the page for dis-

playing information other than the main content.

SQL – structured query language used in programming and designed for data manage-

ment in relational database.

Taxonomy - a grouping mechanism for posts (pages) which helps to categorize them to-

gether using various names for better understanding and management by user.

The Internet - The Internet is a global system of interconnected computer networks that

interchange data by packet switching using the standardized Internet Protocol Suite.

Trackback time – a way to notify legacy blog systems that you have linked to them.

User interface – a part of software that handles human-machine interaction.

Vulnerability - a weakness, which allows an attacker to hack website

Web application, web app – client-server software application which client part runs in

browser.

Web server – system based on computer connected to the Internet, which processes

HTTP requests. Main functions of web server are to store, process and deliver web pages

to client sent request.

WhoIs – domain name lookup service to search information from database for domain

name registration.

Wordpress – most popular CMS in the World today.

World Wide Web, WWW, the Web - is an information space where documents and other

web resources are identified by Uniform Resource Locators (URLs), interlinked by

hypertext links, and can be accessed via the Internet.

3

2 Introduction

There are over 1.1 billion websites in the world wide web today (Total number of

Websites, 2016). Website is the most simplest way to share information about your

business, services, products, ideas. So it is very important and useful information tool

today. Basically, all websites are using HTML code, but different ways of its creation can

be used. Approximately half of websites are using CMS (content management system)

today (Usage of content management systems for websites, n.d.). It allows to create new

pages, posts, store images, media files and other content using simple and

understandable tools. It allows to manage website without writing code (or minimum code

required, create unified look and user’s permission management. Most popular CMS

today is Wordpress, it covers more than 27% websites which are using content

management system (Usage of content management systems for websites, n.d.). It

means that more than 100 million of websites run on WordPress platform. Half of this

amount of websites are self-hosted and many of people who administrate their websites

are not seriously concerned about security. Of course, WordPress is updating everytime

and improves security from release to release, but, in fact, the problem is deeper than it

seems.

The aim of my research is to create detailed effective guide contains set of tests with ex-

planations to do security protection audit of WordPress-based. It should cover checking of

all components of the website, vulnerabilities monitoring and, if possible, offering solution

for to fix it.

One more objective is practical implementation of my guide have created. I plan to check

one website have chosen for tests. It will help to check if all instructions, applications and

commands are suitable for chosen purpose and well structured (running in right order),

haven’t errors. Guide should consist of set of tests that allows to do evaluation of security

level and get information for improvement if it possible.

The methods and techniques used in this research are empirical, but it reference to vari-

ous researches made by different authors to provide main ideas of security audit for web-

site. The structure of the thesis is built to be easy for the reader to understand ideas with-

out deep knowledge of testing technologies and applications.

The results of thesis can be used for security audit WordPress websites and protection

improvement from attackers.

4

3 Environment

Environment is based on two computers have similar configuration: desktop (Intel core i5,

4Gb RAM) and laptop (Intel core i3, 4Gb RAM), which will be using for running test cases

outside of my laboratory. Both computers are connecting to the Internet using LAN or WI-

FI connection. Operating system Kali linux 2016.2 have installed on both machines as the

main OS. I will use several applications for testing. Most of it have already preinstalled into

the current version of Kali Linux.

Kali Linux is a Debian-based Linux distribution provides tools for penetration testing,

ethical hacking and security audit. It contains several hundreed tools which are geared

towards various information security tasks, such as Penetration Testing, Security

research, Computer Forensics and Reverse Engineering. Kali Linux is developed, funded

and maintained by Offensive Security, a leading information security training company

(What is Kali Linux?, n.d.).

Firefox browser preinstalled in Kali Linux have been used for information gathering and

when developer tools were needed.

I will use also online-based tools for testing. There are WhoIs service, search engines.

Target website have been used for testing is located on URL: www.digitaluniversity.fi. This

website provides scalable platform for teaching and learning. It contains courses for

learning offered by different schools and allows to manage it using one account only

registered on this website. There is good target for testing security audit solution, because

it contains registration and account management with different roles of users, extensive

system of the pages (posts). Further, it is possible to use this platform for different courses

– free of charge and payable. Payments need big attention to security. Finally, many of

users will store a lot of personal information in the website database like names, e-mails,

date of birth etc. Administration of website is responsible for keeping information hidden

from others.

Finally, I want to notice, that chosen environment consists of components are accessible

for everyone, it allows to test (or attack) website without expensive or unavailable equip-

ment or software.

http://www.digitaluniversity.fi/

5

4 Theoretical framework

The nature of WordPress website is based on content management system which allows

to simplify creation and management of its content. It allows to standartise structure of

website using templates for different kinds of documents, manage multimedia content,

users etc.

4.1 CMS

CMS – content management system is a computer application that supports the creation

and modification of digital content (Content management system, 2017). It runs on the

web-server where its componetnts are installed. Most CMSs are using for Web-based

content and named also web content management systems (WCMSs). The main purpose

of WCMSs is to support management of the content of Web pages (Content management

system, 2017). WCMs process HTTP requests into webpages can be accessed through

web-browser. The main feature of CMS is ability to design websites easier and more

effective, sometimes, even without special knowledge of computer language. It helps to

create and manage webpages using understandable interface.

CMS consists of several components connected between each other. There are

database, different kinds of content (texts, graphics, audio and video etc), application

components are using for content management, content delivery and extension’s

management. Database is storing user accounts including their usernames, roles,

passwords. It allows to implement user management tools into application accessible

through web browser. It opens many features from multi-user administration of website to

using user’s authentication on the website pages. Database allows also technical features

for data indexing and implementation of internal search engines for easy access to

information and search webpages by keywords and attributes. Version control, a large

number of extensions, sets of templates and themes, SEO-friendly URLs – this is not full

list of features CMS offers.

CMSs can be divided into three types by the way of page generation:

Page generation by query – this type uses schema ”edit module – database –

presentation module”. Presentation (generation) of webpage is based on current

information taken from database. Page is generated by server when query have received.

It makes this type of CMS flesible from the point of dynamic content changing, but it cre-

ates additional load on the server resources.

6

Page generation after editing (creation) – this type of CMS generates static webpages

immediately after its editing or creation. It helps to improve server resources optimisation,

but impair interaction between user and website content.

Mixed type of page generation - type of CMS combines previous two ideas. Realisation

can be achieved using several ways – caching, saving blocks from pages and

construction page from blocks after query etc.

Approximately half of total number of websites are using content management system.

Most popular CMSs today are WordPress, Joomla, Drupal, Magento, Blogger, Shopify,

TYPO3, Bitrix (Usage of content management systems for websites, n.d.).

But WordPress is the most commonly used CMS today (more than 50% of websites are

using CMS), it means that 25% of all websites in the world powered by WordPress. (How

to choose the right CMS for your Website, 2015). Approximately 409+ million people view

more than 19.6 billion WordPress pages monthly (Kimi, 2016).

4.2 WordPress

WordPress is definitely most popular CMS today. It powers more than 50% of websites

are using CMS and approximately 25% of total number of websites in the World.

WordPress is not only the most popular CMS, it is also the fastest-growing system: Every

74 seconds a site within the top 10 million starts using WordPress. Compare this with

Shopify, the second-fastest growing CMS, which is gaining a new site every 22 minutes.

(WordPress Used On 25 Percent Of All Websites, 2015).

There are many reasons for success:

First of all, WordPress is Open Source and Free CMS based on PHP and SQL, PHP is

used by 82,6% of all websites whose server-side programming language is known (Usage

of server-side programming languages for websites, n.d.), and SQL is the most popular

language used in computers to create and manage databases (Introduction to SQL,

2007).

Besides, WordPress doesn’t require computer languages knowledge (like PHP, SQL and

HTML required for many other CMSs). Moreover, a large number of plugins and themes

available, most of them are free and can be accessible from control panel or official

WordPress website.

Finally, this platform has the largest community of users, designers, plugin creators,

webmasters, website developers and so on. It allows to discuss actual problems, get

support, create new extensions, and everyone can access it.

7

Despite the large number of advantages, WordPress has several disadvantages:

First of all, a lot of modifications need to change the code, which require PHP or

HTML/CSS knowledge. It can limit some possibilities for web design implementation on

this platform.

Second of all plugins, themes and widgets for WordPress are designing by third-party

developers, which makes usage of resources non-effective and can cause conflicts

between extensions or decrease script’s efficiency.

Third of all, WordPress has not well secured platform as other CMSs. Many of security

issues have been uncovered in the software, but a list of possible vulnerabilities is rising

over time. Generally, WordPress engine security improves from version to version by

efforts of Development team and its community including volunteers who helps to test new

releases. Despite good support from developers and volunteers, WordPress has security

problems, especially caused by usage of plug-ins and other extensions developed by

third-part developers.

4.3 WordPress History

2001-2003. The history of WordPress started in 2001 from developing a tool

named ”cafelog” which purpose was to simplify creation and editing of webpages for news

or blogs posting. In opinion of the author of ”Cafelog” (Project page, 2001) main features

were that pages were generated dynamically from the MySQL database, it allowed to use

more search/display capabilities, and the ability to serve news/blogs in different

'templates’. Platform used MySQL database and PHP code runned on web server.

2003. At 2003 two users of ”b2/cafelog” Matt Mullenweg and Mike Little, decided to build a

new platform based on ”cafelog”, because project was discontinued. On April 1st, 2003,

Matt created new branch of b2 on SourceForge, and, with the name coined by his friend

Christine Tremoulet, called it WordPress (McKeown, 2017). On 27 May 2003, Matt

announced the availability of the first version of WordPress (WP beginner 2017). It was

based on b2 Cafelog with significant improvements. One of the most important things

was to make platform simple and possible to use it without PHP and SQL skills. At the

same time website wordpress.org have launched, it contained support, forum, starting

documentation and development blog. It was useful for new users to create new websites

and get involved. At the same year many bugs and security issues were fixed.

2004. Plugin Architecture released in version 1.2 allowed to extend platform functionality

by writing plugins and sharing in community. WordPress have become more popular and,

for example, the number of users increased from 8,000 in April to 19,000 in May

8

(WordPress News, 2013). Running of plugin functionality have caused first serious

security issues, because first versions of it were not completely tested and proved.

2005. Theme system and static pages were introduced. A new backend user interface,

persistent caching functionality and new user roles have been introduced during this year.

In addition, detected some security issues have fixed.

2006. There are no new major releases of platform was released, but growing popularity

of platform have attracted funding partners have joined WordPress team. At the August,

the first ever WordCamp was held in San Francisco. It was an event that bring people re-

lated to WordPress together. Later it will become an annual event.

2007. Widgets, new user interface, autosave, spell checks, tagging, update notifications,

pretty URLs system and new taxonomy system have been implemented. Adding function

allowed to hide blog from search engines have done platform more securable. Moreover,

development team revised plugins registered at the official website and all plugins that

were incative more than two years have hided from search results, because have

considedred asa discontinued by their developers.

This year, founder of WordPress, Matt Mullenweg was named number 16 on the list

of ”The 50 Most Important People of the Web” due to his work on WordPress, angel

investing and contributing to freedom of speech (The History of WordPress, 2012).

2008. New interface and administration panels were designed by ”Happy Cog”, a

company outside of Wordpress community, which used innovative approach to web

design. It allowed the main development team to focus on fixing issues and platform en-

gine improvements. Rising popularity of Social media have brought “BuddyPress” plugin

that added community and social media features to users of WordPress. There are many

vulnerabilities were found in PHP, MySQL, JavaScript, server applications that WordPress

used, but development team every time payed close attention and fixed every security

hole they can find.

2009. Built-in theme installer, an improved widget user interface and API, image editor

introduced. WordPress wins Best Open Source CMS Award. Popularity of platform makes

it a prime target for hackers looking to blogs. Hackers are using advantage of the open-

source software and area analyzing the source code to detect new vulnerabilities, but de-

velopment team reacts very fast to new holes found and releases updates simultaneously.

Regular updates become number one important tool to protect website from attack.

2010. Version 3.0 released and brought major updates: custom taxonomies, custom menu

management, post formats and multisite management. At the same year ”The WordPress

9

Foundation” has established as a non-profit organization with the goal of democratizing

publishing through Open Source, GPL software (G.R., 2010).

2011. WordPress carried out a global survey, asking over 18000 people a basic questions

about platform, which showed 14.7% of the internet running WordPress, and 22% of new

domains running on WordPress (McKeown, What’s Going On In The WordPress

Economy?, 2012). At March 3th, Matt Mullenweg said: ”Say hello to the Distributed

Denial of Service (DDoS) attack. WordPress.com sustained “the largest and most

sustained attack we’ve seen in our six year history,”. It is also important to note that the

attack was neutralized the same day (The History of WordPress, 2011). At the June 16, a

black box WordPress vulnerability scanner “WPScan” has launched. WPScan team have

runned a vulnerability database contains all known detected WordPress core, and its

extensions vulnerabilities (WPScan, 2017).

2012. Theme customizer and theme preview tool have launched. Several security updates

have released that fixed vulnerabioities and security issues included potential information

disclosure, bugs affected nultisite installs with untrusted users.

2013. Support of audio and video released. Autosaving and post locking improved.

Automatic updates for security and maintenance introduced. The number of websites are

still using out-of-date version of platform decreased 20 times. Stronger password meter

have added to platform. According to W3Techs research, WordPress is used by 59.9% of

all the websites whose content management system they know. This is 22.1% of all

websites (The History of WordPress, 2012). WordPress become the strongest leader

among CMS-based websites.

2014. New version released, the media experience improved and live widget and header

previews introduced. Platform was available in over 40 languages, several cross-site-

scripting vulnerabilities which could enable anonymous users to compropmise a website

have fixed.

2015. Emoji support, responsive images and extended character support added. Two big

security updates released. One related to cross-site scripting vulnerability, which could

allow users with the Contributor or Author role to compromise a site fixed. Second release

addressed to six issues included XSS vulnerabilities and potential SQL injection that could

be used to compromise a site.

2016 – now. WordPress is holding the leader position of website management platform

capable for any type of website – from single page website to internet-shops. Security

issues are fixing in short time. The WordPress Security Team consists of approximately

10

50 experts including lead developers and security researchers that consults with well-

known and trusted security researches and hosting companies (Rosso, 2015).

As we can see, WordPress reacts to new vulnerabilities and security issues very fast. The

platform evolve according to modern trends and gives a confidence to millions of users.

Platform automatically informs administrators of websites about available upgrades or re-

lease announcements. If they used automatic updates, system informs them by e-mail

when update have been completed.

4.4 WordPress structure and installation

WordPress provides user interface for administration of platform, tools for creation and

edition of posts, plugins and themes management etc. Basically, WordPress-based web-

site is the system of posts. The early-concept of platform was that it designed for blogs,

and, this is a reason “post” term is using for webpages in WordPress. Technically, text

part of posts and all links between them related to CMS are stored into the database, mul-

timedia files are stored into the server and its links are using in webpages structure. Files

are necessary for WordPress functionality are also stored in the server. Therefore, Word-

Press CMS has two main components: MySQL database and core set of files and folders.

Combination of it allows to run on the server website based on WordPress.

WordPress platform can use additional components - plugins and themes There are third-

part developed extensions which add functionality to the website.

Installation of Wordpress is quite easy – user needs to create empty database on the

server, download installation packcage from official wordpress website, upload files and

folders from package to the server or web hosting account (if hosting is using). Next step

is accessing of website – WordPress runs and automatically forward to page which helps

to create wp-config.php file contains information for connection into MySQL database.

After this step user needs to fill the name of website (blog), username, password and e-

mail (for the case, when password recovery is needed). After that WordPress is ready for

use. During the years the process of WordPress installation have been named ”the

Famous 5 minute installation” Many web hosting providers offer this installation in auto-

matic mode.

Let’s go further and discover main components of Wordpress more deeper.

11

4.4.1 Database

WordPress needs MySQL database which links all content in website between each

other, and stores all text information of it including users links comments etc. It consists of

12 tables showed on the schema below:

Figure 1. Wordpress information schema (Tour of the WordPress Database, 2016)

12

Each table has one main function it is responsible, for example, table wp_users contains

all information necessary for user management and linking their records to content.

Description of all tables and its records is available in Appendix A.

I would like to note that the table contains information about users is very important from

the point of security protection. It should be accessible by authorized persons only, be-

cause the data inside contains usernames and passwords of all users and can be used for

access by unauthorized person.

Therefore, database component plays very important role in WordPress website structure,

and contains all text data from its content and connections between its elements, which

are critical for the whole systems. It is also stores user’s information, which needs to be

secured from attackers.

4.4.2 Set of files and folders with a code.

Second important component of the WordPress core is the set of files contains PHP,

CSS, JavaScript code required for website functionality. It runs the software for website

management and processes all operations – interaction with database, user interface

functionality, media elements loading and so on. Most of file’s and folder’s names start

from “wp-“ prefix. It helps to identify it, because other files and folders of website allowed

to be stored at the same place.

Definitions of the main core files and folders presented in Appendix B.

I would like to take attention to files and folders that can interested for attackers.

wp-config.php should be protected from unauthorized access, because it contains critical

data allows to get access to MySQL database.

wp-load.php has script running after authorization that can be changed to attacker’s

script, which can cause unpredictable behavior of application.

admin.php contains the code of authorisation page that can be replaced and authorisa-

tion form might be bypassed

functions.php is responsible for website functionality that can be broken or changed to

unwanted behavior.

robots.txt – the file accessible from the Internet for anyone. It should not contain infor-

mation that can be useful for attackers.

,htaccess – file accessible from the Internet for anyone. It should not contain the paths

and files information about that can be useful for attackers.

13

4.4.3 WordPress extensions

Plugins – optional extensions for WordPress CMS developed by third part developers.

Plugin contains a piece of software written in PHP programming language. It consists of

set of functions necessary for extension of functionality and adding new features to Word-

Press website. Simple and user-friendly plugins management allows creation of additional

functionality to website without additional programming knowledge. It makes WordPress

CMS flexible and powering tool for website design.

Most of plugins are accessible from official WordPress website. There are more than

45 000 presented there at moment (Plugins, 2017). Administration and installation of

plugins is possible from admin console. Installation is also possible by placing plugin’s

files into wp-content/plugins directory manually.

The main features of plugins are easy management and website functionality extension.

Most of developers makes these features as the main target. No doubt, it is useful, but

they cannot to consider one serious thing - possible security holes. Official WordPress de-

velopment team does not control Plugin’s developers. It makes plugins one of the most

vulnerable components of WordPress. It means they needed periodically checking secu-

rity issues.

Themes - optional extensions for WordPress CMS developed by third part developers. It

contains a set of templates and CSS stylesheets used to define how to display content of

WordPress website. Administration and installation of themes is possible from admin con-

sole. Installation is also possible by placing manually theme’s files into wp-content/themes

directory. Themes allows to change design of website according to design trends and pur-

pose of content displaying (like website for photographers or business related). Changing

of design is simple and does not make impact to website content. It means website design

can be changed in several clicks. Themes need to check periodically for vulnerabilities as

plugins, because they are producing by third-part developers.

Widgets – optional extensions for WordPress CMS looks like small blocks of webpage,

which performs special functionality in website. It can be added to widget-ready areas like

sidebars, footers/headers. Widgets can be also vulnerable and needed to check for secu-

rity issues regularly.

14

4.4.4 Dashboard

WordPress Dashboard, Console – a tool gives general overview and management of

WordPress based website. This is interface for customize settings and properties of web-

site, manage extensions, create update and delete pages, comments administration and

so on. Generally, dashboard is the main control tool for website management.

Console contains many tools for many actions: add, edit or remove blogs (webpages),

change themes, manage plugins and widgets, create or update menus, sidebars, footers

and headers, manage comments.

Console can be accessed using user credentials – username and password.

4.5 Possible ways to hack

There are many ways to hack WordPress website. They can be divided into several cate-

gories by target component or property used for hacking:

 Getting access to MySQL database

 Getting access to WP dashboard

 Getting access to known core files and folders of WordPress

 Using vulnerabilities.

4.5.1 Getting access to SQL database

Database is the core component of WordPress website. It contains all information – from

pages content to user management. Getting access to database allows to modify users

records and permissions for them, get access to dashboard, change content of webpages

get private information about user’s profiles like e-mails, passwords etc.

There are several ways to get access to WP database:

 Getting authorization data from wp-config.php file from WP directory

File wp-config.php located in WordPress root directory, but it should not be available from

the internet, because it contains all information required to connect directly to database. It

is recommended to deny access to it or move the file to the level up – if WordPress will

not find it, it will attempt to access the file at the level up on the path. Of course, it will be

available by FTP client using credentials given by web-hosting provider, directly from host-

ing control panel or server OS (when dedicated server used). There is also effective way

to protect this file from unauthorized access – to deny access using IP-address filtering.

15

 Brute Force attack

This method is classics of hacking. The main idea is to find combination of username and

password to get unauthorized access to application used it for authorization. WordPress

has several access points, which are using login and password: there are database, dash-

board and FTP-server. Database and FTP-server are often managed by web-hosting pro-

vider and can be monitored from unauthorized attacks. For example, hosting provider can

check IP address of computer requesting database and deny access from external IPs, or

use internal interface for database access in web-hosting website. But WordPress dash-

board is not protected from ability to try different usernames and passwords. Moreover,

there are several ways how to get usernames of WordPress website. Brute-force attack

uses a password’s dictionary. Attackers are often using dictionaries contain most usable

passwords. However it looks simple, this method has one serious disadvantage – if pass-

word length is long, a lot of time needed to check all possible passwords – from several

days to several years depending the length of password. Most of brute-force attacks are

implemented using automated tools working with external dictionaries.

 SQL-injection

Most popular common method of database-based website attack is SQL injection. It is us-

ing technique of sending SQL-queries, which have modified logic. It allows getting alterna-

tive behaviour of application code. A successful SQL injection exploit can read sensitive

data from the database, modify database data (Insert/Update/Delete), execute administra-

tion operations on the database (such as shutdown the DBMS) (SQL Injection Bypassing

WAF, 2017). A simple example of an SQL injection is setting the password value to ”pass-

word OR 1=1” in SQL query. SQL-injection is the second most common vulnerability

found in WordPress (The WordPress Security Learning Center, 2017).

SQL injection is mostly known as an attack vector for websites but can be used to attack

any type of SQL database. In 2013, SQLi was rated SQL injection the number one attack

on the OWASP top ten (SQL injection, 2017).

 Malware applications and cheating of authorized persons

This kind of methods contains tools and techniques aimed to obtaining from user creden-

tials without any interaction with WordPress components. I only mention this possibility

because it is not directly related to my research.

4.5.2 Getting access to WordPress dashboard

Dashboard is a main control tool for website management. Access to this tool gives free-

dom for any modification of website including possibility to edit important code, for exam-

ple, core file functions.php. Dashboard is accessible using WordPress user account. All

16

features are accessible using administrator account. User’s accounts functionality de-

creases automatically according their roles. Administrator can set limitations in dashboard.

It is necessary to use strong password for administrator(s) to prevent unauthorised ac-

cess.

4.5.3 Getting access to core files and folders of WordPress

Core files contain the code required for website functionality. Access to it allows modifying

functionality or deleting some files and breaking website. Access to it is possible via FTP,

browser or directly from hosting account or server operating system. Prevention of attack

consists of activities of setting up policies disallowing access to core files or allowing from

specified IP address only. It is also important to use strong passwords for access to web

hosting account and to note share it with persons who are nor related to administration. In

case when responsible person have been changed, it is necessary to change all pass-

words he/she used.

4.5.4 Checking WordPress platform, plugins and themes vulnerabilities

There are many potential vulnerabilities related to WordPress CMS have been detected

since it have been developed. Nowadays many people involved to process of detection

and fixing of possible treats – from developer’s team to private volunteers. There is web-

site, which offers full catalogue of detected vulnerabilities, its descriptions and recommen-

dations for fixing (WPScan Vulnerability Database, 2017). Most of vulnerabilities are fixing

by developers. It means, that versions of Wordpress, plugins and themes are needed to

update periodically. I want to note, that WordPress CMS is updating regularly and well se-

cured during the time, but extensions (plugins and themes) which are generally produced

by third-party developers, have often many security holes and possibilities for attacking.

17

5 Empirical part

This chapter contains practical implementation of ideas and methods from theoretical part.

It will be used for testing of the website that have chosen for implementation security au-

dit. It consists from developing strategy of audit and design of tests. Test’s design needed

to specify its description, input data necessary for the test running, expected outputs. Test

results should be clear to evaluate level of security protection for the tested website.

5.1 Strategy

My strategy of security audit designed according to the nature of WordPress platform and

common techniques for web-application’s attacks. It planned to create a number of tests

that will implemented step-by-step. There is a plan of actions, which needed to be done:

Information gathering:

 WordPress version

 WP folder locations and its accessibility

 Plugins installed and its versions

 Themes installed and its versions

 Widgets installed and its versions

 Possible known vulnerabilities detection

 Pages contain forms or file upload blocks

 User authentication form behaviour

 List of users detection

 Open ports detection

Attacks:

 BruteForce attack

 Cross site scripting (XSS) attack

 SQL-injection attack

 File upload vulnerability attack

Analysis of test results and reporting.

5.2 Test cases design

Test cases design follows two main purposes: detect known vulnerabilities and try to

break security barriers as attacker does. Tests have designed for implementation in order

they presented, Order following needed to collect all necessary information before the mo-

18

ment test will start. Order can be changed, but be sure previous tests needed for imple-

mentation have been done. Each test contains one or more phases include description of

testing actions, input information and expecting outputs.

Results are collecting and storing into test case forms that include to security audit report,

which contains test results, its analysis and recommendations for security protection im-

provements.

5.2.1 Information gathering

The very first step before designing test cases is getting information about target website,

as more, as possible. It is necessary for several reasons – to detect possible ways for

hacking, to detect known vulnerabilities and ways to fix it, to minimise resources (time and

human resources) in audit process and make it more effective. There is a list of data to be

collected:

 Version of WordPress, which can be detected by several ways – inspecting code

of webpage, online scanning services, or special tools like WPScan I used to use.

 Installed plugins and themes, which can contain vulnerabilities. It is necessary to

check Vulnerabilities database and descriptions for each of installed extensions for

better understanding the nature of the whole system of website.

 Basic information about website owner, hosting provider, is using. WhoIs service

provides a lot of information including our target.

 List of users registered in SQL database. It is the thing needed for checking their

passwords for possibility to guess using machine tools (brute force attack test)

 Opened ports detection – it is useful information to find communication tunnels us-

ing by website.

 File upload components (flash based or something else)

 Search engines information, which can provide more useful information about

website.

WPScan - is powerful software tool for information gathering of WordPress website. It al-

lows to scan most known vulnerabilities of website, plugins, themes, and attempt to get

usernames from database.

19

Test case 1. Gathering information.

Description: Gathering information needed for security audit.

Precondition: Check website for possible known vulnerabilities and useful information for

potential attack.

Goal: Version of WordPress, installed plugins and themes and its versions, list of Word-

Press users, possible known vulnerabilities, page’s URLs with forms or file upload blocks,

ports opened, critical behaviour of user authentication page, WhoIs information.

Table 1. Test case 1. Gathering information.

Step Description Inputs Expected out-
puts

1 Version of WordPress Website URL:

www.digitaluniversity.fi

Version of WP

2 Theme(s) installed Website URL:

www.digitaluniversity.fi

Theme(s)
name(s)

3 Plug-in(s) installed Website URL:

www.digitaluniversity.fi

Plug-in(s)
name(s)

4 Hosting provider Website URL:

www.digitaluniversity.fi

WhoIs online service

Hosting provider
name, IP

5 List of users Website URL:

www.digitaluniversity.fi

List of users

6 Opened ports Website URL:

www.digitaluniversity.fi

Opened ports

7 File upload components Website URL:

www.digitaluniversity.fi

File upload URLs

8 Forms on the page(s) Website URL:

www.digitaluniversity.fi

URL contain
forms

9 User password recovery
page behaviour

Website URL:

www.digitaluniversity.fi

Possibility of de-
tection
usernames (ex-
ists or not)

This test collects a lot of information will used in further tests and uses to create better

strategy for testing opportunity to hack of website. 1-3 steps from the Table 1 are using

WPScan utility. It is common test of known vulnerabilities and security issues of Word-

Press-based website. The next step is checking website URL at WhoIs service available

at http://who.is/. It shows information about website owner and hosting is using that helps

http://who.is/

20

to identify owner person or organisation – in case when somebody asks to do security au-

dit – we can check, if person or organisation is the same entity. Hosting provider infor-

mation is useful for possible attack to the server of hosting provider. 5th step from the Ta-

ble 1 is using WPScan utility again with “—enumerate u” argument that scans websites for

usernames available to detect. This data needed for SQL injection attack. 6th step checks

opened ports that scans effectiveness of ports routing. The number and values of opened

ports depend from website functionality and administration settings. Steps 7-8 from the

Table 1 needed to find webpages URLs suitable for cross scripting and file upload attacks.

And 9th step checks the behaviour of the logics of login and password recovery forms. For

example, when you fill username or e-mail for password recovery field system shows, if

username or e-mail filled exists or not. It allows to attempt to guess usernames. Moreover,

many of usernames are usually showing with standard URL for WordPress like

https://www.website.com /?author=1, where 1 is the number of user registered. Often,

user are using number one has administrator rights and username admin, because it is

standard, preinstalled user with administrator role in WordPress.

The information collected from this test will be used also at all further tests.

21

5.2.2 WordPress folder locations and its accessibility

This test purpose is to detect accessible critical core files and folders. For this purpose

several checks are needed: search engines scanning using several queries, analysis of

data from file “robots.txt” stored in the core directory of website, and attempt to access

core files and folders using non standard URLs.

Test case 2. WordPress folder locations and its accessibility

Description: Checking accessibility of WP core folders

Precondition: Several methods are using for checking accessibility of WordPress core

files and folders

Goal: Detection of WordPress core folders and files are accessible.

Table 2. Test case 2. WordPress core folders and files accessibility check.

Step Description Inputs Expected outputs

1 Google Website URL:

www.digitaluniversity.fi

WP-core folders
accessible

2 Robots.txt www.digitaluniversity.fi/robots.txt

Allowed/disallowed
paths

3 Using non-standard
paths

Website URL:

www.digitaluniversity.fi

Allowed/disallowed
paths

Step 1 from the Table 2 shows search results using google (or similar search engine) from

queries contains “wp-“ in the path of related website. Maybe core folders are not closed.

Step 2 allows to check robots.txt which is located in the root directory of the website. This

file purpose is for search engines, but it can contain useful information for potential attack-

ers, for example directories contain critical information – paths or passwords.

Final step from the Table 2 is attempt to experiment with paths to try access to closed

folders using knowledge of path-building and several ideas, for example: www.wordpress-

website.com/wp-admin/admin-ajax.php?action=revslider_show_image&img=../wp-admin

where directory “wp-admin” can be accessible using special construction. Information from

this is neccesary to use in further tests.

22

5.2.3 Extensions vulnerabilities test

Here we need to check possible known vulnerabilities of platform can be used by attack-

ers. Many of extensions are developing by third-part developers are not focus attention to

security, which allows using its holes to discover ways for attack. Each extension – plugin,

theme or widget needs to check for possible known vulnerabilities using scan utilities or

search engines and discover its code for SQL-queries or paths to core-folders of WP.

Test case 3. Extensions vulnerabilities detection

Description: Attempt to find known vulnerabilities in themes, plugins or widgets are using.

Precondition: Check extensions for known vulnerabilities, inspect the code of plugins and

themes, and try to find SQL queries or credentials using

Goal: Getting additional information for further attacks.

Table 3. Test case 3. Extension vulnerabilities detection.

Step Description Inputs Expected out-
puts

1 Check known vulnerabilities
for plugins or themes de-
tected in search engines or
scan utilities

Extension name

Possible vul-
nerability of
component

2 Inspect the code of compo-
nent, if possible

Code of component SQL state-
ments or cre-
dentials (id= or
…)

3 Analysis of found infor-
mation

Found information Test case for
audit

Table 3 consists of three steps: The first one scans extensions found in the Test 1 for

known vulnerabilities using WPScan utility ore search engine. Step 2 is optional and

intended for experienced users – if the code of extension is available, it needs to check for

critical elements could be accessible – SQL statements, user credentials and so on. Last

step analyses collected information for using in further tests.

23

5.2.4 Brute force user’s attack test

Brute force is most popular attack today. It is based on attempts to guess login and pass-

word of users using machine-processing tools. WPscan utility can be used for that pur-

pose. It needs URL of website, username and a dictionary contains password for guess-

ing. I will use most popular and common dictionary “rockyou” can be downloaded from

wiki.skullsecurity.org, but any other dictionary is possible to use.

Test case 4. Brute Force attack

Description: Attempt to guess name and password to access admin console using pass-

word-dictionaries.

Precondition: WPscan using usernames

Goal: Getting access to console.

Table 4. Test case 4. Brute force attack.

Step Description Inputs Expected out-
puts

1 WPscan admin password

2 WPscan user password

3 WPscan …

Brute force attack test needs usernames for running. It attempts to find password from

dictionary for specified username. List of usernames should be provided from test case 1

“Gathering information”. Process can take a lot of time, especially, if list of users and/or

password dictionary are big. Table 4 consists of a number of steps – one check for each

detected username.

This test helps also to check password’s complexity for all users, because it is not recom-

mended to use short or simple passwords. All passwords are checking for its possibility

for fast hacking. But shorter way to achieve it – using internal WordPress password

checker for all users. Data collected in this test is analysing and using for security report.

24

5.2.5 Discovering the scripts of Website.

Sometimes administrators are not consider importance of file permissions management,

which allows to access the code from core files of WordPress. Website can contain un-

used or unblocked functionality of common-used components with scripts, which can be

used for attack. This test attempts to check website files are using scripts and core files.

Test case 5. Attempt to access files and scripts.

Description: Attempt to find scripts or paths, which have access to core elements

Precondition: Inspect the code and website paths for possible interaction with core ele-

ments.

Goal: Getting access to wp-directories or to database.

Table 5. Test case 5. Discover the scripts of website.

Step Description Inputs Expected out-
puts

1 Check website URLs for wp-
paths in search engine

Website URL, wp-path’s

Statements:

/wp-content/

/wp-content/plugins/

/wp-content/themes/

/uploads/

/images/

Paths accessible

detected

2 Inspect the code of scripts Code of script SQL statements or
credentials (id= or
user= or paths)

+, no SQL state-
mens

credentials

3 Analysis of found infor-
mation

Found information Test case for audit

These tests are necessary for checking scripts or elements of code content can be used

for XSS attacks or SQL injection attack. Step 1 of the Table 5 checks several URLs need

to be checked for availability paths contain “wp-“ folders where script files can be stored

and contain id’s or SQL-statements used. Scripts are vulnerable, because this way of at-

tack comes from interaction between user and website. Any website shows in browser as

html-document. Most of html documents today are using DOM structure, which provides a

representation of the document as a structured group of nodes and objects that have

25

properties and methods. Essentially, it connects web pages to scripts or programming lan-

guages. The nature of the DOM allows modifying existing code and running it. It is a kind

of XSS-attack (Introduction to the DOM, 2017). Inspection of scripts found running at Step

2 of the Table 5 allows to check the code for elements can be used for XSS attack or SQL

injection attack. If elements have found, it needs to analyze it for possibility to use at the

further tests.

26

5.2.6 SQL Injection and common SQL attack’s test

This test checks the website for resistance to SQL attack. I need to consider that most of

possibilities to attack website using SQL injection technique have been already fixed and

last versions of WordPress platform are generally secured from that attack, but, maybe

installed plugins or themes or some components will have holes to do that.

Test case 6. SQL injection attack

Description: Attempt to get name and password to access admin console using SQL-in-

jection method.

Precondition: Using traffic monitor and SQL injection tool to get username and password

Goal: Getting access to console.

Table 6. Test case 6. SQL injection attack

Step Description Inputs Expected out-
puts

1 Check actions for re-
quest/response can be used
for injection

Website URLs with forms or

scripts

Data for injection

2 Try to get database content
via SQL injection tools

Data for injection Access to database

3 Get user’s credentials Access to database User’s credentials

SQL attack test checks website for possibility to execute malicious SQL statements for

getting access to database or records contain user’s credentials. First step from the Table

5 needs information collected from test cases №1 and №5 necessary for running this

step. The 2nd step implements SQL injection attack using special software for this pur-

pose. I plan to use powerful tool for SQL injection testing named “sqlmap” preinstalled in

Kali Linux that can be used for this test with a couple of commands. My method is using

URLs contain arguments can be queried from database. For example:

sqlmap –u http:/www.example.com/?post=123

URL is using in example attempts to query post number 123 from the SQL database.

If injection is succeed, software will show database have accessed and will allow to do the

3rd step of the Table 3 that returns users credentials contain usernames and password’s

hashes. It allow to get unauthorized access to WordPress console. Results of this test

case will be reflected in final report.

27

5.2.7 XSS attack test

Cross Site Scripting attacks (also named XSS-attacks) are using most common

vulnerabilities found in WordPress plugins by a significant margin (The WordPress

Security Learning Center, 2017). The idea of this attack is using the code of webpage

script can be modified using malicious scripts injection and runned from browser side

script. It allows to access website bypassing access controls policies.

Test case 7. XSS attack test

Description: Attempt to get access to Admin console or database using XSS attack.

Precondition: Try to implement XSS attack, if possibility to interact with WordPress ele-

ments found core

Goal: Getting access to console or database.

Table 7. Test case 7. XSS attack.

Step Description Inputs Expected out-
puts

1 Inspect the code in browser,
find potential elements for
attack

Website URL Elements for attack

2 Modify code for attack Elements for attack Modified code

3 Run modified code Modified code Access to console
or database

XSS attack needs a code for its modification, so we will use “uniscan” utility preinstalled in

Kali Linux, which scans website files with scripts for content availability for XSS attack at

step 1 of the Table 7. Information collected from test cases №1 and №5 can be used also.

If vulnerabilities will found, we can use it at the steps 2 and 3 of the Table 7. XSS attack is

the most common vulnerability found in the WordPress (How to Prevent Cross Site

Scripting Attacks, 2017) It means, this kind of attack needs to pay special attention.

28

5.2.8 File upload test

File upload vulnerability us using to get access to the WP-core folders and files. The idea

is to upload file with malicious code via this functionality, and, after that, run it from

browser.

Test case 8. File upload test.

Description: Attempt to get users credentials via file upload components by uploading

script

Precondition: Attack website using file upload vulnerability

Goal: Getting access to console or database.

Table 8. Test case 8. File upload atack.

Step Description Inputs Expected out-
puts

1 Inspect the website, find file
upload components

Website URL File upload compo-
nents

2 Try to upload simple script Upload component Success

3 Try to upload malicious
script

Upload component Success

4 Try to run script from
browser

Upload URL Credentials for ac-
cess

This test needs information collected from Step 7 of test case 1. If information collected,

we can use it at steps 2-4 of Table 8. This test has similar logics like XSS attack, but the

script injected into the file uploaded.

5.3 Preparing to testing.

Design of test have done. At this chapter I have tried to analyse information collected in

theoretical part and use it for the set of tests. Of course, it can not guarantee 100%

confidence of my solution, but we need to consider, there is nothing is ideal in the World

and every solution needs to be updated every time, like, for example, WordPress platform.

The next phase will implement set of designed tests on the real website. It will black box

testing method, because I don’t know anything about developing of website have chosen

for the test. Results will be placed into security report. I will discuss about my feelings and

observations during test running.

29

6 Security audit report 1

Here will be showing tests were running and test results and its analysis. All

recommendations of security protection improvements presented at the end of this

chapter.

6.1 Test case 1 implementation. Gathering information.

6.1.1 Running the test 1

Test date: 08.05.2017

Table 9. Test case 1 implementation. Gathering Information.

Step Description Inputs Outputs

1 Version of Wordpress Website URL:

www.digitaluniversity.fi

4.7

2 Theme(s) installed Website URL:

www.digitaluniversity.fi

Eduma

http://digitaluniver-
sity.fi/wp-con-
tent/themes/eduma/

3 Plug-in(s) installed Website URL:

www.digitaluniversity.fi

Plug-ins detected

4 Hosting provider Website URL:

www.digitaluniversity.fi

WhoIS

AinaCom Oy

84.34.147.34

5 List of users Website URL:

www.digitaluniversity.fi

Several users detected

6 Opened ports Website URL:

www.digitaluniversity.fi

checked

7 File upload components Website URL:

www.digitaluniversity.fi

Not found

8 Forms on the page(s) Website URL:

www.digitaluniversity.fi

Found (password reset,
authentification and
search field)

9 User password recovery
page behaviour

Website URL:

www.digitaluniversity.fi

Username existence can
be detected

30

First tests are collecting information about website, which can used for known vulnerabili-

ties detection and attempts to attack. There are many ways to find holes in website secu-

rity and result can be different according to knowledge, experience of attacker. My scan-

ning have been started from WPscan utility. It is black box WordPress vulnerability scan-

ner preinstalled on Kali Linux distribution. Utility is using command line interface with dif-

ferent arguments. More information is available on the official website (WPScan, 2017).

First of all, I’ve downloaded configuration file from official github repository of the utility

and placed it into configuration folder of my Linux, because it didn’t exist. Besides I’ve up-

dated database using wpscan --update command. After that I’ve started my testing.

First command allows to get common information about website:

 wpscan --url www.digitaluniversity.fi

Figure 2. Information gathering using wp-scan utility

Figure 2 reflects utility output. As we can see, version of WordPress have detected. It is

not the latest, but close to it, which means website updates occasionally.

Utility showed also installed plugins, theme and detected vulnerabilities. Detailed review

and analysis is below. Now we have information for 1-3 steps of the Table 9.

We will return to WPScan utility later, but now is the time for the 4th step – gathering infor-

mation using who.is service, which provides information about website holder, DNS rec-

ords, date of creation/expiration of website and so on.

31

Usage is very simple and intuitive – user needs to fill URL into the field on the page and

press the search button, which runs the process of scanning.

All information requested from WHOIS database is showing into the webpage. User can

switch between 5 tabs as showed on the Figure 3.

Figure 3. WhoIs information service

It is necessary tool to make sure, that real website owner ordered security research and

test website according the legislation. It is interesting fact, that website located at the host-

ing account in another country, it should be covered by legislation of country it is located.

Step 5 from the Table 9 is attempt to get a list of usernames of the website. For that pur-

pose, I have used command:

wpscan --url www.digitaluniversity.fi –enumerate u of WPScan utility.

Figure 4. Usernames identification

Figure 4 is showing that 5 usernames have been detected. It is strange, because usually

utility shows full list of users or nothing showed. It is recommended to discover properties

32

of users listed on the Figure X to make them hidden. Maybe it is not critical to show their

names, but it is necessary to check their roles in user hierarchy, if somebody of them is

administrator, successful brute force attack can give full access to website dashboard.

6th step of the Table 9 is opened ports scanning. For that purpose, I have used “nmap:

utility. Nmap is free and open source utility for network discovery and security auditing

(Nmap, 2017). It have preinstalled in my Kali Linux distributive. Utility is using command

line interface. I used command:

 nmap www.digitaluniversity.fi

Figure 3. Scanning opened ports using nmap utility

Opened ports have been detected. Figure 5 shows full list of it. It is not critical, because

this information cannot be hidden, but website administrator should regularly check

opened ports and its frequent scanning attempts from outside need to be detected, be-

cause somebody can use it for attack. In that case it is recommended to block detected IP

using special security plugins or other solutions. In case, when ports are opened but are

not using, it is recommended to close unusable ports.

For the last steps 7-8-9 of the table 9, I did not use any utilities and discovered website

manually. I found some interesting things. First, website offers registration for users with-

out administrator approve. It allows using console for website management from the point

of user role. From the attacker point, this kind of audit helps to find possibilities for attack

hidden without registration, and use user credentials for brute force testing and audit of

password recovery components. Finally, I have checked password recovery form, which

asks e-mail or username and I have tried to fill different usernames or e-mails – in case

when the name doesn’t exist it says about that fact, it allows to check existence of the

name in database which can be used for attempt to guess name and password, or use

33

vulnerability of exchange e-mail for password recovery link to another. This vulnerability

have been detected by WPScan utility and included into the list of detected vulnerabilities.

It may be dangerous, because vulnerability have not fixed yet.

6.1.2 Analysis of the test 1 results

There is a list of detected vulnerabilities in WordPress platform:

Vulnerability: php version info is accessible in readme.html

Description: File readme.html is accessible via HTTP on the default location and

contains detailed php version info.

Recommendation: Hide information contains versions.

Vulnerability: WordPress 4.3-4.7 - Potential Remote Command Execution (RCE) in PHP-

Mailer

Description: In the vulnerable version of PHPMailer, the sender email address is passed

unescaped to a shell command. An attacker could include shell commands in the sender

email that execute malicious code on a target machine or website (Critical Vulnerability in

PHPMailer. Affects WP Core., 2016).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.7 - User Information Disclosure via REST API

Proof: https://digitaluniversity.fi/wp-json/wp/v2/

Description: The new WordPress REST API allows anonymous access. One of the

functions that it provides is that anyone can list the users on a WordPress website without

registering or having an account (WordPress 4.7.1 Security and Maintenance Release,

2011). To see this function in action you can check hyperlink showed above.

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 2.9-4.7 - Authenticated Cross-Site scripting (XSS) in update-

core.php

Description: Multiple cross-site scripting (XSS) vulnerabilities in wp-admin/update-

core.php in WordPress before 4.7.1 allow remote attackers to inject arbitrary web script or

HTML via the (1) name or (2) version header of a plugin (CVE-2017-5488, 2017).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.7 - Cross-Site Request Forgery (CSRF) via Flash Upload

https://digitaluniversity.fi/wp-json/wp/v2/

34

Description: Cross-site request forgery (CSRF) vulnerability in WordPress before 4.7.1

allows remote attackers to hijack the authentication of unspecified victims via vectors

involving a Flash file upload (CVE-2017-5489, 2017).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 3.4-4.7 - Stored Cross-Site Scripting (XSS) via Theme Name

fallback

Description: Cross-site scripting (XSS) vulnerability in the theme-name fallback

functionality in wp-includes/class-wp-theme.php in WordPress before 4.7.1 allows remote

attackers to inject arbitrary web script or HTML via a crafted directory name of a theme,

related to wp-admin/includes/class-theme-installer-skin.php (CVE-2017-5490, 2017).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress <= 4.7 - Post via Email Checks mail.example.com by Default

Description: wp-mail.php in WordPress before 4.7.1 might allow remote attackers to

bypass intended posting restrictions via a spoofed mail server with the mail.example.com

name (CVE-2017-5491, 2017).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 2.8-4.7 - Accessibility Mode Cross-Site Request Forgery

(CSRF)

Description: Cross-site request forgery (CSRF) vulnerability in the widget-editing

accessibility-mode feature in WordPress before 4.7.1 allows remote attackers to hijack the

authentication of unspecified victims for requests that perform a widgets-access action,

related to wp-admin/includes/class-wp-screen.php and wp-admin/widgets.php (CVE-2017-

5492, 2017).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 3.0-4.7 - Cryptographically Weak Pseudo-Random Number

Generator (PRNG)

Description: wp-includes/ms-functions.php in the Multisite WordPress API in WordPress

before 4.7.1 does not properly choose random numbers for keys, which makes it easier

for remote attackers to bypass intended access restrictions via a crafted (1) site signup or

(2) user signup (CVE-2017-5493, 2017).

Fixed in: 4.7.1

Recommendation: Update WordPress to the latest version

35

Vulnerability: WordPress 4.2.0-4.7.1 - Press This UI Available to Unauthorised Users

Description: wp-admin/includes/class-wp-press-this.php in Press This in WordPress

before 4.7.2 does not properly restrict visibility of a taxonomy-assignment user interface,

which allows remote attackers to bypass intended access restrictions by reading terms

(CVE-2017-5610, 2017).

Fixed in: 4.7.2

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 3.5-4.7.1 - WP_Query SQL Injection

Description: SQL injection vulnerability in wp-includes/class-wp-query.php in WP_Query

in WordPress before 4.7.2 allows remote attackers to execute arbitrary SQL commands

by leveraging the presence of an affected plugin or theme that mishandles a crafted post

type name (CVE-2017-5611, 2017).

Fixed in: 4.7.2

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.3.0-4.7.1 - Cross-Site Scripting (XSS) in posts list table

Description: Cross-site scripting (XSS) vulnerability in wp-admin/includes/class-wp-

posts-list-table.php in the posts list table in WordPress before 4.7.2 allows remote

attackers to inject arbitrary web script or HTML via a crafted excerpt (CVE-2017-5612,

2017).

Fixed in: 4.7.2

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.7.0-4.7.1 - Unauthenticated Page/Post Content Modification

via REST API

Description: This privilege escalation vulnerability affects the WordPress REST API that

was recently added and enabled by default on WordPress 4.7.0. One of these REST end-

points allows access (via the API) to view, edit, delete and create posts. Within this partic-

ular endpoint, a subtle bug allows visitors to edit any post on the site (Content Injection

Vulnerability in WordPress, 2017).

Fixed in: 4.7.2

Recommendation: Update WordPress to the latest version

36

Vulnerability: WordPress 3.6.0-4.7.2 - Authenticated Cross-Site Scripting (XSS) via

Description: In WordPress before 4.7.3, there is authenticated Cross-Site Scripting

(XSS) via Media File Metadata. This is demonstrated by both (1) mishandling of the

playlist shortcode in the wp_playlist_shortcode function in wp-includes/media.php and (2)

mishandling of meta information in the renderTracks function in wp-

includes/js/mediaelement/wp-playlist.js (CVE-2017-6814, 2017).

Fixed in: 4.7.3

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 2.8.1-4.7.2 - Control Characters in Redirect URL Validation

Description: In WordPress before 4.7.3 (wp-includes/pluggable.php), control characters

can trick redirect URL validation (CVE-2017-6815, 2017).

Fixed in: 4.7.3

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.7.0-4.7.2 - Authenticated Unintended File Deletion in Plugin

Delete

Description: in WordPress before 4.7.3 (wp-admin/plugins.php), administrators using the

plugin deletion functionality can delete unintended files (CVE-2017-6816, 2017).

Fixed in: 4.7.3

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.0-4.7.2 - Authenticated Stored Cross-Site Scripting (XSS) in

YouTube URL Embeds

Description: In WordPress before 4.7.3 (wp-includes/embed.php), there is authenticated

Cross-Site Scripting (XSS) in YouTube URL Embeds (CVE-2017-6817, 2017).

Fixed in: 4.7.3

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 4.7-4.7.2 - Cross-Site Scripting (XSS) via Taxonomy Term

Names

Description: In WordPress before 4.7.3 (wp-admin/js/tags-box.js), there is cross-site

scripting (XSS) via taxonomy term names (CVE-2017-6818, 2017).

Fixed in: 4.7.3

Recommendation: Update WordPress to the latest version

37

Vulnerability: WordPress 4.2-4.7.2 - Press This CSRF DoS

Description: In WordPress before 4.7.3, there is cross-site request forgery (CSRF) in

Press This (wp-admin/includes/class-wp-press-this.php), leading to excessive use of

server resources. The CSRF can trigger an outbound HTTP request for a large file that is

then parsed by Press This (CVE-2017-6819, 2017).

Fixed in: 4.7.3

Recommendation: Update WordPress to the latest version

Vulnerability: WordPress 2.3-4.7.5 - Host Header Injection in Password Reset

Description: The vulnerability stems from WordPress using untrusted data by default

when creating a password reset e-mail that is supposed to be delivered only

to the e-mail associated with the owner's account. This could possibly allow the attacker to

intercept the email containing the password reset link in some cases requiring user

interaction as well as without user interaction (WordPress-Exploit-4-7-Unauth-Password-

Reset-0day-CVE-2017-8295, 2017).

Attention: Vulnerability is not fixed at moment

Recommendation: Change logic of password recovery form to exclude possibility of user

existance check and hide users detected in user enumeration part of information

gathering test to exclude possibility of using existing usernames.

6.1.3 Recommendations for security protection improvement

Hide usernames identified in the username’s enumeration test if necessary.

Website needed to update CMS to the latest version for better level of protection.

It is recommended to repeat vulnerabilities scanning after updating to be sure vulnerabili-

ties listed have been destroyed.

Change the logic of behavior of the password recovery form.

38

6.2 Test case 2 implemetation. WP-folders location and its accessibility test

6.2.1 Running the test 2

Test date: 09.05.2017

Table 10. Test case 2 implementation. WP

Step Description Inputs Outputs

1 Google Website URL:

www.digitaluniversity.fi

Flash element
found

2 Robots.txt - See Figure 7 below

3 Using non-standard paths Website URL:

www.digitaluniversity.fi

Failed

Search engines become very important and useful tool and its importance is growing

every time. For second test I have used google search engine to try detect core directo-

ries of the website which can be accessible. The idea is search engines indexing data at

all website pages can be accessible. This process contains, collecting, parsing and storing

data to facilitate fast and accurate information retrieval (Search engine indexing, 2017). It

allows to get a lot of useful information for potential attacker using several queries. The

language of queries is clear and intuitive, for example, argument ”inurl:abcd” checks

pages only which have ”abcd”-sequence of characters in URL.

The objective of the 1st step from the table 10 is to check accessible core folders of

website. I have used command: site: www.digitaluniversity.fi inurl:wp-* which

searches all accessible folders starts from ”wp-” of website we are testing.

Figure 4. Searching “wp-“ folders using Google

39

As we can see on the figure 6, one result only have been presented, but, maybe it will be

useful later.

I’ve also checked several another search engines like Bing, DuckDuckGo, Yandex for

similar queries, but not valuable results have been found.

2nd step of the table 10 is checking content of “robots.txt” file, which tells to search en-

gines which files or folders are allowed/dissalowed to be indexed. File is always located in

the root folder of website.

Figure 5. File robots.txt

Figure 7 shoes that “wp-admin” directory is dissalowed for indexing, but “admin-ajax.php”

file located inside this directory needs to be indexed.

Final step checking website for access core directory using non-standard paths. I’ve used

paths are using format:

www.digitaluniversity.fi/wp-admin/admin-ajax.php?action=revslider_show_image&img=../wp-admin

but specified paths had not accessed.

6.2.2 Analysis of the test 2 results

Gathered information will attempt to use in further tests.

40

6.3 Test case 3. Extensions vulnerabilities detection

6.3.1 Running the test 3

Test date: 12.05.2017

Table 11. Test case 3 implemetation. Extensions vulnerabilities detection.

Step Description Inputs Outputs

1 Check known vulnerabili-
ties for plugin or theme in
google

Extension name See the list of vulnerable
plug-ins below

2 Check if solution already
exists

Vulnerability name See the list of vulnerable
plug-ins below

3 Inspect the code of com-
ponent if solution not
found (optional)

Code of component No vulnerable plug-ins with-
out solution found

4 Analysis of found infor-
mation (optional)

Found information No vulnerable plug-ins with-
out solution found

Themes and plug-ins have detected at the Test case 1 “Information gathering”. WPScan

utility shows information about all detected plugins including vulnerabilities if exist. It al-

lowed me to check vulnerable extensions only from Test case 1 “Information gathering”

results. I have checked information related to each vulnerability and found, that all vulner-

abilities can be destroyed by updating current WordPress and plug-ins versions to the lat-

est, but it is necessary to check again updated version of website.

6.3.2 Analysis of the test 3 results

Vulnerabilities have detected in plug-ins:

Vulnerability: Connections Business Directory <= 0.7.9.3 - Pagination URL H&ling XSS

Description: This plugin is prone to a Pagination URL H&ling XSS vulnerability.

Fixed in: 0.7.9.4

Recommendation: Update plug-in to the latest version

Vulnerability: Connections <= 0.7.1.5 - Unspecified Security

Description: Unspecified vulnerability in the Connections plugin before 0.7.1.6 for

WordPress has unknown impact and attack vectors (CVE-2011-5254, 2013).

Fixed in: 0.7.1.5

Recommendation: Update plug-in to the latest version

41

Vulnerability: Connections <= 8.5.8 - Reflected Cross-Site Scripting (XSS)

Description: Cross-site scripting (XSS) vulnerability in

includes/admin/pages/manage.php in the Connections Business Directory plugin before

8.5.9 for WordPress allows remote attackers to inject arbitrary web script or HTML via the

s variable (CVE-2016-0770, 2015).

Fixed in: 8.5.9

Recommendation: Update plug-in to the latest version

Vulnerability: WordPress Slider Revolution Local File Disclosure

Description: Directory traversal vulnerability in the Elegant Themes Divi theme for

WordPress allows remote attackers to read arbitrary files via a .. (dot dot) in the img

parameter in a revslider_show_image action to wp-admin/admin-ajax.php. NOTE: this

vulnerability may be a duplicate of CVE-2014-9734 (CVE-2015-1579, 2015).

Fixed in: 4.1.5

Recommendation: Update plug-in to the latest version

Vulnerability: WordPress Slider Revolution Shell Upload

Description: Slider Revolution and Showbiz Pro fail to check authentication in

revslider_admin.php/showbiz_admin.php allowing an unauthenticated

attacker to abuse administrative features (WordPress Plugin Slider REvolution 3.0.95 /

Showbiz Pro 1.7.1 - Arbitrary File Upload, 2014).

Fixed in: 3.0.96

Recommendations: Version of plug-in have not detected. Check version and update to

latest if necessary.

Vulnerability:

sitepress-multilingual-cms - Full Path Disclosure

Description: Plugin full pass disclosure vulnerability can be used for attack

Fixed in: 3.1.7.2

Recommendations: Version of plug-in was not detected. Check version and update to

latest if necessary.

42

Vulnerability: WPML <= 3.1.7.2 - Multiple Vulnerabilities (Including SQLi)

Description: SQL injection vulnerability in the WPML plugin before 3.1.9 for WordPress

allows remote attackers to execute arbitrary SQL commands via the lang parameter in the

HTTP Referer header in a wp-link-ajax action to comments/feed (CVE-2015-2314, 2015).

The "menu sync" function in the WPML plugin before 3.1.9 for WordPress allows remote

attackers to delete arbitrary posts, pages, and menus via a crafted request to sitepress-

multilingual-cms/menu/menus-sync.php (CVE-2015-2791, 2015). The WPML plugin

before 3.1.9 for WordPress does not properly handle multiple actions in a request, which

allows remote attackers to bypass nonce checks and perform arbitrary actions via a

request containing an action POST parameter, an action GET parameter, and a valid

nonce for the action GET parameter (Common Vulnerabilities and Exposures, 2015).

Fixed in: 3.1.9

Recommendation: Update plug-in to the latest version

Vulnerability: WPML 2.9.3-3.2.6 - Cross-Site Scripting (XSS) in Accept-Language

Header

Description: Vulnerability in sitepress-multilingual-cms plugin allows to do XSS attack us-

ing Accept-language header code.

Fixed in: 3.2.7

Recommendation: Update plug-in to the latest version

6.3.3 Recommendations for security improvement

Update plugins to the latest version.

Attention. Plugins are creating by third-part developers, and, sometimes, plugins could be

not compatible with current WordPress version after updating, start conflict with another

extensions or break their functionality. Please check explanations at the plugins database

on official WordPress website.

43

6.4 Test case 4 implementation. Brute Force attack

6.4.1 Running the test 4

Test date: 10.05.2017

Table 12. Test case 4 implementation. Brute Force attack.

Step Description Inputs Outputs

1 WPscan test_sergey

Unknown re-
sponse

2 WPscan admin Unknown re-
sponce

3 WPscan … (if possible) impossible

Brute force attack have been done using WPScan utility. For that purpose, I have down-

loaded a dictionary contains a lot of most common used passwords (Passwords, 2015).

Brute force test on the Figure 8 shows, that mechanism of user authentication have been

modified and brute-force attack cannot be implemented using traditional methods.

Figure 6. Attempt of brute force attack.

6.4.2 Analysis of the test results 4

Test failed. I suppose, website contains solution protecting it from brute force attack, be-

cause utility returns text “We received an unknown response for…” displayed for all

scanned values.

44

6.5 Test case 5. Discovering the scripts of Website.

6.5.1 Running the test 5

Test date: 11.05.2017

Table 13. Test case 5 implementation. Discovering scripts of Website

Step Description Inputs Output

1 Check website for wp-paths
in search engine

Website URL, wp-path’s

Statements:

/wp-content/

/wp-content/plugins/

/wp-content/themes/

/uploads/

/images/

No access

2 Inspect the code of scripts Code of scripts (Developer
tools in browser used)

No SQL state-
ments, user’s cre-
dentials or paths
found

3 Analysis of found infor-
mation

Found information No information for
audit.

This test I’ve done manually, because no automation tools have been found. Step 1 con-

tained attempts to check several URLs that were no succeed. At the 2nd step I have

checked scripts from the browser development tools manually, but no any scripts or SQL-

queries have been found. But I remembered, that in further tests will check the code for

scripts automatically also.

6.5.2 Analysis of the test 5 results

No vulnerabilities found.

One strange thing have found, but I cannot find the way for attack.

I’ve attempted to get access to “wp-admin” folder hidden in robots.txt using URL:

https://www.digitaluniversity.fi/wp-admin/admin-ajax.php?action=revslider_show_im-

age&img=../wp-admin

Browser returns “0” on the page. Sometimes, it can be used for attack, but I can’t evaluate

is it dangerous or not.

6.5.3 Recommendations for security improvement.

Check the problem found. Evaluate the risk for security and fix issue, if it necessary.

https://www.digitaluniversity.fi/wp-admin/admin-ajax.php?action=revslider_show_image&img=../wp-admin
https://www.digitaluniversity.fi/wp-admin/admin-ajax.php?action=revslider_show_image&img=../wp-admin

45

6.6 Test case 6. SQL injection attack

6.6.1 Running the test 6

Test date: 12.05.2017

Table 14. Test case 6 implementation. SQL injection attack.

Step Description Inputs Outputs

1 Check actions for re-
quest/response can be used
for injection

Website URLs with forms
o
r

scripts

Search form

Password recovery
form

User login form

2 Try to get database content
via SQL injection tools

Data for injection Failed

3 Get user’s credentials Access to database Failed

For the 1st step I have tried to use two different tools for SQL injection attack pre-installed

in Kali Linux. There are sqlmap and jSQLi applications.

First I have tried to make injection using command in terminal:

sqlmap –u https://www.digitaluniversity.fi/?cache-flush=1495499187.632

It showed that no vulnerabilities have found. I have checked also URLs for user login form

and contained number of user that are showing results in browser, for example URL:

https://www.digitaluniversity.fi/?author=100

SQL injection have not been succeed.

Besides I’ve opened a jSQL injection tool using command:

Jsql

This application has GUI and I’ve tried to use the same URLs for it. Unfortunately, all at-

tempts have not been succeed

6.6.2 Analysis of the test 6 results

No vulnerabilities found. All attempts to SQL injection have been failed that means the

website is well protected from SQL injection attacks.

https://www.digitaluniversity.fi/?cache-flush=1495499187.632
https://www.digitaluniversity.fi/?author=100

46

6.7 Test case 7 implementation. Cross site scripting attack test

6.7.1 Running the test 7

Test date: 12.05.2017

Table 15. Test case 7 implementation. XSS attack test

Step Description Inputs Outputs

1 Inspect the code in browser,
find potential elements for
attack

Website URL No elements found

2 Modify code for attack Elements for attack Failed

3 Run modified code Modified code Failed

This test is generally based on information given from Test case 5 “Attempt to access files

and scripts” which collects information from scripts. Besides XSS attack scanning have

been done using “uniscan” utility. It tests all files accessible for XSS vulnerabilities inside

its content. I have used command:

uniscan –u www.digitaluniversity.fi –qd

which runs scanning for different kinds of vulnerabilities including XSS vulnerabilities and

dynamic checks that scan all possible directories.

6.7.2 Analysis of the test 7 results

No vulnerabilities found.

6.8 Test case 8 implementation. File upload test

6.8.1 Running the test 7

Test date: 12.05.2017

Table 16. Test case 8 implementation. FIle upload test.

Step Description Inputs Outputs

1 Inspect the website, find file
upload components

Website URL No possibility
found

2 Try to upload simple script Upload component Failed

3 Try to upload malicious
script

Upload component Failed

4 Try to run script from
browser

Upload URL Failed

http://www.digitaluniversity.fi/

47

Website have been inspected manually and automatically for uploading forms availability,

but nothing have been found.

6.8.2 Analysis of the test 8 results

No vulnerabilities found

6.9 Common test’s results and security audit outcomes.

Table 17. Common security tests results.

Test
case

Result
(passed
/failed)

Severity if
failed (critical
/ normal /
low)

Notes (test case step that failed, deviation
from expected outputs and other relevant
information)

1 passed The list of users is not full. Recover password be-
haviour allows to check if the user exists. All
opened ports are detected. It is possible to check
if the user exists using password recovery form

2 passed Wp-… folders are not accessible

3 passed Critical Vulnerabilities found. Site needs to be updated

4 failed Normal Errors during test caused by unusual security set-
tings

5 failed Normal Scripts or code are using credentials or queries
are not found

6 failed Normal Website has a high level of security against SQL-
injection attack

7 failed Normal No possibilities to implement XSS attack were
found

8 failed Normal File upload attack is impossible, upload compo-
nent unavailable

48

6.10 Security audit 1 outcomes.

Generally, website digitaluniversity.fi has a good level of protection. Core folders were hid-

den for access. One critical vulnerability founded. Updating WordPress to the latest ver-

sion and update of several plug-ins needed. The number of vulnerabilities detected shows

the importance of regular updates for all components of the website, because most of vul-

nerabilities became known at the last three months.

It is necessary to modify password protection form that should not to show any signs tells

about username existence in database. It is important to reduse ability of username

guessing that can be used for attacks.

All recommendations have been sent to the website owner. Second set of testing cases

needs to run for checking if all vulnerabilities have destroyed after update.

49

7 Security audit report 2

Website owner informed me that updates have been installed and I can test it again to be

sure all vulnerabilities found in previous testing have destroyed. I have decided to run sec-

ond set of tests are checking previously detected vulnerabilities only. It will contain check-

ing WordPress platform, its extensions, usernames are available to view, checking logics

of login and recovery password forms. I have collected all necessary actions into the one

test.

7.1 Test case 1 implementation. Gathering information.

7.1.1 Running the test 2.1

Test date: 17.05.2017

Table 18. Test case 2.1 implementation. Gathering Information.

Step Description Inputs Outputs

1 Version of Wordpress Website URL:

www.digitaluniversity.fi

4.7.5

(have been updated)

2 Theme(s) vulnerabili-
ties detection

Website URL:

www.digitaluniversity.fi

No vulnerabilities de-
tected

3 Plug-in(s) vulnerabili-
ties detection

Website URL:

www.digitaluniversity.fi

Plugin’s vulnerabilities
detected

4 List of users Website URL:

www.digitaluniversity.fi

5 usernames detected

5 User password recovery
page behaviour

Website URL:

www.digitaluniversity.fi

Username existence can
be detected

Steps 1-4 from the Table 18 are using WPScan utility.

First, WPScan utility needs to update its database, because, probably, new vulnerabilities

have been found and have added to it since the last using. I am using command wpscan

--update for updating the vulnerabilities database.

Next command runs scanning of website for platform and its extensions vulnerabilities:

wpscan --url www.digitaluniversity.fi

Results contain information for the steps 1-3 of the current test.

Step 4 purpose is attempt to get a list of usernames of the website. For that purpose, I

have used command:

http://www.digitaluniversity.fi/

50

wpscan --url www.digitaluniversity.fi –-enumerate u

Test showed that WordPress version is 4.7.5 that means it have been updated to the lat-

est version, which is actual for the test date. One vulnerability of platform and several is-

sues in plugins have detected.

7.1.2 Analysis of the test 2.1 results

There is a one vulnerability detected in WordPress platform. This is the same vulnerability

have been presented in previous security audit report without any solution for its fixing:

Vulnerability: WordPress 2.3-4.7.5 - Host Header Injection in Password Reset

Description: The vulnerability stems from WordPress using untrusted data by default

when creating a password reset e-mail that is supposed to be delivered only

to the e-mail associated with the owner's account. This could possibly allow the attacker to

intercept the email containing the password reset link in some cases requiring user

interaction as well as without user interaction (WordPress-Exploit-4-7-Unauth-Password-

Reset-0day-CVE-2017-8295, 2017).

Attention: Vulnerability is not fixed at moment

Recommendation: Change logic of password recovery form to exclude possibility of user

existance check and hide users detected in user enumeration part of information

gathering test to exclude possibility of using existing usernames.

There is a list of detected vulnerabilities in plugins:

Vulnerability: WordPress Slider Revolution Local File Disclosure

Description: Directory traversal vulnerability in the Elegant Themes Divi theme for

WordPress allows remote attackers to read arbitrary files via a .. (dot dot) in the img

parameter in a revslider_show_image action to wp-admin/admin-ajax.php. NOTE: this

vulnerability may be a duplicate of CVE-2014-9734 (CVE-2015-1579, 2015).

Fixed in: 4.1.5

Recommendation: Update plug-in to the latest version

Vulnerability: WordPress Slider Revolution Shell Upload

Description: Slider Revolution and Showbiz Pro fail to check authentication in

revslider_admin.php/showbiz_admin.php allowing an unauthenticated

attacker to abuse administrative features (WordPress Plugin Slider REvolution 3.0.95 /

Showbiz Pro 1.7.1 - Arbitrary File Upload, 2014).

Fixed in: 3.0.96

Recommendations: Version of plug-in have not detected. Check version and update to

latest if necessary.

51

Vulnerability: sitepress-multilingual-cms - Full Path Disclosure

Description: Plugin full pass disclosure vulnerability can be used for attack

Fixed in: 3.1.7.2

Recommendations: Version of plug-in was not detected. Check version and update to

latest if necessary.

Vulnerability: WPML <= 3.1.7.2 - Multiple Vulnerabilities (Including SQLi)

Description: SQL injection vulnerability in the WPML plugin before 3.1.9 for WordPress

allows remote attackers to execute arbitrary SQL commands via the lang parameter in the

HTTP Referer header in a wp-link-ajax action to comments/feed (CVE-2015-2314, 2015).

The "menu sync" function in the WPML plugin before 3.1.9 for WordPress allows remote

attackers to delete arbitrary posts, pages, and menus via a crafted request to sitepress-

multilingual-cms/menu/menus-sync.php (CVE-2015-2791, 2015). The WPML plugin

before 3.1.9 for WordPress does not properly handle multiple actions in a request, which

allows remote attackers to bypass nonce checks and perform arbitrary actions via a

request containing an action POST parameter, an action GET parameter, and a valid

nonce for the action GET parameter (Common Vulnerabilities and Exposures, 2015).

Fixed in: 3.1.9

Recommendation: Update plug-in to the latest version

Vulnerability: WPML 2.9.3-3.2.6 - Cross-Site Scripting (XSS) in Accept-Language

Header

Description: Vulnerability in sitepress-multilingual-cms plugin allows to do XSS attack us-

ing Accept-language header code.

Fixed in: 3.2.7

Recommendation: Update plug-in to the latest version

I have checked password recovery form again. It has similar behavior like in test case 1

from security audit report 1.

52

7.1.3 Recommendations for security improvement.

Several extensions have versions that are out of date and recommended to be updated,

but it is not critical for security protection, because no vulnerabilities detected in current

versions.

Enumerating usernames test showed that 5 usernames were identified. Maybe it is not

critical to show their names, but it is necessary to check their roles in user hierarchy and

to hide usernames, if it is needed.

The logics of password recovery should be changed to not show any signs tell to the user

if filled username exists or not. It will allow to prevent attempts to guess usernames.

53

8 Conclusion

Amount of WordPress websites is growing fast. Simplicity if website creation and powerful

extensions attracts many people but distracts from importance of security and administra-

tion of it. Many of enthusiasts are working on vulnerabilities search and platform improve-

ment every time, but it but that is not the reason to calm down and do nothing. Any Word-

Press based website needs regular updates and security audit.

During the work on this report, I found many different ways to identifying security issues.

My set of test cases have designed from scratch. It is useful solution that can be used by

anyone who needs to check WordPress based website for security issues. Test results

showed that my method is effective and helps to identify known vulnerabilities and get in-

formation how to fix it. When I wrote this thesis I has not experience in software security

audit or web application testing, but I have achieved all required goals and got expected

results. I suppose, If I were more experienced in web application security, I could find

more threats and vulnerabilities, but considering global experience used by WordPress

users, my solution covers most possible security issues.

I would like to recommend three important actions allow avoiding most known vulnerabili-

ties and security issues for all WordPress users: First, there are regular updates of Word-

Press platform and its extensions. Second, it is necessary to use common recommenda-

tions for user’s credentials – close usernames from others and use strong passwords, dis-

allow access to critical files and folders. Finally, I recommend doing regular security audit.

The frequency of security audit can differ depends from many factors like website content,

its purpose, value from the business point and so on, but recommended period of security

audit is 2-4 months.

I hope my thesis work will be useful for people who needs to do security audit. Tests pre-

sented in my report can be used for any WordPress website. Moreover, there are several

plugins could be installed for permanent monitoring of website security.

Many sources have been used during the work on thesis. Most of it are security-oriented

websites supported by official WordPress development team or being its partner.

Thesis advisor, Olavi Korhonen has supported my work. We regularly discussed current

status of the project on the meetings or by e-mail. Advisor’s suggestions and comments

were useful to achieve better results.

My further research could discover testing of known solutions for regular automatic moni-

toring of security issues of WordPress-based websites, which required to protect most of

websites in the World to possible attacks.

54

References

Content management system. (2017). Retrieved March 27, 2017, from Wikipedia:

https://en.wikipedia.org/wiki/Content_management_system

G.R., A. (2010, January 22). WordPress Foundation Launches to Protect Open Source

Projects. Retrieved May 25, 2017, from The Blog Herald:

http://www.blogherald.com/2010/01/22/wordpress-foundation-launches-to-protect-

open-source-projects/

How to choose the right CMS for your Website. (2015, April 11). Retrieved May 17, 2017,

from Access Desires: http://www.accessdesires.com/blog/how-to-choose-the-right-

cms-for-your-website/

Introduction to SQL. (2007). Retrieved May 04, 2017, from Function X:

http://www.functionx.com/sql/Lesson01.htm

Introduction to the DOM. (2017, April 18). Retrieved May 09, 2017, from Mozilla

Developer network: https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/Introduction

Kimi. (2016, November 16). Why is WordPress the Most Popular CMS for Web Design.

Retrieved May 17, 2017, from Web Marketing Studio:

http://webandmarketingstudio.com/wordpress-popular-cms-web-design/

McKeown, S. (2012, April 12). What’s Going On In The WordPress Economy? Retrieved

May 25, 2017, from Smashing MAgazine:

https://www.smashingmagazine.com/2012/04/wordpress-economy-part-1/

McKeown, S. (2017). On Forking Wordpress, Forks in General, Early Wordpress and the

Community. In S. McKeown, WordPress. Freedom, COmmunity and the Business

of Open Source. Retrieved May 22, 2017, from Wordpress:

https://wordpress.org/about/history/chapter3.pdf

Nmap. (2017). Retrieved May 17, 2017, from Nmap.org: https://nmap.org/

Passwords. (2015, May 18). Retrieved May 02, 2017, from Skull Security:

https://wiki.skullsecurity.org/Passwords

Plugins. (2017). Retrieved April 04, 2017, from Wordpress: https://wordpress.org/plugins/

Project page. (2001). Retrieved May 20, 2017, from b2 cafelog: http://cafelog.com/

Search engine indexing. (2017, May 12). Retrieved May 18, 2017, from Wikipedia:

https://en.wikipedia.org/wiki/Search_engine_indexing

55

SQL injection. (2017, April). Retrieved April 27, 2017, from Wikipedia:

https://en.wikipedia.org/wiki/SQL_injection

SQL Injection Bypassing WAF. (2017, 01 20). Retrieved 04 11, 2017, from OWASP:

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF

The History of WordPress. (2011, October 28). Retrieved May 2017, 24, from SEO-Alien:

http://www.seo-alien.com/articles/history-wordpress/

The History of WordPress. (2012, October 14). Retrieved May 25, 2017, from Lorelle

teachers: https://lorelleteaches.com/2012/10/14/the-history-of-wordpress/

The WordPress Security Learning Center. (2017, January 04). How to Prevent Cross Site

Scripting Attacks. Retrieved April 28, 2017, from Wordfence:

https://www.wordfence.com/learn/how-to-prevent-cross-site-scripting-attacks/

The WordPress Security Learning Center. (2017, January 04). Understanding SQL

Injection Attacks. Retrieved April 07, 2017, from Wordfence:

https://www.wordfence.com/learn/how-to-prevent-sql-injection-attacks/

Total number of Websites. (2016). Retrieved March 27, 2017, from Internet live stats:

http://www.internetlivestats.com/total-number-of-websites/

Tour of the WordPress Database. (2016, April 18). Retrieved March 28, 2017, from

Delicious Brains: https://deliciousbrains.com/tour-wordpress-database/#wp_terms

Usage of content management systems for websites. (n.d.). Retrieved March 29, 2017,

from W3Techs:

https://w3techs.com/technologies/overview/content_management/all

Usage of server-side programming languages for websites. (n.d.). Retrieved May 04,

2017, from W3Techs:

https://w3techs.com/technologies/overview/programming_language/all

What is Kali Linux? (n.d.). Retrieved May 19, 2017, from Kali Linux official documentation:

http://docs.kali.org/introduction/what-is-kali-linux

WordPress News. (2013, December 31). History of WordPress: The Good, The Bad &

The Ugly. Retrieved May 25, 2017, from WPExplorer:

http://www.wpexplorer.com/history-wordpress/

WordPress Used On 25 Percent Of All Websites. (2015, Novmber 09). Retrieved May 24,

2017, from Martech: https://martechtoday.com/wordpress-used-on-25-percent-of-

all-websites-report-151115

WPScan. (2017). Retrieved 05 2017, 2017, from WPScan: https://wpscan.org/

56

WPScan. (2017, May 25). Retrieved from About WPScan: https://wpvulndb.com/about

WPScan Vulnerability Database. (2017, 03 07). Retrieved 04 04, 2017, from WPScan

Vulnerability Database: www.wpvulndb.com

57

Appendix A. Description of database tables of the WordPress.

1. wp_term_relationships – links posts (pages) with taxonomies and their order:

object_id – the ID of the post object (linked to wp_posts table)

term_taxonomy_id – the ID of the term (linked to wp_term_taxonomy table)

term_order – ability to use order of terms for an object

2. wp_term_taxonomy – contains taxonomies with their properties:

term_taxonomy_id – unique number of taxonomy

term_id - the ID of related to taxonomy term

taxonomy – the slug of taxonomy

description – description of the taxonomy

parent – ID of a parent item. Used for hierarchical taxonomies

count – number of posts objects which assigned to the taxonomy

3. wp_termmeta – table contains metadata for taxonomies. Attributes:

meta_id – unique number for each row of the table

term_id - ID of related term (links to wp_terms table)

meta_key – identifying key for the piece of data

meta_value – actual piece of data

4. wp_terms – contains terms – items of taxonomy and their properties:

id – unique number of term

name – the name of term

slug - URL friendly name of term

term_group – property allows to group terms together (usually using by plugins and

themes)

5. wp_options – contains website settings and configuration data. This table used for

themes, plugins and widgets and temporary cached data.

option_id – unique number of option

option_name – the name for an option (piece of data for configuration)

option_value – value of option

autoload – automatical loading control for option

58

6. wp_users – contains user records required for user management:

id – unique number for the user

user_login – unique username for the user

user_pass – user’s password transformed to hash for security reasons

user_nicename – name for the user showing on website

user_email – e-mail address of the user

user_url – website address of the user

user_registered – date and time user registered

user_activation_key – activation key using for password reset

user_status – old value used in versions of WordPress earlier 3.0 to indicate spam users.

display_name – name to be used publicly in the website

7. wp_usermeta – contains information related to users and their individual settings (like de-

isgn settings, profile settings etc.), which is accessible from dashboard.

umeta_id – unique number for each row of the table

user_id – ID of related user (links to wp_users table)

meta_key – identifying key for the piece of data

meta_value – actual piece of data

8. wp_links – special table responsible for external links data storage contains attributes:

link_id – unique number for each link

link_url – URL of the link

link_name – name of the link

link_image – image URL related to the link

link_target – target frame for the link (_blank, _top, _none)

link_description – description of the link

link_visible – control visibility of the link (public/private)

link_owner – ID of user who created the link (links to the wp_users table)

link_rating – rating for the link (from 1 to 10)

link_updated – date and time link has been updated

link_rel – relationship of the link

link_notes – notes related to the link

link_rss – RSS address for the link

https://deliciousbrains.com/tour-wordpress-database/#wp_users

59

9. wp_posts – most important table in WordPress database. It contains data related to web-

site content – posts, pages, menu items etc.

id – unique number of post

post_author – ID of user created the post

post_date – date and time of post creation

post_date_gmt – GMT time of post creation (necessary for flexible time zon management)

post_content – the content for post (HTML, code and other content)

post_title – title of the post

post_excerpt – intro, a short version of post content

post_status – status of the post (draft, private, publish…)

comment_status – control comments allowance

ping_status – control ping and trackbacks allowance

post_password – password to vies the post (optional)

post_name – URL friendly slug for the post title

to_ping – a list of URLs should send pingbacks to when updated

pinged - a list of URLs has sent pingbacks to when updated

post_modified – time and date of last modification of the post

post_modified_gmt – GMT time and date of last modification of the post

post_content_filtered – used by plugins to cache version of post passed through the “the

content” filter.

post_parent – the parent post which current post is related. This parameter is using to cre-

ate hierarchical relationship between posts

guid – Global Unique Identifier, permament URL to the post, not the permalink version

menu_order – used by sorting in special order

post_type – the content type identifier

post_mime_type – MIME type of the attachment (uploaded file)

comment_count – counter of the total number of comments related to the post

10. wp_postmeta – contains extra information about individual posts not included to

wp_posts table. Used mainly by plugins and themes.

meta_id – unique number of each row of the table

post_id – the ID of the post related to (links to wp_posts table)

meta_key – identifying key of the piece of data

meta_value – the actual piece of data.

60

11. wp_comments – table responsible for storing comments data. Attributes:

 comment_ID – unique number of the comment

 comment_post_ID – ID of the post related to the comment (links to wp_posts table)

 comment_author – name of the comment author

 comment_author_e-mail – e-mail of the comment author

 comment_author_url – URL of the comment author website

 comment_author_IP – IP Address of the comment author

 comment_date – date and time comment was posted

 comment_date_gnt – GMT date and time comment was posted

 comment_content – the actual text of the comment

 comment_karma – attribute used by plugins for comments management purpose

 comment_approved – control comment approval

 comment_agent – data contains technical information for posted comment (operation sys-

tem, browser etc.)

 comment_type – type of comment (comment/pingback/trackback)

 comment_parent – parent comment which current comment is related to (used for hierar-

chy for replies)

 user_id – ID of comment author if the author is registered user (links to wp_users table)

12. wp_commentmeta – table stores additional comment’s data. Attributes:

 meta_id – unique number assigned for each row

 comment_id – the ID of the related comment (links to wp_comments table)

 meta_key – an identifying key for the piece of data

 meta_value – the actual piece of data

61

Appendix B. Description of core files and folders.

Folders:

wp-admin – folder, contains files required to link database with current installation, tools

for dashboard and key-functions related to user management and administration.

wp-content – stores themes and plugins are using in website. This folder doesn’t over-

write when WordPress updates to a new version.

wp-includes – folder contains all files needed for website functionality but didn’t included

to wp_admin and wp_content folders. There are a lot of files of WordPress core, certifi-

cates, widgets, javascript files.

wc-logs – folder where logs can be stored

Files:

index.php – the file loads and initializes all WordPress files when it requested. Usually it

has requested automatically when website is requested.

.htaccess – the file of server configuration manages permalinks, redirects and access re-

strictions. It is not directly related to WordPress, but it needs to be stored inside root folder

of website.

wp-config.php – configuration file of WordPress manages database connection and

global settings for website. This file is very important from the point of security, because it

contains important data required for access to database.

robots.txt – file contains instructions for search engines. This file is not a part of Word-

Press, but the policy of interaction with search engines needs to place it inside the root

folder of the website.

functions.php – file stored in “wp-includes” folder is responsible for behavior, features

and functionality of pages of the website.

admin.php - file stored in “wp-admin” folder contains code is showing authorisation page

for website

wp-load.php – file stored in “wp-admin” folder contains script runs after verification which

runs wp-config.php after executing

wp-config.php file stored in root folder of website responsible for general management of

database and website. Contains data needed for authentication and connection to MySQL

database.

