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1 Introduction 

1.1 Background 

In the modern and digital world of today, businesses, organizations and governments 

increasingly rely on networked information systems to produce, exchange and store 

different types of business- or- otherwise-critical information. During the digital age 

organizations have ever increasingly brought their businesses online to utilize the 

landscape of eCommerce to their best advantage.  

Information systems in which the digital information is being processed sometimes 

present complex and highly sophisticated technology. The information itself, all the 

combinations of 0s and 1s (and in the future their quantum superpositions) in the 

storage drives, network attached storages, databases and distributed cloud services, 

may be important for some and critical for others. For commercial businesses, the 

importance may be established through competitiveness, market value and patented 

innovations. A radar manufacturer, on the other hand, may use completely different 

criteria of, for example, integrated circuitry details of a frequency-hopping EW 

resistant radar. 

 In the meantime, governments have also started to make their services available to 

the public online. Such eServices have been launched by several agencies enabling, 

e.g. electronic voting, social security services, electronic passport applications, and 

vehicle registration service. 

There is even a possibility to become a virtual e-resident of Estonia, allowing for 

establishing and starting of real businesses that fully integrate to the Estonian 

electronic services of the digital infrastructure (Hammersley, 2015). 

Along with the emerging eServices, responsibilities have also grown. The users of the 

services need to be assured of their security. This is a common denominator for the 

service providers in business-to-business, consumer-to-business, as well as 

government-to-public operations. Service providers in each operational area are 

required to assure the security of their environment, the part of the whole digital 
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space, in which all the electronic information is being accessed, processed and stored 

through computers, countless servers and myriad of information systems.  

Malicious software, malware, that is nowadays being discovered, has evolved 

significantly from the ones that were the first to utilize computer networks as their 

propagation paths. One of the first, even if not intentionally malicious, was the 

Morris Worm, discovered in 1988 and named after its creator Robert Morris. The 

worm was designed to propagate the network and to demonstrate the inadequacies 

of computer network security measures (Spafford, 1988; Morris, 1988). Even if the 

malware today has several similarities to the persistent, obfuscating and encrypting 

code of the Morris Worm, the most advanced of them are being used in a completely 

different types of campaigns with far more serious motivation in their background, as 

seen in several report and trend publications (FireEye APT28, APT29, APT30; 

Mandiant APT1, M-Trends; F-Secure Threat Report 2015). 

As operations have become increasingly reliant on networks, securing them has also 

become more demanding, and resource consuming for the network and system 

engineers. Even disregarding the fact that the number of vulnerabilities within a 

network easily gets multiplied by the software combinations of the devices within, 

the rate at which they are reported (Figure 1) can be overwhelming. Assuring the 

security of the information systems may prove difficult to achieve, especially for 

small-to-medium-sized businesses and their perhaps cost-effectively balanced 

network security or administrator teams- but also for larger companies that may 

have outsourced their whole ICT functions.  
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Figure 1. Vulnerabilities by Year (www.cvedetails.com, referred 21.6.2016) 

 

In an information ecosystem where different operating systems and products from 

multiple device and software vendors with various software versions and subversions 

coexist, vulnerabilities and their possible combinations can present significant risks 

to the environment. Vulnerabilities may exist in the operating systems, in the 

firmware software, in the application software and in their library objects already 

when they are released, only to be discovered later. New vulnerabilities can also 

make their ways into the environment during new software releases, software 

upgrades and even security updates. When exploitable, they can cause serious 

damage to the assets in the environment and endanger the confidentiality, integrity 

and availability of the information. 

Single vulnerabilities are easily seen as individual threats, which by themselves, may 

seem to present only a minor threat, while they may in fact be involved in a series of 

actions through a combination of multiple vulnerabilities in a campaign against the 

organizations assets, ultimately putting the entire environment at risk. 

In addition to vulnerabilities, also sub-optimal configuration or configuration errors 

can expose the environment to threat agents and eventually lead to realization of 

risks. Configuration changes often link to scheduled maintenance or incident 

resolving- but can also occur during services, business operations, or just network 

expansion. Without a thoroughly implemented and maintained configuration or 
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asset management, how can one determine whether there have been any such 

changes in the software base or in the configurations that could introduce threats 

into the environment? 

Wang, Jajodia, Singhal & Noel (2010) and Ou & Singhal (2011) underline that one 

cannot improve what one cannot measure. During the last decade, a considerable 

amount of research has been conducted on measuring network security. Ou, Boyer & 

McQueen (2006) presented a logical approach to represent and generate attack 

graphs, designed to illustrate the logical dependencies among attack goals and 

configuration information. In their research they established the necessity of 

considering multi-stage and multi-host attacks. Ou & Singhal (2011) suggest that the 

overall security of a network environment cannot be determined by simply listing the 

number of vulnerabilities they contain; instead, they presented a methodology for a 

composition of multiple vulnerabilities being modelled using probabilistic attack 

graphs, ultimately showing all paths of attacks that when combined, will enable 

multistage network attacks.  

Situational awareness is at focal point in protecting networked environments. In that 

respect attack graphs can be seen as a source for ample information for the network 

and security administrators. Information security automation has brought different 

kinds of data streams and analytical functions in great numbers for the network 

operators to use. But instead of assistance, do they in fact cause disorientation 

through information overflow? Can the security or network engineer handle all the 

information flows and effectively correlate the security related events?  

Could the analysis itself be automated in such a way that it would support the 

engineer by providing readily prioritized and weighed suggestions or 

recommendations as to how to react and what actions they should take to protect 

their environment most effectively? 

1.2 Research Objective 

The objective of this thesis consisted of two parts: Firstly, to help solve the problem 

of measuring and analyzing overall security of a semi-isolated network environment 

in which several information systems coexist, most of which are interconnected, and 
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where the vulnerability information may be few and scattered and cover only 

individual assets. Secondly, to assess whether an attack graph analysis system could 

be integrated into a Network Operations Center and how such integration would 

improve the ability to defend against an attack.  

In support of the primary objective, the research aimed to provide technical 

assistance for existing risk assessment by enabling cyclic attack graph analysis that 

could become a part of the process for managing software upgrades and 

configuration changes in the operational environment. 

Supporting the secondary objective, this research sought to find an answer to the 

question is a logic-based attack graph analysis system suitable for Network 

Operations Center’s (NOC) use? The usability was assessed through a fictitious use 

case involving an Information Systems Security Manager (ISSM) and an Information 

Systems Security Officer (ISSO), with limited initial situational awareness which was 

correlated with new information in the environment on which the ISSM and ISSO 

could (re)act. 

The work conducted in this thesis is expected to contribute to the risk management 

process of the organization, to provide a high-level perspective of a functional SIEM 

system complemented with attack-graph-analysis capabilities, and to initiate course 

of action algorithm development focusing on information systems’ autonomous 

defenses. 

1.3 Research Method 

The method of research selected for this thesis is constructive research. Constructive 

research was chosen regardless of the risk of lacking objectivity. 

 Constructive research is a method for producing a construction intended to help 

solve real-world problems or part of the problems. Realizations of the construction, 

artifacts solve a domain specific problem in order to build knowledge on how the 

problem can be solved (or understood, explained or modelled) in principle. Artifacts 

such as models, plans, organizational charts, information system designs, algorithms 

and software development methods are typical constructs used in research and 
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engineering. Characteristic to them, they are invented and developed, not 

discovered (Dodig-Crnkovic, G. 2010, Lukka, K. (Internet, N.D.).  

Lukka (2000) also suggests that the core characteristics for a constructive research 

include that it 

 focuses on real-world problems felt relevant to be solved in practice 

 produces an innovative construction meant to solve the initial real-world 

problem 

 includes an attempt for implementing the developed construction and 

thereby a test for its practical applicability 

 implies a close involvement and co-operation between the researcher and 

practitioners in a team-like manner, in which experimental learning is 

expected to take place 

 is explicitly linked to prior theoretical knowledge, and 

 pays particular attention to reflecting the empirical findings back to theory 

 

Similarly, Labro & Tuomela (2003) present seven crucial steps in the constructive 

research approach as illustrated in segments of three phases in Figure 2:  1) find a 

practically relevant and theoretically interesting problem; 2) examine the potential 

for long-term co-operation with the organization; 3) obtain a comprehensive 

understanding of the topic; 4) innovate and construct a theoretically grounded 

solution; 5) implement the solution and test whether it works in practice; 6) examine 

the scope of the construct’s applicability and; 7) show the theoretical connections 

and the research contribution of the construction. 
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Figure 2. Crucial Steps in Constructive Research Approach by Labro & Tuomela (2013) 

 

For this research, the recognized real-world problem is presented in the previous 

chapters 1.1 and 1.2: Improve computer network defense performance for cyber 

operations decision makers and NOC by providing analysis capability for multistage 

computer network attacks and course of action guidance. The potential for a long 

term co-operation with the organization fundamentally exists, with the involvement 

of cyber operations decision makers and the NOC. In this research the construction 

application is the integration – technical implementation – of the attack graph 

analysis system in a semi-isolated network environment where NOC capability 

already exists. Significant theoretical contribution is not expected from this research. 

1.4 Thesis Structure 

The first chapter of the thesis is an introduction, describing the background, method 

and the objectives for the thesis. The second chapter presents the functional and 

technical requirements for attack graph analysis.  

The third chapter introduces the attack graph concept: the ability to perform analysis 

and risk assessment of multistage attacks in a network-centric environment, and how 

and based on what information the actual attack graphs are generated. 
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Vulnerability information and their common sources and respective standards and 

specifications are introduced, as well as how the attack graph system is utilizing the 

vulnerability information, and what metrics and scoring systems are involved in the 

risk quantification. Additionally in chapter three, some of the vulnerability 

information sharing models are presented through previous work and studies on 

vulnerability data structuration and sharing standardization. 

The third chapter will also briefly introduce some of the most common vulnerability 

scanners, one of which was used extensively for the attack graph engine included in 

this research. 

The logic behind the attack graph analysis engine’s deduction process is presented 

through logic programming paradigm. Three of the most important logic 

programming components in the attack graph analysis framework are looked into in 

more detail. 

Concluding chapter three, the algorithms for the attack graph analysis and graph 

construction are introduced. The attack graph architecture is presented and the 

attack graph compilation is demonstrated with a practical example. 

The fourth chapter of the thesis presents the construction of the attack graph 

analysis: how the vulnerability assessment data of the test network is compiled for 

graphical presentation and, how the grouping algorithm and the quantitative risk 

assessment change the attack graph abstraction. 

The attack graph concept and its construction are tested in chapter five with a 

fictitious joint mission network use case.  

Chapter six presents the conclusions on the usability of the construction against the 

preconditions and research method together with some plausible paths for future 

research. 

 

 



16 
 

 

2 Requirements for Attack Graph Analysis 

Attribution of the malefactors and analysis of their motivations would be essential in 

effective cyber defense, however for the brevity of this research, they were excluded 

and the actors were assumed as state-sponsored malefactors. The environment in 

this research was treated as semi-isolated as it was not directly connected to the 

Internet or any network other than those in the Harbinger Mission Network (HMN) 

use case.  

2.1 Operational requirements 

To allow the network operators to perform analysis over any data, a concept needs 

to be defined. Ultimately the network or cyber operations decision makers must be 

provided with enough valuable data in such a way that the operations can be run 

safely enough and long enough relative to the operational need. The sheer amount 

of data sources and data types necessitate that the data will have to be formatted to 

and presented in human understandable form, to help decision makers understand 

the possibly complex overall situation. 

The decision makers also need to understand what kind of decisions they are 

required to make and what kind of actions exist in the “playbook” with which the 

NOC is able to protect the respective assets in the environment. The analysis and 

implementation of such decision support is, however, outside the scope of this 

thesis. Therefore the decision making process was simplified and was considered 

well prepared and temporally effective. 

The ability to construct a practical presentation of the possible attacks requires that 

they can be modelled. The modelling will have to take into account the existence of 

single or multiple vulnerabilities and also device and software configurations such 

that present risks to the environment by running configurations that are against best 

practice or vendor recommendations or otherwise sub-optimal. 

The underlying risk management process requires that the vulnerability data for the 

operational environment will have to be updated on a regular basis, despite the fact 

that the operation takes place in a semi-isolated network environment. 
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The aim with the solution in this research is to enable safe operation of the services 

within the network environment, to help assess the risks against the assets, to 

provide sufficient protection against targeted cyberattacks, to assist in mitigating and 

stopping multi-staged attacks, to provide protection against zero-day attacks, and 

finally to enable autonomous protection mechanisms to suppress the attackers and 

wear their resources. 

In this research, the operational requirements are derived from the following three 

tenets from Jacobson (2013): 

1. predict plausible impact of cyberattack situations before they occur 

2. survive through adaptation and degradation during the attacks 

3. recover operational capacities after the attack 

 

Through attack graph analysis the aim was to predict the attacker’s probable steps in 

multistage attacks and to enable the planning of manual and automated parallelized 

or serialized responses that help sustain the attack and strain the attackers’ 

resources.  

 

2.1.1 Situational Awareness 

To be able to successfully operate in the cyberspace, situational awareness must be 

effectively utilized to enable decision makers lead and come up with timely decisions 

(Dressler et al. 2014).  

Situational awareness seems seldom used in conjunction with the words cyber or 

cyber security. While a great amount research has been conducted on attack graphs, 

not many seem to highlight the importance of the situational awareness angle to it. 

In their research on operational data classes Dressler et al. (2014) referred to 

battlespace awareness as a closest candidate for the definition. 

Conti et al. (2013), referred to U.S. Military Doctrine in their definition situational 

awareness as “the requisite current and predictive knowledge of the environment 

upon which operations depend…” 
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Conventional solutions such as intrusion detection and prevention systems and anti-

virus products, all of which build to situational awareness, but by themselves do not 

suffice especially with isolated networked environments and state-sponsored actors. 

Such conclusion is established by Hutchins et al. (2010), in their paper on adversary 

campaigns and intrusion kill chains. They underline that solutions relying on 

conventional methods fail due to their fundamentally false assumptions such that a 

response takes place only after a compromise and that the compromise was a result 

of a problem that is easily fixable. 

In their work, Hutchins et al. (2010) claim that regardless of the positive 

development in information management tools that have resulted in, e.g. best 

practices, hardening and rapid patch deployment, the state-sponsored malefactors 

have still been able to continually demonstrate system compromise capabilities 

through advanced tools, customized malware and zero-day exploits. 

To effectively build to the resilience of the protected assets in the thesis network, the 

decision makers must have at their disposal at a minimum, a graphical presentation 

of the outstanding vulnerabilities discovered in the protected assets and also of the 

interdependencies of the assets in the infrastructure. In the scope of the thesis, this 

requirement represented the required level of situational awareness for the 

correlation, and fusion of the analysis data. 

 

2.1.2 Impact Mitigation 

Established by Hutchins et al. (2010), the methodology that uses knowledge-based 

conventional solutions would not be efficient against multi-staged APT attacks in 

which the malefactors continually change their actions according to the 

environment.  

The attack graph analysis used in this thesis will need to, to an extent, assist the NOC 

for predicting the most probable steps in a multistage attack in the given 

environment. Optimally, the construction would enable for the dynamic and 

continual changes in the defended environment in order to increase the attack cost 
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for the malefactors and to increase the resiliency of the environment against 

repeatedly used techniques. 

The solution in this research will need to support for the adaptation of the 

environment to enable for instance the following mitigative abilities: 

1. rerouting and slowing down traffic 

2. straining the attacker’s resources 

3. shutting down, moving, or creating new hosts for taking over processes 

 

Additionally, the ability to investigate the incidents to be able to increase and 

enhance the knowledge in our knowledge-based counteraction engines is desirable. 

Such ability would mean, for instance, creating and altering signatures for the IDS-

sensors of the SIEM system. 

The solution will also need to consider the so-called zero-day vulnerabilities, such 

that are currently unknown to any hardware or software vendors and not yet 

“fixable” with a conventional software upgrade or patching. This method will 

increase the resiliency before the attacks, and enable in-time planning for 

counteractions in the thesis test network.  

According to Hutchins et al. (2010), the ability to revisit the attacks and reconstruct 

intrusions is particularly useful. Being able to recognize patterns or signatures of 

unorthodox and advanced methods could prevent their reuse and would likely 

increase the required cost of the malefactors’ campaigns. 

  

2.2 Technical Requirements 

2.2.1 Vulnerability, Software and Configuation Information 

The capability to predict multistage attacks such that utilize known exploits requires 

an ability to produce a comprehensive list of all the vulnerabilities that exist in the 

thesis network environment. In addition, the ability is needed to assess and interpret 

every possible combination of individual steps that allow for a multistage attack to 

take place.  
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With regard to the vulnerability information, the categorized information sources 

and their standardized formats, that are currently considered the most commonly 

used in cyber and vulnerability information sharing, will be utilized. 

Software and configuration information will be established by using vulnerability 

scanners, through compliance audits and via an asset database, the latter of which 

will be an internal component of the SIEM system.  

2.2.2 Host Access Lists 

A comprehensive access list of all the hosts in the internal as well as the DMZ and 

perimeter networks will need to be created for the logic engine. Without such a list, 

the multistage attack graph would be imprecise and could lead to ineffective 

reactions to the attack(s) and making the preplanning of the counteractions difficult. 

2.2.3 Intrusion Detection 

Along with the SIEM system, a knowledge based IDS will be deployed, consisting of 

one network sensor, with the option to produce new sensors through an automated 

virtual guest machine response mechanism.  The IDS will be installed from the OSSIM 

installation media, and the IDS will report possible events and suspected malicious 

activities to the SIEM system for the NOC to further analyze. The patterns and 

signatures for malicious activity will be provided by the Emerging Threat Open 

ruleset. 

2.2.4 Counteractions 

Manual and automated counteractions will be made available through the 

management network and the HIDS component which is integrated into the SIEM 

system. The HIDS agent will be installed to the supervised hosts where applicable. 

Active network devices such as routers and switches, where the installation of HIDS 

agent is not possible, will be supervised from within the SIEM system as agentless 

hosts. 

Counteraction capabilities include, but are not limited to: 

1. reactive firewall rule addition(s) on the core firewall and Linux-based hosts through 

orchestration 
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2. proactive and reactive full packet capture for analysis and forensic investigation 

3. scripted known-safe-configuration revertations through orchestration 

4. manual or semi-automated reallocation of a VM guest into a quarantine network 

based on a triggered event 

5. manual or semi-automated deployment of the IDS sensor to the subnet in which the 

event occured  

6. relocation of the IDS sensor to the network subnet into which (based on the 

probability analysis) the attack would likely be directed 

 

The counteractions can be triggered based on network events, and also manually 

through the HIDS component or by scripted orchestration through the management 

network. 

3 Attack Graphs 

3.1 Multistage attacks 

An attack that consists of several subsequent steps and utilizes exploits to known 

vulnerabilities can be modelled with a tool that can present all the steps in the attack 

and such that also has information on the assets in the network, their 

interdependencies as well as information on their individual vulnerabilities. Gallon & 

Bascou (2011) introduce attack graphs as visualizations of the attack model 

derivations, of every possible scenarios in which an attacker can achieve certain goals 

in the network. Similarly, Kotenko & Chechulin (2013) define attack graph as a graph 

representing every possible sequence that lead the attackers to their goals. As they 

mention such cyberattack modelling as one of the promising approaches, they also 

underline the computational complexity of the graphs and challenges in their 

utilization in near-real-time systems. 

To be able to operate in cyberspace, organizations have to have a certain level of 

awareness of the operating environment (Dressler et al. 2014). The required level of 

broadness and depth varies greatly depending on the size and trade of the business. 

However, without access to databases and knowledge base of vulnerabilities, or the 
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respective collaborative networks, the organization may have limited or a completely 

false view of their situation and of the security posture of their assets. 

For an organization that does not have resources for analysis, processing and 

dissemination of such vulnerability related information, it could be highly beneficial 

to participate in programs for vulnerability information sharing frameworks and 

platforms. 

3.2 Vulnerability Information Sharing 

Tosh et al. (2015) underlined an important aspect regarding companies that after a 

discovered compromise, in fear of an image hit, negative publicity, will likely refrain 

from disseminating or publishing information of the particular incident. That 

information could be of great value to other companies that share similarly 

configured infrastructure, e.g. the same cloud infrastructure. Refrainment from 

disclosing such information may of course derive from outstanding laws, especially in 

case of agencies and governmental institutes, and service providers for that sector. 

Information security and cyber-related threat information sharing has been the topic 

in several studies and work projects in the recent past. Kamhoua et al. (2015), for 

instance, applied game theory to investigate when multiple self-interested 

companies could invest in vulnerability discovery and sharing their threat-related 

information. Game theory was also used in Tosh et al. (2015) paper, where they 

formulated a non-cooperative cybersecurity information sharing game to guide the 

companies to independently decide whether or not to share information. 

In the absence of effective publishing and sharing mechanisms, Gadelrab & Ghorbani 

(2012) proposed an approach to express network and security dataset metadata 

using a Dataset Description Language (DDL). According to their paper, the proof-of-

concept prototype implementation produced XML output, such that could be 

integrated with Security Content Automation Protocol (SCAP) tools. 

Since the work of Gadelrab & Ghorbani, several standardized and automated 

information expression and sharing standardization and structuration attempts have 

emerged. In their work on semantic ontologies for cyber threat sharing standards, 

Asgarli & Burger (2016) mention STIX, IODEF and OpenIOC as examples. MITRE’s 
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Structured Threat Information eXpression , STIX™ according to Asgarli & Burger’s is 

considered the most extensive standard, having definitions for cyber observables, 

indicators, incidents, exploit targets, attack methodologies, courses of action, threat 

actors and campaigns (Asgarli & Burger, 2016). 

In a study on information sharing models Hernandez-Ardieta et al. argued that 

effective policies for near-real time information sharing must rely on firstly, on 

development of formal models estimating subjective value of the shared information 

and secondly, on identifying the trust and reputation models that consider dynamic 

behavior and changing factors of the information sharing community. In their work 

they also wrote about efforts on categorizing and standardizing data formats and 

exchange protocols on information concerning cyber security: the assets and their 

configurations, threats and tactics utilized by the attackers, as well as indicators of 

compromise and risk mitigating counter-actions. As an example of such structural 

model they mention Making Security Measurable™ initiative, by The MITRE 

Corporation. (Hernandez-Ardieta et al. 2013.)  

Architecturally MSM™ includes building blocks such as enumerations of common 

concepts that need to be shared, languages defining how to find and disseminate 

such concepts and repositories through which to share the standardized content in a 

machine-consumable form (Introduction to Making Security Measurable, The MITRE 

Corporation, 2016). 

Some of the most notable MSM enumerations include Common Vulnerabilities and 

Exposures (CVE ®) detailing standard identifiers for publicly known vulnerabilities, 

Common Platform Enumeration (CPE) with standard identifiers for platforms, 

operating systems and software packages, and Common Weakness Enumeration 

(CWE™) identifying software weaknesses in architecture, design or implementation 

that lead to vulnerabilities (Introduction to MSM). 

Languages and formats in MSM include, among others, Open Vulnerability and 

Assessment Language (OVAL ®), a language to write XML-based tests on current state 

of assets and for displaying the results, and Common Vulnerability Scoring System 

(CVSS), a methodology for disseminating vulnerability related risks and risk 

measurements (Introduction to MSM). 
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MSM repositories for sharing the standardized content in machine-readable format, 

such that are publicly available, include (U.S.) National Vulnerability Database (NVD), 

a vulnerability database based on CVE that integrates all the publicly available 

resources and references, and the OVAL repository for OVAL vulnerability, 

compliance, inventory and patch definitions (Introduction to MSM). 

In their work Hernandez-Ardieta et al. (2013) presented a grouping of the current 

standards into processes and their mapping into six knowledge areas [A]sset 

definition (inventory), [C]onfiguration guidance (analysis), [V]ulnerability alerts 

(analysis), [T]hreat alerts (analysis), [I]ndicators (intrusion detection), and [R]eport 

(management), (Hernandez-Ardieta et al. 2013). 

The MSM standards and their respective knowledge area mapping as in Hernandez-

Ardieta (2013) are shown in Table 1. 

 

Table 1. MSM Standards and Knowledge Areas. Quoted from Hernandez-Ardieta et 
al. (2013). 

 

The components in the construction in this research will utilize some of the 

aforementioned standards such as OVAL, CVSS and XCCDF all of which are included 

in the knowledge areas listed by Hernandez-Ardieta et al. (2013).  

3.2.1 OVAL® 

Open Vulnerability Assessment Language is an international, information security, 

community standard for promoting open and publicly available security content, and 

to standardize the transfer of this information across the entire spectrum of security 
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tools and services. OVAL includes a language used to encode system detail, and an 

assortment of content repositories help throughout the community (About OVAL).  

The OVAL community has developed three schemas, written in XML, to serve as the 

framework and vocabulary of the OVAL language. The schemas correspond to the 

three steps of the assessment process: System Characteristics schema for step 1) 

representing configuration information of systems for testing; an OVAL Definition 

schema for step 2) analyzing the system for the presence of the machine state 

(vulnerability, configuration, patch state); and an OVAL Results schema for step 3) 

reporting the result of the assessment (About OVAL). 

3.2.2 CVSS 

Common Vulnerability Scoring System is a specific scoring system designed as an 

open framework and standardized method for rating and disseminating vulnerability 

characteristics and their impacts for ICT components. CVSS assists organizations in 

prioritizing and channeling resources needed for handling security incidents. The 

quantitative model of the CVSS ensures repeatable and accurate measurement while 

enabling users to see the underlying vulnerability characteristics that were used to 

generate the scores. Thus, CVSS is well suited as a standard measurement system for 

industries, organizations, and governments that need accurate and consistent 

vulnerability impact scores (CVSS, FIRST.org.) 

CVSS assessment consists of three metric groups; Base, Temporal and Environmental, 

each with its own set of metrics, as shown in Figure 3. Each group produces a 

numeric score ranging from 0 to 10, and a Vector, a textual representation of the 

values that were used to derive the score (CVSS, FIRST.org). 
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Figure 3. CVSS Metric Groups by Mell et al. (2007) 

 

The metric groups are described as follows (CVSS, FIRST.org): 

Base: represents the intrinsic and fundamental characteristics of a vulnerability 

that are constant over time and user environments. 

Temporal: represents the characteristics of a vulnerability that change over 

time but not among user environments. 

Environmental: represents the characteristics of a vulnerability that are 

relevant and unique to a particular user's environment 

 

The base metric group defines the characteristics of the vulnerabilities that remain 

unchanged over time and over different environments. In Figure 3 the Access Vector, 

Access Complexity and Authentication metrics define, the vectors from which the 

vulnerabilities can be exploited, how difficult their exploitations are and whether or 

not authentication is needed for them to succeed. The impact metrics for 

Confidentiality, Integrity and Availability on the other hand, independently define 

how the successful exploits can affect the confidentiality, integrity and availability of 

the assets (CVSS, FIRST.org). 
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3.2.3 CVE 

Common Vulnerabilities and Exposures (CVE®) is a dictionary of common identifiers 

for publicly known information security vulnerabilities. CVE was launched in 1999 

when most information security tools used their own databases and naming 

conventions for vulnerability related information, and distinguishing problem 

descriptions from another, potentially resulting in multiple referrals to the same 

problem. CVE started producing standardized identifiers (CVE identifiers) for 

reference points for vulnerability data exchange. CVE identifiers also provide a 

baseline for evaluating the coverage of tools and services so that users can 

determine which tools are most effective and appropriate for their organization’s 

needs. CVE is currently the industry standard for vulnerability and exposure names. 

(CVE, About CVE.) 

 

3.2.4 NVD 

NIST Computer Security Division's National Vulnerability Database (NVD) provides a 

framework for disseminating the vulnerability characteristics and their potential 

impacts on ICT infrastructure (NVD Home, 2015).  

NVD is the U.S. government repository of standards based vulnerability 

management data represented using the Security Content Automation 

Protocol (SCAP). This data enables automation of vulnerability 

management, security measurement, and compliance. NVD includes 

databases of security checklists, security related software flaws, 

misconfigurations, product names, and impact metrics. (NVD Home, 

2015.)  

NVD supports the CVSS v2 standard for all CVE vulnerabilities, although it provides 

only the CVSS base scores for vulnerabilities. NVD does, however, provide CVSS 

calculators for adding temporal scores, and to some extent measuring environmental 

scores to reflect an impact of a vulnerability to a specific organization’s environment 

(NVD Home, 2015). 
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3.2.5 SCAP 

Security Content Automation Protocol is a specification for expressing and handling 

security-related data in a standardized way. Using many individual specifications, 

SCAP automates continuous configuration monitoring and vulnerability 

management. The eXtensible Configuration Checklist Description Format, XCCDF, 

that is a part of SCAP specification, is a language for writing security checklist and 

benchmarks for use in compliance checklists and security policies (Security Content 

Automation Protocol, SCAP). 

 

The currently effective version of SCAP (specification version 1.0) contains XCCDF and 

OVAL languages, CCE, CPE and CVE enumerations and CVSS metrics (SCAP 

Specification). Currently, most of the SCAP validation products support the version 

1.2 of the specification (NVD, Security Content Validation Products). 

According to Alsaleh & Al-Shaer (2011), SCAP is a set of interrelated specifications 

that represent the standard format and nomenclature by which security software 

communicates information about known software flaws and configurations. In their 

work, Alsaeh & Al-Shaer (2011) take on SCAP as a standard way for representing and 

measuring information security within a system. Similarly, Hlyne et al. (2015) 

introduce SCAP as a suite of specifications that help organizations to automatically 

assess their network devices, operating systems and applications for their respective 

security configuration compliance, and to help automate security management tasks. 

SCAP validation software utilities such as OpenSCAP allow for system administrators 

to check configuration settings and examine the system for signs of possible 

compromise through the use of rules that are based on SCAP standard and 

specification (OpenSCAP User Manual). 

3.3 Vulnerability Assessment 

To be able to improve the security or resiliency of the network-centric environment 

against threats and attacks, the initial status of the environment needs to be 

established. For enterprise networks, vulnerability assessment is the way to test 
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whether any discovered and known vulnerabilities exist in their environment, and 

decide on the level of the risk they introduce. (Gallon & Bascou, 2011.) 

Vulnerability assessment is usually determined by combining various factors such as 

how much effort is needed for a malefactor to reach and exploit a vulnerability, the 

required mode of authentication in the target system, if they are exploitable locally 

or via remote access, and the impact on the confidentiality, integrity and availability 

of the information (Zhang et al. 2011).  

For such factors, CVSS scoring provides intrinsic assessments on the fundamental 

characteristics of the vulnerabilities, such that do not change over time and 

environments through the metrics of the base group (Gallon & Bascou, 2011).  

3.4 Examples of Vulnerability scanners 

3.4.1 Nessus 

Nessus is a commercial vulnerability scanner by Tenable Network Security, Inc. 

Nessus is used to discover all the assets on the network and test them for existing 

vulnerabilities or missing patches. In addition to a non-credentialed, remote scans, 

Nessus also supports deeper, granular analysis of assets through credentialed scans, 

and offline auditing for network devices. For configuration and compliance auditing, 

Nessus utilizes over 450 templates (Nessus Professional). 

Newly discovered vulnerability information is transformed into plugins by the 

Tenable’s research staff to enable Nessus to detect them. The plugins are written in 

the Nessus Attack Scripting Language (NASL), and they contain vulnerability 

information, a generic set of remediation actions and the algorithm to test for the 

presence of the security issue. The plugins are provided as streams, Feeds, which are 

available as a subscription purchase (Nessus Plugins). 

Nessus also provides a plugin feed for home users, Nessus® Home, which can be used 

for scanning an environment up to 16 individual IP addresses. In comparison with 

Nessus Professional, Nessus® Home lacks the ability to conduct compliance checks or 

content audits (Nessus ® Home). 
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According to Daud et al. (2014), the Home Feed release only includes the latest 

plugins up to the installation date, whereas the Professional release gets the plugins 

updated continuously as per the outstanding subscription. 

In addition to the Nessus Professional’s ability to conduct compliance audits through 

the plugins provided by the paid subscription, Windows and Linux SCAP compliance 

checks are enabled through the “SCAP Windows Compliance Checks” and “SCAP Linux 

Compliance Checks”, respectively, provided that the specified policy against which 

the audit be performed, contains XCCDF or OVAL-formatted SCAP content (Nessus 

Compliance Checks, Nessus v6 SCAP Assessments). 

 

3.4.2 OpenVAS 

Open Vulnerability Assessment System (OpenVAS) is a framework of several services 

and tools offering a comprehensive and powerful vulnerability scanning and 

vulnerability management solution. The OpenVAS Scanner service is accompanied 

with a regularly updated feed of Network Vulnerability Tests (NVTs). All OpenVAS 

products are Free Software, and the components, most of which are licensed under 

the GNU General Public License (GNU GPL). (About OpenVAS) 

Figure 4 depicts the OpenVAS architecture. OpenVAS CLI and Greenbone Security 

Assistant are the applications for user interaction with OpenVAS Manager, which is 

the central service that consolidates plain vulnerability scanning into a full 

vulnerability management solution. The OpenVAS Scanner is the core of the 

OpenVAS architecture, in charge of executing the actual Network Vulnerability Tests, 

which are served via the NVT Feed. (OpenVAS Architecture Overview) 
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Figure 4. OpenVAS Architecture (About OpenVAS) 

 

OpenVAS is an official participant in OVAL Adoption Program by MITRE (OpenVAS 

Architecture Overview). 

3.4.3 Nexpose 

Nexpose is a commercial vulnerability management product by Rapid7. Nexpose 

provides a dashboard view for managing vulnerabilities, security patches, and 

analytics and reports in large infrastructures. Nexpose claims to provide live view 

into vulnerabilities as they happen, and provides remediation and best practices for 

secure configurations. (Nexpose) 

3.4.4 OpenSCAP 

OpenSCAP is not particularly a vulnerability scanner. Rather, it is more of a 

configuration assessment framework. According to their web site SCAP is a project, 

providing a wide variety of hardening guides and configuration guidelines. It is also 

an ecosystem providing a collection of open source tools for implementing and 

enforcing the U.S. NIST Security Content Automation Protocol, SCAP. Vulnerability 

assessment in OpenSCAP is enabled through an automated software inspection and 
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security configuration settings check mechanism, looking for signs of compromise by 

using rules based on standards and specifications (OpenSCAP). 

OpenSCAP uses SCAP, processing mainly the XCCDF, which is a standard way of 

expressing checklist contents and defining security checklists. It also combines with 

other specifications such as CPE, CCE and OVAL to create SCAP-expressed checklist 

(OpenSCAP User Manual). 

OpenSCAP is able to evaluate both XCCDF benchmarks and OVAL definitions and 

creating the respective results. The following are two example commands for 

invoking evaluations for OVAL and SCAP on a Red Hat Enterprise Linux 6 with a 

sample security policy, and a sample security guide template, respectively: 

 

oscap oval eval --results rhva-results-oval.xml –

report oval-report-highside.html Red_Hat-

Enterprise_Linux_6.xml 

 

 

oscap xccdf eval --profile 

xccdf_org.ssgproject.content_profile_usgcb-rhel6-

server --results-arf arf.xml --report xccdf-report-

highside.html /usr/share/xml/scap/ssg/content/ssg-

rhel6-ds.xml 

 

During the testing of OpenSCAP for its applicability for vulnerability assessments it 

was interesting to make note that OpenSCAP had the ability not only to perform 

compliance audits based on completely customized benchmarks, but also to apply 

remediations.  

Another quite remarkable feature of OpenSCAP together with the XCCDF was the 

support for running practically any scripted action during compliance checks, which 
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could effectively expand the usability of OpenSCAP also to reactive defensive 

mechanisms. 

3.5 Attack Graph Analysis Logic 

Wang et al. (2008) and Zhang et al. (2011) argued that intrinsic metrics defining the 

severity of the vulnerabilities through CVSS are not sufficient for security 

measurement in contexts such as network environments which contain complicated 

configuration, where an overall security posture of the whole network environment 

needs to be established. Similar findings have been established in research on attack 

modelling through graphs, for instance, by Gallon & Bascou (2011), Ingols et al. 

(2009), Kotenko & Chechulin (2013), Lu et al. (2009), Ou et al. (2005, 2006), Wang et 

al. (2007, 2008, 2011). 

Many of the above research included logic-based programs to model such attack 

graphs. Logic programming, often referred to as declarative style of programming is 

quite unique paradigm in that, the programmer defines only what needs to be 

computed without explicitly specifying how to compute it. The capability of finding 

solutions to such given problems is in the logic-based program’s ability to logically 

deduce facts using sets of rules which are defined in the logical statements of the 

program itself (Pfenning, 2007). It is left for the interpreter to decide how to perform 

the computation. In contrast, in procedural style programming, languages such as C 

and Java, the program explicitly describes the procedures, routines and subroutines 

for every series of computational steps of the computation. (Smaill, 2015.) 

3.5.1 Prolog 

Prolog (an abbreviation for PROgrammation en LOGique) is a logic programming 

language invented in 1972 by Alan Colmerauer, Robert Kowalski and Philippe Russel. 

It was originally designed to process natural language, performing deductions based 

on a text written in French. The man-machine communication system was the first 

large Prolog program ever to be written, which quickly evolved to a theorem-proving 

programming language (Colmerauer & Roussel, 1992.) 
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Prolog combines the concepts of logical and algorithmic programming, and is 

recognized not just as an important tool in AI and expert systems, but also as a 

general purpose high-level programming language with unique features such as 

unification and backtracking (ISO/IEC 13211-1:1995). 

Prolog language is based on a set of mechanisms such as pattern matching, tree-

based data structuring and backtracking that make it well suited for symbolic, non-

numeric problems involving objects and relations between them. (Bratko, 2011.)  

The way Prolog programs are written and how they are interpreted, both 

syntactically and semantically are defined in the ISO/IEC Prolog Standard (ISO/IEC 

13211:1-1995). Prolog uses syntax of First-order predicate logic, in which formulas 

are written in so-called clause form (a conjunctive normal form in which quantifiers 

are not explicitly written), and are further restricted to Horn clauses only that have at 

most one positive literal (Bratko 2011). 

A Prolog program consists of one to many clauses, which in Prolog is the term for an 

inference rule with a  Head :- Body structure (Pfenning, 2007). Clauses can be 

facts, rules or questions. A clause that only has the head and no body structure is 

considered a fact whereas a clause with only body and no head structure is 

considered a question (Bratko, 2011). 

A fact is a clause that always holds true regardless of the conditions of the domain. 

Clauses that have the Head :- Body structure, rules, hold true only conditionally 

(Bratko, 2011). 

 The algorithm for Prolog’s way of answering questions, satisfying goals, by Bratko 

(2011) is in Appendix 1.  

Semantically, the clauses in the Prolog program form the base knowledge of the 

existing “world” for the logic engine. The knowledge base is basically a collection of 

known facts and rules against which the logic engine tries to prove queries, and also 

to deduce new knowledge (Bratko, 2011). 

The common logical operands in the knowledge bases for Prolog programs are 

expressed according to the following table: 
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Table 2. Logical operands in Prolog (Bratko, 2011) 

Logical operation Translation Prolog operator 

implication if :- 

conjunction and , 

disjunction or ; 

negation not \+ 

 

A Prolog equivalent to the well-known modus ponens rule of inference is written in 

the following knowledge base, a sample program called modusponens.P: 

   

 q(X) :- p(X).  %rule which states that  
   %∀𝑋𝑃(𝑋) → 𝑄(𝑋)  

p(e). %fact which instantiates variable 
%X with a chosen value 𝑒 of the 
%domain  

 

In Prolog prompt, after the above knowledge base was loaded, the conclusion of 

𝑞(𝑋) could be queried by simply entering: 

 

 ?- q(e). 

 yes 

 

Above, Prolog answered “yes”. Prolog evaluated the query and the truth of 𝑞(𝑒) and 

logically deduced the goal from the program.  

If the query contains variables, Prolog also has to discover for which of those 

variables the goals can be satisfied. If none of the instantiation of the variables satisfy 

the goals, Prolog will simply answer to the query “no” (Bratko 2011). 

 Returning to the modusponens.P example, all instantiations of the variable 𝑋 of 

our program are to be listed. This is achieved with the following query: 
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?- q(X). 

 

Here Prolog found an instantiation for the variable X, and produced an answer: 

 

X = e 

 

This is only the first of the answers. To retrieve the rest of the possible answers a 

semicolon, the Prolog operand for logical disjunction “;” was entered after the 

previous answer: 

 

X = e; 

no 

 

Now Prolog answered “no”. Prolog found no additional elements in the program for 

which the goal would satisfy. This is logical, since no other instantiations of the 

variable 𝑋 existed in the knowledge base. 

One of Prolog’s powerful abilities is recursion with which the program is able to 

derive new facts from the previous solutions within the same query when a predicate 

contains a goal that refers to itself (Bratko, 2011). Consider the following example 

program link.P in which there are five nodes a1…a5: 

 

link(a1,a2).   

link(a2,a3).  

link(a3,a4).  

link(a4,a5). 

connected(X,Y) :- link(X,Y). 

connected(X,Y):- link(X,Z),connected(Z,Y). 
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The above program consists of four facts and two rules. The four facts define that 

there exist a link of some sort between nodes a1 and a2; a2 and a3; a3 and a4; a4 

and a5, respectively. The concept of connection is defined in the subsequent rules. 

The first rule states that X and Y are connected if there exist a link between X and Y. 

The recursion occurs in the second rule of the program, which states that X and Y 

are connected if there exists a link between X and Z, and Z and Y are connected. The 

connection is defined with a recursion, with a goal referring to itself. Using the two 

rules the program is able to deduce all connections for the nodes in our example. 

Below, Figure 5 is a logical depiction of the link.P program, where the direct and 

recursed connections are shown as arrows: 

 

 

Figure 5. Direct and Recursed Connections of link.P program 

 

Logically the order in which the proofs are searched should not be relevant 

(Pfenning, 2007). Both Pfenning and Bratko (2011) find, however that the order by 

which the goals and clauses are presented in the knowledge base, greatly affects the 

efficiency of the Prolog query resolution. This is demonstrated by following Bratko’s 

(2011) examples with two additional variations of the link.P example. In 

comparison with the original program, variation1 reverses the order of the clauses 

and variation2 reverses the goals of the second clause:  
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 variation1:  connected(X,Y) :- link(X,Z),connected(Z,Y). 

  connected(X,Y) :- link(X,Y). 

 

 

 

 variation2: connected(X,Y) :- link(X,Y). 

  connected(X,Y) :- connected(X,Z),link(Z,Y). 

 

By instructing Prolog to enable tracing, every step of the program execution is 

shown. Below is the program trace for the question “does a2 have a connection to 

a4”, translated to Prolog input as a query: connected(a2,a4).  

 ?- trace. 

 yes 

 [trace] 

 

 ?- connected(a2,a4). 

(0) Call: connected(a2,a4) ? 

(1) Call: link(a2,a4) ? 

(1) Fail: link(a2,a4) ? 

(2) Call: link(a2,_h236) ? 

(2) Exit: link(a2,a3) ? 

(3) Call: connected(a3,a4) ? 

(4) Call: link(a3,a4) ? 

(4) Exit: link(a3,a4) ? 

(3) Exit: connected(a3,a4) ? 

(0) Exit: connected(a2,a4) ? 

yes 

 

In the trace above, as Bratko (2011) explained, Prolog first (0) executed the initial 

query as its primary goal connected(a2,a4). Following the first rule of the 

knowledge base, it continued to (1) execute the subgoal link(a2,a4). The 
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knowledge base did not contain fact for such direct link, so the subgoal failed. Prolog 

then followed the second rule of the knowledge base and (2) executed the goal 

link(a2,_h236). Here the _h236 is a temporary substitute for the variable Z in 

the second rule of our program. It is a free variable that is used only once in a clause, 

and can be instantiated with any value. From the trace we can see that the goal 

succeeded with the free variable now having a3 (the only direct link to a2) as its 

instantiation. Next, the program continued to (3) execute the second goal in the 

body of the second rule of our program, connected(a3,a4). Again following the 

first rule of the knowledge base, Prolog continued to (4) execute the subgoal 

link(a3,a4). This time the knowledge base contained a fact for such link, so the 

subgoal, and also the second goal (3) succeeded. Finally the primary goal (0) also 

succeeded, and Prolog answered to the query “does a2 have connection to a4” with:  

 yes.  

Interestingly, even if all three variations of the same program are semantically equal 

to one another, the goal satisfaction with variation1 is inefficient compared to the 

other two, which perform equally efficiently. This is because reversing the order of 

the clauses, as in variation1, makes Prolog search for the solution first by looking for 

such additional nodes that exist between the two, and also have links to both of 

them, rather than trying to establish whether the queried connection arguments 

immediately satisfy the corresponding link (Bratko, 2011.) 

Bratko also underlines that it is important to realize that it is possible to cause Prolog 

programs to run indefinitely. This may occur in situations which Prolog tries to find 

the answer by choosing wrong path in the process, leading to an infinite loop the 

program is unable to escape from (Bratko 2011). Following Bratko’s examples, such 

situation was established with yet another variation of the link.P program. If the 

order of the goals and also the order of the clauses were reversed to the original 

version, Prolog would end up running the program until it ran out of memory, not 

able to deduce the answer:  

 

variation3:  connected(X,Y) :- connected(X,Z),link(Z,Y). 

  connected(X,Y) :- link(X,Y). 
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The declarative meaning of the program was unchanged and was shared among all 

versions: there is a connection from X to Y if there is a link from X to some node Z, 

and there is a link from Z to Y, or if there is a link from X to Y. Regardless of the 

declaratively correct definition of variation3, Prolog was unable to answer the same 

query: connected(a2,a4). (Bratko, 2011.) 

3.5.2 Datalog 

Datalog is a declarative logic programming language in which each formula is a 

function-free Horn clause (Datalog User Manual). Datalog does not allow function 

symbols as arguments, meaning that the so-called Herbrand universe of ground 

instances of predicates is infinite (Pfenning, 2007). Datalog terms must be variables 

or be drawn from a fixed set of constant symbols. Another restriction is that any 

variables used in the head of a clause also have to exist in a nonarithmetic positive in 

the body of the rule (Pfenning, 2007). 

An advantage in Datalog syntax over Prolog is that it does not limit the order of the 

clauses, and the queries are quaranteed to terminate. It uses an efficient evaluation 

method by binding the start and goal stop and deducing every possible answer in 

between (Datalog User Manual, 2002). 

3.5.3 XSB 

XSB is a module-centric research-oriented logic programming and deductive 

database system with semantically enriched superset of Prolog. XSB is compatible 

with both ISO-Prolog and Datalog programs. It includes enhancements which allow 

for tabling with negation and higher-order logic programming (XSB Documentation). 

XSB has two ways of evaluating predicates. Prolog-style evaluation, and tabling or 

tabled resolution. The ability of tabled resolution provides more declarative 

programs than Prolog. Additionally, the ability to store calls to tabled predicates in a 

searchable structure with their proven instances, and to compile predicates as 

tabled, allows for the programs to properly terminate with an answer (XSB 

Documentation). 
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The concept of tabled resolution is that it governs the procedure calls in a way that it 

remembers every call and also the answers that are returned. If a similar call is made 

again, the previously deduced answers are used to satisfy the new request. That way 

the same procedure call is not performed twice (XSB, Documentation). 

Recall the program that caused Prolog to run in a loop indefinitely, variation3 of the 

program link.P from chapter 3.4.1. When the same program is run with XSB and 

when the interpreter is instructed to use tabling, XSB ensures that all calls to the 

predicate connected are tabled throughout the program (XSB Documentation): 

 

:- table connected/2. 

connected(X,Y) :- connected(X,Z),link(Z,Y). 

 connected(X,Y) :- link(X,Y). 

 

Given the complete program above, XSB was able to deduce the correct answer to 

the same query that effectively caused Prolog to enter infinite loop as shown in the 

following: 

 

?- connected(a2,a4). 

yes 

 

 

The ability to solve recursive queries has proven useful in number of areas, such as 

deductive databases, language processing, program analysis, model checking and 

diagnosis (XSB, Documentation). 

 

XSB’s support for higher-order logic programming allows for programs that have 

complex terms as predicates. Higher-order enhancements in XSB enable 

incorporation of some higher-order constructs in a declarative way within logic 

programs, while retaining first-order declarative semantics (XSB, Documentation). 
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3.6 Attack Graph Analysis Engine 

The main utility for the data analysis component used in this research was a logic-

based data-driven network security analyzer, MulVAL. MulVAL research tool stands 

for Multihost, Multistage Vulnerability Analysis Language. It is free software, 

released under GNU GPL version 3, and is developed and maintained by Kansas State 

University (MulVAL, Argus CyberSecurity Lab, Kansas University).   

MulVAL was chosen as the main utility largely because of its past presence in several 

attack graph-related research projects. For instance, MulVAL has appeared in 

research on scalable approach to attack graph generation (Ou et al. 2006), on logic-

based network security analyzer (Ou et al. 2005), on measuring overall security of 

network configurations (Wang et al. 2007) and on measuring security risks on 

networks using attack graphs (Wang et al. 2010). 

In addition to the existing research, MulVAL seemed particularly suitable for this 

research, too, due to its versatile configurability in custom network environments.  

3.6.1 MulVAL Framework 

MulVAL uses Datalog as its modelling language for the elements in the analysis. The 

main idea behind MulVAL was that most configuration information can be presented 

as Datalog facts, and most attack techniques and OS security semantics can be 

specified using Datalog rules (Ou et al. 2006). The logic inside MulVAL uses XSB to 

evaluate the Datalog interaction rules against the input data. XSB environment was 

chosen for the analysis in MulVAL because it supported tabled resolution of facts (Ou 

et al. 2005).  

Architecturally the framework for the version of MulVAL used in this Thesis is 

described by Ou et al. (2005), and is depicted in Figure 6. 
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Figure 6. MulVAL Framework (Ou et al. 2005) 

 

MulVAL logically evaluates and combines all the various elements: the network 

configuration, system-specific software and services configuration and the user rights 

policies, and then iteratively applies interaction rules on the combined input data. 

The Interaction rules define how the analysis will model the effect of the discovered 

vulnerabilities. Inside the interaction rule set, predicates are declared in both 

Datalog-style and as tabled predicates. The Datalog-style predicates are read from 

the translated vulnerability assessment result file, and the tabled predicates are used 

in the recursive deductions, characteristic to XSB (MulVAL Readme). The interaction 

rules can be customized to accommodate different network environments. 

3.6.2 MulVAL Input Data Types 

MulVAL consumes several individual sources for information on the state and 

configuration of the environment, the elements, all of which are encoded as Datalog 

facts. There are four main types of information that form the input data for MulVAL: 

1) the vulnerabilities that are known to exist and are reported; 2) the vulnerabilities 

that exist the hosts and devices; 3) the outstanding configurations for the software 

and services running on all the hosts in the environment and; 4) the configuration of 

the network, the access-lists for the hosts and their services within the environment. 

Additional information types include user credentials and their use policy in the 
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environment and the interaction rules, which define how all the input types interact 

(Ou et al. 2005). 

For the analysis, the first three input data types are mandatory. MulVAL will require a 

list, a database, of the all the vulnerabilities that exists in the domain of discourse 

that could also exist inside the environment to be analyzed. For this, MulVAL uses its 

own, internal database into which the vulnerability information will be pulled from 

NVD manually using the nvd_sync.sh script. The internal database is used in 

conjunction with the vulnerability assessment result file when the engine will begin 

deducing the existence of possible vulnerabilities and the paths for their potential 

exploitations in between the hosts in the environment. 

Vulnerability scanners such that support credentialed authentication during the 

assessment scans are able to produce result files that contain the elements for the 

input types 2 and 3. The quality and precision of the software and service level 

results for input data type 3 is dependent on the accuracy of the policy, compliance 

or best practices template of the vulnerability scanner, based on which the result will 

be generated. MulVAL supports input files of type 2 and 3 in XML format. More 

specifically, Nessus and OVAL XML file types are supported (MulVAL Readme). 

The analysis can be performed with the just the first three input file types, however, 

the ability to also use additional information types will enable much more precise 

analysis output. For instance, without specifying input data type 4, network 

configuration or, access-lists, MulVAL will assume that each host or device is able to 

connect with every other host or device in the environment. By providing accurate 

host-to-service access-lists, MulVAL will produce much more usable analysis results. 

The two additional input data types include the users and their access policies in the 

network environment and, interaction rules (Ou et al. 2005). 

An example of an interaction rule for a remote exploit of a privilege-escalation 

vulnerability in a service program, represented as a Datalog rule, by Ou et al. (2006): 

 

execCode(Attacker, Host, User) :- 

 networkService(Hpst, Program, Protocol, Port, User), 
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vulExists(Host, VulID, Program, remoteExploit, 
privEscalation),  

 netAccess(Attacker, Host, Protocol, Port). 

 

MulVAL interaction rules, such as above, are written in Prolog form, where the first 

line represents the goal and the following lines represent facts that will satisfy the 

goal. Capitalized letters represent free variables, which can be instantiated with any 

term.  The interaction rule has the following meaning: if a Program, running as User 

on Host as a service, listening on Protocol and Port, contains a vulnerability that is 

remotely exploitable, and whose impact is privilege escalation, and the attacker can 

access the service through network the network, then he can execute arbitrary code 

on the Host as User (Ou et al. 2006.) 

In MulVAL, predicates for input types 2 and 3, are primitive, and they represent 

configuration information reported by vulnerability scanners. Predicates such as 

execCode and netAccess are derived and they are computed from the configuration 

information (Ou et al. 2006).   

3.6.3 MulVAL Analysis and Graph Building Algorithm 

The analysis algorithm in MulVAL is divided in two phases: 1) Attack simulation and 

2) policy checking. In the attack simulation phase, all possible data accesses that can 

result from multistage, multihost attacks are being derive through the Datalog 

program (Ou et al. 2005): 

 

access(P, Access, Data) :- 

dataStore(Data, H, Path), 

accessFile(P, H, Access, Path). 

 

The meaning above  is that, if Data is stored on machine H under Path, and user P 

can access files under the Path, then P can access the Data. The attack simulation 

occurs in the derivation of accessFile, which involves the Datalog interaction rules 

and data inputs from various components of MulVAL. In the policy checking phase, 
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the data access tuples output from the attack simulation phase are compared with 

the given security policy. If access is not allowed by the policy, a violation is reported. 

The following Prolog program is in charge of the policy checking (Ou et al. 2005): 

policyViolation(P, Access, Data) :- 

access(P, Access, Data), 

not allow(P, Access, Data). 

   

For abstractions of the attack paths, MulVAL uses an analysis algorithm, such that 

returns all possible attack paths. To achieve the computational goal, the analysis 

engine must traverse all possible derivation paths. While performing the derivations, 

MulVAL also records every step in the process by utilizing tabled execution. (Ou et al. 

2006).  

For the traversal of all of the derivation paths, another sub-goal is implemented. The 

additional sub-goal will call the assert_trace() function, which, during a successful 

evaluation of a rule, records all successful derivations into a temporary trace file, 

eventually allowing for the logical attack graph to be constructed (Ou et.al, 2006). 

The definition for an attack simulation trace has the following format (Ou et al. 

2006): 

TraceStep ::= because(interactionRule, Fact, 
Conjunct) 

Fact ::= predicate(list of constant) 

Conjunct ::= [list of Fact] 

 

With the addition of the new subgoal, the interaction rule from 3.5.2. now had the 

following presentation (Ou et al. 2006): 

execCode(Attacker, Host, User) :- 

 networkService(Hpst, Program, Protocol, Port, User), 

vulExists(Host, VulID, Program, remoteExploit, 
privEscalation),  

 netAccess(Attacker, Host, Protocol, Port), 
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assert_trace(because('remote exploit of a server 
program', execCode  (Attacker, Host, User), 

 [networkService(Host, Program, Protocol, Port, User), 

vulExists(Host, VulID, Program, remoteExploit, 
privEscalation), 

 netAccess(Attacker, Host, Protocol, Port)])). 

 

Finally, MulVAL’s graph building algorithm is depicted in Figure 7, in which every 

TraceStep term becomes a derivation node in the attack graph. The Fact field in the 

trace step becomes the node’s parent and the Conjunct field becomes its children 

(Ou et al. 2006): 

Input: set 𝜏 containing all the TraceStep terms,  
attacker’s goal 𝐺 

 Output: logical attack graph (𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿, 𝐺). 

 
1. 𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿 ← 0  
2. For each 𝑡 ∈ 𝜏 { 

let 𝑡 = 𝑏𝑒𝑐𝑎𝑢𝑠𝑒(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒, 𝐹𝑎𝑐𝑡, 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡) 
3. Create a derivation node 𝑟 

  𝑁𝑟 ← 𝑁𝑟 ∪ {𝑟} 
  𝐿 ← 𝐿 ∪ {𝑟 → 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒} 

4. Look up 𝑛 ∈ 𝑁𝑑 such that 𝐿(𝑛) = 𝐹𝑎𝑐𝑡, 
5. If such 𝑛 does not exist 

  { 
create a new fact node 𝑛 
𝐿 ← 𝐿 ∪ {𝑛 → 𝐹𝑎𝑐𝑡} 
𝑁𝑑 ← 𝑁𝑑 ∪ {𝑛} 
} 

6. 𝐸 ← 𝐸 ∪ {(𝑛, 𝑟)} 
7. For each fact 𝑓 in 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡 { 
8. Look up fact node 𝑐 ∈ (𝑁𝑝 ∪ 𝑁𝑑) such that 

𝐿(𝑐) = 𝑓, 
9. If such 𝑐 does not exist 

{ 
create a new fact node 𝑐 
𝐿 ← 𝐿 ∪ {𝑐 → 𝑓} 
If 𝑓 is primitive { 𝑁𝑝 ← 𝑁𝑝 ∪ {𝑐}} 

else { 𝑁𝑑 ← 𝑁𝑑 ∪ {𝑐}} 
} 

10. 𝐸 ← 𝐸 ∪ {(𝑟, 𝑐)} 
} 
} 
 

Figure 7. Attack Graph Building Algorithm (Ou et al. 2006) 
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3.6.4 Attack Graph Construction 

The constructed logical attack graph depicts the combinations of different 

vulnerabilities and how they may be put together to conduct a multistage attack in 

an environment in which the assets have dependencies. Figure 8 shows the MulVAL 

architecture of the logical attack graph construction (Ou et al. 2006). 

 

Figure 8. Architecture for the Logical Attack Graph Generator (Ou et al. 2006) 

 

MulVAL can be used to construct an attack graph in two ways. Either 1) running the 

attack-graph generator directly by invoking the graph generation script with an input 

file or; 2) by using adapters to prepare an input file for the attack-graph generator 

(MulVAL Readme). 

In the latter case, an input file will be created after performing a translation on the 

vulnerability assessment result file. The built-in nessus_translate script, for instance, 

will walk the Nessus XML result file and look for vulnerabilities that are listed. The 

script goes through the vulnerability details as to how they are exploitable, their 

CVSS scoring and access complexity, and their existence in the assessed 

environment. Finally, the script will list every discovered services running on the 

hosts in the environment, and how they are reachable from outside and also 

laterally, inside the environment. This information is then translated into MulVAL as 

Datalog clauses, as components to the knowledge base. 
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By default, the attack graph will be generated in .TXT and .XML formats. By 

instructing the graph generator to perform visualization, the graph will be saved also 

in .CSV, .EPS and .PDF formats. 

3.6.5 Grouping Algorithms 

Zhang et al. (2011) find it is quite possible even in relatively small environments that 

the attack graph will become large, contested and visually too dense to interpret. 

According to them, various techniques and approaches have been introduced in past 

research to both, addressing the visualization challenge, and using traditional 

method to produce an attack graph without taking targets’ similarities into account 

(Zhang et al. 2011). 

MulVAL utilizes special algorithms by Zhang et al. designed for creating abstract 

network models for large-scale networks based on network reachability and host 

configuration information. In their work they find that the abstracted models 

dramatically reduce the complexity of the attack graphs by improving the 

visualization but also correcting a possibly distorted quantitative vulnerability 

assessment result (Zhang et al. 2011). 

A caveat presented by Zhang et al. underline that their proposed abstractions are 

suitable for risk assessment on a macroscopic level of an enterprise network. They 

find that abstraction inevitably loses information which in some cases may lead to 

not catching such subtle security breaches that may occur due to, for instance, 

misconfiguration of a single host which is falsely considered similar to a group of 

hosts (Zhang et al. 2011). 

The network abstraction models are applied in three steps: 1) reachability-based 

grouping, 2) vulnerability grouping and 3) configuration-based grouping. 

 

Reachability-based grouping 

In reachability-based grouping, all hosts are being grouped based on their 

reachability information, host access list (hacl). All hosts in the same reachability 

group can be abstracted as a single node, and the grouping is applied to all assets in 
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the same subnet. Algorithm for reachability-based grouping is in Appendix 3 (Zhang 

et al. 2011). 

 

Vulnerability grouping 

In MulVAL, vulnerability grouping is conducted based on the application-level 

identification. Zhan et al. (2011) established that a single host can contain dozens or 

even hundreds of vulnerabilities, all of which may appear in a distinct attack graph to 

further compromise the system. They claim that not all those paths provide unique 

information since many of such vulnerabilities are similar in nature. Zhang et al. 

(2011) also claim that it is more important, at a higher level to know that some 

vulnerability in an application could result in a security breach, rather than 

enumerating all the distinct but similar attack paths, since vulnerabilities in the same 

application are often exploited by the same mechanisms.  

In MulVAL, vulnerability grouping will display the vulnerable applications instead of a 

list of CVE-numbers. The vulnerability grouping algorithm assigns the highest metric 

to indicate aggregated vulnerability score after the grouping, with the ability to alter 

the aggregation method through customization (Zhang et al. 2011). The algorithm for 

vulnerability grouping is in Appendix 4. 

 

Configuration-based grouping 

Configuration-based grouping in MulVAL will iterate over all hosts in the same 

reachability group and record their configuration information. If the discovered 

configuration matches one previously recorded, the new information will not be 

recorded in the set. The result set of the algorithm will only contain unique 

representative hosts for each group of hosts in the same reachability and 

configuration (Zhang et al. 2011). The algorithm for configuration-based grouping is 

in Appendix 5. 
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3.6.6 A Practical Example 

One host in the test network was taken as an example. This server runs as the 

platform for the Information Services Environment (ISE), the internal information 

portal. The platform is a modular object-based publishing environment on top of a 

Windows Server 2003 operating system. Nessus vulnerability scanner detected and 

identified a known vulnerability in one of the services running on the server. After 

running the translation script, the vulnerability information was presented to MulVAL 

with the following clause structure: 

 

vulExists(ISEserver,’CVE-2003-
0352’,windows_2003_server). 

vulProperty('CVE-2003-
0352',remoteExploit,privEscalation). 

cvss(‘CVE-2003-0352’,l). 

networkServiceInfo('ISEserver',windows_2003_server,tc
p,'445',someUser). 

hacl(_,_,_,_). 

 

Looking at the translations more closely; 

vulExists(ISEserver,’CVE-2003-

0352’,windows_2003_server). 

Here, the existence of a vulnerability that was discovered during vulnerability 

assessment is presented as a Datalog fact. This information does not contain detailed 

information on how the vulnerability can be exploited, only that it exists in the host. 

Depending on the method of the utility that performed the assessment, the 

existence may be have been decided based on the version of the discovered service 

or, it may also have been confirmed through functional testing of the service. 

The property information of the discovered vulnerability offer more information on 

the vulnerability's exploitability with regard to access vector and impact type. From 

CVSS v2 severity scoring, also the metric for access complexity is recorded, and the 

respective information is then converted as a Datalog fact into MulVAL: 
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vulProperty('CVE-2003-

0352',remoteExploit,privEscalation). 

cvss(‘CVE-2003-0352’,l). 

The first of the two new Datalog facts defines that the discovered vulnerability is 

prone to being exploited remotely which can then result in privilege escalation. The 

second new fact define that the required access complexity is low. 

Next, the input information of the software and services running in the host are 

translated as Datalog facts. Continuing with the ISE example: 

networkServiceInfo(ISEserver,windows_2003_server,tcp, 

445,someUser). 

The clause structure above defines that a system service is running on host ISEserver, 

uses TCP protocol, listens on port 445 and is being run with someUser privileges. 

Network configuration of the environment, containing router, firewalls, switches and 

their respective broadcast domains are modeled as host access lists HACL. Unless 

specified in the input file, MulVAL assumes each host has connection to every other 

host in the environment. The corresponding Datalog fact for such access list is: 

hacl(_,_,_,_). 

Above, the free variable is used to indicate full connectivity for MulVAL. Should the 

example include more complex evaluation, the free variables would enable the 

recursive use of the same access rule across the whole program.  

 

4 Construction 

4.1 Thesis Test Network 

The test network in this thesis is a semi-isolated environment (Figure 9.) in which 

there are four logical network segments auth, core, ise and monitor. Semi-isolated in 

this case means that logically there is no connection from the outside of the 

perimeter firewall to any of the respective network segments. This is, however, not 
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an explicit condition. The test network environment is constructed in a way that it 

mimics a mission network environment, such that are deployed into different 

operations and such that enables for candidate C2 systems to connect to and 

consume services that are being produced.  

Candidate C2 systems apply for an Information Assurance (IA) assessment before 

they are able to connect. Due to the connection window during the candidate C2 

systems' IA process, there is a possibility that the network environment will become 

exposed to external networks by proxy, and is therefore considered only semi-

isolated. 

Additionally, a separated management network (mgmt) is deployed for all assets in 

the environment to enable maintenance tasks on the assets. The management 

network is separated, in that every asset is equipped with another network interface 

dedicated to management use. The Kernel-based Virtual Machine (KVM) hosts and 

guests do not, however, use kernel isolation or kernel separation in this construction. 

 

Figure 9. Logical depiction of the thesis test network (HMN) 
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4.2 Access-lists 

Table 3 shows the hosts and their respective firewall rules, required for the 

availability of the HMN service set in the four network segments: 

 

Table 3. Thesis Network Host Access-lists 

HOST Network 
segment 

Allowed ports & 
protocols 

   

RADIUS AUTH 1812/UDP, 1813/UDP 

CHAT CORE 5222/TCP, 5223/TCP, 
6667/TCP, 777/TCP, 
9090/TCP, 22/TCP 

DATA CORE 80/TCP, 443/TCP, 22/TCP 

ISE ISE 80/TCP, 8085/TCP, 
137/TCP, 137/UDP, 
138/UDP, 139/TCP, 
445/TCP 

LOG MONITOR 514/UDP, 514/TCP, 
10514/TCP 

SIEM MONITOR 80/TCP, 443/TCP, 22/TCP, 
514/UDP, 514/TCP, 
1514/UDP, 162/UDP, 
12000/UDP, 40001-
40005/TCP*, 40011/TCP*, 
555/UDP*, 6380/TCP*, 
9390/TCP*, 33800/TCP* 

 
* the ports marked with an asterisk are required if the SIEM sensor is being deployed 

as a separate unit instead running all the components in one SIEM installation 

(Alienvault®  USM™ Depoyment Guide). 

 

4.3 Vulnerability Information 

4.3.1 MulVAL statistics 

The vulnerability related information utilized in the MulVAL analysis engine used the 

feed from NVD as the baseline. More specifically, the NVD XML feed with version 

1.2.1 schema.  
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Prior to synchronizing the NVD vulnerability feed, the statistics in NVD page (NVD 

Home) showed: 

 77 607 CVE vulnerabilities 

 356 Checklists 

 249 US-CERT Alerts 

 4 433 US-CERT Vuln Notes 

 10 286 OVAL Queries 

 113 937 CPE Names 

 

The NVD repository and their CVSS and CPE analysis amendments may well be the 

most referenced collection of MITRE’s CVE data, but there has been some scrutiny 

about the completeness of the CVE and NVD, at least from a commercial competitor 

(Risk Based Security, 2015). While being a commercial ad, really, the article questions 

the coverage of MITRE’s CVE dictionary. Due to lack of funding resources for the 

thesis, it was not possible to look into the coverage of the Risk Based Security’s 

VulnDB, or Rapid7’s vulnerability database or any other commercial vulnerability 

databases to find out whether the claim had any grounds. 

It was possible, however, to take a closer look into the contents of the NVD 

repository. The statistics from both NVD and cvedetails.com were put for comparison 

in the Excel chart, in Figure 10. 

 

Figure 10. CVE Vulnerabilities by Year 
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After performing the synchronization script nvd_sync.sh , the total number of 

vulnerabilities reported in the MulVAL’s internal database, nvd_tot, equaled to the 

number of CVE vulnerabilities in the NVD website (NVD Home), as seen from the 

following database query: 

select count(*) from nvd; 
+----------+ 
| count(*) | 
+----------+ 
|    77607 | 
+----------+ 
1 row in set (0.03 sec) 

 

Inside the NVD data, there were some inconsistencies with the CVE records. Some of 

the records were obviously meant for testing purposes, for instance regarding CVE ID 

syntax change (CVE - CVE ID Syntax Change, 13.9.2016). Some were duplicates, or 

records that have wrong id number, or contained incomplete confidentiality, 

integrity or availability impact categorization information, and so forth.  

<entry type="CVE" name="CVE-2014-59156" seq="2014-59156" 
published="2015-01-13" modified="2015-01-13" reject="1"> 

    <desc> 

      <descript source="cve">** REJECT **  DO NOT USE THIS 
CANDIDATE NUMBER. ConsultIDs: CVE-2014-2352.  Reason: This 
candidate is a duplicate of CVE-2014-2352.  The wrong ID was 
used.  Notes: All CVE users should reference CVE-2014-2352 

 instead of this candidate.  All references and descriptions in 
this candidate have been removed to prevent accidental 
usage.</descript> 

    </desc> 

 

Incomplete or redundant or duplicate records, such as the one above, distort the 

statistics of real vulnerabilities and ought to be left out of the calculations. Therefore, 

in Figure 10, also a normalized total number of vulnerabilities nvd_norm was 

presented.  Normalization in this case means filtering out the above mentioned, 

undesired vulnerability records. 
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According to the graph the long-term trend for newly discovered vulnerabilities has 

been on an incline ever since the CVE vulnerabilities have started recording, from 

1999. The most number of vulnerabilities in one year have been recorded in 2014. 

Interestingly, as noted also by Yung-Yu et al. (2011), there is a decline of three-year 

period from 2008 to 2011 where the frequency of newly reported vulnerabilities was 

indeed decreasing before again starting to increase from 2012 onwards. 

The outstanding peak for the year 2014 was found to be caused by well over a 

thousand (1 395) Android OS and Android library based locally exploitable 

vulnerabilities regarding SSL server x.509 certificate verification inability. 

 

4.3.2 OpenVAS statistics 

The GSA component of the OpenVAS architecture displays the statistics of the 

vulnerability feed sources inside the OpenVAS. An example is shown in Figure 11 in 

which four dashboard elements show CVE’s by CVSS severity, CVE’s vulnerabilities by 

year, OVAL definitions by CVSS severity and OVAL definitions by class, respectively. 

The statistics in Figure 11 are from April, 2016. 



58 
 

 

 

Figure 11. Screenshot of OpenVAS GSA SecInfo Dashboard 

 

4.4 Asset Vulnerability Assessment 

The main utility that was used for the majority of the vulnerability assessments in the 

network environment was the Nessus vulnerability scanner. The Nessus Home Feed 

version had a limitation of being able to scan only 16 individual IP addresses, which 

did not affect the scanning of the test network’s assets due to the small number of 

them.  

Where applicable, vulnerability assessments were conducted also with Nexpose, 

OpenVAS and OpenSCAP. While the other utilities performed vulnerability 

assessments, OpenSCAP was instead used to perform compliance checks on the 

Linux-based assets against Red Hat Enterprise Linux 6 Security Technical 

Implementation Guide (STIG) and customized SCAP Security Guide (SSG) checklists to 

look for sub-optimal configuration in the operating system or software components. 

The SIEM system had the capability of running vulnerability scans with the integrated 

OpenVAS vulnerability scanner. This enabled for the presentation of the environment 
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status with regard to vulnerabilities and risk levels and also, to establish an asset 

database for the environment.   

The results of the vulnerability assessment (depicted in Figure 12.) show that the 

Windows-based ISE server contained the highest number of known vulnerabilities. In 

total, Nessus found 177 vulnerabilities with severity ratings of low, medium, high or 

critical and 109 additional conditions that it flagged as informational. In comparison, 

OpenVAS found 387 vulnerabilities with severity ratings of medium, high or critical in 

the same ISE server, along with 30 informational conditions. Nexpose, the scanner 

that was used only with the ISE server, found 142 vulnerabilities that it flagged as 

medium, high or critical. Most of the critical and high level vulnerabilities were 

discovered in the underlying operating system suggesting poor security and patch 

management. 

Statistically the second highest total amount of vulnerabilities was discovered in the  

LOG server that was used for centralized logging. Nessus found 233 vulnerabilities 

with severity rating of low, medium, high or critical and 67 informational conditions. 

OpenVAS was able to find 205 vulnerabilities and 45 informational conditions in the 

LOG server. 

The third highest amount of vulnerabilities and almost similar results and severity 

profile was discovered in the RADIUS server, with vulnerabilities and informational 

results for Nessus and OpenVAS, 229 – 65 and 196 – 226, respectively. 

Based on the vulnerability assessments with Nessus and OpenVAS, CHAT and DATA 

servers were the least vulnerable at least with regard to known vulnerabilities.  In 

CHAT server, Nessus found 7 vulnerabilities of which 5 had medium severity and 2 

had low severity rating. The amount of informational conditions was 61. OpenVAS 

found 8 vulnerabilities of which 3 were high, 5 were medium, and additional 45 for 

info. Similarly, in DATA server, the numbers were 8 in total of which 6 medium and 2 

low and 43 info for Nessus, and 5 in total of which 2 high and 3 medium, and 31 info, 

for OpenVAS. 

The vulnerability assessment in this thesis did not seek to compare the performance 

or the accuracy of the scanners used. The results from Nessus vulnerability 

assessments were the only ones that were further utilized in the MulVAL analysis 
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engine and Nexpose and OpenVAS contributed in providing enriched information for 

the NOC. 

In addition to the vulnerability assessment, SCAP compliance evaluations were 

conducted on the linux-based hosts in search for sub-optimal configurations that 

could affect the security posture of the environment by exposing the hosts as 

potential stepping stones for the malefactors in their campaigns. Two different 

profiles were used for the SCAP compliance evaluations: SSG RHEL6 XCCDF and 

RedHat_6_V1R12_STIG_SCAP XCCDF. 

The SSG and the STIG checklists consisted of 175 and 178 evaluation rules, 

respectively.  The results of the evaluations were generated in both machine 

readable XML format and a regular HTML report. The overall scores are shown in 

Figure 12 as percentage bars. The bars show the relative amount of evaluated rules 

such that matched the ones on the implementation guidelines. 

The host with the highest SCAP evaluation score was the LOG server with relative 

equivalence scores of 71.30 % and 50.86 % for the SSG and STIG checklists, 

respectively. Interestingly the same server contained the highest amount of 

vulnerabilities among the Linux-based hosts. 

While the differences in vulnerability assessments were clear, the configuration 

check indicated almost similar configurations in the underlying operating system and 

the software base. Depicted in Figure 12, the variations for the four hosts are within 

46.86 .. 50.86 for the STIG and 65.90 .. 71.30 for the SSG evaluations. 
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Figure 12. Vulnerability assessment of key assets 

 

4.5 Attack Graph Compilation 

The Nessus vulnerability assessment results were provided as the input data for 

MulVAL to process and to compile the initial attack graph for the environment. The 

access-lists were configured in the MulVAL configuration as they were listed in 4.2. 

Due to the very high amount of vulnerabilities in three of the hosts, and the all-

connecting management network, the attack graph became extremely large. Figure 

13 shows just a small portion of the attack graph for the ISE server. 
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Figure 13. A Portion of the ISE Server Initial Attack Graph 

 

Above, the screenshot shows multiple vertices that produce the possible paths for 

the attacks that can ultimately lead to running arbitrary code in the ISE Server with 

administrative rights. Each vertex was logically deduced by MulVAL engine from the 

Nessus assessment result.  

Table 4 lists only a small portion of the vertices depicted in the Figure 13 graph.  

 

Table 4. Attack Graph Vertices 

1 execCode(iseServer,root) OR 

2 RULE 0 (local exploit) AND 

3 cvss('CVE-2003-0350',l) LEAF 

4 vulExists(iseServer,'CVE-2003-0350',windows_2000,localExploit,privEscalation) LEAF 

5 execCode(iseServer,someUser) OR 

6 RULE 1 (remote exploit of a server program) AND 

7 netAccess(iseServer,tcp,'445') OR 

8 RULE 5 (direct network access) AND 

9 hacl(hmn,iseServer,tcp,'445') LEAF 

10 attackerLocated(hmn) LEAF 
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4.6 Quantitative Risk Analysis 

The MulVAL's quantitative risk assessment algorithm, based on Wang et al. (2008), 

combines the CVSS metrics existing in the discovered vulnerabilities with the attack 

graph to calculate probabilistic risk metrics for the environment network. The script 

for the quantitative analysis requires the input files to contain summarized 

information, either summ_nessus or summ_oval for Nessus and OVAL XML formats, 

respectively, as it will always perform grouping. 

A quantitative risk assessment for the construction was calculated based on the 

attack graph and CVSS scoring which was then presented to the NOC in parallel to 

the other rendered attack graphs.  

Figure 14 – although still greatly reduced in size – shows a portion of a risk assessed 

attack graph for the environment. The use of grouping algorithms, especially 

vulnerability based grouping, clearly enhanced the graph’s usability comparing to the 

one on Figure13. 

 

Figure 14. Attack Graph with Quantitative Risk Assessment 
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5 Use Case “HMN” 

Not having a sponsor the thesis, the assessment for the attack graph integration 

could not be conducted in a real operational environment. Therefore, the usability 

assessment for the construction was carried out with a use case of a joint mission 

network where core services were published for the participating C2 systems to 

consume. 

Harbinger Mission Network (HMN) is a fictitious deployable network-enabled-

capability environment participating in and supporting joint command and control-

lead operations. HMN is a platform for several information services that are actively 

advertised and published throughout the HMN network. C2 systems from 

participating nations can connect to the HMN to cooperate and collaborate in the 

joint missions, consuming the available services as well as publish their own set of 

services for other C2 systems to consume. 

The security posture of the HMN was established from the assessment and 

configuration data of the construction in chapter 4. 

 

5.1 HMN NOC Capabilities 

5.1.1 Security Incident and Event Management (SIEM) System 

The purpose of a Security Information and Event Management (SIEM) system is 

generally to provide centralized management for the collective log-based 

information and correlation of the log data with other information that is gathered 

through various types of data from their respective sources. 

A SIEM system accepts information from numerous types of security related 

information sources, such as devices and sensors, network firewalls and IDS/IPS 

systems, host based IDSs, and is capable of performing normalization and correlation 

of the data it receives through these sources, to build a common view – a 

representation of the state of the environment to a SOC. SIEM will help the SOC to 

perform analytical and forensic investigations to the events that have occurred, it will 
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provide the SOC with tools that provide some level of threat intelligence, which 

together with an asset database, will build to the situational awareness of the 

network environment for an organization. Figure 15 depicts a typical SIEM 

architecture. (Bhatt et al. 2014) 

 

Figure 15. A Typical Security Incident and Event Management (SIEM) System 
Architecture. Quoted from Bhatt et al. (2014). 

 

An Open Source SIEM from AlienVault Inc., OSSIM, was chosen as the SIEM system 

for HMN use in this thesis. OSSIM is an open source variant of the AlienVault's 

commercial SIEM product, USM. OSSIM contains the sensor and SIEM components 

for quick single-tier deployment, in which all the components are installed into a 

single server. For expansion, additional sensors can be later added and deployed into 

the environment. Additionally, OSSIM includes community-developed correlation 

rules for the threat analysis performed in the SIEM, with the ability to create 

customized correlation rules. (AlienVault®, OSSIM vs USM™). 

Plugins are used in OSSIM sensors to extract data from logs produced by different 

data sources, which can then be used to create alarms into the SIEM dashboard. 

OSSIM comes with several built-in plugins for various log formats and provides the 

ability to build plugins for custom specific log formats (Alienvault® USM™ 

Deployment Guide). 
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Host-based Intrusion Detection System (HIDS) component in OSSIM watchguards the 

behavior and state of the Windows-based computer systems the HIDS agent is 

installed on by monitoring and collecting logs, detecting rootkits, monitoring file 

integrity and MS Windows registry integrity. Additionally, HIDS can be run in 

agentless mode in UNIX/Linux hosts and with network devices such as routers and 

firewalls to perform, for instance, configuration integrity checks (Alienvault® USM™ 

Deployment Guide).  

Another feature with the HIDS component with OSSIM is active response that can be 

configured to launch applications and perform actions based on certain triggers (AV 

USM deployment guide)and can also be used to monitor network devices such as 

routers and firewalls and their configuration integrity with agentless operating mode 

(AlienVault® USM™ Deployment Guide). 

In this thesis, OSSIM was used to 1) build an asset database of the environment, 2) 

run vulnerability assessments on the assets with the integrated OpenVAS scanner, 3) 

deploy and manage HIDS agents through management network and 4) monitor one 

network segment for intrusion signatures. For the latter, an additional OSSIM sensor 

was deployed as an IDS sensor. The deployed IDS was configured to use suricata as 

the IDS engine with a customized rule set that was based on the Emerging Threats 

Open rule set, included in OSSIM (AlienVault® OSSIM vs USM™).  

 

5.1.2 Centralized Real-Time Logging System 

One limitation with OSSIM was that the Alienvault logging component is available 

only for the commercial Alienvault USM product. For the construction, an open-

source-based real-time logging system was built to provide the log analysis capability 

in the test network environment, to complement the SIEM system. Requirements for 

the logging components were 1) the ability to collect log messages from networks 

such that were 2) unstructured and that would be recorded at 3) high rate. 

A centralized logging system was implemented with open-source components 

including syslog-ng-ose, Elasticsearch, Logstash and Kibana. 
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Syslog-ng was configured as the log collector capable of high-frequency operation, 

whose sole purpose was to catch all the log messages that were sent towards the 

logging component in the network. The components in the ELK stack (Elasticsearch, 

Logstash, Kibana) were used for structuring, analyzing and presentation of the log 

data. The logging system had the ability to receive any type of log data, and when a 

structure was required for analysis and presentation, it was possible to produce 

one’s own parser for the log data.  

5.1.3 Full Packet Capture and Analysis 

In the HMN network environment, a full packet capturing and indexing analysis was 

implemented as a capability for the NOC to perform analysis over the network traffic. 

The analysis was possible once the initial vulnerability assessment had been 

completed and when both the host-based access lists and the set of required services 

had been studied, so that the NOC was able to establish a baseline for the network 

traffic that was considered normal in the HMN. The actual traffic record and 

metadata index analysis was carried out with a KVM VM instance that had the traffic 

capture and indexing service installed, and with a network interface dedicated to 

recording the traffic. 

Normally, full packet capture would require significant resources just to store the 

network traffic data and a high bandwidth capable tap device. In the HMN use cases, 

however, the traffic was very light, which meant that the utilization of the hardware 

was minimal and that the limited dedicated resources were sufficient. 

 

5.1.4 Vulnerability Feed Update over an Air Gap 

Since the network environment did not have internet connection – direct or proxy – 

the vulnerability definitions were not automatically updated. To manually update the 

vulnerability definitions into MulVAL analysis engine while still maintaining the cross-

domain principle, a unidirectional, one-way data transfer was implemented. 

Unidirectional data transfer means the ability to limit network data to flow only in 

one direction. It is often achieved with information exchange gateways and so-called 
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data diodes in high security implementations involving industrial control systems 

(Jeon & Na, 2016), or components of critical infrastructure, where there are typically 

several security level areas and domains  

The most common form of a data diode is an optical link, in which the physical 

structure of the transmitting laser emitter and the receiving laser detector allows the 

data to pass through in one-way only (Barker & Cheese, 2012). 

A network tap device can be installed between two network devices, switches, 

firewalls or routers as a secure way to connect a network flow monitoring tool to the 

network. Similarly to the data diodes, the traffic is allowed to pass one-way only. In 

tap devices using copper medium, this is accomplished with a break in the path 

between physical Ethernet interfaces’ and the Medium Access Controller (MAC) (Ixia 

White Paper, 2014).  

Typically, network tap devices can be configured into aggregating or non-aggregating 

modes. The aggregating mode enables the device to combine the two full duplex 

network streams of data into a single monitor output. In non-aggregating mode, the 

traffic flow from either of the two devices is copied onto a single monitor output 

(Datacom Systems, Network Taps). Conceptually, this mode of operation enables 

one-way data flow. Figure 16 depicts the functional design of the network tap device 

used in the thesis network (Ixia White Paper, 2014): 



69 
 

 

 

Figure 16. A Network Tap for Copper Medium. Quoted from IXIA White Paper (2014). 

 

Forward error correction mechanisms, such as the Reed-Solomon implementation 

used by Heo et al. (2016) in their security gateway design, are generally used to 

assure that the integrity of the data being transferred in unidirectional applications 

will remain intact. Some implementations such as the Feedback Node, depicted by 

Jeon & Na (2016), have introduced the use of multiple data diodes for data transfer 

assurance, enabling retransmissions of the packets that were lost in transit.  

Due to the simple structure of the network in this construction, a conceptually 

similar setup was achieved with using two raspberry pc's each having their host-

based firewalls configured either to send or to receive, respectively, and a small 

program udpcast to handle one-way packet transfer during the manual NVD Feed 

vulnerability definitions update. 

Udpcast is a program designed to broadcast data to multiple hosts simultaneously. It 

can be applied to a unidirectional data transfer as well, by instructing the program to 

perform a point-to-point asynchronous transmit.  
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Forward error correction in udpcast compensates for the packets lost in transit in a 

way, such that, for every S blocks of data there will be R number of redundant blocks 

and the data is divided among I stripes. Using the command below, udpcast was 

instructed to use unidirectional transfer with limited bitrate and a FEC with S=64, R=6 

and I=8, which allowed for losing 48 subsequent packets and still be able to complete 

the transmission. (Udpcast Documentation)  

udp-sender -f /opt/nvd_feed_data.tar.gz --async --

pointopoint -m 10.0.7.3 --max-bitrate 16k --fec 8x6/64 

 

5.2 HMN Organizational structure 

The fictitious organization for the HMN can be seen in Figure 17. The roles involved 

in the use case – ISSM and ISSO, highlighted in the figure – were tasked to 

watchguard and maintain the cyber security of the HMN with the support of the 

existing NOC capabilities.  

 

Figure 17. ISSM and ISSO Roles in the HMN Use Case 
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Ideally before connecting the candidate C2 system to the HMN network the C2 

system would need to have an Infosec Assurance liaison assigned who, together with 

a Security Officer (SO) or a Security Engineer (SE), would help the ISSM and ISSO to 

establish an initial state, a baseline, of the candidate system’s security posture. This 

would include the vulnerability and configuration assessments and provide ISSM with 

a view on the possible threat increase against HMN through the candidate C2 

system. In this use case however, such process was not mandatory for the candidate 

C2 systems and their security posture remained unknown. Existence of possible 

malware and sub-optimal configuration was simulated through the attack cases in 

the following chapters. 

5.3 Recognized Threats in HMN 

Following threats regarding candidate C2 systems were recognized, such that could 

endanger the HMN. The list is artificially limited for the brevity of this use case. 

1. Known malware is introduced to the HMN environment through a candidate C2 

2. Unknown malware is introduced through candidate C2 and is able to persist in the 

HMN environment 

3. Administrator exposes vulnerabilities by committing configuration errors or through 

poor management of the candidate C2 

4. Devices that connect to HMN are not known due to not having enforced a strict 

device policy 

5. Uncontrolled data exfiltration through newly connected devices and out-of-band 

communication channels 

6. Uncontrolled candidate C2 system modification, changing  services behavior and 

possibly allowing for unauthorized access 

7. Undetected system access due to missing or falsely configured access control 

 

5.4 Planning the Response 

Regardless of not having implemented host valuation or other ISMS (ISO 27001, 

27002 and 27005) risk management methods or controls in the construction, ISE 
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server, RADIUS server and LOG servers were designated as the most critical hosts in 

the environment. 

 

Mitigating 0-day attacks 

The conventional vulnerability assessment conducted with scanners such as those 

listed in chapter 3.3 will only detect known vulnerabilities. In the context of the HMN 

network, the most interesting vulnerabilities became those of which there is no 

previous knowledge. 

In the absence of a sponsor, the operational aspect of the decision making process 

was not included with regard to tasking the NOC. Instead, the functionality of NOC 

was purely technical. As reactive and proactive countermeasures, the NOC decided 

to use methods: 1) reactive firewall rules; 2) full packet capture; and 3) revertation 

scripts of the planned counteractions from chapter 2.2.4.   

Referred to as 0-day or Zero-day vulnerabilities, for instance, by Bilge & Dumitras 

(2012), Wang et al. (2010), Patel & Thaker (2011) and Zhang et al. (2011), are the 

kind of vulnerabilities that are not yet known to the public. Companies that are 

specializing in discovering 0-day vulnerabilities and such that are capable of 

supplying them on an annual basis even have subscription service models for their 

exploitation (Herr, 2016), and have also been reported selling the 0-day details to 

companies and governments (Fung,  2013). 

According to Hutchins et al. (2010), even the use of zero-day exploits by the 

malefactors may be discovered if they are delivered or exploited using a method that 

has been used before. Hutchins et al. (2010) suggest that the ability to revisit the 

attacks and reconstruct intrusions would be particularly useful. Being able to 

recognize patterns or signatures of unorthodox and advanced methods could 

effectively prevent their reuse and would likely increase the required cost of the 

malefactors’ campaigns. (Hutchins et al. 2010). 

In HMN, NOC decided to plan for the mitigative actions against 0-day attacks using 

the configuration information from chapter 4 as the starting point. NOC gathered 

that the vulnerability scanners used in those assessments were of little use. 
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Additionally, NOC used MulVAL to generate probabilistic attack graph and 

implemented reverse logic into the decision making process. In other words, NOC 

decided that the multistage attack that seemed as the most likely attack paths were, 

in fact, the least probable the malefactors would utilize. NOC concluded that the 

malefactors would unlikely risk being seen by using an exploit to a known 

vulnerability as there might be signature for the exploit available. 

NOC used the HMN attack graph in conjunction with the configuration information 

and opted for hardening the core services as thoroughly as possible, following some 

of the models and guidelines of the k-zero day safety, by Wang et al (2010). 

 

5.5 Attack Cases 

5.5.1 Unknown Malware 

In this attack, a previously unknown malware had been introduced into HMN 

through a C2 system. The malware had been able to make its way to and infect the 

ISE server. It was unclear how the initial distribution of the encrypted or obfuscated 

binaries had been delivered to the ISE server.  

The first indicator of the infection was spotted by NOC through the centralized 

logging system several days after they had deployed the HIDS file integrity 

component, sending its daily logs to the log server. The initial run for the malware 

and the delivery of the encrypted executables had to have happened before the HIDS 

deployment. 

Once infected, the malware had launched a process with at least two threads. The 

first thread was actively – yet slowly – scanning for windows-based computers in the 

networks the server had access to. The second thread was used to deobfuscate or 

decrypt the previously planted 36 polymorphic copies of the program in order to 

create persistency and to allow for later remote commands through a reverse 

connection through port 445. Figure 18 shows the file operations for the ISE server 

where the initial indicator, the decryption phase of the malware on September 12th, 

is highlighted with the first vertical bar. 
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Once decrypted, the malware had produced several executable that were identical to 

the size of the first version that was encountered – 92447 bytes. The new 

polymorphic versions of the malware were named randomly, having eight random 

characters and 2 to 3-digit padding or suffix at the end. 

 

Figure 18. File Alterations of a Polymorphic Malware in ISEServer 

 

After the indication NOC was quickly able to isolate the malware having learned its 

propagation attempts in the full packet capture metadata indexer. 

 The remediation actions performed by the NOC consisted of two phases, the effects 

of which can also be seen in the Figure 18 graph. The first remediation step included 

orchestrating an enforcement script, which effectively prevented the malware from 

altering files in the existing filesystem, after which the file integrity database was 

signed for approval, highlighted with the second vertical line in the graph timeline. 

The malware still persisted, but its functionality was now reduced. The second 

remediation step included finding and removing the main process, effectively 

disarming the malware in the ISE Server. 

Since the time of initial infection was unknown, NOC created a manual SCAP-

compatible OVAL-test (Figure 19) that would indicate the presence of the 

encountered malware in a Windows-based system. This information and 

identification signature was then distributed to the C2 that was connected to the 

HMN at the time of the malware discovery. 
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Figure 19. An Excerpt of a Custom SCAP (OVAL) Test for the Polymorphic Malware  

 

In a small environment such as the HMN, the unknown malware attack case 

demonstrated limited benefit from the attack graph analysis of the construction. The 

attack graph did show that a multipath combination was not possible within the 

HMN, which was quite obvious since no other Windows-based machine existed in 

the network. However, this was not immediately known to the NOC, not before the 

malware had been thoroughly investigated. This meant that until the dissection of 

the malware, NOC needed to take preventive measures to ensure the protection of 

the HMN assets and for this purpose the attack graph was well utilized. 

 

5.5.2 Remote Connection Through Side Channel (ircd) 

In this attack, the main utility used for the operational instant messaging system 

(chat) in the HMN environment contained a trojan, a backdoored binary through 

which a malefactor had been able to control the host machine with the same (root) 

privileges that the chat service daemon was running.  

The backdoored version of the chat server was listening on the port 6667, which was 

flagged as legit traffic by the NOC team based on the initial service and vulnerability 

assessments. An attack graph was not available for the chat server, since the server 

was clear of vulnerabilities based on the assessment result and therefore no attack 

paths could be rendered.  



76 
 

 

When a C2 system was connected through node CR (named CRC2) to the HMN, and 

the routing information had been exchanged and configured, the network security 

engineer in charge of the CRC2 soon notified the NOC that they had seen traffic 

through their network towards the HMN chat server, even if they themselves had 

not yet configured their chat clients to use that server.  

During the investigation NOC had the advantage of relatively accurate time window 

in which the event had occurred. The time window together with the relevant IP 

information from the CRC2 network engineer, NOC was rather quickly on top of the 

specific time of the event. In the SIEM system, they found nothing out of the ordinary 

in the specific timeframe and IDS logs.  

In the packet capture metadata, on the other hand, the NOC was able to revisit the 

specific time window and they were able to go through the specific TCP session. NOC 

immediately applied a firewall rule to the perimeter firewall to prevent further 

connections to the destination IP that was discovered. 

The NOC were able to discover that the server daemon was indeed backdoored, and 

that there was no patch available that would remediate its further exploitation. The 

HMN requirement that the instant messaging had to be available through TCP port 

6667 forced the NOC to search for another form of mitigation. 

Lacking any attack graph analysis for chat server NOC decided that isolating the 

attacker to just to the chat server required the host-based (iptables) firewall to 

prevent outgoing connections to the other network segments, which was then 

enforced with a SCAP XCCDF evaluation rule with forced remediation, resulting in an 

iptables rule being inserted into the OUTPUT rule chain. 

This did not however, remove the remote access to the backdoored daemon. 

Knowing only one IP address from which the remote connection had been 

established was not sufficient. During the further investigation NOC was able to 

discover that the backdoor triggering packet contained letters “QQS”, which were 

not seen in any of the subsequent packets in the session data. The NOC then ended 

up implementing a remediation script, very specific to the particular backdoor that 

enforced an iptables rule to block incoming TCP packets through port 6667 that 

contained the signature “QQS”,  
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iptables -I INPUT 3 –i ens3 -m state --state NEW –p 

tcp --dport 6667 –m string  --algo bm --string “QQS” 

–j DROP 

 

This effectively prevented the further exploitation of the backdoor regardless of the 

source IP address. 

Similarly to the unknown malware attack case, NOC was unable to remove the binary 

that was backdoored and they had to implement mitigative actions such that 

increased the resiliency of the server, in which the backdoor persisted. In this attack 

case no attack graph analysis was readily available for the chat server since the 

vulnerability assessment did not find vulnerabilities in the server.  

Since the MulVAL utility does allow for versatile customization, the NOC were able to 

create an attack graph for chat server for later use. In the Nessus translated input file 

they simply added a custom line describing the newly discovered backdoor and the 

privileges the daemon was being run with (root).  

The new attack graph then added to the resilience of the chat server because after 

visualizing the new graph NOC noticed that they had only enforced the string based 

drop rule to the core network interface (ens3), but the backdoor could still be 

exploitable through management network. The NOC therefore expanded the firewall 

rule to also include the management network. 

 

5.5.3 Data Exfiltration using ICMP echo requests and DNS requests 

In this attack data from was being exfiltrated inside what appeared like ICMP ping 

requests and DNS queries towards an outside IP address over Side Channel 

connection. The NOC operator had not noticed anything out of the ordinary during 

the overwatch of the network traffic profile. 

The data exfiltration was carried out using two phases: 1) first by sending the data to 

an undocumented core network IP address using ICMP protocol. A rogue device had 

been installed into the core network and was functioning as the receiving host. The 
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receiver compiled the received data and in turn started to send the data using DNS 

queries through a mobile access point uplink, the receiver was attached to.  

A backdoor that existed in the chat server (attack case 5.5.2) had allowed for a 

remote access to the chat server with privileged rights. Even though the NOC had 

been successful in remediating the backdoor exploitation in 5.5.2 the attacker had 

been able to build a script that was slowly sending the chat server internal user 

database to a receiver in encoded and subsequent ICMP echo requests.  

It seems the NOC was able to discover the ongoing exfiltration by chance. The SIEM 

system had discovered a new device during an automated asset sweep, but the 

discovery had been left unnoticed until the NOC was starting to perform a 

vulnerability assessment on another host. 

Having only recently finished the chat server backdoor case, the discovery of a new 

device immediately triggered a thorough investigation during which the lateral ICMP 

requests were also discovered from within the packet capture indexer. 

The echo requests were slowed down to not raise attention in the environment. The 

ICMP “ping” was performed every one second plus a randomized delay of 0 to 8 

seconds. During the investigation NOC was able to discover the variance from within 

the centralized logging system, where luckily the chat server was configured to send 

all the kernel-level logs, including firewall logs. The discovered time variance is 

depicted in Figure 20. 

The rogue device was disconnected from the network, but kept running to further 

examine the attack case. The device was sending data, assumingly the partially 

gathered user database, encrypted within DNS queries over UDP port 53. 
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Figure 20. ICMP Exfiltration Time Variation 

 

In this attack case, the attack graph provided little use to the NOC. New device 

insertion by an insider threat actor in this attack case was only detectable through 

the SIEM system.  

The attack case did eventually improve the future resiliency of the HMN network, 

since after this attack case, NOC implemented audit logging on every host so that in 

the future, every console command would be securely sent do the centralized 

logging system which the NOC would be able to monitor for specific commands such 

that are common to malefactors when arriving at new, undiscovered hosts. 

 

6 Conclusions 

Taking into account that the construction and its usability assessments were in fact 

built and performed by the same individual, the conclusions are not entirely 

objective.  

Despite not having the opportunity of a sponsor for the thesis and thus not being 

allowed to test the construction in a truly operational environment to enable course 
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of action planning, the construction was considered useful in the context of this 

research. 

Through the construction the research was able to support a very small NOC – some 

might even refer to as a One-man SOC – in measuring the overall security of a limited 

set of hosts in a semi-isolated network. The integration of the attack graph analysis 

system was successful and the construction was able to provide additional 

information for the NOC operator with respect to the measurement and analysis of 

the static-like security posture of the semi-isolated environment, utilized particularly 

in the HMN use case. MulVAL provided the ability to analyze the overall security 

combining vulnerability information with the underlying service and network-level 

interdependencies, and to create visual presentation for the analysis.  

Additionally, traditional procedures for maintaining software and security updates 

could benefit for the cyclic analysis of the data, although the processed data would 

likely be more useful to integrate as machine-readable .xml as opposed to a 

rendered visualization. That way the data would be more convenient to refine or 

restructure for various different uses, manual or automated. 

During the attacks, the construction provided means to rapidly react to them, 

allowing for the actions to intercept lateral expansion or to cut before the next phase 

of the attack could take place. 

Before the potential attacks, the most vulnerable assets were identified. The 

mitigation planning was possible to be conducted then based on the probabilistic 

analysis and quantitative risk assessment by MulVAL. Being able to visualize the most 

probable attack steps and to use that information to prioritize the mitigative actions 

was beneficial.  

In the real-world operational networks, however, especially when the state-

sponsored malefactor are involved, the attack graphs representing the most likely 

exploited vulnerabilities and the respective attack paths can be misleading. Normally, 

one would think the attackers would always be looking for the easiest and least-cost 

attack path in every environment and every situation. While in contrast, state-

sponsored malefactors will likely build their strategy on reverse logic and decide that 

what would seem as the most sensible attack path is in fact unusable due to the 
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existence of the defender. Similarly, following the more expensive and resource 

consuming attack path could be selected as the most convenient strategy. This would 

render the most expensive attack path the most likely, which of course would create 

completely different attack graph visualization.  

The use cases in this research were overall very simple, as was the environment they 

were tested in. Still, three of the servers running inside the HMN network contained 

so many known vulnerabilities that the rendered attack graph visualizations became 

challenging for the NOC to read, and they were practically unusable without applying 

MulVAL’s grouping algorithms on them. Two of the servers contained practically no 

known vulnerabilities, so they didn’t constitute to any of the graphs.  

However, again in an operational environment, the unknown vulnerabilities were 

more interesting than the known vulnerabilities. While the two servers appeared 

having no vulnerabilities, they were still configured similarly to the other two that 

contained the highest number of the vulnerabilities. As with the known 

vulnerabilities, the underlying configuration could allow also for the exploitation of 

the currently unknown, zero-day vulnerabilities. 

The construction proved useful in this regard as well: Even if the CVSS-scoring-based 

probabilistic attack graphs did not render for an unknown malware, the underlying 

dependencies resulting from the host and network configuration still allowed for 

basic attack graph block visualization in text format. Instead of weighing it with 

characteristics that didn’t exist, the graph depicted the logical connections, which in 

turn allowed for mitigation planning against zero-day attacks. The practical use cases 

demonstrated the usability of orchestrated counteractions that were easily deployed 

through the Security Content Automation Protocol and the OpenSCAP utility.  

OpenSCAP supported manually created checklists, which turned out as very efficient 

and resource preserving way of checking for malware in the HMN unknown malware 

use case in which new signature had to be created manually by the ISSO as the 

malware was unknown to any AV. Additionally, this specific use case simulated a 

situation involving a legacy system where such AV scanner was not possible to install. 
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OpenSCAP also allowed for the automated XCCDF compliance checks to be reported 

centrally to the logging system, and a deviation from a known-good configuration set 

was quickly detected. 

The SIEM system of the construction provided another level of visibility over the 

environment, allowing for the NOC operator to supervise the network for signature-

based intrusions and perform automated vulnerability scanning for the assets as well 

as discovery of new assets. 

In parallel to MulVAL, another tool that was most valuable to the NOC was the full 

packet capture, indexing and analysis system that allowed the NOC to very 

effectively supervise all the sessions, protocols and ports, packets and databytes, 

even files that were being transferred in the network. It also provided the NOC 

operator the possibility to chronologically revise the network-utilizing attacks. 

Through the construction it was possible for the NOC to monitor the use of the 

allowed services also laterally. For instance in the HMN exfiltration attack case where 

the ICMP echo requests were not a violations per se, the incident was escalated by 

the NOC as an anomaly based on the full packet capture metadata indexing data.  

The construction applied in this research provided methods for a NOC operator to 

protect a small operational environment and also to improve its security poster, 

resulting in a narrower and more confined threat landscape for the malefactors. In 

that regard, the work conducted in this research will likely assist in solving some of 

the real-world operational network problems in the future.  

Decision makers involved in network-centric operations should possess at least 

moderate knowledge of how cyber operations are conducted especially with regard 

to state-sponsored actors’ involvement, so that the resiliency of the cyber operations 

would not be as heavily depending on the availability of the subject matter experts. 

Automation of network-enabled defenses can help only so much, and conventional 

methods will still be required for resilience and persistence in the network-centric 

operations. 

Lastly, the attack graph analysis contributed to the planning of some level of tactical 

and operational level countermeasures, which ideally could allow for the creation of 

unique and practical “playbook” for the cyber operation defense decision makers.  
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6.1 Areas of Future Research 

To further develop the resiliency of operational networks, the many applications of 

Artificial Intelligence should be intensively studied especially with regard to 

autonomous systems in cyber defense and cyber offense. Dynamic learning abilities, 

self-healing and dynamically adapting networks and other autonomous capabilities 

leveraging artificial intelligence would be intriguing. 

In their work, Alsaleh & Al-Shaer (2011) presented a framework combining regular 

SCAP-based host configuration compliance checks with network configuration 

analysis such as network path compliance, and transformed as logical objects to be 

presented as Prolog facts. Areas such as this, especially when utilizing the machine 

readable outputs for example for expert systems, learning systems, semi-

autonomous defense systems could also be interesting. 

 

 

  



84 
 

 

References 

Alienvault® USM™ Deployment Guide. Accessed on 18.10.2016. Retrieved from 
https://www.alienvault.com/documentation/resources/pdf/usm-
deploymentguide.pdf. 

AlienVault®, OSSIM vs USM™ whitepaper. Accessed on 18.10.2016. Retrieved from 
https://www.alienvault.com/resource-center/white-papers/ossim-vs-usm. 

Alsaleh, M. N & Al-Shaer, E. SCAP Based Configuration Analytics for Comprehensive 
Compliance Checking. In proceedings on the 4th Symposium on Configuration 
Analytics and Automation (SAFECONFIG), 2011. 

Argus CyberSecurity Lab, Kansas State University. 2012. MulVAL v1.1: A logic-based, 
enterprise network security analyzer. Source code. Retrieved from 
http://www.arguslab.org/mulval.html. 

Asgarli, E. & Burger, E. 2016. Semantic Ontologies for Cyber Threat Sharing 
Standards. In proceedings on IEEE Symposium on Technologies for Homeland 
Security (HST). 

Balabit PLC. 2016. The syslog-ng Open Source Edition 3.4 Administrator Guide, 
Accessed on 5.11.2016. Retrieved from https://www.balabit.com/documents/syslog-
ng-ose-3.4-guides/en/syslog-ng-ose-guide-admin/pdf/syslog-ng-ose-guide-
admin.pdf.  

Barker, R.T. & Cheese, C.J. 2012. The Application of Data Diodes for Securely 
Connecting Nuclear Power Plant Safety Systems to the Corporate IT Network. 7th IET 
International System Safety Conference, incorporating the Cyber Security. 

Bhatt, S; Manadhata, P.K; Zomlot, L. 2014. The Operational Role of Security 
Information and Event Management Systems. IEEE Security & Privacy, Volume: 12, 
Issue: 5, pp. 35-41. 

Bilge, L and Dumitras, T. 2012. Before We Knew it: An Empirical Study of Zero-Day 
Attacks in the Real World. In proceedings on the 2012 ACM conference on Computer 
and communications security. pp 833-844. 

Bratko, I. 2011. Prolog Programming for Artificial Intelligence. Harlow: Pearson 
Education Limited, Fourth Edition. 

Casenove, M. 2015. Exfiltrations Using Polymorphic Blending Techniques: Analysis 
and Countermeasures. In Proceedings on the 7th International Conference on Cyber 
Conflict. pp. 217-230. 

Casola, V; De Benedicts,  A; Rak, M. 2015. Security Monitoring in the Cloud: An SLA-
Based Approach. In proceedings on the 10th International Conference on Availability, 
Reliability and Security (ARES). pp. 749-755. 

CERT Advisory. 1988. Computer Emergency Response Team, Carnegie Mellon 
University. CA-1988-01: ftpd Vulnerability. Accessed on 10.11.2014. Retrieved from 
http://www.cert.org/historical/advisories/CA-1988-01.cfm. 

 



85 
 

 

Colmerauer, A; Roussel, P. 1992. The birth of Prolog. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7438&rep=rep1&type
=pdf. 

Conti, G; Nelson, J; Raymond, D. 2013. Towards a Cyber Common Operating Picture. 
In Proceedings on the 5th International Conference on Cyber Conflict. pp. 279-296. 

CVE – Common Vulnerabilities and Exposures. About CVE. Accessed on 7.12.2015. 
Retrieved from https://cve.mitre.org/about/. 

CVE – CVE ID Syntax Change. Updated 13.9.2016. Accessed on 9.10.2016. Retrieved 
from https://cve.mitre.org/cve/identifiers/syntaxchange.html. 

CVSS – A Complete Guide to the Common Vulnerability Scoring System Version 2.0. 
FIRST.org, Inc. Accessed on 11.11.2015. Retrieved from 
http://www.first.org/cvss/v2/guide. 

Dandurand, L; Serrano. O.S. 2013. Towards Improved Cyber Security Information 
Sharing. In Proceedings on the 5th International Conference on Cyber Conflict. pp. 9-
25. 

Datalog User Manual. 2004. Version 2.2. The MITRE Corporation. 
http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html.  

Datacom Systems Inc. Network Taps. Accessed on 16.10.2016. Retrieved from 
http://datacomsystems.com/products/network-taps. 

Daud, N.I; Bakar, K.A.A; Hasan, M.S. 2014. A Case Study on Web Application 
Vulnerability Scanning Tools. In proceedings on the Science and Information 
Conference (SAI). pp. 595-600. 

Dodig-Crnkovic, G. 2010. Constructive Research and Info-Computational Knowledge 
Generation In Model-Based Reasoning in Science and Technology. Studies in 
Computational Intelligence. Volume 314. pp 359-380. 

Dressler, J, Moody, W, Bowen, Calvert L. III; Koepke, J. 2014. Operational Data 
Classes for Establishing Situational Awareness in Cyberspace. In Proceedings on the 
6th International Conference on Cyber Conflict. pp.175-186. 

FireEye®. 2014. Special Report APT28: A Window into Russia’s Cyber Espionage 
Operations? Accessed on 2.5.2016. Retrieved from 
https://www2.fireeye.com/Services_Campaign_APT28_EMEA.html. 

FireEye®. 2015. Special Report APT29: Hammertoss: Stealthy Tactics Define a Russian 
Cyber Threat Group. Accessed on 2.5.2016. Retrieved from 
https://www2.fireeye.com/rs/848-DID-242/iamges/rpt-apt-29-hammertoss.pdf. 

FireEye®. 2015. Special Report APT30 and the Mechanics of a Long-Running Cyber 
Espionage Operation. Accessed on 2.5.2016. Retrieved from 
http://www2.fireeye.com/rs/fireye/images/rpt-apt30.pdf. 

F-Secure® Threat Report. 2015. Accessed on 2.5.2016. Retrieved from 
https://secure.f-secure.com/threat_report.html. 

 



86 
 

 

Fung, Brian. 31.8.2013. The NSA hacks other countries by buying millions of dollars’ 
worth of computer vulnerabilities. The Washington Post article. Accessed on 
22.10.2016. Retrieved from https://www.washingtonpost.com/news/the-
switch/wp/2013/08/31/the-nsa-hacks-other-countries-by-buying-millions-of-dollars-
worth-of-computer-vulnerabilities/.  

Gadelrab, M, S & Ghorbani, A. 2012. A New Framework for Publishing and Sharing 
Network and Security Datasets. In SC Companion: High Performance Computing, 
Networking, Storafe and Analysis (SCC). pp. 539-546. 

Gallon, L; Bascou, Jean-Jacques. 2011. CVSS Attack Graphs. In Proceedings of the 7th 
International Conference on Signal Image Technology & Internet-Based Systems. pp. 
24-31. 

Guarino, A. 2013. Autonomous Intelligent Agents in Cyber Offence. In Proceedings on 
the 5th International Conference on Cyber Conflict. pp. 377-389. 

Hammersley, B. 4.2.2015. Why you should be a e-resident of Estonia. The Wired 
Magazine article. Accessed on 6.7.2016. Retrieved from 
http://www.wired.co.uk/article/estonia-e-resident.  

Haaster, Jelle van. 2016.  Assessing Cyber Power. In Proceedings on the 8th 
International Conference on Cyber Conflict. pp. 7-22. 

Heinl, Caitríona H. 2014. Artificial (Intelligent) Agents and Active Cyber Defence: 
Policy Implications. In Proceedings on the 6th International Conference on Cyber 
Conflict. pp. 53-67. 

Heo, Y; Kim, B; Kang, D; Na, J. 2016. A Design of Unidirectional Security Gateway for 
Enforcement Reliability and Security of Transmission Data in Industrial Control 
Systems. In proceedings on the 8th International Conference on Advanced 
Communication Technology (ICACT). pp. 310-313. 

Hernandez-Ardieta, J.L; Tapiador, J.E; Suarez-Tangil, G. 2013.  Information Sharing 
Models for Cooperative Cyber Defence. In Proceedings on the 5th International 
Conference on Cyber Conflict. pp. 63-91. 

Herr, T. 2016. Malware Counter-Proliferation and the Wassenaar Arrangement. In 
Proceedings on the 8th International Conference on Cyber Conflict. pp. 175-190. 

Hlyne, C. N. N; Zavarsky, P; Butakov, S. 2015. SCAP Benchmark for Cisco Router 
Security Configuration Compliance. In proceedings on the 10th International 
Conference for Internet Technology and Secured Transactions (ICITST). pp. 270-176. 

Hutchins, E. M; Cloppert, M. J; Amin, R. M. 2016. Intelligence-Driven Computer 
Network Dedense Informed by Analysis of Adversart Campaigns and Intrusion Kill 
Chains. Accessed on 18.5.2016. Retrieved from 
http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/document
s/LM-White-Paper-Intel-Driven-Defense.pdf 

Im, Sun-young; Shin, Seung-Hun; Ryu, K.Y. 2016. Performance Evaluation of Network 
Scanning Tools with Operation of Firewall. In proceedings on the 8th International 
Conference on Ubiquitious and Future Networks (ICUFIN).  pp.876-881. 



87 
 

 

Ingols, K; Chu, M; Lippmann, R; Webster, S; Boyer, S. 2009. Modeling Modern 
Network Attacks and Countermeasures Using Attack Graphs. In Computer Security 
Applications Conference. pp. 117 -126. 

Introduction to Making Security Measurable. The MITRE Corporation. Accessed on 
3.3.2016. Retrieved from 
https://makingsecuritymeasurable.mitre.org/about/index.html. 

ISO/IEC 13211-1:1995. Information Technology – Programming Languages – Prolog – 
Part 1: General Core. April 20th 1995. 

Ixia. 2014. Secure, Unidirectional Data Flow with Network Taps. White Paper 915-
6894-01 Rev. A. Accessed on 16.10.2016. Retrieved from 
https://www.ixiacom.com/sites/default/files/resources/whitepaper/915-6894-01-
secure-unidirectional-data_flow-network-taps.pdf. 

Jakobson, G. 2013. Mission-Centricity in Cyber Security: Architecting Cyber Attack 
Resilient Missions. In Proceedings on the 5th International Conference on Cyber 
Conflict. pp. 357-375. 

Jeon, Boo-Sun & Na, Jung-Chan. 2016. A Study of Cyber Security Policy in Industrial 
Control System Using Data Diodes. In proceedings on 8th International Conference 
on Advanced Communication Technology (ICACT). pp. 314-317. 

Kalutarage, Harsha K; Shaikh, Siraj A; Zhou, Q; James, Anne E. 2012. Sensing for 
Suspicion at Scale: A Bayesian Approach for Cyber Conflict Attribution and Reasoning. 
In Proceedings on the 4th International Conference on Cyber Conflict. pp. 393-412. 

Kamhoua, C; Martin, A; Tosh, D; Kwiat, Kevin A; Heitzenrater, C; Sengupta, S. 2015. 
Cyber-Threats Information Sharing in Cloud Computing: A Game Theoretic Approach. 
In proceedings on the 2nd International Conference on Cyber Security and Cloud 
Computing (CSCloud). pp. 382-389. 

Kaur, R; Singh, M. 2014. Efficient hybrid technique for detecting zero-day 
polymorphic worms. In proceedings on the 2014 IEEE International Advance 
Computing Conference (IACC). pp.95-100. 

Koch, R; Golling, M. 2013. Architecture for Evaluating and Correlating NIDS in Real-
World Networks. In Proceedings on the 5th International Conference on Cyber 
Conflict. 335-355. 

Koch, R; Golling, M. 2016. Weapon Systems and Cyber Security – A Challenging 
Union. In Proceedings on the 8th International Conference on Cyber Conflict. pp. 
191-204. 

Koch, R; Rodosek, G.D. 2013. The Role of COTS Products for High Security Systems. In 
Proceedings on the 4th International Conference on Cyber Conflict. pp. 413-427. 

Koch, R. 2011. Towards Next-Generation Intrusion Detection. In Proceedings on the 
3rd International Conference on Cyber Conflict. pp.151-168. 

 



88 
 

 

Kornmaier, A; Jaouën, F. 2014. Beyond technical data – a more comprehensive 
Situational Awareness fed by available Intelligence Information. In Proceedings on 
the 6th International Conference on Cyber Conflict. pp. 139-155. 

Kotenko, I, Chechulin, A. 2013. A Cyber Attack Modeling and Impact Assessment 
Framework. In Proceedings on the 5th International Conference on Cyber Conflict. 
pp.119-143. 

Labro, E. and Tuomela, T-S. 2003. On bringing more action into management 
accounting research: process considerations based on two constructive case studies. 
European Accounting Review. Vol. 12 No. 3. pp. 409-42. 

Linda, O; Vollmer, T; Manic, M. 2009. Neural Network Based Intrusion Detection 
System for Critical Infrastructures. In 2009 International Conference on Neural 
Networks. 

Lu, L; Safavi-Naini, R; Hagenbuchner, M; Susilo, W; Horton, J. 2009. Ranking Attack 
Graphs with Graph Neural Networks. In The 5th Information Security Practices and 
Experience Conference. 

Lukka, K. 2000. The Key Issues of Applying the Constructive Approach to Field 
Research. In Reponen, T. (ed.). Management Expertise for the New Millenium. In 
Commemoration of the 50th Anniversary of the Turku School of Economics and 
Business Administration. Publications of the Turku School of Economics and Business 
Administration, Series A-1:2000. pp.113-128. 

Maconachy, V. W; Schou, C. D; Ragsdale D; and Welch, D. 2001. A Model for 
Information Assurance: An Intergrated Approach. In Proceedings of the 2001 IEEE 
Workshop on Information Assurance and Security. United States Military Academy. 
Accessed on 3.2.2015. Retrieved from 
http://grothoff.org/christian/teaching/2007/3704/w2c3.pdf 

Mandiant® M-Trends. 2015. A View from the Front Lines. Accessed on 2.5.2016. 
Retrieved from https://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf. 

Mandiant® APT1. 2013. Exposing One of China’s Cyber Espionage Units. Accessed on 
2.5.2016. Retrieved from 
https://intelreport.mandiant.com/Mandiant_APT1_Report.pdf. 

Marchetti, M; Pierazzi F; Guido, A; Colajanni, M. 2016. Countering Advanced 
Persistent Threats through Security Intelligence and Big Data Analytics. In 
Proceedings on the 8th International Conference on Cyber Conflictp. pp. 243-262. 

Mell, P; Scarfone, K; Romanosky, S. 2007. A Complete Guide to the Common 
Vulnerability Scoring System Version 2.0. Accessed on 16.11.2014. Retrieved from 
https://www.first.org/cvss/v2/guide.  

Mepham, K; Ghinea, G; Louvieris, P; Clewley, N. 2014. Dynamic Cyber-Incident 
Response. In Proceedings on the 6th International Conference on Cyber Conflict. pp. 
121-137. 

Mohammed, M.M.Z.E.; Chan, H.A; Ventura, N.; Pathan, A-S.K. 2013. An Automated 
Signature Generation Method for Zero-Day Polymorphic Worms Based on Multilayer 



89 
 

 

Perceptron Model. In proceedings on the International Conference on Advanced 
Computer Science Applications and Technologies. pp 450-455. 

Morris, R.T. 928 F.2D 504. 1991. Decision. United States Court of Appeals. Accessed 
on 18.11.2014. Retrieved from 
http://morrisworm.larrymcelhiney.com/morris_appeal.txt. 

Mulazzani, F; Sarcia, Salvatore A. 2011. Cyber Security on Military Deployed 
Networks. In Proceedings on the 3rd International Conference on Cyber Conflict. pp. 
13-28. 

Munir, R; Disso, J.P; Awan, I; Mufti, M. R. 2013. A Quantitative Measure of the 
Security Risk Level of Enterprise Networks. In proceedings on the 8th International 
Conference on Broadband and Wireless Computing, Communications and 
Applications (BWCCA). pp. 437-442. 

Nessus Compliance Checks – Tenable Network Security. Accessed on 12.10.2016. 
Retrieved from https://support.tenable.com/support-
center/nessus_compliance_checks.pdf. 

Nessus v6 SCAP Assessment – Tenable Network Security. Accessed on 21.10.2016. 
Retrieved from 
http://static.tenable.com/documentation/Nessus_v6_SCAP_Assessments.pdf.  

Nessus® Home. Accessed on 8.7.2016. Retrieved from 
http://www.tenable.com/products/nessus-home. 

Nessus Professional – The Most Widely-Deployed Vulnerability Assessment Solution. 
Accessed on 8.7.2016. Retrieved from http://www.tenable.com/products/nessus-
vulnerability-scanner/nessus-professional. 

Nessus Plugins. Accessed on 8.7.2016. Retrieved from 
http://www.tenable.com/plugins/. 

Nexpose. Accessed on 8.7.2016. Retrieved from 
https://www.rapid7.com/products/nexpose/ 

NIST National Vulnerability Database, NVD. NVD Home. Accessed on 6.7.2016. 
Retrieved from https://nvd.nist.gov/.  

NIST National Vulnerability Database, NVD. Data Feed. Accessed on 6.7.2016. 
Retrieved from https://nvd.nist.gov/download.cfm. 

OpenSCAP. OpenSCAP Features. Accessed on 8.10.2016. Retrieved from 
https://www.open-scap.org/features/. 

OpenSCAP User Manual, version 1.0. Accessed on 2.9.2016. Retrieved from 
https://static.open-scap.org/openscap-1.0/oscap_user_manual.html. 

OpenVAS. Open Vulnerability Assessment System, About OpenVAS. Accessed on 
8.7.2016. Retrieved from http://www.openvas.org/about.html. 

OpenVAS Architecture Overview. Accessed on 8.7.2016. Retrieved from 
http://www.openvas.org/software.html#architecture_overview. 



90 
 

 

Ou, X; Boyer, Wayne F; McQueen, Miles A. 2006. A Scalable Approach to Attack 
Graph Generation. In proceedings of the 13th ACM CCS Conference. pp 336-345. 

Ou, X; Govindavajhala, S; Appel, A.W. 2005. MulVAL: A Logic-based Network Security 
Analyzer. 14th USENIX Security Symposium. 

OVAL®. Open Vulnerability and Assessment language. The MITRE Corporation, About 
OVAL. Accessed on 9.1.2015. Retrieved from https://oval.mitre.org/about. 

Patel, R and Thaker, C. 2011. Zero-Day Attack Signatures Detection Using Honeypot. 
In proceedings on International Conference on Computer Communication and 
Networks. pp 79-85. 

Pfenning, Frank. 2007. Logic Programming, Lecture Notes, Carnegie Mellon 
University, Pennsylvania. Retrieved from 
http://www.cs.cmu.edu/~fp/courses/lp/index.html.  

Raymond, D; Conti, G; Cross, T; Fanelli, R. 2013. A Control Measure Framework to 
Limit Collateral Damage and Propagation of Cyber Weapons. In Proceedings on the 
5th  International Conference on Cyber Conflict. pp. 181-197. 

Risk Based Security. 2015. CVE/NVD: The High Price of ‘Free’. Accessed on 12.7.2016. 
Retrieved from https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%20-
%20The%20High%20Price%20Of%20Free.pdf 

Security Content Automation Protocol. SCAP. Accessed on 2.9.2016. Retrieved from 
http://scap.nist.gov/index.html. 

SCAP Specifications. SCAP 1.0. Accessed on 9.10.2016. Retrieved from 
https://scap.nist.gov/revision/1.0/index.html. 

Smaill, Alan. 2015. Logic Programming: Semester 1, Lecture Notes. University of 
Edinburgh. http://www.inf.ed.ac.uk/teaching/courses/lp.  

Spafford, Eugene H. 1988. The Internet Worm Program: An Analysis. Purdue 
University Technical Report. Accessed on 12.7.2016. Retrieved from 
http://spaf.cerias.purdue.edu/tech-reps/823.pdf. 

Tapscott, D; 1997. The digital economy: promise and peril in the age of networked 
intelligence. New York: McGraw-Hill. 

Tosh, D; Sengupta, S; Kamhoua, C; Kwiat, K; Martin, A. 2015. An Evolutionary Game-
theoretic Framework for Cyber-threat Information Sharing. In proceedings on the 
IEEE International Conference on Communications (ICC). pp. 7431-7346. 

Tyugu, E. 2011. Artificial Intelligence in Cyber Defence. In Proceedings on the 3rd 
International Conference on Cyber Conflict. pp. 95-106. 

Tyugu, E. 2012. Command and Control of Cyber Weapons. In Proceedings on the 4th 
International Conference on Cyber Conflict. pp. 333-343. 

Udpcast. Introduction. Accessed on 16.10.2016. Retrieved from 
https://www.udpcast.linux.lu/. 

Wang, L; Jajodia, S; Singhal, A. 2007. Measuring the Overall Security of Network 
Configurations Using Attack Graphs. In proceedings on the 21st Annual IFIP WG 11.3 



91 
 

 

Working Conference on Data and Applications Security. Redondo Beach, CA. USA. pp 
98-112. 

Wang, L; Islam, T; Long, T; Singhal, A; Jajodia, S. 2008. An Attack Graph-based 
Probabilistic Security Metric. In proceedings of the 22nd Annual IFIP WG 11.3 
Working Conference on Data and Applications Security (DBSEC'08). pp. 283-296. 

Wang, L; Jajodia, S; Singhal, A. 2010. k-Zero Day Safety: Measuring the Security Risk 
of Networks against Unknown Attacks. In proceedings on the 15th European 
Symposium on Research in Computer Security (ESORICS 2010). Springer-Verlag 
Lecture Notes in Computer Science (LNCS). Vol. 6345. pp 573-587. 

Wang, L; Jajodia, S; Singhal, A. Noel, S. 2010. Measuring Security Risks of Networks 
Using Attack Graphs. International Journal of Next-Generation Computing. Vol. 1, No. 
1. pp 113-123. 

XSB. A Logic Programming and Deductive Database System. Documentation, Volume 
1. Accessed on 27.4.2015. Retrieved from 
http://xsb.sourceforge.net/manual1/manual1.pdf. 

Yung-Yu, C; Zavarsky, P; Ruhl, R; Lindskog, D. 2011. Trend Analysis of the CVE for 
Software Vulnerability Management. In the IEEE International Conference on Privacy, 
Security, Risk, and Trust, and IEEE International Conference on Social Computing. 
Boston, MA. USA. 

Zhang, S; Ou, X; Homer, J. 2011. Effective Network Vulnerability Assessment through 
Model Abstraction. In the 8th Conference on Detection of Intrusions and Malware & 
Vulnerability Assessment (DIMVA). 

Zhang, S; Ou, X. 2011. README Documentation of the MulVAL system. MulVAL v1.1. 
Retrieved from http://www.arguslab.org/mulval.html. 

 

 

  



92 
 

 

Appendices 

Appendix 1. Algorithm for Prolog’s Question Answering Procedure,  
Bratko (2011). 

 

procedure execute (Program, GoalList, Success); 

Input arguments: 

Program: list of clauses 

GoalList: list of goals 

Output argument:  

Success: truth value; Success wil become true if GoalList is true with 

respect to Program 

Local variables: 

Goal: goal 

OtherGoals: list of goals 

Satisfied: truth value 

MatchOK: truth value 

Instant: instantiation of variables 

H,H’,B1,B1’,…,Bn,Bn’: goals 

Auxiliary functions: 

 empty(L): returns true if L is the empty list 

 head(L): returns the first element of list L 

 tail(L): returns the rest of list L 

 append(L1,L2): appends list L2 at the end of list L1 

match(T1,T2,MatchOK,Instant): tries to match terms T1 and T2; if 

succeeds then MatchOK is true and Instant is the corresponding 

instantiation of variables substitute(Instant, Goals): substitutes variables 

in Goals according to instantiation Instant 

begin 

if empty(GoalList) then Success := true 

else 

     begin 

 Goal := head(GoalList); 

 OtherGoals := tail(GoalList); 



93 
 

 

 Satisfied := false; 

 while not Satisfied and “more clauses in the program” do 

      begin 

           Let next clause in Program be 

  H :- B1,…,Bn. 

           Construct a variant of this clause 

  H’ :- B1’,…,Bn’. 

           match(Goal,H’,MatchOK,Instant); 

           if MatchOK then 

  begin 

       NewGoals := append([B1’,…,Bn’],OtherGoals); 

       NewGoals := substitute(Instant,NewGoals); 

       execute(Program,NewGoals,Satisfied) 

  end 

      end; 

 Success := Satisfied 

     end 

end; 

 

 

 

 

 

  



94 
 

 

Appendix 2. Prolog Execution Traces for Three Variations of The 
Program link.P 
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Appendix 3. Algorithm for Reachability-based Grouping, Zhang et al. 
(2011) 

 

 

Input: A set of (reachTo(h), reachFrom(h)) for each host h in a 

subnet 
Output: A hash map L, which maps a group label α to a list of hosts 

having the same reachability (reachTo and reachFrom). 

 
1. 𝐿𝑟 ←  {} {Lr is a set of triples (𝛼, reachToSet, reachFromSet).} 
2. Queue 𝑄 ← all the hosts of the given subnet{ 
3. 𝐿 ← empty map {initialize the return value} 

4. while 𝑄 is not empty do 

𝑛 ← dequeue(𝑄) 

if 𝐿𝑟 contains (𝛼, reachTo(n), reachFrom(n)) then 

𝐿[𝛼]  ←  𝐿[𝛼] ∪ {𝑛} {if the reachability of 𝑛 is the same as 

some other host that has been processed, add 𝑛 to its 

equivalent class.} 

else 

create a fresh 𝛼 

𝐿𝑟 ←  𝐿𝑟 ∪ (𝛼, reachTo(n), reachFrom(n)) {Otherwise 

put its reachability information into Lr} 

𝐿[𝛼] ←  {𝑛} 

end if 

end while 
5. return 𝐿 
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Appendix 4. Algorithm for Vulnerability Grouping, Zhang et al. (2011) 

 

 

Input: A set of ungrouped vulnerabilities on a machine (Su) 

 

Output: A hash map 𝐿 that maps an application to its vulnerability 

score  
 

1. 𝐿𝑟 ← {} {Lr is a set of applications that have appeared so far} 

2. 𝐿 ← empty hash map 

3. while Su ≠ {} do 

take 𝑣 from Su 

if 𝐿𝑟 contains (v.application) then 

 if L[v.application] < v.score then 

    L[v.application] = v.score 

 end if 

else 
  L[v.application] = v.score 

  Lr.add(v.application) 

end if 

         end while 
4. return 𝐿 

 
 

  



97 
 

 

Appendix 5. Algorithm for Configuration-based Grouping, Zhang et al. 
(2011) 

 

 

Input: set 𝜏 containing all the TraceStep terms,  
attacker’s goal 𝐺 

 Output: logical attack graph (𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿, 𝐺). 

 
1. 𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿 ← 0  
2. For each 𝑡 ∈ 𝜏 { 

let 𝑡 = 𝑏𝑒𝑐𝑎𝑢𝑠𝑒(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒, 𝐹𝑎𝑐𝑡, 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡) 
3. Create a derivation node 𝑟 

  𝑁𝑟 ← 𝑁𝑟 ∪ {𝑟} 
  𝐿 ← 𝐿 ∪ {𝑟 → 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒} 

4. Look up 𝑛 ∈ 𝑁𝑑 such that 𝐿(𝑛) = 𝐹𝑎𝑐𝑡, 
5. If such 𝑛 does not exist 

  { 
create a new fact node 𝑛 
𝐿 ← 𝐿 ∪ {𝑛 → 𝐹𝑎𝑐𝑡} 
𝑁𝑑 ← 𝑁𝑑 ∪ {𝑛} 
} 

6. 𝐸 ← 𝐸 ∪ {(𝑛, 𝑟)} 
7. For each fact 𝑓 in 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡 { 
8. Look up fact node 𝑐 ∈ (𝑁𝑝 ∪ 𝑁𝑑) such that 

𝐿(𝑐) = 𝑓, 
9. If such 𝑐 does not exist 

{ 
create a new fact node 𝑐 
𝐿 ← 𝐿 ∪ {𝑐 → 𝑓} 
If 𝑓 is primitive { 𝑁𝑝 ← 𝑁𝑝 ∪ {𝑐}} 

else { 𝑁𝑑 ← 𝑁𝑑 ∪ {𝑐}} 
} 

10. 𝐸 ← 𝐸 ∪ {(𝑟, 𝑐)} 
} 
} 
 

 


