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TIIVISTELMÄ 

Tekijä: Tapio Terävä 

Työn nimi: Työtapoja 3D pelihahmojen luomiseen  

Tutkintonimike: Tradenomi (AMK), Tietojenkäsittely 

Asiasanat: peli, hahmo, pelihahmo, 3D, työtapa 

Opinnäytetyö käsittelee 3D pelihahmojen luomiseen käytettäviä erilaisia työtapoja, sekä niissä käy-

tettäviä eri työkaluja. Lisäksi opinnäytetyö pyrkii luomaan kokonaisvaltaisen kuvan 3D pelihahmo-

jen luomisprosessista, siihen liittyvistä keskeisistä teknologioista, sekä rajoituksista joita erilaiset 

pelialustat asettavat hahmojen luomiselle. 

Opinnäytetyö käsittelee alkuun pelihahmojen luomisen eri lähtökohtia, sekä hahmosuunnittelun eri 

käytäntöjä ja työtapoja. Seuraavaksi käydään läpi yleistetty esimerkki 3D pelihahmon luomispro-

sessista, johon sisältyy useita eri työvaiheita. Yleistetyn esimerkin jälkeen esitellään tästä poik-

keavia työtapoja, joiden eroavaisuudet johtuvat eri pelialustojen asettamista rajoitteista tai niiden 

tarjoamista mahdollisuuksista. Lopuksi vertaillaan miten perinteiset työtavat eroavat nykyaikaisista 

työtavoista, ja esitellään uusien työtapojen etuja. 

  



 

ABSTRACT 

Author: Tapio Terävä 

Title of the Publication: Workflows for Creating 3D Game Characters 

Degree Title: Bachelor of Business Administration (UAS), Business Information Technology 

Keywords: game, character, game character, 3D, workflow 

This thesis deals with the various workflows, methods, and tools used for creating 3D game char-

acters. The objective of the thesis was to construct a complete picture of the creation process of 

3D game characters, and the related technologies essential to the process, as well as the re-

strictions set by different game platforms. 

First, the different motives for creating game characters are introduced, along with the different 

practices and methods used for designing characters. This is followed by a generalized example 

of the process of creating a 3D game character, which consists of several different stages. After 

this generalized example, workflows deviating from this example are introduced. The differences 

between these workflows are caused by the restrictions set by different game platforms, or the 

possibilities they offer. In the final chapters, differences between traditional workflows and modern 

workflows are discussed, and the advantages of modern workflows are presented. Finally, the 

thesis is concluded by summarizing how games and artists are affected by the different workflows, 

tools, and technologies.
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SYMBOLS 

Video game Interactive game played using an electronic device, 
such as a computer, mobile device or a game console. 

Game character Character in a game, especially a video game. 

Gameplay The way players interact with a game. The experience 
of playing a game, excluding graphics and sound. 

Player character Video game character that is controlled by the player. 

Non-player character Video game character that is not controlled by the 
player, but by the game’s artificial intelligence. 

3D model A representation of a three-dimensional object in 
a computer software environment. 

3D modeling The process of creating and shaping a 3D model in 
a 3D modeling software.  

Workflow The progression of steps in a process of creating 
something, for example a game character. 

Lore In the context of games, the history, legends, locations, 
nature, and characters of the game’s universe. 

Story bible A document describing the important aspects of 
a game’s storyline, lore, characters, and so on. 

Pre-production The preparatory stages before starting the actual pro-
duction of a project, like making concept art and the lore.  

Target device The device on which an application, such as a video 
game, is intended to be run on. 

(Game) Asset Any individual piece of content that can be used in a 
game, such as a 3D model, a texture, or a sound effect. 

Pipeline The different stages and processes that an asset or a 
project goes through, from idea to final product. 

Computational power The ability of a computer to perform a certain amount of 
work within a given timeframe. 

Base mesh A low poly 3D model that can be used as the starting 
point for digital sculpting. 

(Computer) Program A list of instructions for a computer, which tell it to do a 
particular task. Computers require programs to be used. 

Software A general term used for all computer programs, such as 
operating systems like Windows, as well as video 
games. 



 

Hardware A general term for all the physical parts that make up a 
computer, or an electronic device like a mobile phone. 

Game engine A software framework used to create video games, 
which includes helpful tools for efficient development. 

(Image) Resolution The amount of detail in an image. For digital images, 
this is measured in the number of pixels in an image.  

Plugin A software component that adds a specific functionality 
to an existing program. Also called addon or extension.  

(Game) Performance How well a game runs on a device. In some cases, bad 
performance can even make a game unplayable. 

(Computer) Memory Where a computer stores information, specifically tem-
porary information for programs. Also called RAM. 

(Computer) Storage 
space 

Where a computer stores permanent information, such 
as files and programs. Often either HDD or SSD. 

User interface The interface used to interact with a computer, such as 
the input devices and the visual elements of a software. 

Procedural (Genera-
tion) 

A method of creating data, like textures or animations, 
algorithmically instead of manually. 

Sine wave A mathematical curve that describes a smooth repeating 
oscillation. Named after the sine function. 

Triangle wave A triangular waveform that is not a pure sine wave. Can 
be derived from simple math functions. 

Boolean operations Logical operations that can be performed on 3D models, 
such as add or subtract. Based on Boolean algebra. 
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1  INTRODUCTION 

3D game characters have come a long way since the early days of 3D games. 

Classics like Quake and Tomb Raider paved the way for modern 3D characters in 

games, and since then the advancements in video game technology have brought 

us to an era where it is sometimes possible to forget that the character you are 

looking at is not a real person, but is instead a digital work of art constructed by 

highly skilled professionals. However, we are still a long way from complete real-

ism, and new technologies are constantly being developed in order to reach the 

next big milestone in the evolution of video game graphics. 

Of course, not all game characters need to be realistic. Most likely, there will al-

ways be a place for more stylized games, with cartoony, exaggerated, and goofy 

characters. Just like there are gritty, action packed live-action movies, and heart-

warming computer-animated films, not to forget the brilliantly hand-drawn classics, 

there is also room for equal variety in the medium of video games. After all, video 

games can be considered an art form of their own, and art comes in many shapes 

and sizes. 

Another factor that adds variety to the mix are the technical restrictions set by 

different game platforms. Game characters in games developed for powerful com-

puters and modern game consoles can take advantage of the new technologies, 

allowing them to look more realistic than before. In comparison, game characters 

in games developed for less powerful devices like mobile phones have to settle for 

using older, outdated technologies, requiring artists to come up with different kinds 

of tricks to make the best of what they have at their disposal.  

Knowing all this, the scope of this thesis might seem very frightening at first, since 

it aims to construct a comprehensive picture of the different workflows of creating 

3D game characters, with relatively detailed descriptions and explanations of the 

related concepts and methods. However, this thesis is intended to be understand-

able even for people who are not familiar with game development. Many of the 
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concepts are described and explained using simple examples, and the structure 

of the thesis follows the different steps of creating a 3D game character from start 

to finish, before moving on to descriptions of alternative workflows. Therefore, I 

encourage you to keep on reading, especially if you are interested in game char-

acters, or game development in general. 
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2  GAME CHARACTERS 

Characters are an essential part of all story based mediums, like books, films and 

video games. Therefore, creating good characters that fit the medium’s needs is 

very important, and the process should be given plenty of resources like time and 

manpower during the project. The process of designing a character can consist of 

creating a unique personality and backstory for the character, as well as defining 

their goals, motives and needs. However, this chapter will focus only on the visual 

design of characters, specifically the visual design of video game characters. [1, 

p10] [1, p15-27] 

2.1  General game character design principles 

Developing the visual design of a game character can be approached in different 

ways, depending on the style of the game and the intended use of the character. 

The different kinds of character designs in games can be roughly divided into two 

different types: art-driven character designs and story-driven character designs. 

An art-driven character design takes the visual appearance of the character as the 

primary focus during the development, while the backstory and character traits 

become less important for the overall design. Art-driven character designs rely 

heavily on art principles like shape, form, color, and value to convey the charac-

ter’s personality, talents and abilities to the player. These features can be exag-

gerated even further in order to clearly express the role and functionality of the 

character. The aforementioned principles of art can also be used to design the 

character so that its features support the gameplay of the game. For example, the 

size of the facial features like eyes could be a design choice to help the players 

understand where the character is looking, or which way the character is facing. 

Art-driven character designs could be viewed as puppets or avatars which the 



4 

 

player controls, and are often used in simple games which focus more on game-

play instead of storytelling. [1, p59-61] [2, p121-129] 

 

Figure 1. Art-driven characters in Rovio’s Angry Birds. Adapted by author. 

Story-driven character designs focus on the backstory and the personality of the 

character, which can be conveyed through the character’s behavior, like quirks 

and habits. Therefore, not every aspect of the character has to be visually repre-

sented, at least in an obvious way, and so the story-driven character designs often 

rely less on the appearance of the character and exaggeration of the visual fea-

tures when compared to art-driven character designs. [1, p61-62] [2, p130-135] 
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Figure 2. Story driven characters in Remedy’s Alan Wake. 

Regardless of the initial approach to the design process, a character design should 

be able to meet a certain set of goals, or at least some of them, in order for it to be 

considered good. The character design should be interesting and appealing, but 

credible within the context of the game. It also needs to be distinct enough, so it 

can not be confused with other similar characters. Since video games are often 

commercial products, the character should be easy to use for marketing purposes. 

And of course, it would be preferable if the character was memorable rather than 

forgettable. [3, p181-182] 

There are a couple of good ways to ensure the character design meets the afore-

mentioned goals. The silhouette of the character plays a big part in how recog-

nizable the character is. A character with a good silhouette is easy to differentiate 

from the surroundings and other characters even at a glance. The silhouette can 

also be used to describe the character's personality by using different poses and 

postures. The readability of the character’s forms and features is also important. 

Contrasting values of light and dark, different intensities of color, as well as com-

plementary colors can be used to separate different parts of the character, and to 
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draw attention to the most important features of the character. [4, p74-78] [5, p8-

14] [6] [7] 

Basing the character on real-world examples is a good way to make the design 

more believable. If the character is human, paying attention to human proportions 

and anatomy is important. However, this does not mean that the design has to be 

realistic. The proportions can be exaggerated to make the character more dynamic 

and interesting, or to achieve a specific stylized look. If the character is an animal 

or a monster of some sort, it is important that the creature remains believable, 

even if the design is highly stylized. Gathering reference on different animals and 

looking at their anatomy, movement, and other characteristics makes it easier to 

design realistic, or at least plausible creatures. [5, p3-7] [8, p3-5] [9] 

It is also good to remember the “form follows function” rule of thumb, which basi-

cally means that the design should look like it could actually physically work if the 

character was real, and that there is a reason for why the character looks like it 

does. This is especially important when designing clothing and armor, or some-

thing mechanical like robots and cyborgs. If a warrior character has huge pointy 

shoulder pads, what happens when the character tries to raise his arms? In the 

real world, he would either end up hitting the pads against his head, or would not 

be able to lift his arms at all. Similarly, a robot’s limbs need to have enough space 

to move around, and they need to use appropriate parts for the joints (compare a 

ball joint to a hinge joint). If a 3D model is made based on a character design 

where form does not follow function, different parts of the model can end up inter-

secting unnaturally with other parts during animation, which is called clipping. 

Some clipping will occur almost always, and it can be acceptable if the character 

is viewed from a distance, or if the clipping happens during a movement that is so 

fast the player will not be able to notice it, but it is good practice to try and avoid it 

whenever possible. [4, p79-84] 
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Figure 3. Armor clipping in Crytek’s Ryse: Son of Rome (lower right corner). 

Of course, there are exceptions to these rules. A ghost, for example, does not 

have to be based on anything that can be found in the real world. However, it might 

be wise to look at how ghosts are traditionally portrayed in other contexts, like in 

films, comics, and other video games, and use those portrayals as guidelines 

when designing, so that it is clear to the player that the character is indeed a ghost. 

2.2  General game character design workflow 

The process of designing a game character often starts with coming up with certain 

guidelines for the design. These guidelines can be as simple as a small selection 

of keywords that define the key characteristics of the character, such as adjectives 

or metaphors describing the character’s size, shape, age, attitude, behavior, and 

so on. After creating the initial list of keywords, the list can be supplemented with 

words that are conceptually in opposition to the original words, which can add more 

depth and contrast to the character design, making it more interesting. This list of 

keywords can then be converted into a compact written description of the charac-

ter, a so-called high concept. The keywords can also be used for gathering visual 
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research for the character, by typing them into an internet search engine like 

Google, and searching for images that represent the keywords, for example.      

[10, p2] 

Sometimes game characters are based on existing character concepts, for exam-

ple if the game is based on licensed content such as a movie or a book. Even in 

games that are not based on any licensed content, the characters of the game 

may have been strictly defined in the lore of the game, written into a so-called story 

bible, which was made during the pre-production. In these cases, there are usually 

more restrictions on what the designers and artists can do, since the character is 

based on a fully fleshed concept, and not a relatively vague high concept. How 

strict these restrictions are depends on the source material and the licensor. 

Mickey Mouse, for example, has a very thoroughly defined appearance and per-

sonality, whereas some characters in books can be very open to interpretation. 

[11, p62-63] [12, p314] [13, p311-312] [14] 

After the general guidelines for the character design have been defined, the next 

step in the process is usually creating initial sketches and concept art for the char-

acter. There are various sketching techniques that concept artists can use in their 

design process. A common way to start out is to draw several small black-and-

white silhouettes or grayscale sketches of the character, which can be done very 

fast and loosely. These are called thumbnail sketches or simply thumbnails, and 

their purpose is to let the artist explore multiple different ideas quickly. Once there 

are enough thumbnails the artist and his team can choose which thumbnails or 

which specific elements in those should be refined further. The next set of sketches 

could be thumbnails that combine elements from the previous sketches, or some 

of the first thumbnails could be improved on by creating more detailed sketches 

based on them. This practice of improving on previous versions and making 

changes based on feedback is called iteration, and it can repeat for several cycles 

until the artist, or his superiors, are satisfied with the result. Iteration often happens 

at every step of making games, not just when creating concept art. Next step, once 

the initial look of the character has been defined, is to create colored sketches, or 

to simply color over the grayscale sketches. It is common to create different color 
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variations of the character, to explore different looks and to find out which of those 

work the best. [10, p2-4] [15] [16] 

 

Figure 4. Concept sketches of a stone golem character. 

Finally, after the visual design of the character has been approved, a document 

describing the character’s appearance in detail is created, which other artists like 

animators and 3D modelers can use as reference. This document is called a char-

acter sheet, and usually contains drawings where the character is seen from dif-

ferent angles and in different poses. Sometimes the character sheet includes 

close-ups of the character’s face and clothing or weapons, as well as short de-

scriptive captions and notes. If the character is going to be 3D modeled, the char-

acter sheet can include a so-called modeling sheet or model sheet, which has 

proportionally accurate drawings of the character from front, back and side views, 

so the 3D modeler can use them as accurate guides when modeling the character. 

[10, p4] [15] [17] [18] [19]  

 

The character design workflow described in this chapter is just a general one, and 

depending on the studio, project, or the preferences of individual artists, the pro-

cess of creating a game character design can vary greatly. For example, nowa-

days it is not uncommon for the character design process to skip the traditional 

sketching stage, since some concept artists prefer to work with digital sculpting 
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programs such as ZBrush or Autodesk Mudbox. These programs allow the artists 

to create detailed concept 3D models by sculpting “digital clay”. Because all of the 

work is done digitally, it is possible to quickly create multiple variations of the base 

concept and make edits to the concepts based on feedback, without losing any of 

the previous versions. Once the final concept is approved, it is already a 3D model, 

which makes it easier to create a game ready 3D model based on the concept 3D 

model. Sometimes the digitally sculpted concept 3D model is converted straight 

into the game ready 3D model using a method called retopologizing, which will be 

described further in the following chapters. [8, p1] [20] 
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3  3D GAME CHARACTER WORKFLOWS 

Workflows for creating 3D game characters can have big differences depending 

on things like the technical limitations of the target device, the artistic style of the 

game, whether the character is a main character or a background character, how 

the character is going to be animated, and is the character organic like an animal, 

or inorganic like a robot. Other things that can affect the workflows are differences 

between game studios, such as the number of dedicated artists, the employee 

hierarchy of the studio, the software used at the studio, and specific asset pipelines 

that are used exclusively by certain studios. To begin with, this chapter will give 

an overview of a general workflow for creating a 3D game character, and will then 

describe the specific methods and techniques used in other common workflows.  

3.1  General workflow 

This description of a general workflow focuses on the different steps of creating 

3D game characters using traditional tools and techniques commonly used in the 

game industry, and is described from the point of view of an asset production pipe-

line in a game studio where different steps are done by different professionals. 

However, this is not the definitive workflow for creating 3D game characters, but 

just one example of how the process could be executed. For example, in a small 

independent game studio all of the following steps could be performed by a single 

artist, instead of several specialized artists dedicated to each different task. In ad-

dition to describing the different steps in the workflow of creating a 3D game char-

acter, some of the technical concepts related to the process will also be explained, 

as well as how artists need to take them into consideration in their work.  
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3.1.1  Concept art 

As explained in the previous chapter, the process of creating a game character 

usually begins with creating concept art for the character, which in the case of a 

3D character may include specific documents called model sheets. These model 

sheets, together with other pieces of concept art, are used by the 3D modeler as 

guides for creating the 3D model of the character, similarly how construction work-

ers use blueprints made by an architect as guides to construct buildings. The 3D 

modeler can import the images into the 3D modeling program, where they can 

then apply the images onto 3D planes. These images can then be used as exact 

guides which the modeler attempts to follow as accurately as possible. However, 

the 3D model often differs slightly from the original modeling sheet. Sometimes 

changes need to be made because of technical restrictions, and sometimes the 

3D modeler is given some creative freedom to interpret and change the design. It 

is also possible that the original images in the modeling sheet were not proportion-

ally accurate, or the character’s poses were not correctly portrayed from different 

angles. [21] 

3.1.2  3D modeling 

There are many different ways to construct a 3D model, depending on which soft-

ware is used, what the model is going to be used for, as well as which modeling 

techniques the 3D modeler prefers to use. For example, computer-aided design 

editors like Autodesk AutoCAD can be used to create 3D models that have prop-

erties like being solid inside the three-dimensional surface, and digital sculpting 

programs like ZBrush and Mudbox allow the 3D modeler to sculpt the model out 

of “digital clay”. Since this is a description of the general workflow of creating a 3D 

game character, the following paragraphs will first cover the 3D modeling process 

using more traditional polygonal modeling tools. Also, because computer-aided 
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design editors are mostly used in industrial design and are not widely used in com-

puter games, that subject will not be covered in this thesis. However, the subject 

of digital sculpting will be addressed later on. [22] [23] 

In traditional polygonal modeling programs, such as Autodesk 3ds Max, Autodesk 

Maya, and Blender, 3D models are constructed by creating 3D surfaces out of 

shapes called polygons. Polygons are geometric planes, or faces, which consist 

of units called vertices and edges. Vertices (sg. vertex) are essentially points in 

three-dimensional space, and can also have a property called a normal, which 

defines the direction where the vertex is facing. When vertices are connected, they 

form edges, and when there are at least three vertices connected to each other in 

the shape of a triangle, they can form a polygon. Polygons can also be created out 

of four vertices in the shape of a quadrilateral, like a rectangle, in which case they 

are called quads. If a polygon has more than four vertices, it is called an n-gon. 

The normals of the faces or vertices in a polygon determine which direction the 

polygon’s visible surface is facing. By creating, connecting and manipulating these 

vertices, edges, and polygons, a 3D modeler can create three-dimensional sur-

faces, called meshes, which all complex polygonal 3D models, like game charac-

ters, consist of. [24] [25] 

 

Figure 5. The basic components of a polygonal 3D model. Adapted by author. 
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When creating 3D models, a 3D modeler has several different techniques and 

tools at his disposal. Two common approaches to polygonal modeling are box 

modeling and edge modeling. In box modeling the 3D modeler starts out with a 

pre-made primitive shape, such as a cube, a cylinder, or a ball, and begins adding 

features and details to it. In edge modeling the 3D modeler starts building the 

model out of individual polygons, constructing them into loops, which create the 

shape of the model. There are various ways a modeler can edit the 3D model, 

such as extruding polygons and edges out of the model, creating bevels and cham-

fers into the model, adding loops of edges across polygons, as well as moving the 

vertices of the model in groups or individually. Many 3D programs also contain 

modifiers, which are tools that allow the modeler to modify the properties of a 

model based on options which they can adjust. [26] [27] [28] 

Modifiers are automatic operations that affect the properties of an object by per-

forming effects that would be tedious to do manually, and they allow the modeler 

to work in a non-destructive manner, and with more flexibility and speed. Modifiers 

change the way an object is displayed and rendered, but not the underlying geom-

etry, which means the changes that are made to the object are not permanent until 

the modifier is purposefully applied, or “collapsed”. A 3D model can be affected by 

multiple modifiers simultaneously, which are stored in a modifier stack. The order 

of the modifiers contained in the modifier stack can be arranged to achieve differ-

ent results, since each modifier affects those that come after it. The modifiers can 

also be copied and deleted, or their effects can simply be toggled on or off, to see 

how they affect the model. There are many modifiers that can be found in most 3D 

programs, or there are equivalent modifiers that offer similar functionality, while 

some modifiers are only available in specific 3D programs. Some common modi-

fiers are: mirror modifier, bend modifier, twist modifier, and subdivision modifier. 

[28] [29] [30] 

A mirror modifier can be used to create symmetrical models, since it makes a mir-

rored copy of the model based on the symmetry axis which the modeler chooses. 

This way the modeler can model only half of the model, and the other half is auto-
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matically mirrored by the modifier. In Blender this modifier is called the Mirror mod-

ifier, while 3ds Max offers two modifiers with similar functionalities, the Mirror mod-

ifier and the Symmetry modifier. Both Blender’s Mirror modifier and 3ds Max’s 

Symmetry modifier have an option to merge the mirrored copies of the 3D model 

together to create a single continuous model, which is especially useful for creating 

symmetrical characters. [31] [32] [33] 

A bend modifier could be used to model objects like wheels or bent pipes, since it 

can bend objects based on parameters defined by the 3D modeler, while a twist 

modifier could be useful for modeling objects like screws or bolts, since it can twist 

objects. In Blender, the functionalities of both of these modifiers can be found 

within the Simple Deform modifier, while 3ds Max has two separate modifiers, the 

Bend modifier and the Twist modifier. [34] [35] [36] 

Subdivision modifiers can be used to create 3D models that have smooth and 

curved surfaces, as well as intricate details. Using a subdivision modifier signifi-

cantly increases the amount of polygons in a model, since the polygons of the 

model are subdivided, which means they are split into several smaller polygons in 

one or more iterations, depending on the parameters of the modifier. A subdivision 

modifier can either smooth the surface of the model, rounding off the sharp polyg-

onal edges of the model, or it can simply add more polygons to the model without 

changing its shape. If the subdivision process smooths the 3D model, the modeler 

can control how much the sharp edges are rounded off either by adding supporting 

edge loops next to the existing edges, or by setting numerical “crease weights” to 

the edges of the model. Depending on the particular subdivision modifier and its 

parameters, the subdivision process can produce either quads or triangles, which 

can be used for different purposes. Blender has two different subdivision modifiers, 

which are called the Subdivision Surface modifier and the Multiresolution modifier, 

while 3ds Max has multiple modifiers that can be used for subdivision, which offer 

slightly different functionalities for different use cases. The subdivision modifiers 

in 3ds Max are called the MeshSmooth modifier, the TurboSmooth modifier, the 

OpenSubdiv modifier, the Subdivide modifier, the Tessellate modifier, and the 

HSDS modifier. When creating 3D models for video games, subdivision modifiers 
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are often used to create so-called high poly models, which are smooth and intri-

cately detailed versions of the less detailed models that are used in the game, 

which are correspondingly called low poly models. The surface details of the high 

poly models can be transferred to the textures of the low poly models in a process 

called baking. [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] 

 

Figure 6. The effects of using the TurboSmooth modifier in 3ds Max.  

In the case of modeling 3D game characters, a 3D modeler needs to pay special 

attention to certain properties of the model. One of these properties is the com-

plexity of the 3D model, relative to the computational power of the target device. 

Since 3D models are mathematical representations of three-dimensional shapes 

created with computers, they require computational power to be displayed on the 

computer’s screen. Accordingly, the more complex a model is, the more computa-

tional power it requires. This in turn means that the 3D model of a game character 

needs to be relatively simple, to ensure that the target device’s computational 

power is sufficient for displaying the character in real-time, so the player can inter-

act with it with minimal delay. [47] [48] 
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The complexity of a 3D model depends on a couple of factors, one of the most 

important ones being the amount of polygons and vertices the model has. Poly 

count is the term used when discussing the amount of polygons in a 3D model. It 

refers specifically to the amount of triangles or quads in a model, since a triangle 

is the simplest polygon, and a quad is essentially just two triangles joined together. 

Consequently, a model with a poly count of 1000 quads has a poly count of 2000 

triangles. Poly count can be used to categorize 3D models into so-called high or 

low poly models. However, these definitions are highly subjective, since what is 

considered high or low poly depends on both the intended use of the 3D model, 

as well as how much computational power the current target devices have. Modern 

computers and game consoles can easily display hundreds of thousands or even 

millions of triangles in real-time, but mobile devices such as smart phones, tablets, 

and handheld game consoles are usually more restricted in terms of computational 

power. Therefore, a 3D modeler has to keep in mind the technical restrictions of 

the target device and use an appropriate amount of polygons when modeling the 

3D game character. [48] [49] [50] [51] 

Another important property of a 3D model is its topology, which refers to the struc-

ture and distribution of polygons in a 3D model. Having “good” and “clean” topol-

ogy in a 3D model is important for several reasons. For example, the topology of 

a 3D model can determine how predictably it subdivides, and topology can also 

be used to control the deformation of a model during animation. However, depend-

ing on the intended use of a 3D model, the requirements for “good” topology are 

different. For a 3D model that is going to be subdivided, like a base mesh used for 

digital sculpting, as well as 3D models that are going to be used in animated or 

live action films, it is advisable to use topology that is based on loops of quads, 

and to avoid using triangles and n-gons. These loops of quads should conform to 

the shapes and curvatures of the 3D model, such as the muscles and anatomy of 

a character. In contrast, when creating 3D models for games it is actually accepta-

ble to use triangles alongside quads, but it is good practice to use them sparingly. 

Using n-gons, however, should be avoided. [52] [53] [54] [55] [56] 
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The way polygons are distributed across the 3D model of a game character is also 

important. More polygons should be placed in areas that are going to deform dur-

ing animation, such as the joints and the face of the character, but using triangles 

in these areas should be avoided. This makes it possible to create more natural 

looking animations, since the animators have more control over the deformation 

of the 3D model, allowing them to create detailed facial expressions, as well as 

making sure the character’s limbs retain their shape while bending, instead of col-

lapsing in on themselves like bent straws. [52] [54] [57] [58] [59] 

Figure 7. Limb deformation tips by Ben Mathis. Adapted by author. 

3.1.3  UV mapping 

The 3D modeling process gives the game character its three-dimensional shape, 

but in addition to being shaped like the character, the model’s surface usually 

needs some color information and material definition, so the character will not ap-

pear to be just a silhouette or a non-defined blob, but instead has distinct features 

like skin, hair, and clothing. These details are usually added to the model in a 
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process called texturing, where images called textures are applied onto the sur-

face of the 3D model. However, since the computer has no way of knowing how 

to apply these images, which are inherently two-dimensional, over a three-dimen-

sional shape, the polygons of the 3D model need to be mapped onto a two-dimen-

sional surface that matches the images. [60] 

UV mapping, or UV unwrapping, is the process of mapping the polygons of a 3D 

model onto a two-dimensional surface, so it can be textured. This surface onto 

which the polygons are mapped is called a UV map. The “U” and “V” refer to the 

coordinate axes of the two-dimensional plane, since “X”, “Y”, and “Z” are used to 

refer to the coordinate axes of the three-dimensional space. Each polygon, edge, 

and vertex of the 3D model is represented on the UV map, and their location on 

the UV map is stored into the UV coordinates of the vertices of the 3D model. 

When a texture is applied to the 3D model using the UV map, the parts of the 

texture that align with the polygons in the UV map, appear on the corresponding 

polygons on the surface of the 3D model. The UV map can also be simply referred 

to as the “UVs”. [61] [62] [63] 

There are many different ways to map the polygons of a 3D model onto the UV 

map. For example, the 3D model can be mapped using different kind of projec-

tions, such as projecting the polygons of the model onto the surface of a plane, a 

sphere, a cube or a cylinder. That projection can then be unfolded and flattened 

onto the UV map, which in the case of a spherical projection could happen similarly 

how the Earth’s surface is projected onto a world map. UV mapping using these 

projections can be useful for simple 3D models that resemble these shapes, but 

when used with more complex 3D models, these projections often create UV maps 

where the polygons of the model are severely distorted or overlapping each other. 

Distorted polygons in a UV map can make the textures appear stretched on the 

surface of the 3D model, and polygons that are overlapping each other in the UV 

map will have the same part of the texture applied to them, which may be unde-

sired. Therefore, for more complex 3D models such as game characters, it is usu-

ally advisable to manually unwrap the surface of the model, hence the name UV 

unwrapping. [62] [64] [65] [66] [67] 
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Figure 8. Example of a spherical UV projection in Blender. 

Manual UV unwrapping could be compared to peeling an orange or skinning an 

animal – the skin is first cut open, and then peeled off, after which it can be flat-

tened by stretching it a bit. Like making cuts into the skin of an animal, seams are 

defined along the edges between the polygons of the 3D model. The surface of 

the 3D model is then unwrapped into the UV map based on the seams. Sometimes 

the seams need to be adjusted or more seams need to be added to make sure the 

whole model can be flattened properly, to avoid unwanted stretching and overlap-

ping of the polygons. [62] 

The UV map of a 3D model does not have to be one continuous piece, but can 

also be divided into smaller pieces called UV islands. In principle, each individual 

polygon of the 3D model could have its own UV island. Having more seams and 

UV islands generally means that the polygons in the UV map will be less distorted, 

but having too many UV islands can make the texturing process more difficult. 

Each additional seam in the UV map will also increase the amount of computa-

tional power required to display the 3D model, because when the polygons are 

split from each other on the UV map, the vertices that they shared need to be 

represented twice on the UV map. Therefore, a single vertex may have multiple 

different UV coordinates, which essentially requires the computer to duplicate that 

vertex when displaying the 3D model. [62] [63] [67] [68] [69] 
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Figure 9. A game character and its UV map. 

When UV unwrapping a 3D model like a game character, it is good practice to try 

to use only as many seams as are needed to achieve a UV map with acceptable 

distortion. Whenever possible, it is also advisable to hide the seams in places 

where they will not be seen easily, since the seams may highlight issues with the 

texture, like if the textures on the opposite sides of the seam do not match each 

other properly, thus making the seam visible, which may be undesired. It is also a 

good idea to pack the UV islands tightly into the UV map, to avoid having wasted 

space in the texture area, and to maximize the usage of available pixels in the 

texture. In some cases, especially if the resolution of the texture is very low, it 

might be useful to prioritize the more important parts of the model, like the face of 

the character, and make It bigger on the UV map. This makes it possible to utilize 

the texture to the fullest, allowing the 3D model to look as detailed as possible 

while using that specific texture. However, the UV islands should not be packed 

too tightly, since this may cause the colors from nearby UV islands to blend with 

each other, which is called texture bleeding. Texture bleeding can happen when 

the borders of UV islands are too close, or even overlapping each other. It can 

also occur when a computer downscales the texture to lower resolutions. Certain 

types of downscaling methods approximate the colors of the pixels in the 
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downscaled texture based on the pixels of the original texture, essentially blending 

the original colors. As a result of texture bleeding, the seams on the surface of the 

3D model can become visible if the bleeding colors are different from the ones in 

the UV island. To prevent texture bleeding, the UV islands should have some 

space between them, to allow for texture padding, which means expanding the 

desired texture past the borders of the UV island. [62] [68] [70] 

 

Figure 10. The dark line splitting the car’s roof is caused by texture bleeding. 

There are also tools and programs that attempt to automatically UV unwrap a 3D 

model, or pack the UV map effectively to maximize the use of texture space. Tools 

like these can be found in many popular 3D modeling programs, but there are also 

several programs and plugins dedicated specifically for these tasks, such as Road-

kill, TexTools, iPackThat, UVLayout, and Unwrella. Using these tools can greatly 

reduce the time needed to UV map a 3D model, but they usually still require some 

input from the user, and the results often require some manual tweaking, espe-

cially for game assets which need to be optimized. [67] [71] [72] [73] [74] [75] [76] 
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3.1.4  Texturing 

Once the character has been UV mapped, it is ready for texturing. As previously 

mentioned, textures, which are sometimes called maps or skins, are images that 

are applied onto the surface of a 3D model, and the process of creating those 

images is called texturing. Textures can be created in a variety of ways. They can 

be hand painted by using a digital painting program, or they can be painted directly 

onto the 3D model by using a 3D painting program. Photos can be used as textures 

by using photo-manipulation to combine different images together and to tweak 

their colors, as well as to align them with the UV map. Textures can also be created 

procedurally using parameters that are defined by the artist, and they can be de-

rived from other 3D models in a process called baking. There are several different 

types of textures used for different purposes, and they can be used in different 

combinations to achieve different effects. The most commonly used texture types 

are different color maps. Other commonly used texture types are different kinds of 

specular maps and bump maps, as well as transparency maps, also known as 

opacity maps. There are also different texture types that affect the way a 3D model 

is lit, such as ambient occlusion maps, cavity maps, and emissive maps. [77] [78] 

Color maps define the surface color of the 3D model, or in more technical terms, 

the diffuse reflection of light from the surface. In traditional texturing workflows 

these maps are called diffuse maps, but when creating textures for physically 

based rendering, their equivalents are called albedo maps. The concept of physi-

cally based rendering will be discussed in more detail in the following chapters. 

The diffuse map can sometimes be the only texture used in a 3D model, and can 

therefore contain lighting information such as highlights and shadows, as well as 

different material definitions like metal and wood. In contrast, the albedo map is 

usually used with several other maps and should only contain the base color of 

the material, with as little lighting information as possible, and the brightness of the 

color should be consistent with the diffuse reflectivity of the corresponding real-

world material. [78] [79] [80] [81] 
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Different kinds of specular maps control how reflective or glossy the surface of the 

model appears. Just like with color maps, different workflows use different specu-

lar maps. Basic specular maps used with traditional workflows usually control only 

the brightness of the specular reflections, but if the specular map is colored, it can 

also change the tint of the reflections, which is useful for creating metallic surfaces. 

Gloss maps control how glossy or matte the surface of the model appears, and 

are often used together with specular maps. In physically based rendering work-

flows the equivalent material properties are controlled with roughness maps, re-

flectivity maps, and metallic maps. [78] [82] [83] 

Bump maps are textures that change how the 3D model is shaded, which means 

they can be used to create an illusion that the surface of the model has more detail 

than there actually is in the model’s geometry. The most basic bump maps are 

grayscale textures, where areas that are lighter color appear to come outwards 

from the surface of the model, and areas of darker color appear to sink into the 

model. Normal maps are similar to basic bump maps, but are more advanced, 

since instead of storing simple one-directional height information, they modify the 

direction of the model’s surface normals, which allows for more complex surface 

detail to be depicted. This makes it possible to store the surface detail of a high 

poly model into the normal map of a low poly model in a process called baking. By 

using baked normal maps, a low poly 3D model can appear almost as detailed as 

a high poly 3D model, while requiring only a fraction of the computational power 

needed to display the high poly model. [60] [78] [84] [85] [86] 
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Figure 11. A game character with and without a baked normal map. 

Height maps, often also referred to as displacement maps, are similar to bump 

maps. Like basic bump maps, height maps are grayscale textures that represent 

the height difference from the model’s surface as areas of lighter and darker col-

ors. However, instead of using the textures to create an illusion of height, the maps 

are used to displace the vertices of the model, which means the model’s shape is 

modified based on the height map. When this is combined with dynamic tessella-

tion, which means subdividing the polygons of the model in real-time, the surface 

of the model can become extremely detailed. Dynamic tessellation can be linked 

to the viewing distance, which allows for having very detailed models when viewing 

up close, while having less detailed models in the distance. Height maps can also 

be used for other effects, such as parallax mapping, which is another technique 

used to create an illusion of depth in a texture. There are several different versions 

of parallax mapping, but they all work by moving around the pixels of the other 

textures of the model in real-time, based on the height map and the viewing angle. 

This creates the effect of the texture changing along shifts in perspective, which 

can create the illusion of depth. [78] [84] [87] [88] [89] [90] [91] 
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Transparency maps define which parts of the model are either partly or completely 

transparent. They can be used to create objects like windows, but can also be 

used to cut out parts of a surface, which allows for creating things like tree leaves, 

grass, and hair without needing to model complex details, by using simple flat 

planes of polygons with partly transparent textures. Transparency maps can 

sometimes be stored in other textures like diffuse or normal maps, but can also be 

separate textures, in which case they are either grayscale textures or black-and-

white masks. [78] [92] [93] 

Ambient occlusion maps mimic the way ambient light affects the surface of the 3D 

model, since realistic indirect lighting is difficult to simulate in real-time. Indirect 

lighting refers to the way light is reflected from surface to surface, illuminating even 

areas that are not directly lit with the original light source. Ambient occlusion maps 

create a look of soft shadowing and emphasize areas of the model where ambient 

light is less likely to reach, which can make the lighting appear more realistic. Sim-

ilar to normal maps, ambient occlusion maps can be baked using a high poly 

model, but they can also be baked simply based on the shape of the low poly 

model. Cavity maps are similar to ambient occlusion maps, but are used to em-

phasize narrow cracks and crevices. Like transparency maps, ambient occlusion 

maps and cavity maps can be stored in other textures, and they are sometimes 

blended with color maps to add shading information to them. [78] [94, p248] [95] 

[96] [97] [98] 

 

Figure 12. A low poly model of a car, with a baked ambient occlusion map. 
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Emissive maps create an effect that makes the texture of the model appear as if it 

is emitting light. However, the texture does not actually function as a light source, 

so it cannot be used for lighting purposes, unless the game engine is specifically 

instructed to consider the emissive textures as light sources. Emissive maps are 

useful for creating objects such as glowing computer monitors, burning coal or 

magical items. [78] [99] [100] 

In addition to the aforementioned texture types, there are also several other texture 

types that are sometimes used alongside the more common textures. For exam-

ple, so-called detail maps can be used to add small scale details to 3D models. 

Detail maps are tiling textures, which means that the textures are repeated infi-

nitely in one or more directions to cover large areas with sufficient detail. Detail 

maps are blended together with the primary textures, which makes it possible to 

create very detailed surfaces without having to use high resolution textures, where 

all the detail would have to be in the primary textures. Additionally, some material 

properties cannot be convincingly conveyed by using only the more common tex-

ture types, and as a result there are multiple texture types that are used for very 

specific purposes, such as creating realistic looking skin, hair, and velvet, or for 

creating effects like flowing liquids. [78] [101] [102] [103] 

There are various different workflows that can be used for creating textures for a 

3D model of a game character, and which of those are used for a specific model 

depends on several things, such as the artistic style of the game, the requirements 

of the game engine, the technical limitations of the target device, and the prefer-

ences of the texture artist, as well as what software and tools are available at the 

game studio. It is common to start the texturing by creating the color map, since it 

is the most commonly used texture type. The color map is traditionally created in 

a program like Adobe Photoshop, where the texture can be either hand painted 

using the UV map as a guide, or it can be created out of photographs using the 

program’s photo-manipulation tools. However, nowadays there are also programs 

that allow the texture artist to paint or project photographs directly onto the surface 

of the 3D model, which means the artist does not have to guess how the texture 
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they are creating will appear on the surface of the model, since it is immediately 

visible as they are working on it. [104, p86] [105] [106] 

One way to approach the creation of the color map is to first separate areas of 

different materials by covering them with different base colors that match the color 

of the intended material. The base color can then be overlaid with more detail and 

color variation to better express the look of the material. Once the material has 

been properly defined, it is possible to add some weathering and wear to the tex-

ture, such as dust, grime, rust, and dirt, as well as scratches, scuff marks, and 

edge wear. [107, p48-62] [107, p278] [108, p124-128] [108, p206-215] 

Another approach to the creation of the color map is to start the texturing by com-

bining photographs of different materials into the texture. These photographs are 

then photo-manipulated to align with the UV map of the model, and color corrected 

to remove differences in lighting between different photographs. The aim is to 

achieve a sort of neutral lighting, so the textures will look good in all lighting con-

ditions within the game. [107, p273-275] 

After the color map has been created, it can be complemented with other maps 

that add material definition to the model, such as specular maps or bump maps. 

Sometimes the other maps can be created by modifying the original color map, or 

generated from it using special software, such as CrazyBump, AwesomeBump or 

Bitmap2Material. [107, p95] [108, p216] [109] [110] [111] 

If the color map is the only map that will be used with the 3D model, the texture 

artist can attempt to imitate the effects of the other maps by creating fake highlights 

and shading into the color map, and by using different types of shading for different 

materials to better distinguish them from each other. Ambient occlusion maps and 

other baked lighting information can also be blended with the color map to achieve 

more realistic shading. [97] [107, p50-59] [107, p90-92] [107, p123-125] [112, p28-

29] 

If a high poly version of the 3D model was created during the 3D modeling process, 

it can be used to create textures for the low poly 3D model, by baking the details 
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of the high poly model into the textures of the low poly model. It is common to bake 

textures like normal maps and ambient occlusion maps from the high poly model, 

but sometimes even textures like color maps and specular maps can be baked, if 

the high poly model has had materials and textures applied onto it. This can be 

useful for workflows where the high poly model is made first, and the low poly 

model is created from the high poly model using a method called retopoligizing. 

[107, p180] [107, p108] [107, p270] [108, p123-126] [112, p28-29] [113] [114] [115] 

When creating textures for games, texture artists need to take into consideration 

how the textures will affect the performance of the game. Textures contain data 

which the target device needs to store and process, and the amount of data in-

creases as there are more textures, or if the textures are large in terms of how 

many pixels they have. It is advisable to use only as many, and only as large tex-

tures as are needed to make the game look good, while still maintaining good 

performance. Using more and larger textures with more pixels in them can lead to 

bad performance, since they require more computational power, memory, and 

storage space. 

Texture artists should also pay attention to what the dimensions of the textures 

are. To make sure the textures are as efficient as possible in terms of game per-

formance, their dimensions, measured in pixels, should conform to the so-called 

“Power of Two” rule, sometimes abbreviated as PoT. The PoT rule dictates that 

both the horizontal and vertical resolutions of a texture should be in powers of two, 

which are exponentiations of the number two. For example, a texture could be 16 

pixels wide and 2 pixels high, or 1024 pixels wide and 256 pixels high, but a texture 

that was 1500 pixels wide and 2000 pixels high would not follow the PoT rule. 

Modern games also have a preference for textures that are either square, or rec-

tangular with two-to-one dimensions, like a texture with a width and height of 512 

pixels, or a texture that is 4096 pixels wide and 2048 pixels high. The PoT rule is 

used because game engines and computers manage and process data in 

“chunks” of certain sizes, rather than all at once, and textures that conform to the 

PoT rule are optimized for that process. That said, textures that do not follow the 
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PoT rule can usually still be used in games, but using them will be less efficient 

and can negatively affect the performance of the game. [116] 

The so-called working size is another thing to consider while creating textures for 

games. Working size refers to the size in which the textures are initially created, 

in comparison to the size they are going to be used in the game. In some cases, 

it can be useful to create the textures larger than the size in which they will appear 

in the game, and then downscale them for the game. This makes it possible to use 

the original working size textures if there happens to be a need to use higher res-

olution textures, which means the textures do not have to be remade for that pur-

pose. Of course, if the working size of the textures is larger than the size in which 

they appear in the game, the texture artists need to take into consideration the 

amount and size of the details they create into the textures, since details that are 

too small might not be properly depicted in the downscaled textures. [108, p55-56] 

[117, p50-51] [118] 

3.1.5  Rigging 

Before a complex 3D model like a game character can be animated, the model 

needs to be rigged. Rigging is the process of creating a rig, which is a system of 

digital bones, joints, and other controls which are bound to the 3D model, and 

which the animators can use to move and bend the model to create animations. 

The complexity of the rig depends on how the character is supposed to be ani-

mated, and what the technical limitations of the target device are. A rig for simple 

posing and movement can be created in a few hours, but for achieving more de-

tailed animations like nuanced facial expressions, a more complex rig is needed, 

which may require days or weeks of work from a professional rigger. [119] [120] 

A basic character rig would consist of a so-called “skeleton” which is a system of 

digital bones and joints. The terms “joint” and “bone” are sometimes used inter-

changeably, since different software use different naming conventions and slightly 

different rigging techniques. However, a simple explanation of the terms would be 
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that joints are the actual articulation points of the rig, and bones are the connec-

tions between different joints. So, bones represent the direct connections each 

joint has to other joints, but not every joint is connected to every other joint directly. 

Some rigging tools, like the 3ds Max Character Animation Toolkit, have visual rep-

resentations for bones, whereas they have no visual representations for joints, 

which are simply the points where the bones are connected to each other. [120] 

[121] [122] 

 

Figure 13. A low poly game character and its rig, highlighted in white. 

The rig follows a logical hierarchy. The highest component in the hierarchy of the 

skeleton is called the root joint or root bone, to which each subsequent joint and 

bone is connected to, either directly, or indirectly through other joints and bones. 

The hierarchy makes it possible to create a system where the rotation of a joint 

affects every joint that is lower in the hierarchy, so that they follow the movement. 

For example, rotating a character’s shoulder joint would rotate the whole arm. This 

kind of rig is called an FK, or Forward Kinematics rig. Sometimes it is useful to 

have the rig function in the opposite way, so that the joints lower in the hierarchy 

affect the joints above. For example, an animator might want to place the charac-

ter’s palms or feet to specific locations, and have the rest of the arms and legs 

move into appropriate positions. A rig that allows for this kind of functionality is 

called an IK, or Inverse Kinematics rig. An IK rig automatically interpolates the 
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positions of the other joints in the rig based on where the joints lower in the hier-

archy are placed. This can speed up the animating process, since the animator 

does not have to adjust each and every joint in the rig manually to get the last 

joints into the correct positions. However, since the positions of the other joints are 

interpolated automatically, the animator may have to correct some of the joints if 

they are not pleased with the results of the interpolation. [119] [120] 

In addition to creating a rig with IK and FK controls, a rigger can utilize so-called 

driven keys. Driven keys allow the animator to “drive” different functions of the rig 

with simple controls. A driven key consists of a driver and the driven. For example, 

the function driven by the driven key could be closing and opening the fist of a 

character, and the driver controlling that function could be a numerical value, an 

attribute of another 3D object, or a slider in the user interface of the animation 

software. Using a driven key can significantly speed up the animating process, 

since the animator can use a single control to drive complex actions that involve 

multiple joints in different positions, instead of having to manually position each of 

those joints every time they want to perform those actions. [120] [123] [124] 

A basic rig consisting of joints and bones is suitable for simple posing and body 

movements, but for nuanced facial expressions, a separate facial rig is needed. A 

facial rig could be a combination of blend shapes and other deformers, as well as 

joints and bones. While joints and bones can be used for some facial movements, 

like moving the jaw bone, they do not work very well for subtler facial expressions, 

which require very stretchy and organic motion. Instead of bones and joints, de-

formers such as blend shapes can be used to achieve these more detailed move-

ments. [120] [119] [125, p379-380] [126] [127] 

Blend shapes, sometimes referred to as morph targets, are versions of the 3D 

model in which the vertices of the model have been moved from their neutral po-

sition to achieve a certain shape, such as a facial expression. Blend shapes are 

linked to the original model, and their effect on the model can be blended on or off, 

similar to using driven keys. For example, a variation of a character model could 
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be modified to have a raised eyebrow, and this modified model could then be con-

nected to the original model as a blend shape. The effect of the blend shape could 

then be blended with the original model’s neutral pose using a numerical value or 

a slider, allowing an animator to control that facial expression. More complex facial 

expressions can be created by using multiple blend shapes in different combina-

tions, but specific facial expressions can also be saved as their own blend shapes. 

Sometimes certain combinations of blend shapes do not work well together, and 

corrective blend shapes need to be created. Therefore, a high-end facial rig can 

contain hundreds of blend shapes. Blend shapes can also be used to imitate mus-

cle contraction and relaxation during character movement. For example, when a 

character’s arm is bending, blend shapes can be used to create an effect that 

imitates a contracting biceps. [120] [125, p379] [127] [128] [129] 

 

Figure 14. Blend shapes by Brad Shortt, from 343 Industries’ Halo 5: Guardians. 

In addition to blend shapes, there are various other deformers which the rigger 

can utilize, such as cluster, wrap, and muscle deformers. For example, a cluster 

deformer can be used to manipulate a section of the 3D model’s vertices using a 

single handle. This allows the animator to push and pull that section of the 3D 

model to create different effects, like squashing and stretching. Wrap deformers, 

on the other hand, can be used to modify the shape of the 3D model to match the 
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shape of another 3D model. For example, a wrap deformer with a cone-shaped 

3D model could be used to create an animation of a spike growing on the head of 

a character. Muscle deformers are slightly more complex than cluster or wrap de-

formers, since they simulate the effects of muscles contracting and relaxing, as 

well as the effect of skin sliding over the muscles. In some rigging tools, muscle 

deformers can also be used to simulate the jiggle of muscles during fast move-

ments, as well as the collisions between different muscles and body parts. How-

ever, muscle deformers tend to be computationally heavy, and are not usually 

used in games. Even fairly recent high end games, such as Crytek’s Ryse: Son of 

Rome, still use joint and blend shape based rigs instead of muscle deformers. 

[130] [131] [132] [133] [134] [135, p9-10, 95-105] [136, p13] [137] [138] 

To connect the rig to the 3D model, the model needs to be skinned. Skinning is 

the process of binding the surface of the 3D model to the joints, bones, and de-

formers of the rig. In the case of a polygonal 3D model, one way to connect the 

vertices of the model to the rig is to use a technique called weight painting. Weight 

painting allows the rigger to define how much the movement of each bone or joint 

affects each of the vertices of the 3D model. This “weight” of each bone can be 

represented as a numerical value or a color, and each vertex has its own 

weighting, which can be a combination of weights from different bones and joints. 

For example, a vertex could be weighted to a single bone, in which case the vertex 

would follow the movements of that bone. Likewise, if a vertex was equally 

weighted between two bones, the movements of the vertex would be an equal 

blend of the movements of those two bones. However, the weighting of a vertex 

does not have to be equal between all the bones and joints that are influencing it, 

which means a vertex can be mostly affected by certain bones and joints, while 

still being slightly affected by others. Also, since each vertex has its own weighting, 

areas of the 3D model’s surface can have smooth transitions between the influ-

ences of different bones. Weights can be added to vertices either by selecting 

vertices and assigning weight values to them, or by “painting” weights to them 

using a weight painting tool, which visualizes the weights on the surface of the 3D 

model as grayscale values or colors. [120] [139] [140] [141] [142] 
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Figure 15. Weight painting a game character in 3ds Max. 

There are a couple of things a rigger can do to make animating the rig easier for 

animators. For example, the rigger can create controls and handles which the an-

imators can use to animate the rig, since the actual rig is usually hidden inside the 

3D model to which it is bound to. These controls and handles are often simply 

called controls or control curves, but in the 3ds Max Character Animation Toolkit 

they are called manipulation gizmos. In addition to creating handles which the an-

imators can use to grab and manipulate the rig, a rigger can also use driven keys 

to create a simple interface for animating more complex functions of the rig, such 

as blending between different blend shapes. Another thing a rigger can implement 

to the rig is to add rotation and movement constraints to the joints and bones. For 

example, a human character’s knees and elbows should only be able to rotate on 

one axis, and should not be able to rotate past the point where the limb is straight. 

However, while creating these constraints, the rigger needs to take into consider-

ation that the animators might want to deliberately “break” the rig to create exag-

gerated movements. [120] [119] [124] [143] [144] [145] 

While complex rigs such as facial rigs or muscle rigs often need to be hand crafted 

by a dedicated rigger, many rigging tools allow the rigger to partially automate the 
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rigging process, and there are even specific plugins, programs, and online ser-

vices which can rig characters almost completely automatically. For example, 3ds 

Max Character Animation Toolkit creates both IK and FK systems automatically 

for each limb that is created, and speeds up the rigging process by allowing the 

rigger to simply input the amount of limbs, bones, and digits in each body part, 

without needing to manually create the skeleton. Many 3D software, such as Au-

todesk Maya, Autodesk 3ds Max, and Blender, also have either built in tools or 

plugins that can automate most of the rigging process, such as Maya’s Quick Rig 

Tool, the Anzovin Rig Tools plugin for Maya, the LH Auto-Rig plugin for 3ds Max, 

and the Auto-Rig Pro plugin for Blender. In addition, Mixamo offers similar func-

tionality as an online service, called Auto-Rigger. Automating the rigging process 

either partially or entirely can significantly speed up the production of game char-

acters, and is especially useful for small game studios which may not have dedi-

cated riggers. [146] [147] [148] [149] [150] [151] 

3.1.6  Animation 

There are various tools that can be used for animating a 3D game character, and 

which of those tools an animator ends up using depends on the particular software 

they are using, as well as the animator’s personal preferences. However, there 

are certain animation tools that are found on most 3D programs, such as time 

slider and graph editor. Time slider refers to the slider that allows the animator to 

preview and edit the animation by moving through the individual frames of the 

animation. The animation itself is created by adding keyframes at different points 

of time in the animation. Keyframes record the current values of animated objects, 

such as location and rotation, and save them in the current frame as so-called 

keys. When two keys affecting the same values of an object are created at different 

points of time in the animation, the 3D program then interpolates the transitional 

frames between those two keyframes, which in the case of rotational values would 

create a rotating animation. These frames in-between the keyframes are called 

tweens, and in traditional animation they would have been created manually, 
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whereas in 3D animation the program creates them automatically. If the animator 

is not pleased with the speed of the animation, they can simply move the keys 

from one frame to another, making the animation faster or slower. For more pre-

cise control over the animation, the animator can use the graph editor. Graph ed-

itor allows the animator to edit the so-called animation curves between different 

keys. Animation curves are visual representations of the way the 3D program in-

terpolates the transition from one key value to another. The values of the keys can 

be seen on a graph, where they are visualized at different vertical positions de-

pending on their numerical values, and at different horizontal positions depending 

on the points in time they are keyed at. The keys affecting the same value are 

connected with lines called curves, which represent the interpolation between 

those keys. The curves can be edited to achieve different effects for the animation. 

For example, a straight line between two location keys would mean that the inter-

polation between them would be linear, which would result in a movement that has 

constant velocity. However, if the line between the keys was curved, it would result 

in an accelerating or decelerating movement. [152] [153] [154] [155] 

 

Figure 16. Time slider, keyframes, and animation curves in 3ds Max. 

Animators have a lot of different techniques at their disposal when animating a 

game character. They can use skeletal animation, which refers to animating using 

a rig consisting of bones and joints, and they can complement the skeletal anima-

tion with deformers and blend shape animation if the rig supports them. They can 

also use vertex animation, which refers to animating vertices of a model without 
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using joints or deformers. Vertex animation can be used for animating complex 

motions like simulated cloth, hair, or water movement. Cloth and hair simulations 

can be simulated in the animation software, and then imported into the game as 

vertex animations, or they can be baked into joints and bones, if the character’s 

clothes and hair have been rigged. The simulations can also be performed within 

the game, but this is sometimes too computationally intensive. However, simulated 

cloth and hair movement can be approximated within a game using procedural 

vertex animation that relies on movement based on sine waves or interpolated 

triangle waves. [156] [157] [158] [159] [160] [161] [162] 

Animators can also use textures for animating a game character. UV panning 

means animating the UV coordinates of a texture, which creates an effect of the 

texture moving. Combining this with a tiling texture can create a seamlessly loop-

ing animation, which can be useful for creating effects like flowing water. Textures 

can also be used for animation by creating a texture that is a combination of mul-

tiple frames of traditional animation, called a spritesheet. The spritesheet can then 

be animated on the surface of a 3D model by switching between different frames 

of the animation using a technique similar to UV panning. This kind of texture ani-

mation can be used for creating facial animations on stylized low poly characters, 

for example. Wrinkle maps are another way to use textures for animation. Wrinkle 

maps are normal maps or displacement maps that contain depth information of 

wrinkles that are caused by different poses, such as stretched or compressed fa-

cial expressions, like a wrinkled forehead or squinting eyes. The effect of the wrin-

kle maps is blended with the base normal or displacement maps using masks that 

correspond to different poses or expressions, and different areas of the skin. This 

way the animator can control which areas of the skin get wrinkled during specific 

animations. The effect of the wrinkle maps can also be linked to different blend 

shapes or bone and joint positions, which automates the effect. The wrinkle maps 

themselves can be created by sculpting the expressions in a digital sculpting pro-

gram, and then baking the expressions into a normal map or a displacement map. 

[163] [164] [165] [166] [167] [168] [169] 
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Figure 17. Wrinkle map sculpting for Naughty Dog’s Uncharted 4: A Thief’s End. 

Adapted by author. 

When creating animations for game characters, animators should always keep in 

mind the 12 principles of animation, which are a collection of guidelines and tech-

niques created by Frank Thomas and Ollie Johnston, who were pioneers of ani-

mation at Walt Disney Studios. The 12 principles of animation are: timing and 

spacing, slow in and slow out, squash and stretch, follow through and overlapping 

action, arcs, anticipation, secondary action, straight ahead and pose to pose, stag-

ing, solid drawing, appeal, and exaggeration. All of these principles apply to game 

animation, however, the way they are used may slightly differ from traditional ani-

mation. [170] 

Timing and spacing are perhaps the most important principles of animation. Timing 

is an animation term that is used to describe how long an action or a movement 

takes to complete, or when it begins and ends. The timing of a movement can be 

measured in either the amount of frames, or the amount of time it takes to complete 

that movement, since the amount of frames there are within any given amount of 

time depends on the frame rate of the animation. Frame rate refers to the amount 

of frames that are displayed in one second, which is measured in frames per sec-

ond, or FPS. If an animation had a frame rate of 24 FPS, a movement lasting one 

second would have 24 frames, but at the frame rate of 60 FPS, it would have 60 

frames. Spacing is closely related to timing, but whereas timing refers to the 

amount of frames in a movement, spacing describes how the movement pro-

gresses within those frames. For example, if an object was animated to move at a 

constant speed, the amount of movement from frame to frame would be equal. 
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However, if the object was animated to accelerate or decelerate, the amount of 

movement from frame to frame would either gradually increase or decrease. If 

each of these animations had the same amount of frames, they would all still last 

the same amount of time, but the movement in each animation would be drastically 

different from the others. Timing and spacing are the basic building blocks that 

create the illusion of movement in animation. When used correctly, they can make 

animations appear believable and realistic, but also appealing and impactful. [154] 

[170] [171] [172] [173] 

 

Figure 18. Visualization of timing and spacing. 

Slow in and slow out, often also referred to as ease in and ease out, are animation 

principles that refer to accelerating and decelerating movement. In the real world, 

all movements require time for either acceleration or deceleration. For example, a 

stationary car cannot reach its top speed in an instant, but must first accelerate 

until the speed is reached. In animation, this gradual transition from stationary to 

full speed is called a slow in, and conversely, if the car was braking to a halt from 

top speed, this would be referred to as slow out. Of course, these principles can 

also be applied to character movements, such as the swinging hands of a walking 

character. Whenever the hands change direction while swinging back and forth, 
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they need to slow out to a stop, and then again slow in to the movement in the 

opposite direction. In most 3D programs, the slow in and slow out can be observed 

in the animation curves within the graph editor, and can be edited to achieve dif-

ferent kinds of effects. In video games, the principles of slow in and slow out are 

sometimes also used to blend different animations to create more natural looking 

movements. For example, a character could have separate animations for walking 

and running, but switching or blending between these two animations might result 

in movement that looks unnatural. To fix this issue, a transitional jogging animation 

could be created, which, when blended in-between the two existing animations, 

would essentially create slow in and slow out effects for the walking and running 

animations. [170] [174] [175] 

Squash and stretch refers to the way an object’s shape deforms during movement. 

For example, a bouncy ball will squash when hitting the ground after a fall, and 

conversely, will stretch when bouncing off the ground. An important part of the 

effect is that the object retains its volume during the movement. While squashing, 

the ball is compressing in height, but also thickening in width, and while stretching, 

the ball will get thinner, but also longer.  Squash and stretch can also be observed 

in the nature and in living beings, like in the facial expressions of people. In ani-

mation the effect can be exaggerated to achieve more appealing movement. 

Squash and stretch can also be exaggerated even further to create cartoony and 

comical animations. [176] 

Follow through and overlapping action could be considered two different, yet 

closely related principles. Follow through refers to the way some parts of an object 

or a character continue moving after most of the movement has come to a stop. 

For example, when a character comes to a stop after running, their hair or clothes 

might keep moving forward for a moment, and then bounce back, until eventually 

settling. Overlapping action is similar to follow through in the sense that it is related 

to different parts of an object or a character moving at different times. However, 

whereas follow through is usually related to things that are affected by outside 

forces, like clothes that are affected by a character’s movements, overlapping ac-

tion is usually related to the movement of parts within an object or a character that 
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is actually driving those movements. For example, when a character is walking, all 

of their limbs and joints move and rotate at different times, speeds, and paces, but 

when combined, they create a rather constant and fluid walking motion. Similarly, 

if a character tried to slap something or someone with their hand, they would first 

begin to move their shoulder and upper arm, then straighten out their forearm, 

dragging along the palm of the hand, which would then be straightened out at the 

last moment before the impact, creating a whipping motion. This effect is some-

times called “drag” or “lead and follow”. Utilizing follow through and overlapping 

action can make animations more fluid and lively, and when used correctly, can 

even make them appear more realistic. [170] [177] 

Arc is an animation term that refers to the way most motion in nature typically 

follows a curved trajectory in one way or another. This can be observed by tracking 

different points of objects and living things as they move, such as the tips of a 

bird’s wings as it flies. Using arced motions creates a natural and appealing ap-

pearance for animations, and allows the animator to add definition to the poses 

and silhouette of a character. For example, adding an outward arc to a game char-

acter’s punching animation can make the animation stand out more when viewed 

from straight ahead or behind, which makes the animation more readable to the 

player, compared to a completely straight punch. Many 3D programs have tools 

that can plot out arcs and draw curves, which can be used to modify the animations 

to have smoother arcs in the movements. [170] 

 

Figure 19. An example of arced motions in nature. 
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Anticipation refers to a preparatory movement that takes place before another, 

usually larger movement. In the real world this can be observed in the way some 

movements require a counter movement to build up energy. For example, before 

a person can jump, they need to bend their knees to store energy in their leg mus-

cles, which is then released when the legs straighten up and the person springs 

off the ground. In animation, anticipation can be used to prepare the audience for 

an action that is about to happen, and therefore it can also be exaggerated or 

applied to movements that normally would not require it, to make the movement 

more appealing and clear. In video games, anticipation can be used to notify a 

player when something is about to happen, so the player can react to it. For ex-

ample, an enemy could make a specific pose before attacking, so the player has 

time to dodge or block the attack. However, a player character often needs to react 

to the player’s actions as fast as possible, so anticipation animations may need to 

be very short, or the animations may have to begin with the anticipation pose. [170] 

[178] 

 

Figure 20. An example of anticipation. 

Secondary actions are actions that support or emphasize the main action of the 

animation. They can be used to draw attention to the primary action, or to add 

personality and uniqueness to the animation. Secondary actions should be subtle, 

so they do not detract from the the main action. For example, a character could be 

animated to swing their hands in a unique way when walking, or to fidget nervously 

while sitting. The purpose of secondary actions is to add subtle, natural, and real-

istic movement that helps define the unique feel of the animation, without drawing 

attention away from the primary function of the animation. [170] 
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Straight ahead action and pose to pose are two different styles for creating anima-

tions. In straight ahead action, an animator will create the animation in a linear 

fashion, creating each pose of the animation in the order they appear in the ani-

mation. For example, when creating a jumping animation, the animator would first 

start with a neutral pose, then a pose where the character begins to bend their 

knees, then a pose where the character is crouched, moving on to the actual jump, 

and so on, until the whole animation is completed. Using straight ahead action will 

often result in a smooth and flowing animation. In contrast to the free-flowing and 

linear workflow of the straight ahead action, animating using pose to pose is more 

methodical and precise. In pose to pose animation, the animator first carefully cre-

ates the key poses of the animation, and then adjusts the timings of those poses 

until the general look and feel of the animation is pleasing. Only after that will the 

animator start working on the transitional poses. This process of creating the key 

poses first is also called blocking, since the animation is planned ahead, and the 

most important features are blocked in before adding any details. Using pose to 

pose animation can help with creating animations that need to feel snappy and 

perfectly timed. Straight ahead action and pose to pose each have their own 

strengths, and both can be used in video game animation. [170] [171] 

The purpose of staging is to draw the audience’s attention to what is important in 

the scene. In traditional animation and films this can be done by setting up the 

scene by placing the characters and objects in certain locations and poses in re-

lation to the frame, or in the case of 3D animation, the virtual camera. In video 

games this can be difficult for the animator to achieve, since the player is usually 

in control of the player character’s actions, and can often control the point of view 

as well. However, there are some techniques that can be utilized to create staging 

for game character animations. To make sure the most important aspects of the 

animation are clearly communicated to the audience, the character can be posed 

in different poses that have easily identifiable silhouettes, which help convey the 

meaning of the animation. For example, if it is important for the player to see what 

object or weapon the character is holding, the character can be animated using 

poses that emphasize those specific objects. [170] [179] 
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In traditional animation, solid drawing means creating accurate drawings that take 

into account the volume, weight, balance and anatomy of a character when the 

character is posed, and which maintain these properties when the character is 

viewed from different angles. In 3D animation, the 3D program makes sure the 

character looks consistent when viewed from different angles, but the principles of 

solid drawing still apply to other aspects of the animation. The animator should 

pay attention to the poses of the character, to ensure that the character is balanced 

and weighted correctly, and to make sure the silhouette of the pose is clear and 

easily identifiable from all angles. The animator should also avoid poses that result 

in twinning, which means that the character’s pose is mirrored on both sides of the 

body, since this often creates a boring and unappealing pose. An example of twin-

ning could be a character whose both arms are placed on the same level on their 

hips.[170] [171] 

Appeal is a somewhat ambiguous animation term, since it can describe different 

things depending on the context. As one of the 12 principles of animation, appeal 

describes how real and interesting a character feels. Characters do not need to be 

likeable to be appealing, as long as they feel believable and captivating, similar to 

how a good actor can make a memorable performance in the role of a villain. An-

imators can make their characters more appealing by creating animations that 

support the characters’ designs. For example, if the character was a shy boy, the 

animator could animate him to walk with his hands in his pockets, looking down, 

and occasionally glancing around nervously. This would make his walking anima-

tion distinct from other characters’ walking animations. In the case of video game 

animation, animators could create unique fighting styles that support the person-

alities of each game character to increase their appeal. [170] [180] 

Animations are exaggerated to make them more appealing and clear, or to create 

a specific style for them. Subtle exaggeration can be used to make realistic ani-

mations more readable, since exactly replicating the motions seen in nature, such 

as the movements of humans, can come across as less interesting when seen in 

animations, compared to how they appear in the real world. Adding a touch of 

exaggeration to the timings, poses, movements, and expressions of a character 
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can make the animation more appealing, and can help in “selling” the animation 

to the audience. Extreme exaggeration can be used to add a specific style to the 

animations, such as a comical and cartoony look, or if the animations need to be 

very impactful, surreal, or symbolic. For example, animators could “push” the 

poses of a character to the extremes and use exaggerated squash and stretch 

effects during fast movements to achieve a cartoony look, or they could even 

“break” the joints of the rig, so they bend beyond the constraints set by the rigger, 

which could be used for creating animations that look unnatural and scary. [170] 

[181] [182] 

 

Figure 21. An example of exaggeration from Blizzard’s Overwatch. 

Animations for game characters are traditionally done “in-place”, which means that 

the character’s position does not change during the animation. For example, if a 

walking animation was created for a game character, the character would not ac-

tually move forward in the final animation, and would simply walk in-place. The 

reason for this is that the movements of the characters are usually programmed 

into the game, which means that the characters move around at pre-defined 

speeds based on the characters’ artificial intelligence, the actions of the player, or 

the physical forces in the game, like gravity. The animations are simply visual ef-

fects added on top of the movements, and the game could be played even without 
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them. However, there is an alternative option for creating game character anima-

tions, which is essentially the exact opposite of the traditional method. Root motion 

is a technique which allows the animation made by the animator to drive the move-

ment of the character within the game. Root motion takes the animated motion of 

the character rig’s root bone or root joint, and applies it as the movement of the 

character in the game. This can be useful for complex movements, such as an 

attack animation in which the character quickly lunges forward, since the move-

ment of the lunge can be difficult to replicate by programming. [183, p113] [184] 

Many animations in games are different types of cycles, which are animations that 

can be looped to create seamless and endless animations that repeat over and 

over again. For example, a game character might have cycles for walking, running, 

and idle movement, and the animations could be switched based on what the 

player wanted the character to do. While the animating of a character can be a 

time consuming and manual process, there are tools that can automate some of 

it. For example, walk cycles and run cycles can be easily created with the 3ds Max 

Character Animation Toolkit, using a tool called CATMotion. CATMotion is a pro-

cedural-motion-cycle-generation system, which allows the animator to create ani-

mation cycles by modifying different parameters, called controllers. The animator 

can use these controllers to change the way different parts of the character’s body 

move, and the CATMotion tool will automatically create an animation cycle based 

on how the animator has set up the controllers. For example, the animator can 

define the speed of the character’s movement, how the character swings their 

arms, and how the toes of the character curl during walking. [179] [185] [186] [187] 

[188] [189] 

3.2  Methods and techniques for games on mobile and low-end devices 

Since mobile and low-end devices are more limited in terms of computational 

power when compared to modern computers and game consoles, there are also 

more technical restrictions that need to be factored in when creating games for 
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them. In order to deal with these technical restrictions, games need to be opti-

mized, which essentially means that various features of the game are simplified 

until the performance of the game is acceptable on the target devices. Most games 

are optimized to some extent, but it is especially important when making games 

for mobile and low-end devices. Of course, if the technical restrictions are taken 

into account when initially designing and creating the features of the game, there 

will be less need for optimizing them later on. Thus, while the workflow for creating 

game characters remains mostly unchanged, there are numerous methods and 

techniques that can be introduced to the workflow when creating game characters 

for mobile games. [190] 

One of the most common areas of optimization is the amount of polygons and 

vertices in 3D models. While modern computers are able to display millions of 

polygons and vertices in real-time, games on currently available mobile devices 

should aim for less than 500,000 triangles, or less than 100,000 vertices on screen. 

Additionally, the amount of vertices in an individual 3D model is limited to about 

65,000 vertices. The limitations are even stricter on older mobile devices, such as 

the iPhone 3GS and the original iPhone. The recommended amount of vertices 

per frame is less than 40,000 for the 3GS, and less than 10,000 for the original 

iPhone. Therefore, the models used in mobile games need to be relatively low 

poly. [51] [191] [192] [193] [194] 

When creating low poly models, a good rule of thumb is to add polygons only if 

they add to the silhouette of the model, or if they are needed to ensure good de-

formations during animations. Small details which do not affect the silhouette of 

the model can be depicted in the textures, instead of the model’s geometry. For 

instance, a button on the shirt of a character might not affect the silhouette signif-

icantly, and therefore could be drawn into the textures of the model in order to use 

less polygons. Additionally, the amount of UV seams in the model’s UV map 

should be kept to a minimum, since vertices located on those UV seams will es-

sentially be duplicated when the model is processed, because they have multiple 

UV coordinates. This also applies to any hard edges in the model’s shading. Hard 

edges are edges in the model where the shading is split into different sections, 
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creating an effect of a sharp angle. Vertices on a hard edge are duplicated, since 

there are multiple vertex normals, one for each side of the sharp angle. However, 

if a UV seam and a hard edge are located on the same edges, the vertices are 

only duplicated once. This trait can be used to optimize the 3D model by placing 

UV seams on edges that need to have hard edges, minimizing their performance 

cost. [103] [192] [195] [196] 

 

Figure 22. Vertices located on UV seams are duplicated in the UV map. 

Another common area of optimization are the textures of 3D models. As previously 

mentioned, as the amount and size of textures in a game increases, the amount 

of required memory and storage space increases accordingly. Modern game en-

gines support texture sizes that are up to 8192 pixels in both width and height, but 

most mobile devices only support texture sizes up to 4096 pixels, and older de-

vices can be limited to even smaller texture sizes, such as 2048 or 1024 pixels. 

Besides having more limiting maximum texture sizes, mobile devices are also lim-

ited by the amount of memory they have. Modern computers can theoretically have 

hundreds of gigabytes of memory, but currently most gaming computers have 

around 8 gigabytes, which is also the amount of memory in the Xbox One and 
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PlayStation 4 game consoles. In comparison, most high-end smart phones have 

only 6 gigabytes of memory, while low-end smart phones might have just a few 

hundred megabytes. In addition to being restricted by less memory and smaller 

texture sizes, using some texture types like normal maps and transparency maps 

can affect the performance of a mobile game negatively, especially on older mobile 

devices such as the iPhone 4. Fortunately, there are multiple methods and tech-

niques that can be utilized to optimize the use of textures in a mobile game, which 

allow for acceptable performance while still maintaining good visual quality. [117, 

p58] [197] [198] [199] [200] [201] [202] [203]  

One of the most common ways to optimize the amount and size of textures is to 

utilize texture tiling. Tiling textures can be repeated seamlessly in one or more 

directions, which means they can be used to cover large areas. Using tiling tex-

tures allows for smaller textures, since the detail of the texture can be repeated 

over the surface of the model, instead of having a large texture with lots of unique 

details. Tiling textures can also be reused on multiple 3D models, which means 

that each individual model does not necessarily need to have a unique texture. 

Therefore, using tiling textures saves memory, since the game can use less tex-

tures that are also smaller. [103] [204] 

 

Figure 23. An example of a tiling texture. 
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3D models of game characters often cannot take advantage of tiling textures, at 

least in mobile games, since the character is a unique asset, which may need 

specific surface details that need to be in unique textures. However, it is possible 

to get past this limitation by creating a texture atlas, which is a texture that has 

multiple different textures within one texture. If these textures are tiling textures, 

individual polygons or parts of the 3D model can be UV mapped to them in a way 

that makes the texture repeat on the surface of the model. While this allows for the 

use of multiple tiling textures within a single 3D model, it also creates more UV 

seams in the model, which, as previously mentioned, increases the amount of ver-

tices in the model. [205] 

 

Figure 24. An example of a texture atlas in Popup Asylum’s Look Out Below!. 

Instead of mapping individual polygons into tiling textures, textures can also be 

tiled within the game engine. Both Unreal Engine and Unity allow for setting nu-

merical values for both the tiling and the offset of textures, which can be used to 

define how many times a texture tiles on a surface, or which portion of the texture 

is mapped to the surface. However, since game characters require unique details 
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in their textures, different parts of the 3D model need to be masked to define which 

parts use which textures. Textures are often tied to different so-called materials. It 

is recommended that mobile games should keep the number of materials as low 

as possible, and a game character should only have two or three different materi-

als. If the tiling textures were combined into a texture atlas, this would allow the 

character to use a single material that takes different tiling textures from different 

portions of the atlas, based on texture offset values. However, this would make 

the material more complex, which might result in bad performance on mobile de-

vices. [204] [206] [207] [208] [209] [210] 

Another way to optimize the size of textures is to use mirrored UVs. If parts of a 

3D model are symmetrical, the UV islands of those parts can be overlaid on top of 

each other by flipping the UVs of the mirrored parts. This way the model can use 

the same part of the texture on both sides of the symmetry axis, which frees up 

space on the texture map. This free space can be used to add more parts into the 

texture, or to make either the mirrored parts or other existing parts larger, allowing 

for more details. If all of the UVs in a 3D model are mirrored, the model essentially 

needs only half of the texture space it would need otherwise, or conversely, it can 

be twice as detailed compared to a non-mirrored model using a texture of equal 

size. Mirrored UVs are especially useful for game characters, since many charac-

ters are at least somewhat symmetrical. [195] [211] [212] 

 

Figure 25. An example of mirrored UVs from Valve’s Dota 2. Adapted by author. 
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To save even more memory, the amount of textures used for a 3D model can be 

limited to just the color map. This will also make the material less complex, im-

proving the performance of the game. In order to still maintain good material defi-

nition in the model, the effects of the other maps need to be approximated in the 

color map. For example, textures like the normal map and the ambient occlusion 

map provide lighting information and shading, and to mimic their influence on the 

model, the different shades of light and shadow can either be baked into the color 

map from a high poly model, or they can be hand painted by the texture artist. 

Similarly, the specular highlights created by the specular map and the glossiness 

map can also be added into the color map. Alternatively, photographs can be used 

to add material definition to the color map. [97] [107, p50-59] [107, p90-92] [107, 

p123-125] [112, p28-29] [107, p273-275]  [212] [213] 

It is also possible to add color and details to 3D models without using any textures. 

Vertex colors are color values that can be assigned to each vertex in the 3D model, 

and they can be used to color the surface of the model. When a vertex color is 

applied to a vertex, the color blends linearly towards the nearby vertices along the 

edges of the triangles. Consequently, if two vertices next to each other have dif-

ferent colors, the colors will be blended evenly along the connecting edge. There-

fore, if areas of two different colors need to be cleanly divided without blending, 

the edges between the areas need to be split, creating duplicated vertices, similar 

to UV seams and hard edges. If all the vertices of a polygon have the same vertex 

color, the polygon will be uniformly colored with that color. Vertex colors usually 

use less memory than textures, since the color information only needs to be stored 

for each vertex of the 3D model, instead of each pixel in a texture. However, since 

cleanly dividing areas of different colors creates duplicated vertices, the vertex 

count of the model may end up higher than if the model used textures. Also, since 

the amount of detail that can be created with vertex colors depends on the polygon 

density of the 3D model, it may be difficult to create intricate details, especially in 

the case of low poly models. [214] [215] 
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Figure 26. Examples of vertex color blending. Adapted by author. 

 

Figure 27. A vertex colored car in Lucky Mountain Games’ Racing Apex. 

Vertex colors are very versatile, and can also be used together with textures. Ver-

tex colors can be used to tint the color of a texture to add more variation to it, which 

is useful when using tiling textures. Ambient occlusion can also be baked into ver-

tex colors, which makes it possible to have baked lighting information for each 
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unique asset, without using light maps, while still allowing for the use of reusable 

tiling textures. Vertex color can also be used as the base color of a model, which 

can then be complemented with overlaid textures. For example, a 3D model of a 

wooden plank could be colored brown with vertex colors, and then a grayscale 

pattern of wood grains could be overlaid on top of the color to add detail. As a side 

note, instead of using vertex colors to directly change the colors of the 3D model, 

they can also be used as masks to define which areas of a model use which tex-

tures. For example, different textures such as moss or dirt could be blended into 

the 3D model of a stone wall, adding variation to the original textures. However, 

for reasons listed previously, this may not be suitable for mobile games, and is 

more useful for console and computer games. [215] [216] [217] [218] [219] 

A similar technique to using vertex colors for coloring models, is to use a small 

texture containing areas of individual colors, called a palette texture, and map the 

polygons of the 3D model over these individual colors. The UVs of the model can 

be overlaid on top of each other without having to worry about texture distortion or 

repeating patterns, since the polygons are mapped to individual colors. Using this 

technique of course limits the amount of available colors to those selected into the 

palette texture. However, using a palette texture with a width and height of just 4 

pixels allows for using 16 different colors, since each pixel in the texture can have 

a unique color. Accordingly, larger palette textures can contain more colors, even 

up to thousands or millions of colors, but using so large palette textures might be 

overwhelming. Using a palette texture also makes it possible to change the color 

within individual polygons, instead of just at the edges, since the polygons can be 

mapped over the borders of two colored areas. Similar to using vertex colors, this 

technique can increase the amount of vertices in 3D models, since each new UV 

seam creates duplicate vertices. However, if the models were low poly to begin 

with, this might not be a big performance issue. [221] [222] 
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3.3  Workflows for games on game consoles and computers 

Games on modern game consoles and computers are less limited by the technical 

restrictions of the devices than their mobile counterparts. This allows the game 

artists to use more resources and utilize more advanced technologies. Addition-

ally, as technologies evolve, each new generation of game consoles allows the 

game artists to take advantage of new methods and techniques, and as new and 

more powerful computer components are frequently announced, both the perfor-

mance and the scope of computer games are able to increase. However, because 

of these technological advances, game artists need to learn new workflows, or 

incorporate new techniques into their existing workflows. Of course, new work-

flows do not always completely replace older workflows, and some new games 

continue using older, or more traditional workflows. The following subchapters will 

describe some of the traditional workflows that were used for creating game char-

acters during the previous console generation, as well as some of the new work-

flows that are used for making game characters for the current generation con-

soles. [223] [224] 

3.3.1  Traditional workflows 

Workflows similar to the following examples were widely used during the previous 

generation of game consoles, or the 7th console generation, which started in 2005 

when Microsoft released the Xbox 360 game console. Other 7th generation game 

consoles were Sony’s PlayStation 3 and Nintendo’s Wii, both released in 2006. 

These workflows, or specific parts of them, can still be used when creating game 

characters for modern games, both for consoles and for computers. [225] 

When creating game characters using traditional workflows, the 3D modeling pro-

cess is often divided into multiple distinct stages, which in many cases are per-

formed in different programs, or with specific plugins. The process usually begins 

with modeling a low poly base mesh, which will be used for creating the high poly 
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model. The base mesh will be used as base geometry for either sculpting or sub-

division modeling. In some cases, the base mesh can also be used as the final low 

poly game model. However, this may limit the creation of the high poly model, 

since any large changes made into the shape of the high poly model will need to 

be replicated in the low poly model. [226, p4-5] [227, p1] [228] [229, p1] [230] 

 

Figure 28. A base mesh for Fabio Bautista’s Red Hulk character. 

If the high poly model is created by sculpting, the base mesh is first transferred to 

a sculpting program, such as ZBrush or Mudbox, where it is then subdivided a 

number of times to add more polygons, which allow for sculpting smaller details. 

The modeler can then begin sculpting the model, shaping its proportions and cre-

ating small details. Alternatively, if the high poly is modeled using subdivision 

within the 3D modeling program, the modeler can simply subdivide the base mesh, 

or base meshes, and begin shaping the subdivided model by modifying the verti-

ces and polygons of the underlying shape, and by adding supporting edge loops 

or crease weights to control the smoothing and curvature of the model. [46] [227, 

p1] [228] [229, p1-3] [230] [231] 
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Figure 29. An example of using supporting edge loops in subdivision modeling. 

Once the high poly model is finished, the next step is to create the low poly model 

that will be used in the game. If the original base mesh was planned to be used as 

the final game model, all that is needed is to modify the base mesh so that it fits 

the shape of the high poly model. Otherwise, a new low poly model needs to be 

created. This can either be done by manually modeling a low poly mesh that 

matches the shape of the high poly mesh, or by retopologizing the model using 

tools or plugins within the 3D program, or using a specific retopology program, 

such as TopoGun. Traditionally, retopology tools are used to manually “draw” low 

poly geometry on top of the existing high poly model, which allows for a lot of 

control over the topology, but can also be very tedious. [226, p6-7] [227, p3] [228] 

[229, p3] [230] [231] [232, p1-3] [233] 



59 

 

 

Figure 30. An example of retopologizing a high poly model in TopoGun  

When the low poly model has been finished, it can be UV mapped, and after that 

the surface details of the high poly can be baked into the textures of the low poly 

model. Traditionally, the baked textures would contain at least a normal map and 

an ambient occlusion map. However, if the high poly model was painted in the 

sculpting program, or materials were applied to it in the 3D modeling program, 

other maps could be baked as well, such as a color map and a specular map. The 

baked maps can then be transferred to an image editing program like Adobe Pho-

toshop, where they can be used to create the final textures. For example, subtle 

shading can be added to the color map by blending the ambient occlusion map 

into it. [227, p5] [228] [229, p3-4] [230] [234, p1] 

While adding baked lighting information to textures like the color map can be useful 

for compensating for the lack of realistic lighting in a game, it also makes the tex-

tures tied to specific lighting conditions. Therefore, if the lighting of the game 

changes, the textures might not look good in those new conditions. For example, 

if the character’s textures were originally made to be seen in a bright, sunny envi-

ronment, they might look too dark in a darker environment, such as a dark cave, 

or simply the same environment during night. Similarly, any clearly directional 
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shading in the color texture might look unnatural in an environment which does not 

have a light source in that direction. Additionally, when creating textures using tra-

ditional workflows, texture artists often have to use a lot of trickery to compensate 

for the inaccuracies of the game’s lighting, and they have to do a lot of guesswork 

and trial-and-error to achieve a plausible appearance. For example, when creating 

specular maps for non-metallic surfaces, the textures often need to be tinted with 

a color that is the opposite of the color in the color map, to create a neutral white 

specular reflection. The brightness values of the specular map and the color map 

often also need to be approximated by eye, since the values are not based on any 

real-world data. [81] [234, p3] [235] [236] [237] [238] 

 

Figure 31. An example of adding blue color to the specular map of a non-metallic 

(dielectric) material, to create a neutral white highlight. 

Another problem with using traditional workflows is the large amount of manual 

work, which can take a lot of time, and can be very tedious. For example, during 
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the 3D modeling process, the modeler essentially has to create the 3D model mul-

tiple times, since they first have to create the base mesh, then the high poly model, 

and finally the low poly game model. 

3.3.2  Current generation workflows 

The current, or the 8th generation of consoles, started in 2012 when Nintendo re-

leased the Wii U, followed by Microsoft’s Xbox One and Sony’s PlayStation 4 in 

2013. The new consoles are significantly more powerful than their predecessors, 

which means that games can utilize more advanced technologies that are more 

demanding in terms of computational power. This of course also applies to modern 

computers, in comparison to older hardware. The tools and techniques used for 

creating game art have also evolved and improved, making the process of creating 

game art easier and faster. The following examples of workflows are similar to 

those currently being used for creating game characters for modern console and 

computer games. The specific tools and techniques will be described in more de-

tail in the next chapter. [224] [225] [239] 

While traditional workflows are still usable when creating game characters for 

modern games, new tools and techniques offer some significant advantages, es-

pecially in terms of artistic freedom, ease of use, and increased working speed. 

For example, while traditional workflows often require the 3D modeler to first model 

a low poly base mesh before they can start creating the high poly model, new 

features and tools in programs such as ZBrush allow the modeler to start creating 

the high poly model directly. Tools like ZSpheres and DynaMesh, and techniques 

like ZSketching can be used to quickly block out the shape of a model, which can 

then be transformed into a model that is ready for sculpting. Features like these 

also allow the modeler to focus on creating the shape and the details of the model, 

without having to worry about things like topology and poly count in the early 

stages of creation. [240] [241] [242] [243, p4-5] [244, p152-173] 
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Similar to the traditional workflows, once the high poly model is finished, the low 

poly game model needs to be created. While using traditional tools like TopoGun 

is still an option, many programs now offer advanced retopology tools that can 

either completely or partially automate the retopology process, as well as manual 

retopology tools for more precise control. Depending on the model, these tools 

can make the retopology process faster and less tedious. Some programs that 

include tools like these are ZBrush, Mudbox, and 3D-Coat. Therefore, if the high 

poly model was created in one of these programs, the modeler does not neces-

sarily need to change programs between different stages of the modeling process, 

which makes the workflow more straightforward. ZBrush and 3D-Coat also offer 

decent UV mapping features, although, if the UV map needs to have specific prop-

erties, UV mapping tools in other 3D programs might be more suitable for certain 

tasks. [243, p4-5] [244, p229-245] [245] [246] [247] [248] [249] [250] [251] 

Perhaps the biggest difference between the traditional workflows and the new 

workflows is the introduction of PBR, or physically based rendering techniques, 

and the new methods and tools used to create PBR textures. Physically based 

rendering will be described in more detail in the next chapter, but the term essen-

tially refers to the concept of approximating realistic lighting and material proper-

ties using surface values measured from real-world materials. Using PBR materi-

als in 3D models ensures that they look believable in all lighting conditions, 

whereas 3D models that are textured using the traditional workflows often look 

good only in specific situations. The workflows for creating PBR textures differ sig-

nificantly from the traditional workflows. For example, the color values in PBR tex-

tures are based on values measured from real-world materials, which grounds the 

textures in reality. In comparison, color values in traditional textures are often 

simply approximated by eye, which leaves a lot of room for error. Additionally, 

traditional workflows often rely on adding lighting information such as baked am-

bient occlusion and drawn highlights into the color map, to compensate for the lack 

of realistic lighting in the game. In PBR workflows, the color map should only con-

tain the base color of the material without any lighting information, and the ambient 

occlusion map should be kept as a separate texture, so the lighting system of the 
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game can use it in a smarter way, only displaying the ambient occlusion effect 

when parts of the model are actually occluded from direct lighting. [81] [224] [235] 

[236] [237] 

 

Figure 32. A 3D model using PBR textures, in different lighting conditions. 

New tools used for creating PBR textures also make the texturing process faster 

and more intuitive. In traditional workflows, the texture artist had to individually 

create each texture type, and tweak their properties in order to see the effect on 

the final material. New programs and tools like Substance Painter, Quixel Suite, 

and 3D-Coat allow the texture artist to create textures using complete PBR mate-

rials, which include all the necessary texture types that form the properties of the 

materials. For example, the texture artist can texture a character’s armor by simply 

applying a steel material as the base, then overlay that with rust and dirt, all of 

which are automatically displayed physically correctly. The texture artist can also 

utilize so-called smart materials, which can be used to create materials with weath-

ering effects, such as scratches and edge wear. Smart materials use the shape of 

the 3D model and the information in baked textures like the normal map to logically 

apply different effects to different areas of the model, and the texture artist can 

control these effects by modifying different parameters of the smart material. Once 
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the textures are finished, the individual texture types can be created automatically, 

after which they can be applied to the character within the game. The texture artist 

can also create their own PBR materials using tools like Substance Designer and 

Bitmap2Material. [111] [252] [253] [254] [255] [256] 

3.3.3  Other workflows 

In addition to the previously described workflows, there are a couple of other no-

table workflows that are worth mentioning. However, these workflows will not be 

covered in detail, since they are very broad subjects by themselves, and therefore 

will only be briefly explained. 

3D scanning is the process of capturing the shape of a physical object in the real 

world, and recreating it digitally. Objects can be 3D scanned using specialized 3D 

scanning devices, which can use lasers, projectors, or multiple cameras to capture 

the shape of the objects. Photogrammetry is an alternative method of 3D scanning, 

which uses a regular digital camera to take pictures of objects from different an-

gles, that can then be processed into a 3D model using programs like Agisoft Pho-

toScan, RealityCapture, or Autodesk ReMake. Since photogrammetry is based on 

taking pictures of the objects, it can also be used to create textures for the scanned 

3D model. However, this also means that the textures will contain lighting infor-

mation like shadows and highlights, which need to be removed from the textures 

if they are going to be used with PBR materials. Alternatively, the object can be 

brought to a studio environment, where the lighting conditions can be controlled, 

and any unwanted shadows can be avoided. This of course only applies to objects 

that can be moved from their original location. [257] [258] [259] [260] [261] [262] 
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Figure 33. A clay statuette captured using photogrammetry. 

A more advanced way to use photogrammetry is to use a rig of multiple cameras 

that take pictures simultaneously. This can be used to scan living things like peo-

ple, since all the cameras take the pictures at the same time, which reduces the 

risk of getting errors caused by movement. A rig like this can also be equipped 

with lights and polarizing filters, which allow for using advanced photogrammetry 

techniques to create multiple different texture types. When these textures are ap-

plied to the scanned 3D model using PBR materials, the resulting 3D model ap-

pears extremely realistic, even in a real-time game engine. Photogrammetry and 

other 3D scanning solutions have been used to create both characters and envi-

ronments for various modern games, such as Star Wars: Battlefront, Ryse: Son of 

Rome, Quantum Break, The Vanishing of Ethan Carter, FIFA 17, Pro Evolution 

Soccer 17, as well as the upcoming Resident Evil 7: Biohazard. [138] [263] [264] 

[265] [266] [267] [268] [269] [270] 
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Figure 34. An advanced photogrammetry capture, and the resulting 3D model in 

Unreal Engine 4. Adapted by author. 

In addition to capturing the shape and surface properties of real-world objects, the 

movements of people and animals can also be recorded and replicated digitally. 

This process is called motion capture, or mocap for short, and it can be performed 

using various different tools. Some motion capture systems are based on different 

kinds of suits that use inertial sensors to measure the orientation and speed of 

different body parts, while others rely on cameras that record the movements or 

facial expressions of the actor. There are roughly two types of camera-based mo-

tion capture systems. Some systems use specific markers for tracking, which are 

attached or painted on the body of the actor, while other systems are “markerless” 

and instead use sophisticated computer vision and depth sensing technologies to 

track the movements of the actor. However, regardless of which motion capture 
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system is used, the raw capture data often needs to be adjusted manually by ani-

mators to remove capture errors and to make it look better in the game, since, as 

previously mentioned, accurately replicating the motions seen in nature may not 

look as pleasing in animations as they appear in the real world. All of these sys-

tems have been used to create character animations for video games. For exam-

ple, games such as Borderlands, Killzone 2, and Resistance 3 used inertial motion 

capture technologies developed by Xsens, while various camera based systems 

have been used in games such as The Last of Us, Deus Ex: Mankind Divided, 

Batman: Arkham Knight, Far Cry 3, The Order: 1886, Call of Duty: Ghosts, Call of 

Duty: Black Ops 2, as well as the upcoming Hellblade: Senua’s Sacrifice. [125, 

p335-338, 371-376] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] 

[282] [283] [284] 

 

Figure 35. An example of recording motion capture for Treyarch’s Call of Duty: 

Black Ops 2. 
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Traditionally, motion capture has required the use of large motion capture studios 

with multiple specialized cameras, which were either built by the game studios or 

rented from external companies. Both of these options are quite expensive, and 

therefore motion capture has often been used only by large game studios. How-

ever, nowadays there are less expensive alternatives, which allow even smaller 

game studios to take advantage of motion capture. One example of such low cost 

motion capture systems is the iPi Motion Capture Studio by iPi Soft, which uses 

Microsoft Kinect depth sensors or Sony PlayStation Eye cameras for markerless 

motion capture. There are also slightly more expensive solutions specifically for 

facial motion capture, such as Face Plus by Mixamo, and the products offered by 

Faceware. Additionally, a company called Faceshift used to sell a low cost facial 

motion capture software called Faceshift Studio, until the company was acquired 

by Apple in 2015. [271] [285] [286] [287] [288] [289] [290] 
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4  CURRENT GENERATION TOOLS AND TECHNIQUES 

The previous chapter introduced some of the workflows used for creating game 

characters for the current generation of console and computer games. In this chap-

ter the tools and techniques used in those workflows will be further discussed in 

more detail. 

4.1  Digital sculpting 

Digital sculpting is an alternative method of 3D modeling, which allows the 3D 

modeler to edit the surface of the 3D model almost as if the modeler was sculpting 

actual clay. The sculpting tools usually consist of different kinds of “brushes” which 

the modeler can use to shape the surface of the model, instead of editing individual 

polygons, edges, and vertices, like they would in a traditional polygonal modeling 

program. There are several different digital sculpting programs available, and 

some traditional 3D programs also include their own sculpting tools. Examples of 

programs specifically designed for digital sculpting are ZBrush, Mudbox, 3D-Coat, 

and Sculptris. Traditional 3D programs that have their own tools for digital sculpt-

ing include Cinema 4D, Modo, and Blender. Digital sculpting can also be per-

formed within a web browser by using a web app called Sculptfab, which is based 

on the SculptGL web app by Stéphane Ginier. [26] [291] [292] [293] 

There are slight differences between the sculpting features of different sculpting 

programs. Programs like Sculptris, 3D-Coat, and Blender can use dynamic tessel-

lation to automatically create new geometry on the surface of the 3D model as the 

modeler sculpts new shapes into it. For example, if the modeler pulls a shape out 

of a character’s head to give the character a horn, the programs will automatically 

create new evenly distributed polygons to construct the shape. However, the gen-

erated geometry will consist of triangles instead of quads, which means the sur-

face of the model often needs to be converted into quad-based geometry at some 
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point. Most other sculpting programs rely mostly on quad-based subdivision to add 

more polygons to the shape. If more geometry is needed in specific areas of the 

model, or if the polygon density of the model needs to be made more uniform, the 

model can be automatically retopologized. [241] [291] 

 

Figure 36. An example of using a brush that supports dynamic topology (tessella-

tion), compared to a brush which does not support it (left). 

4.1.1  General digital sculpting workflow 

As outlined in the previous chapter, the current generation workflows for creating 

game characters often start with creating the high poly model in a digital sculpting 

program like ZBrush. The first step in creating the high poly model is to construct 

the basic shape of the model. This can be done by using a base mesh that was 

previously modeled in another 3D program, or by selecting one of the pre-made 

base meshes from the options provided by the sculpting program. Alternatively, 

the base mesh can be created manually by using mesh generation tools within the 

sculpting program. ZBrush offers multiple tools that are suitable for this purpose, 

such as ZSpheres, ZSketch, Dynamesh, Shadowbox, and the program’s various 

parametric primitive shape generators, like Sphere3D, Cube3D, and Cylinder3D. 
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3D-Coat also offers primitive shape generators, which can be used in combination 

with deformers and Boolean operations to create complex shapes. Mudbox does 

not include primitive shape generators, but the program provides a selection of 

base meshes that include primitive shapes like a sphere, a cube, and a flat plane. 

Additionally, the dynamic tessellation functionality in programs like 3D-Coat, 

Blender, and Sculptris can be used to quickly create the basic shape of a model, 

without having to use a pre-made base mesh. [294] [295] [296] [297] [298] [299] 

Once the basic shape of the character has been created, the actual sculpting can 

begin. To create an interesting character, the artist should keep in mind the con-

cepts of gesture, form, and proportion. Gesture refers to the dynamic curvature 

within characters’ bodies, which can convey movement, intent, emotion, or per-

sonality. Gesture can be visualized by drawing curved lines over the character’s 

body. A strong gesture can instill a sense of life into a character, even when the 

character is in a static pose, while a weak gesture can make a character appear 

lifeless and stiff. [8, p7-9] [300, p3] [301, p1-4] 

 

Figure 37. Examples of gesture in digital sculpting, visualized with curved lines. 

Adapted by author. 

Form represents the shape of an object, as defined by how light and shadow fall 

on the object’s surface. In other words, form refers to the variations in curvature 



72 

 

on the object’s surface, and the variations in volume within the object. Form cre-

ates structure into the character, distinguishing different parts of the character, 

such as different muscles and bones. It can also be used to define how soft or 

hard a certain portion of the surface appears. For example, muscles and fat have 

more subtle forms with smooth curves, while bones have more pronounced forms 

with hard angles. Form can be divided into three classes: primary, secondary, and 

tertiary forms. Primary forms are the biggest and most basic shapes that form the 

character, like the head and its features like ears and nose. Smaller details, such 

as folds of flesh and rolls of fat, are secondary forms, while tertiary forms consist 

of the fine details, like the pores and wrinkles on the skin.[8, p8-9] [300, p5-7] [301, 

p4-8] 

Proportion is the relative size of different parts of an object, compared to each 

other and the overall size of the object. When creating humanoid characters, an 

artist can choose to use a so-called canon of proportions, which is a system of 

rules and guidelines for creating a human character. A proportional canon gives 

the artist a standard set of measurements of the relative sizes of different body 

parts. There are multiple different proportional canons, many of which use the 

height of the human head as the main unit of measurement. For example, the 

eight-head canon measures the height of a human at eight heads tall, while other 

commonly used canons measure the human height at seven and a half, or nine 

heads tall. Using different canons can change the way a character is perceived. A 

character using a 9-head canon can seem more heroic, while the 71⁄2-head canon 

is closer to reality. Of course, none of the canons are laws that need to be obeyed, 

since they are idealized systems of proportion, and there are variations in all peo-

ple. However, using canons can help the artist in creating more believable char-

acters, since their guidelines provide a good base to build upon, or a point of ref-

erence to deviate from. [8, p9] [300, p7-9] [301, p8] [302, p28] 
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Figure 38. Examples of different proportional canons. Adapted by author. 

It is good practice to start from the big shapes of the model before moving on to 

the smaller details. In the beginning of the sculpting process, the character artist 

should establish a good gesture, as well as apply the system of proportions of their 

choosing. However, the proportions of the character can be adjusted even at the 

later stages of the sculpting process, so the decisions regarding proportion do not 

have to be permanent at this stage. The next step is the creation of the character’s 

forms. The artist should start with creating the primary forms first, before moving 

on to secondary and tertiary forms. There are a couple of helpful tips to ensure 

that the artist does not proceed to the smaller forms too soon. For example, the 

artist should use the largest sculpting brush size that will allow them to create a 

particular shape. This helps to keep the artist focused on the big forms, since the 
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large size of the brush does not allow them to create small details. Similarly, the 

artist should work at the lowest possible subdivision level that can support the 

forms they are currently working on. This way the artist cannot create details which 

are smaller than what the current resolution of the model allows, even if they use 

a small brush. Another good tip is to work on all areas of the model at once, and 

not to focus on one area for too long. Each part of the model should always be at 

the same level in terms of details. This prevents a situation where the artist needs 

to match the level of detail of different areas of the model to others, creating dis-

connection between the areas. [300, p9] [301, p9] 

 

Figure 39. An example of building up forms. 

One way to approach the sculpting process is to switch frequently between differ-

ent brushes while working on the model, adding volume to the model with other 

brushes, and then carving crevices with other brushes, to create contrast between 

forms. These rough forms can then be smoothed with smoothing brushes, to make 

the forms subtler. When it comes to the actual tools used for sculpting, most digital 

sculpting programs include a standard set of brushes that perform the same, or 

similar functions, but they are often named differently in different programs. For 

example, in ZBrush the basic tool for sculpting is called the Standard brush, while 
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in Mudbox, Sculptris, and Blender, the equivalent tools are called the Sculpt tool, 

Draw brush, and the SculptDraw brush, respectively. Similarly, the equivalent to 

the Move brush in ZBrush is called either the Grab brush or Grab tool in all of these 

programs. [303] [304] [305, p14-18] [306] 

As mentioned in the previous chapters, the next step in the process is to create a 

low poly model from the high poly digital sculpture. This is done by retopologizing 

the model, which can be performed either directly in the sculpting program, or in 

an external program like TopoGun. Several sculpting programs offer tools that can 

either fully or partially automate the retopology process, depending on how much 

control the artist wants over the created topology. The ZRemesher tool in Zbrush, 

Retopologize tool in Mudbox, and the Autopo tool in 3D-Coat, allow the artist to 

set the desired number of polygons they want in the retopologized low poly model, 

which the tool will then target when creating the new topology. If needed, the artist 

can define areas where they want the polygon density to be higher or lower, and 

they can also guide the flow of the created topology by drawing curves and loops 

onto the surface of the model, which act as guidelines for the retopology tool. Al-

ternatively, in ZBrush and 3D-Coat, the artist can use manual retopology tools to 

construct the new topology by hand. [245] [246] [247] [248] [249] 

 

Figure 40. An example of using the automatic retopology tool ZRemesher. 
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Once the low poly model has been created and UV mapped, the details of the high 

poly model can be baked into the textures of the low poly model. As with retopol-

ogizing, this can be done either in an external program, like xNormal, or directly 

within the digital sculpting program. However, the baking tools in digital sculpting 

programs are often less advanced, and allow for less control over the bake than 

tools in dedicated baking software, or traditional 3D modeling programs. For ex-

ample, the baking tool in Mudbox has two different baking methods, called the Ray 

Casting method and the Subdivision method. The Ray Casting method creates the 

baked textures by comparing the shape of the high poly model to the shape of the 

low poly model within a set distance, which requires that the models are manually 

aligned to be as close to each other as possible. Even if the models are properly 

aligned, using the method may still result in unwanted artifacts in the baked tex-

tures. The Subdivision method compares different subdivision levels of the same 

model to each other, and records the differences in positions between the corre-

sponding points on their surfaces. This method will result in fewer artifacts in the 

baked textures, but it can only be used when the low and high poly models are 

different subdivision levels of the same model. The Subdivision method is also not 

as accurate in capturing the differences in surface height between the subdivision 

levels, compared to the Ray Casting method. In comparison to Mudbox, the baking 

tools in many traditional 3D modeling programs allow for far more control over the 

baking process. For example, in 3ds Max it is possible to use a secondary model, 

a so-called cage, to guide the baking process. This cage is created by applying a 

Projection Modifier to the low poly model, which creates a copy of the model’s 

geometry, which is used as the cage. The surface of the cage can then be pushed 

outwards from the original low poly model, so that the cage completely covers both 

the low poly model, and the high poly model that has been aligned with the low 

poly model in preparation for the baking process. The cage can also be manually 

edited in order to match the shape of the high poly model as closely as possible, 

so that all of its details can be baked properly without any unwanted distortions or 

artifacts. [307] [308] [309] 
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Figure 41. An example of the sculpting workflow using Mudbox and 3ds Max. 

4.2  Physically based rendering 

As briefly mentioned in the previous chapters, physically based rendering is a con-

cept used in computer generated graphics, which refers to the different practices 

that attempt to approximate the way light interacts with different materials in the 

real world, in order to achieve realistic looking visuals. This is done by using so-

phisticated shading and lighting models, along with values measured from the real 

world, like the color and reflectivity values of different materials, and the brightness 

values of different light sources. The basic principles of physically based rendering 

were pioneered in the movie industry, by studios like Walt Disney Animation Stu-

dios and Pixar Animation Studios, but in recent years the advances in computer 

hardware and software have made it possible to use physically based rendering 

techniques also in real-time applications like video games. Physically based ren-

dering is often abbreviated as PBR, and it is sometimes referred to as physically 

based shading, or PBS. [81] [235] [237] [310] 

Since physically based rendering is a concept of attempting to depict how light 

interacts with materials in the real world as accurately as possible, it is important 
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to understand how light actually behaves in the real world. When a ray of light hits 

the surface of an object in the real world, with most common materials there are 

generally four things that can happen. Firstly, the light can be reflected directly 

from the surface of the object, causing a specular reflection. This is what allows 

mirrors to reflect their surroundings, and what causes bright highlights on glossy 

objects. Secondly, the light can enter the surface of the object and transmit directly 

through it, making it appear transparent. This is called refraction, and a typical 

characteristic of refraction is that the ray of light often slightly changes direction, 

or bends, when it travels from one material to another. This phenomenon can be 

witnessed when viewing through a glass lens, or into a bowl of water. Thirdly, the 

light can enter the surface of the object, but instead of directly passing through it, 

the light may scatter within the material of the object, eventually exiting the object 

from a seemingly random point, and at a seemingly random angle. If the light exits 

the object from the side opposite to where it entered, the material will appear trans-

lucent, like thin paper or tree leaves. If the light exits the object on the same side 

from which it entered, the material will appear opaque, like rock, wood, or rubber. 

Depending on how far the light scatters before exiting the object, this effect can be 

referred to with different terms, such as diffuse reflection, sub-surface scattering, 

or translucency. Finally, the light may end up being absorbed into the material, 

usually converting into infrared radiation, commonly known as heat, which is invis-

ible to human eyes. Consequently, this is the reason why humans perceive color 

in objects, since different materials absorb varying amounts of different wave-

lengths of light. A white material scatters and absorbs all wavelengths of light 

nearly equally, while a blue material scatters primarily blue wavelengths of light, 

as the other wavelengths are mostly absorbed into the material. These examples 

are of course only the most basic interactions which light has with the most com-

mon material types, and there are many other phenomena that light can cause 

when interacting with certain, more unique materials. [311] [312] [313, p2-6] [314] 
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Figure 42. An example of how light can interact with materials. Adapted by author. 

An important principle of physically based rendering is the concept of energy con-

servation. Energy conservation essentially means that the amount of light leaving 

the surface of the material can never be greater than the amount of light that was 

originally received by the surface, unless the material emits light itself. Because of 

this, reflection and scattering of light are mutually exclusive. Therefore, a material 

with a high specular reflectivity will have a low diffuse reflectivity, and a material 

with a high diffuse reflectivity will have a low specular reflectivity. This also applies 

to the transmission of light, which means that translucent and transparent materi-

als will reflect less of the received light, since part of it passes through the material. 

Energy conservation is usually enforced by the application, which means that the 

principle applies even if a physically incorrect material is created by an artist. [311] 

[313, p7] 

Because PBR systems only attempt to approximate the behavior of light in the real 

world, instead of completely simulating it, it is common to heavily simplify the com-

plexity of the behavior. For example, while there are countless different types of 

materials in the real world, most of them can be classified into three main groups: 

insulators, semiconductors, and conductors. In many cases, only two of these 
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need to be taken into account: insulators, which are often called dielectrics, and 

conductors. Dielectrics are the most common materials, which include materials 

like stone, plastic, wood, water, and glass. Conductors on the other hand are 

mostly different types of metals, like iron, aluminum, copper, silver, and gold. It is 

important to be able to identify which group a material belongs to, since light inter-

acts very differently with materials from each group. For example, a material that 

is pure metal does not have any diffuse reflection, but instead all of the light that 

is not absorbed by the material is reflected as a specular reflection. Therefore, 

pure metals often have high values of specular reflectivity, with some metals ap-

proaching 100% specular reflectivity, which means that almost all of the light that 

hits the material is reflected from it. In comparison, the specular reflectivity of most 

dielectrics is usually less than 4%, with the exception of some common gem-

stones, which still reflect only 5 to 17 percent of the received light as a specular 

reflection. [311] [313, p9-10] [315] 

In PBR systems, the diffuse reflection of a material is defined by a property called 

the albedo, but depending on what program is used, it may also be referred to as 

diffuse or base color. The albedo can be controlled either with a constant value, or 

with a texture called an albedo map, which is similar to the diffuse map used in the 

traditional texturing workflows. However, unlike the diffuse map, an albedo map 

should not contain any lighting information, like shadows or highlights. In a PBR 

system the highlights are caused by the specular reflection, and the shadows are 

controlled by the application based on the lighting, sometimes with the help of a 

separate ambient occlusion texture. Any additional lighting information in the al-

bedo map would contradict the lighting in the application, and would be physically 

incorrect. The color values of the albedo map should also correspond to the diffuse 

reflectivity of the real-world material that the PBR material is attempting to imitate. 

[81] [311] [316, p5-6] 

The properties used to define the specular reflectivity of a material vary between 

different implementations of PBR. One common implementation is to use a prop-

erty called reflectivity, which can also be referred to as specularity, specular level, 

or simply specular, depending on the software. Similar to the albedo, specularity 
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can be controlled either with a constant value, or with a texture called a specular 

map. The color values of the specular map should be derived from real-world 

measured values, which means that dielectrics and conductors tend to appear 

very differently on the map. Since the specular reflectivity of dielectrics is so low 

compared to conductors, they appear mostly as different shades of dark gray. In 

comparison, the values for conductors are usually much brighter, and may also be 

colored, since certain conductors absorb some wavelengths of light more than 

others, causing their specular reflections to be colored. This effect can be seen in 

metals like gold and copper. [311] [316, p5, 14-15] 

Another property that greatly influences the appearance of a material is the rough-

ness or glossiness of the material’s surface. This property can be referred to as 

glossiness, roughness, smoothness, or microsurface, and it approximates the way 

light interacts with microscopic irregularities in the surface of the material. Since 

these irregularities are microscopic, they are too small to be represented in the 

geometry of an object, or a normal map. Instead, they are represented either as 

constant values, or as different grayscale values in a specific texture, which is 

referred to with different names depending on the software. In the real world, these 

microscopic irregularities in the surface of the material affect the direction in which 

the light is reflected from the surface. The more irregularities there are, the more 

the reflected rays of light spread in different directions, making the specular reflec-

tion appear dimmer and blurrier, which makes the surface of the material appear 

more rough. Conversely, the less irregularities there are, the less the specular re-

flection is spread, making it appear brighter and clearer, which makes the material 

appear glossy. However, even though the specular reflection appears dim when 

the surface of the material is rough, the actual intensity of the reflection is not 

affected. The amount of light that is reflected off the surface remains the same, 

but the light is simply spread over a larger area. In theory, both the specular re-

flection and the diffuse reflection are affected by the microscopic irregularities in 

the surface. However, since diffuse reflection is already reflected at seemingly ran-

dom angles, the effect of the irregularities is barely noticeable, and therefore it is 

ignored in some implementations. [311] [313, p5] [316, p10] 
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Figure 43. An example of how microscopic irregularities in the surface of a material 

affect the reflection of light. Adapted by author. 

The concept of physically based rendering can be implemented in various ways, 

depending on the requirements and restrictions of the medium in which it is used. 

For example, the technologies used for rendering movies differ greatly from those 

used in real-time applications. In addition, there are significant differences in the 

various implementations of physically based rendering even between different 

real-time applications. However, despite differences between each individual pro-

gram, the real-time implementations of physically based rendering can nowadays 

be roughly divided into two distinct workflows: the specular, or Specular-Glossi-

ness workflow, and the metalness, or Metallic-Roughness workflow. [237] [235] 

[316] 

4.2.1  Specular-Glossiness 

The Specular-Glossiness workflow uses three main properties to define the ap-

pearance of a material. These main properties are called albedo, specular, and 

glossiness, but depending on what program is used, they may be referred to with 
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different terms. It is also common to complement the three main properties with 

additional properties like transparency or translucency, or textures like normal 

maps, ambient occlusion maps, and height maps. The Specular-Glossiness work-

flow is supported by programs like the Unity game engine, Marmoset Toolbag, and 

Allegorithmic’s Substance products. [81] [316, p13] [317] 

The three main properties of the Specular-Glossiness workflow can be controlled 

either with constant values, or with textures. The corresponding textures are com-

monly referred to as the albedo map, the specular map, and the glossiness map. 

The albedo map contains the color values that represent the diffuse reflectivity of 

dielectric materials. Pure metals appear black in the albedo map, since they do 

not have a diffuse reflection. However, if the metal is oxidized, or is covered in dirt 

or dust, those areas will appear colored in the albedo map, since they are dielectric 

materials. In contrast, the specular map contains the specular reflectivity values 

for both dielectrics and conductors. Most dielectrics will look very similar in the 

specular map, whereas metals can have significant differences between each 

other. Since some metals have colored reflections, the specular map needs to be 

a color texture, instead of a grayscale texture. Finally, the glossiness map de-

scribes the amount of microscopic irregularities on the surface of the material as 

grayscale values. White represents a completely glossy surface, while black rep-

resents a completely rough surface. [316, p13-16] 

There are certain advantages of using the Specular-Glossiness workflow instead 

of other workflows. Firstly, the Specular-Glossiness allows for a lot control over 

the specular reflectivity of dielectric materials, which means that it is possible to 

create more accurate representations of dielectric materials. Secondly, the Spec-

ular-Glossiness workflow creates less visible edge artifacts in transitions between 

dielectrics and conductors, when compared to some other workflows. Of course, 

there are also some disadvantages of using the Specular-Glossiness workflow. 

Firstly, since the specular map allows for a lot of control over the dielectric materi-

als, it is also very easy to create dielectric materials that have physically incorrect 

specular reflectivity values. Secondly, since the specular reflectivity values for di-

electric materials use such a narrow slice of the full range of reflectivity, textures 
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that consist of primarily dielectric materials essentially waste most of the range 

that the specular map provides. Thirdly, the Specular-Glossiness workflow often 

requires more texture memory compared to other workflows, since the specular 

map needs to be a color texture, instead of a grayscale texture. [81] [237] 

[316, p16-17] 

4.2.2  Metallic-Roughness 

Similar to the Specular-Glossiness workflow, the Metallic-Roughness uses three 

main properties to define the appearance of a material. These main properties are 

called base color, metallic, and roughness, but they may be referred to with differ-

ent terms depending on the software. For example, the metallic property is some-

times called metalness. Like with the Specular-Glossiness workflow, it is common 

to complement these three main properties with additional properties and textures. 

Many programs that support the Specular-Roughness workflow also support the 

Metallic-Roughness workflow, but there are some programs that have adopted the 

Metallic-Roughness workflow exclusively, such as the Unreal Engine. [316, p2-3] 

[317] [318] 

As with the Specular-Glossiness workflow, each of the main properties used in the 

Metallic-Roughness workflow can be controlled either with a constant value, or 

with a texture. The textures corresponding to the main properties are usually called 

the base color map, the metallic map, and the roughness map. The base color 

map is equivalent to the albedo map in the Specular-Glossiness workflow, with 

one exception. The specular reflectivity of metals is stored in the base color map, 

whereas in the albedo map metals are represented with black color. In the Metallic-

Roughness workflow these reflectivity values of metals are separated from the 

albedo colors of dielectric materials by using the metallic map as a mask. The 

metallic map defines which areas of the texture are metallic, and which are dielec-

tric. This is represented with black and white, black being dielectric, and white 

being metallic. The values in the metallic map should generally be either black or 
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white, but in some cases, grayscale values can be used as well. For example, if 

the metal is oxidized, or is covered in dirt or dust, the transition from these dielectric 

materials to the pure metal can be represented as a grayscale value. However, in 

these transitional areas it may be necessary to also lower the specular reflectivity 

values of the metal in the base color texture. Finally, the roughness map is equiv-

alent to the glossiness map in the Specular-Glossiness workflow, with one excep-

tion. In comparison to the glossiness map, the grayscale values of the roughness 

map are inverted, black representing a completely glossy surface, and white rep-

resenting a completely rough surface. [316, p3-10] [319] 

 

Figure 44. The different textures used in Metallic-Roughness and Specular-Gloss-

iness workflows. Adapted by author. 

A thing to note about the Metallic-Roughness workflow is that, by default, the spec-

ular reflectivity of dielectric materials is not defined in any texture, unlike the spec-

ular reflectivity of metals, which is stored in the base color map. Instead, all the 

dielectric materials are given a generic constant value by the material, since the 

range of variation in the specular reflectivity between most common dielectric ma-

terials is so narrow. However, this value can be changed if needed, in order to 

represent more unique materials like gemstones. It is also possible use a separate 
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specular map if the textures need to represent multiple materials, or if the specular 

reflections of some unique dielectrics need to be colored, for example. [81] [237] 

The Metallic-Roughness workflow has certain advantages over the Specular-

Glossiness workflow. The Metallic-Roughness workflow may be easier to under-

stand conceptually, since the base color map defines the color of the material re-

gardless of whether the material is a dielectric or a conductor. The workflow also 

has a clear distinction between dielectrics and conductors, since materials are de-

fined as one or the other in the metallic map. This simplifies the process of creating 

materials, and may make it more difficult to create physically incorrect materials. 

Finally, the Metallic-Roughness workflow tends to use less texture memory in com-

parison to the Specular-Glossiness workflow. This is a consequence of using a 

constant value for the specular reflectivity of dielectric materials, and storing the 

values of metals in the base color map, instead of using a separate specular map. 

Therefore, even though the Metallic-Roughness workflow requires a metallic map 

in place of the specular map used in the Specular-Glossiness workflow, the me-

tallic map is stored as a grayscale texture, which takes up less texture memory 

than the full color specular map. Obviously, the Metallic-Roughness workflow also 

has its disadvantages. One of the most apparent disadvantages are the white 

edge artifacts that appear on the transitions between dielectric materials and met-

als. The Specular-Glossiness workflow also has similar edge artifacts, but they are 

black instead of white, which makes them less visible in many cases. Another dis-

advantage is that, as mentioned, there is less control over the specular reflectivity 

of dielectrics unless an additional specular map is added. This means that the 

dielectric materials may appear less realistic when compared to dielectric materi-

als created using the Specular-Glossiness workflow. While this can be fixed with 

an additional specular map, it also means that the material will use more texture 

memory. [81] [237] [316, p11-12] 
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Figure 45. A 3D model of a throne, textured using the Metallic-Roughness work-

flow. 

4.3  Workflows for creating PBR content 

Content creation workflows for PBR systems vary significantly depending on the 

software that is used, and the personal preferences of the artist. In the recent 

years, alongside the adoption of real-time PBR systems in video games, many 

companies have developed content creation tools that specifically take into ac-

count the requirements of PBR workflows. For example, while it is possible to cre-

ate PBR textures using traditional tools like Adobe Photoshop, modern software 

solutions like the Substance tools by Allegorithmic, or the tools offered by Quixel, 

have many advantages over the traditional tools. These modern tools make the 

texturing process easier and faster in comparison to using the old tools, and allow 

the artist to see the textures on the model as they are working on it, displaying the 

materials exactly as they would appear on the final asset. The following examples 

will cover some of the workflows for creating PBR textures, using both traditional 

and modern tools. [81] [224] [253] 
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4.3.1  Workflows using traditional tools 

As mentioned, PBR textures can be created using traditional image editing pro-

grams like Adobe Photoshop. One way to start the PBR texturing process is to first 

create some base materials, which can then be used for texturing a complex 3D 

model that consists of several different materials, like a fully clothed character. 

These base materials can be created by first filling the different textures of the 

materials with base colors that are based on measured real-world material values, 

and then overlaying details on top of the base colors. Alternatively, the materials 

can be created by using existing textures or photographs as the base. In that case, 

the textures or photographs often need to be tweaked in order to remove any un-

necessary lighting information, and to approximately match the real-world material 

values. [81] 

One way to remove the unnecessary lighting information is to use the Shad-

ows/Highlights tool in Photoshop, which allows the artist to separately remove both 

the highlights and the shadows from the image. Another method of removing light-

ing information is to first duplicate the image, then invert its colors and make it 

grayscale, and finally blend it over the original image using a suitable blending 

mode, such as Soft Light. This lightens the shadows and darkens the highlights of 

the image. Depending on how dark or bright the shadows and highlights appear in 

the image, sometimes it is necessary to do some additional manual tweaking. One 

method is to replace these parts with other areas of the texture. This can be done 

by first using the Select Color Range tool in Photoshop to pick the darkest shad-

ows in the image as a selection. The selection can then be used as a mask to fill 

the shadow areas, by copying and moving parts of the texture into the masked 

areas, or by using the Offset or Content Aware Fill tools. This removes the dark 

shadows, and the same method can be used to remove bright highlights as well. 

Like the previous methods, this may not remove all of the lighting information from 

the image, but when these methods are combined with each other, it is possible 

to remove almost all of the unwanted shadows and highlights. Finally, the color 

values of the texture need to be matched to the real-world material values. This 
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can be done by first inputting the real-world value into Photoshop as its corre-

sponding color value, and then checking the Median and Mean Luminosity values 

of that color by using the Histogram tool. The Median and Mean Luminosity values 

of the texture need to approximately match these measured values, which can be 

achieved by adjusting the brightness and contrast of the texture by using the Lev-

els tool or the Curves tool. [320, p33] [321] [322] [323] 

 

Figure 46. An example of removing lighting information from an image in Pho-

toshop. Adapted by author. 

If the textures of a material were created based on an existing texture or a photo-

graph, a program called CrazyBump can be used to create normal maps, displace-

ment maps, and ambient occlusion maps to complement the main textures of the 

material. CrazyBump can analyze the original image, and create the additional 

maps based on the lighting of the image. The program also includes tools that can 

be used to further refine the generated maps, in order to more closely match the 

actual properties of the material. [109] 

Once the base materials have been created, they can be used to create the final 

textures for a 3D model that contains multiple different materials, such as a fully 

clothed game character. These materials can be layered on top of each other in a 

logical manner using masks in Photoshop. For example, the character’s skin could 

be at the bottom, the clothes on top of the skin, and dirt on top of the clothes. This 

way it is easy to reveal or cover different materials by simply editing the masks, 



90 

 

like adding or removing dirt from the clothes. However, this process must be rep-

licated for each of the texture maps of the materials, in order to accurately repre-

sent each material, which may end up being somewhat tedious. Additionally, while 

working with different textures in Photoshop, it may be difficult to envision how the 

end result will look like when the textures are applied onto the actual 3D model in 

the game. [81] 

4.3.2  Workflows using modern tools 

Modern tools used for PBR texturing offer significant advantages over the tradi-

tional tools, making the texturing process faster, easier, and more intuitive. For 

example, they allow the artist to apply complete materials onto the 3D model, with 

all the required maps included in the material itself, instead of needing to edit each 

texture of the material individually in Photoshop. The materials can also be layered 

on top of each other by painting the materials directly on the surface of the 3D 

model, instead of working with the two-dimensional textures in Photoshop. The 

following examples list some of the texturing methods used with the modern PBR 

texturing tools, and some of the state-of-the-art features of those tools. [253] [324] 

A common way to initially apply materials to a 3D model is to use so-called Color 

IDs, or Material IDs. Color IDs are essentially different uniform colors applied to 

different parts of a model, which can be applied by using materials, vertex colors, 

or textures. The purpose of using Color IDs is to initially define which parts of a 

model use the same materials. For example, the gloves and jacket of a character 

might be leather, while his sword and belt buckle might be steel, in which case the 

leather parts would be assigned a different Color ID than the steel parts. The Color 

IDs can be applied directly to a low poly model, and then baked to a Color ID map, 

or they can be applied to a high poly model, and then baked to the Color ID map 

of the low poly model, since some of the detail present in the high poly model might 

not be modeled into the geometry of the low poly model. For example, gold inlays 

in a sword might be embossed in the geometry of a high poly model, while they 
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might only appear as texture detail in a low poly model. Color IDs can be used for 

quickly assigning materials to multiple parts of a 3D model while texturing it, allow-

ing the artist to rapidly iterate through different looks and styles. Color IDs are 

widely supported in various 3D software, and can be used for texturing in programs 

like Allegorithmic’s Substance Painter and Substance Designer, and Quixel’s 

DDO. [325] [326] [327] 

 

Figure 47. An example of a Color ID map, and the final PBR asset. 

As mentioned, materials can be applied to a 3D model based on Color IDs that 

have been assigned to the model. Many modern texturing tools offer a large variety 

of ready-made material presets, which can either be directly applied to the model, 

or the artist can modify the materials to better fit their needs. Programs like Sub-

stance Painter and DDO also allow the artist to import new materials into the pro-

gram, which can be acquired from sources like Quixel Megascans, Substance 

Source, and Substance Share. These materials are often either 3D scanned and 

calibrated to have physically correct values, making them very realistic, or alterna-

tively they can be procedural and parametric, making them extremely customiza-

ble and unique. Modern texturing tools often also include so called Smart Materi-

als, which are materials that, among other things, can take into account the shape 
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of a 3D model, and baked maps such as the normal map and the ambient occlu-

sion map. Smart Materials can be used for creating weathering effects like dust 

accumulating on top of the model and into its crevices, or to add scratches and 

scuff marks on the protruding edges of the model to create realistic wear and tear, 

for example. Using the parameters of a Smart Material, these effects can be in-

creased or decreased, as well as randomized to create different variations. This 

kind of partial automation makes the texturing process significantly faster, since 

the artist does not have to create these effects by hand into every edge and crevice 

of the model. However, the artist still has the option to manually apply additional 

unique touches to the textures, the Smart Material simply gives the artist a good 

base to build upon. Smart Materials can be used in programs like Substance 

Painter, Quixel DDO, and 3D-Coat. [253] [254] [328] [329] [330] [331] [332] [333] 

In addition to simply applying materials to a 3D model, programs like Substance 

Painter, Quixel DDO, and 3D-Coat also allow the artist to paint materials, textures, 

colors, and masks directly onto the surface of the 3D model. All of these programs 

include a paint brush tool, which can be used with different settings to achieve 

different kinds of brushstrokes. For example, the paint brush can be equipped with 

a mask shaped like a splatter stain, which can be used for applying paint splatters 

onto the model. Substance Painter also includes a tool called Physical Paint, which 

simulates different kinds of effects using particle physics. This can be used to cre-

ate various realistic effects, like stains caused by leaking fluids, or burn marks 

caused by fire. Painting features like these give the artist a lot of creative freedom 

over the texture creation, instead of only relying on base materials and Smart Ma-

terials. [252] [253] [334] [335] 
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Figure 48. The Paint brush and Physical Paint tools in Substance Painter. Adapted 

by author. 

Instead of using or modifying existing materials, it is also possible to create new 

materials from scratch using different material authoring tools. For example, Sub-

stance Designer is a node based tool that can be used for authoring procedural 

materials. These materials, called Substances, are created by building networks 

of nodes containing different functions, which generate the textures of the materi-

als based on different parameters. By changing these parameters, the material 

can be easily modified. For example, it would be possible to control the color, 

amount, and size of bricks in a material depicting a brick wall, allowing an artist to 

create countless variations of the same material very quickly. These parameters 

can also be exposed to other programs, meaning that Substances can be used as 

Smart Materials in Substance Painter. The Substances can also be published to 

other external applications, like game engines such as Unity and Unreal Engine. 

If the parameters of these published Substances are exposed, they can be edited 

directly in the game engines, allowing artists to quickly iterate on different looks to 

achieve the best results, but also making it possible to create multiple variations 

of the material for different environments and purposes, or to avoid repetition. [256] 

[336] [337] [338] 
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Figure 49. A network of nodes in Substance Designer, and the resulting material. 

An alternative to creating procedural materials is to use photographs or 3D scans 

for creating new materials. Substance Bitmap2Material, or B2M for short, is a pro-

gram that can be used to create materials from suitable photographs. B2M ana-

lyzes the photograph, and generates different PBR textures based on it. The gen-

eration of these maps can be assisted by adjusting different parameters on the 

program’s settings. Essentially, B2M partially automates the process of removing 

lighting from the albedo map of the material, but also generates the normal, rough-

ness, metallic, and ambient occlusion maps, similar to how CrazyBump generates 

different maps. Additionally, B2M has the option to make the different maps into 

tiling textures, even if the original photograph could not be tiled seamlessly. Rather 

than using simple photographs, new materials can be created by combining differ-

ent 3D scanned materials together. Megascans Studio is a tool which is tied to the 

Megascans service provided by Quixel. The service offers the world’s largest col-

lection of physically based 3D scans of vegetation and surfaces. Megascans Stu-

dio allows artists to mix together different 3D scanned materials from the Meg-

ascans collection to create new, unique materials. [111] [328] [339] [340] 
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Figure 50. An example of creating tiling PBR textures using Bitmap2Material. 

When creating textures for complex 3D models that are going to be used in real-

time applications like games, the quality and efficiency of textures may sometimes 

be improved by using Material IDs or masks to layer different materials onto the 

model directly in the application, instead of combining the layered materials into a 

single set of textures. This is called Dynamic Material Layering, which refers to the 

functionality of the method that keeps the properties of the materials editable. For 

example, since each material can be separately edited in the application, proper-

ties like color and tiling can be adjusted, whereas in a single material with com-

bined textures these properties could not be edited on the fly. This makes it pos-

sible to have extremely detailed surfaces without using excessive amounts of tex-

ture memory, since it is possible to tile very small textures, like individual strands 

in a fabric, over large areas, instead of using a single very high resolution texture. 

Because layered materials consist of multiple separate materials, these materials 

can be reused in other contexts, which also saves memory, since there is less 

need for unique per-object materials. By editing the masks or Material IDs of the 

layered material, the blending between different materials can also be adjusted, or 

it can even be made to interact with the events in a game. For example, if a game 

character walks in mud and water, the clothes of the character could be made to 
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appear dirty and wet as a consequence. Dynamic Material Layering is supported 

in Substance Painter, which allows the artist to texture a 3D model in a similar way 

as they would normally use the program. However, instead of exporting a single 

material or a single set of textures, the artist can export the specific material types, 

masks, and blending properties to an external application like Unreal Engine or 

Unity, where the layered material can be replicated exactly as the artist created it 

in Substance Painter. Dynamic Material Layering or other similar methods have 

been used in games like Epic Games’ Paragon and Naughty Dog’s Uncharted 4. 

[210] [341] [342] [343] [344] [345] 

 

Figure 51. An example of adjusting texture tiling in Naughty Dog’s Uncharted 4: A 

Thief’s End. Adapted by author. 



97 

 

 

Figure 52. Visualization of the layered material masks in Epic Games’ Paragon. 

Adapted by author. 
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5  CONCLUSION 

The creation of a 3D game character is a complex process, consisting of multiple 

stages, each requiring specialized expertise and skills. Therefore, it is no wonder 

that the process is often divided among different professionals, each one skilled in 

their respective specialization. Additionally, as game productions grow bigger and 

more ambitious, new technologies and methods are constantly developed to im-

prove the visuals of games. In order to stay on the cutting edge of game develop-

ment, artists need to constantly learn new principles and methods, as well as the 

tools that come with them. Thankfully, modern tools are often more intuitive and 

efficient, making it easier for artists to learn and use them, and making the content 

creation faster and more efficient. Also, as hardware catches up with the demands 

of games’ visuals, artists are gradually freed from the restrictions set by the com-

putational power of devices, allowing for more creative freedom. However, this 

does not eliminate the need to first learn the basics, like understanding how differ-

ent aspects of 3D models and textures affect the performance of games, and what 

the fundamental principles of different methods and technologies are based on. 

Despite the advances in technology and tools, the creation of game characters still 

remains a vast and complicated process, and the amount of expertise and skill it 

requires can appear especially daunting to small development teams, or individu-

als wishing to enter the game industry. 

One of the objectives of this thesis was to create a comprehensive and relatively 

detailed description of the complete process of creating 3D game characters for 

different types of games, whether the game was intended for mobile devices, 

game consoles, or powerful gaming computers. The concepts and methods pre-

sented in the thesis were intended to be understandable even for people not fa-

miliar with game development, which is why many of the concepts were accom-

panied by simple examples. It would be wonderful if this thesis was able to help 

other aspiring game artists at the beginning of their journey to the depths of the 

rabbit hole that is game development.  
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