

Evaluation of a Data

Messaging System Solution

Case: Evaluation of Apache Kafka™ at

Accanto Systems

LAHTI UNIVERSITY OF APPLIED
SCIENCES
Degree programme in Business
Information Technology
Bachelor’s Thesis
Spring 2017
Huong Nguyen

Lahti University of Applied Sciences
Degree Programme in Business Information Technology

NGUYEN, HUONG: Evaluation of a Data Messaging
System Solution
Case: Evaluation of Apache Kafka™
at Accanto Systems

Bachelor’s Thesis in Business
Information Technology 38 pages, 10 pages of appendices

Spring 2017

ABSTRACT

This study aims to explore the process of adapting a new Data Messaging
System Solution, i.e Apache Kafka™ (Kafka), and to evaluate whether it is
suitable for the needs at Accanto Systems.

The research follows the framework for Design Science research
methodology. Evaluation of the artefact involves the use of a software
quality model.

The results of the study confirm that Kafka is satisfactory as a Data
Messaging System solution. The results may also serve as an
implementation guideline for the company to use in future encounters with
the topic of data messaging.

Keyword: Data Messaging Sytem, software quality model, Apache
Kafka™, cluster, artefact.

TABLE OF CONTENTS

1 INTRODUCTION 1

2 RESEARCH DESIGN 2

2.1 Research Questions and Objectives 2

2.2 Research Methodology 2

2.3 Research Process 3

3 PRACTICAL BACKGROUND 5

3.1 Data Messaging in Customer Experience Management 5

3.1.1 About Accanto Systems Products 5

3.1.2 Challenges in Adaptive Data Collection 7

3.2 Quality Requirements of a Data Messaging System
Solution 9

4 THEORETICAL BACKGROUND 11

4.1 Enterprise Integration Patterns 11

4.2 Data Messaging Systems 12

4.2.1 Distributed Data Processing 12

4.2.2 Basic Concepts of Data Messaging Systems 13

4.2.3 Choosing a Messaging System 14

4.3 About Apache Kafka 15

4.3.1 Basic Features 15

4.3.2 Topics and Logs 16

4.3.3 Distribution Management 17

5 ARTEFACT DESIGN AND IMPLEMENTATION 19

5.1 Artefact Design – Apache Kafka Adaptation 19

5.2 Quality Requirements 21

5.2.1 Characteristic 1: Functional Suitability 22

5.2.2 Characteristic 2: Performance Efficiency 22

5.2.3 Characteristic 3: Compatibility 23

5.2.4 Characteristic 4: Usability 24

5.2.5 Characteristic 5: Reliability 24

5.2.6 Characteristic 6: Security 25

5.2.7 Characteristic 7: Maintainability 25

5.2.8 Characteristic 8: Portability 26

5.3 Implementation Priorities 26

5.4 Adaptation Process 26

6 ARTEFACT EVALUATION 28

6.1 Software Testing Methods 28

6.2 Test Objectives and Scope 28

6.3 Test Features 29

6.3.1 Testing Requirement Analysis 29

6.3.2 Test Coverage 32

6.4 Test Implementation 32

6.5 Test Results 33

6.5.1 Functional Suitability 34

6.5.2 Performance Efficiency 34

6.5.3 Compatibility 35

6.5.4 Usability 35

6.5.5 Reliability 35

6.5.6 Security 36

6.5.7 Mainainability 36

6.5.8 Portability 36

7 CONCLUSIONS 37

7.1 Summary of the Study 37

7.2 Reliability and Validity 37

7.3 Further Research Questions 38

LIST OF REFERENCES 39

APPENDIX 41

LIST OF ABBREVIATIONS

CEM Customer Experience Management

DMS Data Messaging Systems

FTP File Transfer Protocol

JMS Java Messaging Service

JSON JavaScript Object Notation

Kafka Apach Kafka™

Kettle Pentaho Data Integration

SQM StratOSS Quality Management

XML eXtensible Markup Language

LIST OF FIGURES

Figure 1 Design Science Research Framework (Hevner et al. 2004, 80) ... 3

Figure 2 Design Science Research Methodology Process Model (Peffers

et al. 2007, 14).. 4

Figure 3 StratOSS use cases (Accanto Systems Oy 2016) 6

Figure 4 Data Collection in SQM (Accanto Systems Oy 2016) 7

Figure 5 Data Collection in Orchestrator (Accanto Systems Oy 2016) 8

Figure 6 The ISO/IEC FCD 25010 product quality standard (ISO/IEC

25010 2011) ... 10

Figure 7 Quality Model Building Process (Franch and Carvallo 2003, 36) 10

Figure 8 Kafka APIs (Apache Software Foundation 2017) 16

Figure 9 Producer-Consumer Log (Apache Software Foundation 2017) .. 17

Figure 10 Anatomy of a Kafka topic (Apache Software Foundation 2017)

 ... 17

Figure 11 Kafka architecture with Zookeeper (Mouzakitits 2016) 18

Figure 12 Current SQM Architecture (Accanto Systems Oy 2016) 19

Figure 13 Current SQM Architecture – Data Collection (Accanto Systems

Oy 2016) ... 20

Figure 14 Evaluated SQM data adaptation with Kafka (Accanto Systems

Oy 2016) ... 20

Figure 15 Requirement features for testing .. 31

Figure 16 Test hierarchy ... 33

LIST OF TABLES

Table 1 Requirements - Functional suitability ... 22

Table 2 Requirements - Performance efficiency 23

Table 3 Requirements – Compatibility .. 23

Table 4 Requirements - Usability.. 24

Table 5 Requirements - Reliability .. 24

Table 6 Requirements – Security ... 25

Table 7 Requirements - Maintainability .. 25

Table 8 Requirements - Portability ... 26

Table 9 Testing documentation terms .. 29

Table 10 Test feature importance levels ... 30

Table 11 Test results - Functional suitability ... 34

Table 12 Test results - Performance efficiency .. 34

Table 13 Test results - Compatibility .. 35

Table 14 Test results - Usability ... 35

Table 15 Test results - Reliability.. 35

Table 16 Test results - Security ... 36

Table 17 Test results - Maintainability .. 36

Table 18 Test results - Portability ... 36

1

1 INTRODUCTION

Accanto Systems is a company based in Lahti, Finland, specialized in

developing Customer Experience Management solutions that enable

Telecom Service Providers worldwide to prioritize actions that deliver the

optimal business value.

The demand for extensive customer insight from businesses in this era of

Big Data calls for Accanto Systems to be constantly striving to improve

operations of real-time data processing. The company therefore puts a

strong emphasis on the integration of a data messaging solution that can

handle increasingly diverse data sources.

Hohpe and Woolf (2004, 57) define Data Messaging System (DMS) or

Enterprise Messaging System as a set of agreements utilized by

enterprises to facilitate the communication of information between different

computer systems and applications. The implementation of a functional,

well-designed, secure DMS that fits well with the rest of the system is

essential to the success of the whole software product.

This paper inspects the need for adapting a DMS at Accanto Systems and

attempts to find a solution for that need. The solution can be in the form of

installing an existing DMS - Apache Kafka™ (Apache Kafka or Kafka) -

into the company current system and evaluate its suitability. After

evaluating the solution, as a result, the thesis provides the company with

an artefact design and an implementation guideline.

The study is expected to contribute to a direct improvement of the DMS

adaptation process, and pave way for more research into data messaging

in the context of real-life software development in the future.

2

2 RESEARCH DESIGN

2.1 Research Questions and Objectives

This study sets out to solve a problem the company Accanto Systems is

having: the need for a Data Messaging System solution in their Customer

Experience Management products. The study considers Apache Kafka™

(Apache Kafka or Kafka) as a potential solution and proceeds to evaluate

its adaptation.

The research questions of this study therefore will be specified as follows:

• Is Apache Kafka a suitable solution for Data Messaging System in

existing Customer Experience Management products at Accanto

Systems?

• How can the success of the Apache Kafka adaptation be

evaluated?

2.2 Research Methodology

This study employs design science as the research framework. As

opposed to description-driven research where explanations of the

phenomenon are prioritized, design science focuses on delivering

solutions to the research question via building artefacts to solve the

problems, implementing the treatment of the artefacts, and evaluating the

results to refine the artefact construction. The process of assessment and

refinement is executed continuously until the design artefact can be

implemented in the business environment and provide improvements to

existing theories, as illustrated in figure 1.

3

Figure 1 Design Science Research Framework (Hevner et al. 2004, 80)

This research methodology is especially popular in the field of information

systems in which the pragmatic nature of the approach helps navigate the

researchers towards working solutions (Hevner et al. 2004, 76) This is

especially fitting given the nature of this study, in which the author aims to

both help implement the artefact to improve the case company’s

operations and improve their personal knowledge base when it comes to

applying theory to real-life problem solving.

2.3 Research Process

The study process iteration is performed through constant communication

and supervision from Accanto Systems to ensure the artefact is of

relevance to the company’s requirements.

The author refers to a commonly accepted model provided by Peffers et

al. (2007, 14) as illustrated in figure 2 below, for implementing research

procedures and structuring this research paper.

4

Figure 2 Design Science Research Methodology Process Model (Peffers et al. 2007, 14)

Chapter 3 of this paper discusses the motivations of the study, covering

necessary practical information about the company’s needs for a Data

Messaging System, as well as the process of defining requirements for the

finished artefact.

Chapter 4 provides theoretical background on Enterprise Integration in

general and on Data Messaging Systems in particular. The chapter also

introduces the characteristics of Apache Kafka and why it is proposed as

the artefact to be tested.

Chapter 5 describes the process of design and implementation of Apache

Kafka as a Data Messaging System solution into the current system of

Accanto Systems products. Chapter 6 evaluates the artefact described in

chapter 5 through methods of software testing. Finally, chapter 7

concludes the findings and discusses the reliability of the study and

potential for further research questions.

5

3 PRACTICAL BACKGROUND

It is essential to have a basic understanding of the problem before

designing a solution for the said problem. This chapter explains the real-

life relevance of the research question and proposes methods to evaluate

the study effectively.

3.1 Data Messaging in Customer Experience Management

This subchapter aims at providing a background of Customer Experience

Management (CEM) solutions developed by Accanto Systems and

exploring the need for a Data Messaging System of the company.

Gartner IT Glossary (2017) defines Customer Experience as a collective of

the customer’s perceptions of the brand based on interactions with that

brand; and Customer Experience Management is a practice performed by

the owner of the brand to understand and adapt to customer interactions

and improve their customer experience. Effective CEM leads to sound

business decisions that deliver personalized, satisfactory experiences to

the business’ customers and thus, to increasing in customer loyalty and

good brand image. Gaining insight about customers allows businesses to

have a great advantage over their competitors, but it requires collecting

and analysing a large amount of customer feedback data from very

diverse sources. (Hayes 2011.)

3.1.1 About Accanto Systems Products

StratOSS is an ecosystem developed by Accanto Systems that facilitates

many aspects of customer experience management, especially network

analytics, as illustrated in figure 3.

6

Figure 3 StratOSS use cases (Accanto Systems Oy 2016)

StratOSS serves as an intermediary between service-centric units such as

mobile network customer care and network-focused units such as network

operation engineers. Quality of service for end users is collected from

devices and data centers, providing real-time insight on service impact so

action to improve customer experience can be prompt and meaningful.

Notable spin-off products include StratOSS Quality Management (SQM)

and StratOSS Network Functions Virtualization Orchestrator

(Orchestrator), whose sytem architectures are also examined to clarify the

research question. SQM examines service quality management use cases

through the configuration of data sources, service models and reports.

Orchestrator is an upcoming product focusing on intelligent orchestration

services for network optimisation. (Accanto Systems Oy 2016.)

7

3.1.2 Challenges in Adaptive Data Collection

StratOSS Quality Management (SQM) is a product aimed at optimal

processing of network events to give corporate customers insight into the

distribution and performance of their network traffic. SQM customers are

companies collecting their customer feedback from mobile network

connections. Therefore, data sources for the system have been following

widely-adapted protocol of the mobile industry, which means the format is

quite static and can be manually configured before adapting into other

components of SQM. Data transfer with manual configuration, as depicted

in figure 4, can be employed to collect data packages and there has been

no need of other extensive data messaging solutions. (Accanto Systems

Oy 2016.)

Figure 4 Data Collection in SQM (Accanto Systems Oy 2016)

However, during the design phase of StratOSS Network Functions

Virtualization Orchestrator (Orchestrator), a new product of the company, it

was discovered that this form of data collection may be unsuitable.

Orchestrator’s main function is to monitor the health of networks to scale

traffic or heal components accordingly. This difference in product goal

compared to SQM leads to a completely different approach of data

8

integration. Data sources collected for Orchestrator can come from

anything from a video-on-demand server to a consumer television digibox,

as can be seen in figure 5. As components should be initiated at any

moment, without a concrete limit or format, manual configuration of data is

impossible. (Accanto Systems Oy 2016.)

Figure 5 Data Collection in Orchestrator (Accanto Systems Oy 2016)

This calls for a dynamic, high-availability, high-capacity, scalable DMS to

collect data to pre-configured topics before processing in the Orchestrator

system. Apache Kafka fits into these requirements and therefore chosen to

be studied as a potential messaging system.

9

3.2 Quality Requirements of a Data Messaging System Solution

This subchapter aims to achieve a better understanding of the desired

solution and define evaluation criteria for this study. This leads to a better

design and implementation of the artefact and a clearer approach when it

comes to testing the artefact.

To know what should be expected of an unimplemented artefact may be

disorienting, especially in the context of an unfamiliar software product

ecosystem, considering every viewpoint has a different understanding of a

“satisfactory solution.” In this case, the author has decided to use quality

models to help define the desired objectives or characteristics of a

satisfactory solution to the research problem. Quality models are a set of

characteristics and sub-characteristics, as well as the relationships

between them that offer researchers a clearer look at what constitutes the

basis of requirements and for evaluating quality of the solution (Singh

2007, 438).

After consulting with Accanto Systems, the author concluded that following

a common framework for software quality evaluation guarantees reliability

of research and reusability for the company in the future. This study

therefore will utilize a software quality standard to build a quality model,

from which requirements of the adaptation are constructed.

The evaluation approach relies on the International Organization for

Standardization and International Electrotechnical Commission 25010

Product Quality standard, which was selected for its generic nature, its

adaptability, and its widespread use in creating quality models tailored to a

wide variety of software domains.

The product quality model categorizes product quality properties into eight

characteristics (functional suitability, reliability, performance efficiency,

usability, security, compatibility, maintainability and portability). Each

characteristic is composed of a set of related subcharacteristics, as

depicted in figure 6. (ISO/IEC 25010 2011.)

10

Figure 6 The ISO/IEC FCD 25010 product quality standard (ISO/IEC 25010 2011)

The research process follows the guideline proposed by Franch and

Carvallo (2003, 36) for building a quality model for software package

selection as shown in figure 7 below. The fine-tuning process of this

quality model is closely assisted and supervised by Accanto Systems in

every step to make sure the author chooses only the attributes most fitting

for the scope of this study and the general company’s needs.

Figure 7 Quality Model Building Process (Franch and Carvallo 2003, 36)

11

4 THEORETICAL BACKGROUND

This chapter introduces the various concepts related to data integration

and data messaging to provide better insight into the ultimate objectives of

this study.

4.1 Enterprise Integration Patterns

An ongoing challenge for many software companies is a need for better

integration of applications, as a functional software product is usually

made by multiple different systems and components. Hohpe and Woolf

(2004, 1) define this challenge as follows:

Enterprise integration is the task of making separate
applications work together to produce a unified set of
functionalities.

According to Hohpe and Woolf (2004, 37), a successful integration in this

case should fulfill several criteria:

• Minimal inter-dependencies between integrated applications

• Simple changes for existing systems

• Understanding of technologies needed for integration

• Unified, flexible, and extensible agreement on data format

• Reduced latency of data exchange

• Ability for an application to invoke functionalities in another

application

• Asynchronous procedures

With these criteria in mind, four different integration patterns are

considered, and each style addresses some criteria better than others:

• File transfer: Shared data is transferred in a file, which is produced

by some applications and consumed by others.

• Shared database: A common database is used to store data among

applications.

12

• Remote procedure invocation: Applications remotely invoke

permited procedures to run certain functions and exchange data.

• Messaging: Applications are connected to a common messaging

system, and data is exchanged via messages.

Usually enterprises would implement all four of the above-mentioned

integration patterns to varying degrees depending on the demands of the

company. However, this study focuses only on the Messaging pattern, and

the following chapter explores the possibilities of different messaging

systems.

4.2 Data Messaging Systems

This subchapter introduces the background of Data Messaging Systems in

general and explains the reasons for choosing Apache Kafka as the focus

of this study.

4.2.1 Distributed Data Processing

To mention data messaging systems in the context of this study means

also to introduce the concept of distributed systems. Distributed system is

a model where components on a network relay information and coordinate

their actions through the passage of messages (Coulouris et al. 2011, 2).

Applications of distributed computing include major network applications

like the World Wide Web, or cluster computing projects, or telephone and

cellular networks.

At the onset of the Big Data movement, distributed data processing tools

were mostly designed to look at data in batches rather than as continuous

streams. This is reflected at many large businesses’ decision to follow the

Extract – Transform – Load approach for years, which is the combination

of two integration patterns mentioned in the previous subchapter - file

transfer and shared database. Using the Extract – Transform – Load

approach means jobs would have to be run every night to extract data

13

from some database, then transform said data, then store the data in

another database. (Patil 2016.)

However, more recently enterprises have realized the full potential of

processing data as they happen - this realization shifts the demand of

software companies to a distributed messaging framework that can handle

big data in real time. Hence Apache Kafka was introduced by LinkedIn

engineers in 2011, aiming to provide a durable, scalable, low-latency

messaging system that can handle big data in real time. (Patil 2016.)

4.2.2 Basic Concepts of Data Messaging Systems

A Data Messaging System (DMS) is a set of enterprise-wide standards

allows for the asynchronous communication between different interfaces,

where data sent by one system can be stored in the queue of another

system until processed (Hohpe & Woolf 2004, 57). Some basic keywords

are listed below for a better understanding of DMS:

• A message channel serves as a virtual pipe that connects a

sender/publisher and a receiver/subscriber. Facilitation of message

channels are required upon setup of a Data Messaging System.

• A message is a packet of data to be transmitted on a channel.

Usually data transfer will require formatting of messages on both

the sending and the receiving ends.

• Transformation of a message reconciles the difference in data

format of a message from a sender to a receiver.

• Messaging endpoint is a layer of code that serves as an interface

between existing applications and the messaging system, enabling

the bridge of data between them.

DMS stands out as the preferred data communication method because its

architecture allows changes in the formats of messages to have minimum

impact on subscribers to the messages. DMS is run with the usage of

structured messages (using formats such as XML or JSON), and

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON

14

appropriate protocols, i.e Data Distribution Service, Message Queuing, or

SOAP with web services. (Hohpe & Woolf 2004, 53.)

4.2.3 Choosing a Messaging System

Traditionally, messaging systems usually employ two models: point-to-

point queuing and publish-subscribe. In a queue, only one receiver can

successfully consume any given message, which means multiple

subscribers may read from a source and each record goes to one of them.

In publish-subscribe channel, however, the record is broadcast to all

subscribers, and the subscriber only gets the message once and the

copies disappear upon being consumed. (Hohpe & Woolf 2004, 103-106;

Patil 2016.)

Each of these two models has different strengths and weaknesses. Patil

(2016) points out that, a point-to-point channel allows scaling of data

processing, which is divided up over multiple instances where subscribers

do not have to coordinate with each other. Unfortunately, such point-to-

point queues are not very flexible —the message can only be consumed

by one subscriber. On the other hand, a publish-subscribe channel allows

data broadcast to multiple processes, but has no way of scaling

processing since every message goes to every subscriber.

The innovation of a product like Apache Kafka is that its model has both of

these properties—a topic can scale processing and is also multi-

subscriber. This makes Kafka stand out as the state-of-the-art data

messaging solution.

Several solutions for a Data Messaging System have been considered

before Kafka is chosen as the focus of this evaluation study. There are

contemporary products such as Apache ActiveMQ, RabbitMQ and Flume

that also enable data messaging between different platforms. Although

there is function overlap between these systems, Kafka is still considered

the go-to data streaming solution, superior to the above-mentioned

messaging systems for numerous reasons:

https://en.wikipedia.org/wiki/Data_distribution_service
https://en.wikipedia.org/wiki/Microsoft_Message_Queuing
https://en.wikipedia.org/wiki/SOAP_%28protocol%29
https://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

15

• Adapatability. Unlike Flume, Kafka is not specifically designed for

Hadoop integration, and can be used to process data across a wide

variety of applications and platforms.

• High avaibility. A Kafka cluster can scale horizontally, and its

replication mechanism allows data to be preserved even if a leader

fails.

• Multi-purposeness. Kafka is designed to support both batch and

real-time use cases.

(Shapira & Holoman 2014.)

4.3 About Apache Kafka

This subchapter provides a technical background of Apache Kafka as a

distributed data messaging system.

4.3.1 Basic Features

Apache Kafka is a publish-subscribe messaging system that runs as a

cluster on one or more server. Kafka maintains streams of messages in

“topics”. Each record of message consists of a key, a value, and a

timestamp; these messages can be used to store any object and get

passed around in byte arrays. (Apache Software Foundation 2017.)

Kafka has four core APIs as can be seen in figure 8:

• Producer API lets an application publish a stream of messages to

Kafka topics.

• Consumer API lets an application subscribe to topics and read

messages produced to such topics.

• Streams API lets an application act as a stream processor,

transforming input streams from some topics into output streams to

other topics.

• Connector API connects Kafka topics to existing data systems and

applications using connectors.

16

Figure 8 Kafka APIs (Apache Software Foundation 2017)

According to Apache (2017), due to the flexibility in structure, Kafka is

especially useful in building real-time streaming data applications that

collect data between systems or transform the streams of data. In Kafka, a

stream processor takes continual streams of data from input topics,

performs processing on the data, and produces continual streams of data

to output topics.

4.3.2 Topics and Logs

A topic is where messages are published to. Many consumers may

subscribe to one topic to process data written to it. Consumers control

offset – position of records - and can consume messages in any order,

whether by a reset to an older offset, or skipping ahead to the most recent

one, as can be seen in figure 9. This allows a consumer flexibility to

reprocess data from the past or skip ahead to the most recent record and

immediately get the current data. (Apache Software Foundation 2017.)

17

Figure 9 Producer-Consumer Log (Apache Software Foundation 2017)

According to Apache (2017), the Kafka cluster maintains a structured

commit log for each topic. As can be seen in figure 10, each partition of

said topic is maintained in a sequence of continually appended records.

The partitions here are distributed over the servers in the Kafka cluster

while being replicated across servers for fault tolerance. Kafka brokers are

stateless—they do not track consumption, leaving message deletion to a

configurable retention policy.

Figure 10 Anatomy of a Kafka topic (Apache Software Foundation 2017)

4.3.3 Distribution Management

The partitions in Kafka are distributed over the servers in a cluster with

each server handling requests for several partitions. Each partition is also

replicated, or ‘copied’, across different servers to ensure the cluster would

still work as intended even if some components shut down.

18

In a Kafka cluster, each partition has one ‘leader’ server and several

‘follower’ servers. The ‘leader’ handles read and write requests for the

partitions, and if it fails, a random ‘follower’ will become the new leader.

The key in managing this system of fault tolerance is a tool called

Zookeeper, which must be installed before installing Kafka. (Apache

Software Foundation 2017.)

Zookeeper is a product also developed by Apache, specialized in

managing configuration for distributed synchronization. It serves as the

glue that holds it all together, as illustrated in figure 11, and it is

responsible for the following:

• electing a controller (Kafka broker that manages partition leaders)

• recording cluster membership

• topic configuration

• ACLs (maintaining authentication between brokers)

(Mouzakitits 2016.)

Figure 11 Kafka architecture with Zookeeper (Mouzakitits 2016)

19

5 ARTEFACT DESIGN AND IMPLEMENTATION

5.1 Artefact Design – Apache Kafka Adaptation

For the scope of this thesis, the author would confine the Apache Kafka

artefact implementation to the case of data collection in StratOSS Quality

Management (SQM).

The goal of this artefact is to adapt Apache Kafka as a data messaging

system in SQM current architecture, particularly in the data collection

process.

Figure 12 Current SQM Architecture (Accanto Systems Oy 2016)

Figure 12 above describes the data flows in current SQM architecture.

Data are structured as 3 layers: adaptation from different data sources,

transformation in engine, and retrievable for customer insight from the web

portal. For this study, we take a closer look at the adaptation process of

data sources, especially how the “Data Collection” step has been handled.

As can be seen from figure 13 below, data sources such as network

events are exported via FTP as raw files in a repository, while developers

20

use JMS to keep track and send those files to Kettle adapter. Kettle then

performs initial transformation of the raw files into those of compatible

format with the rest of the system. Files are then renamed and then loaded

to the engine of the application.

Here which set of data uses which configuration settings before going into

the adapter is the process that is manually handled by going through a

collection of pre-defined data size and format. This works fine for limited

data sources, but may be time-consuming with more dynamic sources.

 Figure 13 Current SQM Architecture – Data Collection (Accanto Systems Oy 2016)

The study proposes to use Kafka as the messaging channel for the “Data

Collection” step, as seen in figure 14 below.

Figure 14 Evaluated SQM data adaptation with Kafka (Accanto Systems Oy 2016)

21

Kafka can hold a continuous stream of data directly from the event

sources to the adapter interface. In contrast to the current data collection

process, with Kafka data will be collected to different ‘topics’ according to

specified configuration, and each topic will go to the desired path for the

adapter to pick up data. No manual configuration, and no storage and

maintenance of files will be necessary for this stage.

5.2 Quality Requirements

This subchapter explains the requirements for a successful adaptation

planned in the previous subchapter. As outlined in subchapter 3.2, the

study bases its requirements of the artefact on software quality

requirements following standard ISO/IEC 25010:2011.

The company first states the general desired areas of interest, for example

“The system should be able to run on a cluster” or “The data messaging

system should not interfere with other components of the system.” The

thesis author studies both the nature of available data messaging systems

and the company’s current product architecture; and divides and sorts the

company requests into suitable characteristics and subcharacteristics. The

author also proposes several qualities that she discovers to be contributing

towards solving the problem. The company and the author then go

through the quality model again, and proceed to break down the attributes

and rate them due to their importance to the project.

The following subchapters describe requirement attributes for the DMS

solution, categorized under characteristics. Each subchapter contains a

brief definition of the main characteristics and subcharacteristics as

defined by the International Organization for Standardization and their

subsequent attributes specified by the thesis author and the company.

22

5.2.1 Characteristic 1: Functional Suitability

Functional suitability refers to the degree to which the artefact provides

functions that meet stated and implied needs when used under specified

circumstances.

Attributes belonging to subcharacteristic functional completeness rates the

degree to which the functions of the artefact cover all the objectives of the

solution.

Functional correctness considers whether the artefact produces the

correct results with the needed degree of precision.

Functional appropriateness considers the remaining tasks to be done to

ensure the accomplishment of the objectives.

Sub-characteristics Attributes Priority

Functional completeness

Installed on a single machine:
Windows and Linux Very high

Installed Kafka on 3-server
Zookeeper cluster Very high

Functional correctness

nProbe Cento flows
successfully publishes to Kafka
topic Very high

Spoon connector consumer
successfully reads probe data
from Kafka topic Very high

Functional appropriateness

Data is in a suitable format for
Spoon transformations High

Probe data modified by Kettle is
succesfully published to a
different Kafka topic for loading Medium

Table 1 Requirements - Functional suitability

5.2.2 Characteristic 2: Performance Efficiency

Performance efficiency concerns the performance level relative to the

available software and hardware resources.

23

Resource utilization refers to the amounts and types of resources the

artefact uses when performing its functions that meet requirements.

Sub-characteristics Attributes Priority

Resource utilization

Appropriate disc usage High

Appropriate CPU usage High

Table 2 Requirements - Performance efficiency

5.2.3 Characteristic 3: Compatibility

Compatibility is the degree to which the artefact can perform with other

products while sharing the same hardware or software environments.

Co-existence refers to whether or not the artefact can share resources

with other components of the system without any damage to the internal

workings of the artefact.

Interoperability is the ability for the artefact to exchange information with

other systems or products, and use the exchanged information.

Sub-characteristics Attributes Priority

Co-existence
Supported: Self-managed load
balancing

Low

Interoperability
Supported: DB Connector, File
Connector, Data Aggregrators, probes
and metrics input

Low

Table 3 Requirements – Compatibility

24

5.2.4 Characteristic 4: Usability

Usability is the measurement of whether or not the artefact can be used by

the end users in a specified context with efficiency and satisfaction.

Attributes Priority
Note

Installation/configuration guide and
recommended setup

High
Will be provided by the
thesis author

Table 4 Requirements - Usability

5.2.5 Characteristic 5: Reliability

Reliability is the degree to which the artefact can function under

unconventional conditions, for a specified period of time.

Maturity refers to how the artefact maintain the state of reliability by

managing the frequency of failure.

Availability is the degree to which the artefact is operational when required

for use, such as when the product is online.

Fault tolerance considers how the artefact operates in the presence of

hardware or software fautls.

Sub-
characteristics

Attributes
Priority

Maturity

Alerts for hardware/software faults (disc
almost full, abnormal message size,
Zookeeper state, no active Kafka controller
etc.)

Low

Availability & Fault
Tolerance

Performing when Kafka broker(s) breaks
down

Medium

Table 5 Requirements - Reliability

25

5.2.6 Characteristic 6: Security

Security is the degree to which the artefact protects data so that users

have the appropriate access to their authorization level.

Confidentiality is how data can be accessible only to those with

authorization.

Integrity refers to the prevention of unauthorized access.

Accountability refers to how the actions of users can be accurately traced

back to them.

Sub-
characteristics

Attributes
Priority

Confidentiality Authorization to read/write from client
Low

Integrity

Encrypted data transfer between brokers
using SSL

Medium

Support for LDAP protocol integration
Medium

External authorization services are
supported Medium

Accountability Available log of actions Medium

Table 6 Requirements – Security

5.2.7 Characteristic 7: Maintainability

Maintainability describes the efficiency with which the artefact can be

monitored by maintainers.

Attributes Priority

Available metrics tracking with notifications Low

Table 7 Requirements - Maintainability

26

5.2.8 Characteristic 8: Portability

Portability is how easy the artefact can be applied to a different

environment.

Adaptability is how efficiently the components can be adapted for different

usage environments.

Sub-
characteristics

Attributes
Priority

Adaptability
Able to expand the cluster capacity
when too loaded (e.g. add new broker)

Low

Table 8 Requirements - Portability

5.3 Implementation Priorities

Since the study revolves around finding a working solution, the focus is,

first and foremost, on ensuring the functionality of the artefact. In this case,

it means Apache Kafka is successfully installed in the existing system of

SQM and works with other components of the system. As seen in table 1

in the previous subchapter, attributes related to the characteristic

‘Functional suitability’ are given the highest priority.

5.4 Adaptation Process

The adaptation is performed by installing Kafka in the development

environment. The production environment is deemed by the company to

be unnecessary for the scope of this study. The author will replicate

components of the data adaptation process in SQM system and run it with

Apache Kafka as the new messaging channel.

Installation has two phases:

27

• Installing Kafka on single machines of both Windows and Linux –

based environment. After successful installation, the author will test

basic functionalities of Kafka.

• Cluster installation of Kafka along with other components of the

process will be performed on a cluster of 3 Linux-based servers.

o In this phase, the evaluation of the artefact takes place

based on previously defined requirements.

o Every action and technologies used in this phase will be

documented for future configuration guide.

After installation is done, the author will examine the functionality,

performance, compability, usability, reliability, security, maintainability,

portability of the artefact.

28

6 ARTEFACT EVALUATION

The artefact Apache Kafka adaptation is measured and evaluated with

software testing methods based on requirements in chapter 5.

6.1 Software Testing Methods

Software testing is the process of evaluating a software component

against pre-defined requirements by detecting diffrences between given

input and expected output. There are two major methods of software

testing: blackbox testing and whitebox testing. Blackbox testing, mostly

employed in functional tests, focuses on the output of the tests against the

system input and execution, ignoring internal mechanism of the system.

Whitebox testing, on the other hand, takes into consideration the system

internal mechanism, aiming to make sure that the product behaves the

way it is supposed to. Blackbox testing is usually used at the ending phase

of development and whitebox testing is used at the start. Elements of both

methods are usually combined in software testing. (Myers 2004, 9-14.)

In this case, the object of the tests is not a finished software product, but

the adaptation of a component into an existing product. As mentioned in

chapter 3, the study also follows a software quality model in evaluating this

adaptation, which helps prioritize the testing process. Therefore, both

whitebox and blackbox testing will be implemented – blackbox testing is

used to validate the artefact functional installation, while whitebox testing

is used to verify the artefact follows the system’s non-functional

requirements.

6.2 Test Objectives and Scope

The purpose of this integration test is to verify that all requirements of a

successful Kafka adaptation into StratOSS architecture are met.

With a view to maintaining integrity of the development research, the

author of this study decides to follow Accanto Systems’ testing guidelines,

29

and subsequently models this test plan after the company’s test plan

template.

The testing documentations will include the terms listed in the following

table.

Term Description

Test set Test set consists of test cases. Test set can include

test cases for one feature (e.g. Installation on

Windows) or bunch of similar requirements to be

verified (e.g. authorization reports).

Test case Test case consist of test steps to verify single feature

or sales item (e.g. start Zookeeper instance). After a

test case is executed, its status is shown as passed or

failed.

Test step Test steps describes needed actions to verify

deliverables.

(Requirement)
Package

Requirement package consists of requirement

features. A package describes a characteristic or

subcharacteristic of the desired outcome (e.g

Functional completeness).

(Requirement)
Feature

Requirement feature describes an attribute of the

desired outcome (e.g Successful installation).

Table 9 Testing documentation terms

6.3 Test Features

6.3.1 Testing Requirement Analysis

Testing features are developed according to requirements previously listed

in subchapter 5.2. The importance levels of the features are categorized

according to the importance of the requirements and how critically it will

affect the adaptation process.

30

Importance Description

1 – Critical Feature must be 100% covered by test cases. The

adaptation is considered successful only when all test

cases linked to ‘Critical’ feature pass. Feature directly

and significantly affects meeting the goals of the

adaptation or the existing system’s main functionalities.

2 – High Feature must be 100% covered by test cases. Feature

indicates that the adaptation process is not functioning

but the overall system remains operational.

3 – Medium Feature does not need 100% coverage. Feature is not

critical to the adaptation process, but should be

inspected for documentation purposes. Feature may

not be tested.

4 - Low Feature is not important to the integration process.

Feature may not be tested.

Table 10 Test feature importance levels

Figure 15 below illustrates the hierarchy, along with the importance level,

of the requirements:

31

Figure 15 Requirement features for testing

32

6.3.2 Test Coverage

As mentioned in table 3 above, all the features marked with importance

level greater than or equal to “High” are required to be covered. Within the

scope of this study, the thesis author along with the company agree that

the following features will be excluded from the current test run:

- Functional suitability

o Functional appropriateness: Probe data modified by Kettle is

succesfully published to a different Kafka topic for loading

(Priority: Medium)

- Security

o Accountability: Log of actions (Priority: Medium)

6.4 Test Implementation

Testing is implemented with the use of SpiraTest testing management

system. Testing is planned and performed by the author of this thesis with

revision by supervisors at Accanto Systems.

Several test cases may be written to cover one requirement feature, or

one test case may be linked to several features. However, the scope of

this test requires that each requirement feature must be linked with at least

one test case.

Each test case should have at least one test step. Test step is marked as

passed if the actual result in the test step is the same as the expected

result. In such cases, there is no need to fill the actual result field.

33

Figure 16 Test hierarchy

Test step is marked as failed if the actual result is different from the

expected result. In such cases, actual result field must be filled to give as

much supporting information as practical. When needed, new issue must

be created to test management system for issue tracking purposes.

6.5 Test Results

As can be seen from the tables below, all tests included in the testing

coverage scope of this study have passed, except for one belonging to

feature “Support for LDAP protocol integration” linked to characteristic

‘Security’. This is a test of priority ‘Medium’, which means the passing of

the test is not critical to the adaptation process, but should be inspected

for documentation purposes.

All tests of priority ‘Very high’, which are required for the basic

functionalities of the adaptation, have passed. A more detailed report of

the testing results organized by test cases with steps can be found in the

appendix.

34

6.5.1 Functional Suitability

Sub-
characteristic
package

Feature Priority
Test
result

Functional
completeness

Installed on a single
machine: Windows and
Linux

1-Critical Passed

Installed Kafka on 3-
server Zookeeper
cluster

1-Critical Passed

Functional
correctness

nProbe Cento flows
successfully publishes
to Kafka topic

1-Critical Passed

Spoon connector
consumer successfully
reads probe data from
Kafka topic

1-Critical Passed

Functional
appropriateness

Data is in a suitable
format for Spoon
transformations

2-High Passed

Probe data modified by
Kettle is succesfully
published to a different
Kafka topic for loading

3-Medium
Not
tested

Table 11 Test results - Functional suitability

6.5.2 Performance Efficiency

Sub-
characteristic
package

Feature Priority
Test
result

Resource
utilization

Appropriate disc usage 2-High Passed

Appropriate CPU usage 2-High Passed

Table 12 Test results - Performance efficiency

35

6.5.3 Compatibility

Sub-
characteristic
package

Feature Priority
Test
result

Co-existence
Supported: Self-
managed load
balancing

4-Low Passed

Interoperability

Supported: DB
Connector, File
Connector, Data
Aggregrators, probes
and metrics input

4-Low Passed

Table 13 Test results - Compatibility

6.5.4 Usability

Feature Priority Test result Note

Installation/configuration guide
and recommended setup

2-High Passed

Separately
provided to
the company
by the thesis
author

Table 14 Test results - Usability

6.5.5 Reliability

Sub-
characteristic
package

Feature Priority Test result

Maturity

Alerts for hardware/software
faults (disc almost full,
abnormal message size,
Zookeeper state, no active
Kafka controller etc.)

4-Low Passed

Availability &
Fault Tolerance

Performing when n Kafka
broker(s) breaks down

3-Medium Passed

Table 15 Test results - Reliability

36

6.5.6 Security

Sub-
characteristic
package

Feature Priority
Test
result

Note

Confidentiality
Authorization to
read/write from client

4-Low Passed

Integrity

Encrypted data
transfer between
brokers using SSL

3-
Medium

Passed

Support for LDAP
protocol integration

3-
Medium

Failed

Not
currently
supported
by Apache
Kafka

External authorization
services are supported

3-
Medium

Passed

Accountability
Available log of
actions

3-
Medium

Not
tested

Table 16 Test results - Security

6.5.7 Mainainability

Feature Priority Test result

Available metrics tracking with
notifications

4-Low Passed

Table 17 Test results - Maintainability

6.5.8 Portability

Sub-
characteristic
package

Feature
Priori
ty

Test result

Adaptability
Able to expand the cluster
capacity when too loaded (e.g.
add new broker)

4-Low Passed

Table 18 Test results - Portability

37

7 CONCLUSIONS

7.1 Summary of the Study

This thesis aimed to develop a Data Messaging System solution for

Customer Experience Management products at Accanto Systems. The

objectives were evaluated using software quality model built on the

framework of Quality Standard ISO/IEC 25010:2011. An initial adaptation

was installed and tested against the current system of data collection in

StratOSS Quality Management.

Based on the testing plan results, it can be concluded that Apache Kafka

fulfilled the need for a Data Messaging System in Accanto Systems.

However, it did not yet support an authentication protocol commonly used

by customers of the company.

The study also confirmed that Apache Kafka as a Data Messaging System

is easy to install and maintain, scalable, suitable for projects with high

demands for high availability and performance.

7.2 Reliability and Validity

This study was conducted in cooperation between the author and Accanto

Systems, where the company provides considerate supervision to ensure

the desired efficiency of a working life development research. The

research criteria had been continuously reviewed and updated in the

process of Kafka adaptation so that any weaknesses revealed by the

artefact would result in a thorough modification of the installation guideline.

The test cases for this feasibility research had been designed with the

configurations that are specifically fitting for the targetted production

environment. The testing procedures also followed recognised industry

standards with commonly used and reliable tools.

It is worth noting, however, that to effectively study Apache Kafka means

to study an entire open-source ecosystem supporting it, which continues to

38

adapt to constant needs of the market. There is also the possibilities that

the structure of Accanto Systems’ products would also change in the

future, requiring a different solution for Data Messaging System.

Therefore, some aspects discussed in this study may require revisits when

current solutions have better alternatives.

7.3 Further Research Questions

The limited scope of this research allows for only the initial stage of

artefact implementation, which is adaptation of Apache Kafka into

StratOSS Quality Management. The author would like to examine the

features that have not been tested in the scope of this thesis. The author

would also like to continue to explore the full capacity of Apache Kafka in

production with StratOSS Network Functions Virtualization Orchestrator in

the future, where Apache Kafka would be put to its highest potential with

more dynamic data sources.

39

LIST OF REFERENCES

Printed sources

Coulouris, G., Dollimore, J., Kindberg, T. & Blair, G. 2011. Distributed

Systems: Concepts and Design. 5th Edition. Boston: Addison-Wesley.

Franch, X. & Carvallo, J. P. 2003. Using Quality Models in Software

Package Selection. IEEE Software, 34-41.

Hevner, A. R., March, S. T., Park, S. & Ram, S. 2004. Design Science in

Information Systems Research. MIS Quarterly 28 (1), 75-106.

Hohpe, G. & Woolf, B. 2004. Enterprise Integration Patterns. Boston:

Addison-Wesley.

ISO/IEC 25010, 2011. Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE) — System and

software quality models. Geneva: International Organization for

Standardization.

Myers, G. J., Badgett, T., Thomas, T. M. & Sandler, C. 2004. The art of

software testing. 18th edition. Hoboken: John Wiley & Sons.

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. 2007. A

Design Science Research Methodology for Information Systems

Research. Journal of Management Information Systems 24 (3), 45-78.

Singh, I. 2007. Different Software Quality Model. International Journal on

Recent and innovation trends in computing and communication 1 (5), 438-

442.

40

Digital sources

Accanto Systems Oy. 2016. StratOSS product introduction. Unpublished

confidential document.

Apache Software Foundation. 2017. Introduction. Apache Kafka [accessed

19 March 2017]. Available at:

https://kafka.apache.org/

Gartner, Inc. 2017. IT Glossary: Customer Experience Management.

Gartner IT Glossary [accessed 10 April 2017]. Available at:

http://www.gartner.com/it-glossary/customer-experience-management-

cem

Hayes, B. 2013. Big Data has Big Implications for Customer Experience

Management. IBM Big Data Hub [accessed 10 April 2017]. Available at:

http://www.ibmbigdatahub.com/blog/big-data-has-big-implications-

customer-experience-management

Mouzakitits, E. 2016. Monitoring Kafka performance metrics. Datadog

[accessed 10 April 2017]. Available at:

https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/

Patil, S. 2016. Build a continuous big data messaging system with Kafka.

JavaWorld [accessed 10 April 2017]. Available at:

http://www.javaworld.com/article/3060078/big-data/big-data-messaging-

with-kafka-part-1.html

Shapira, G. & Holoman, J. 2014. Apache Kafka for Beginners. Cloudera

[accessed 10 April 2017]. Available at:

http://blog.cloudera.com/blog/2014/09/apache-kafka-for-beginners/

https://kafka.apache.org/
http://www.gartner.com/it-glossary/customer-experience-management-cem
http://www.gartner.com/it-glossary/customer-experience-management-cem
http://www.ibmbigdatahub.com/blog/big-data-has-big-implications-customer-experience-management
http://www.ibmbigdatahub.com/blog/big-data-has-big-implications-customer-experience-management
https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/
http://www.javaworld.com/article/3060078/big-data/big-data-messaging-with-kafka-part-1.html
http://www.javaworld.com/article/3060078/big-data/big-data-messaging-with-kafka-part-1.html
http://blog.cloudera.com/blog/2014/09/apache-kafka-for-beginners/

APPENDIX

TEST CASE REPORT- PROJECT: KAFKA ADAPTATION

This report is generated by SpiraTest Reporting.

Test TC:2831-Installation on Linux

This test is performed on a Linux-based platform

Step Description Expected Result Last Status

1
Download and un-tar

the binary release

Folder created with

compiled version of

Kafka

Passed

2
Start Zookeeper

instance

Zookeeper running on

port 2181

Passed

3 Start Kafka server
Kafka listening on port

9092

Passed

4 Create a sample topic

Topic created with a

single partition and only

one replica

Passed

5

Send messages to

topic with command

line producer and

consumer

Consumer outputs

messages sent by

producer in real time

Passed

Test TC:2832-Cluster Installation

This test is performed on a Hadoop cluster of 3 Linux servers, one run on

Centos 7 and the other two are on Ubuntu 16.04

Step Description Expected Result Last Status

1

Install Kafka locally

on each server of the

cluster

Kafka successfully

performs functions on

local level

Passed

2

Modify Zookeeper

configuration file on

each server and start

Zookeeper

Details on Zookeeper

configuration files match.

Zookeeper establishes

connection to all 3

nodes/servers

Passed

3

Modify Kafka server

configuration file on

each server and start

Kafka

Details on server

configuration files match.

Kafka cluster is

established in all 3 nodes

Passed

4
 Install Kafka

Manager

Kafka cluster and its

nodes is managable with

the web GUI on port 9000

Passed

5

Create a sample

topic (preferably via

Kafka Manager) and

assign partitions and

elect preferred

replica.

Topic created with 4

partitions and 3 replicas
Passed

6

Send messages to

topic with command-

line producer and

command-line

consumer

Consumer from one

server outputs messages

sent by producer from

another server in real time

Passed

Test TC:2828-Installation on Windows

This test is performed on a Windows 10 platform

Step Description Expected Result Last Status

1
Download and un-tar

the binary release

Folder created with

compiled version of

Kafka

Passed

2
Start Zookeeper

instance

Zookeeper running on

port 2181

Passed

3 Start Kafka server
Kafka listening on port

9092

Passed

4 Create a sample topic

Topic created with a

single partition and only

one replica

Passed

5

Send messages to

topic with command

line producer and

consumer

Consumer outputs

messages sent by

producer in real time

Passed

Test TC:2833-nTop-nProbe installation

Step Description Expected Result Last Status

1
Install nTop

package

The following

packages are installed:

ntopng, nprobe, cento,

n2disk, pfring

Passed

2

Setup a dummy

interface for probe

data

Success Passed

3

Configure

hugepages and start

pf_ring service

Success-checked by

nBox web GUI

Passed

Test TC:2834-nProbe Cento - Kafka connection

Step Description Expected Result Last Status

1

Generate flows

by nProbe

Cento and

export to Kafka

topics

'Flow exporter queue' status

shown in the terminal
Passed

2

Kafka

successfully

consumes

messages

from a different

node

Command-line consumer

displays probe data
Passed

Test TC:2835-Spoon consumer gets data from Kafka

Step Description Expected Result Last Status

1 Install Spoon
Spoon installed and run

successfully

Passed

2

Install Kafka

Consumer

plugin

Kafka Consumer step added Passed

3

Modify the

configuration

for Kafka

Consumer step

Port and topic are correct Passed

4
Run the Spoon

transformation

Data shown in the consumer

(refer to the previous test

case) is written to log

Passed

Test TC:2836-Spoon modifies data and publishes to Kafka

Step Description Expected Result
Sample

Data
Last Status

1 Call'Spoon consumer gets data from Kafka' N/A

2

Spoon JSON

data

transformation:

filter values of a

field (e.g <8)

Filtered JSON

objects
 Passed

3

Data modified to

data stream

format

JSON objects

become binary

feed

 Passed

Test TC:2837-Spoon data input format

Step Description Expected Result
Sample

Data
Last Status

1 Call'Spoon consumer gets data from Kafka' N/A

2

Add and

configure

Select Values

step: change

filed metadata

from binary to

normal

Step success Passed

3

Add and

configure JSON

Data Input step

Data is written to

log is recpgnized

as JSON format

 Passed

Test TC:2840-Disc usage

Step Description Expected Result Last Status

1
Proper disc usage on node

handling nprobe export
500MiB Passed

2
Proper disc usage on node

handling Spoon
2GiB Passed

Test TC:2838-CPU usage

Step Description Expected Result Last Status

1
Proper CPU usage on node

handling nprobe export
<30% Passed

2
Proper CPU usage on node

handling Spoon
<8% Passed

Test TC:2841-Load-balancing support

Step Description Expected Result Last Status

1

Self-managed load

balancing by

Zookeeper in the form

of reassigning

partitions and electing

replica leader

Available Passed

Test TC:2842-Connector support

• DB Connector

• File Connector

• Data Aggregators

• Probes input

• Metrics input

Step Description Expected Result Last Status

1
Connectors in the

list are supported

According to Kafka

documentation
Passed

Test TC:2843-User/configuration guide

Step Description Expected Result Last Status

1
Installation

guide
Provided by thesis author Passed

2 Test report Provided by thesis author Passed

Test TC:2844-Alerts for hardware/software faults

• disc almost full

• abnormal message size

• changed Zookeeper state

• no active Kafka controller

Step Description Expected Result Last Status

1
Configure alerts when the

system encounter faults
Success Passed

Test TC:2845-Still running when 1 broker broke down

Step Description Expected Result Last Status

1
Force stop

one broker

Kafka processes are still

running. Replicas are

automatically handled

Passed

Test TC:2846-Read/write authorization support

Step Description Expected Result Last Status

1
Support for read/write

authorization
Available Passed

Test TC:2847-External authorization services

Step Description Expected Result Last Status

1
Support for authorization

services e.g TLS
Available Passed

Test TC:2848-LDAP support

Step Description Expected Result Last Status

1
Support for LDAP

authentication system
Available Failed

Test TC:2849-Data transfer encryption

Step Description Expected Result Last Status

1
Data transfer

encryptiion by SSL
Available Passed

Test TC:2851-Metrics tracking support

 Description Expected Result Last Status

1 Metrics monitoring Available Passed

Test TC:2852-Ability to add new broker

Step Description Expected Result Last Status

1
Manually add a new broker

to a running Kafka cluster
Success Passed

