

Integrating Attack Graph Analysis

System in Semi-Isolated Network

Environment

Jani Vanharanta

Master’s thesis
June 2017
Information Technology
Master’s Degree Programme in Cyber Security

Description

Author(s)

Vanharanta, Jani
Type of publication

Master’s thesis
Date

June 2017

Language of publication:
English

Number of pages

97
Permission for web

publication: [x]

Title of publication

Integrating Attack Graph Analysis System in Semi-Isolated Network Environment

Degree programme

Master’s Degree Programme in Information Technology

Supervisor(s)

Tero Kokkonen, Jari Hautamäki

Assigned by

-

Abstract

The purpose of the thesis was to evaluate the usability aspects of logic-based attack graph
analysis for a conventional Network Operation Centre (NOC) in a semi-isolated network
environment.

Operational and technical requirements were established for the attack graph analysis,
after which an overlook on the outstanding frameworks, standards and models on
vulnerability information dissemination was looked into through past research.

The study introduced an existing concept for performing analysis over potential attack
combinations in a networked environment. The attack graph analysis concept included
methods and technology for logical deductions on the configuration and vulnerability data
of the networked environment, resulting in a graphical visualization of the possible and
also of the most probable attack paths. The utility that formed the cornerstone for the
attack graph analysis was chosen based on previous research.

The usability of attack graph analysis for the NOC was evaluated using the constructed
analysis system in a series of use cases. During the use cases the NOC was tasked to
monitor a fictitious multinational joint network containing interconnected command &
control systems that were using the internally shared core services.

The results for the use cases showed that a conventional NOC can benefit from a logic-
based attack graph analysis system. While the graphs compiled from known vulnerabilities
easily became too large to use effectively, the analysis helped NOC to increase the security
of the hosts through configuration hardening, which ultimately increased the resiliency of
the information systems.

.

Keywords/tags (subjects)

Attack graphs, Cyber Resiliency, Cyber Security, MulVAL, Prolog, SCAP

 Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb
https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb

3

Kuvailulehti

Tekijä(t)

Vanharanta, Jani Tapani
Julkaisun laji

Opinnäytetyö, ylempi AMK
Päivämäärä

Kesäkuu 2017

Julkaisun kieli:
Englanti

Sivumäärä
97

Verkkojulkaisulupa

myönnetty: x
Työn nimi

Integrating Attack Graph Analysis System in Semi-Isolated Network Environment

Tutkinto-ohjelma

Master’s Degree Programme in Information Technology

Ohjaaja(t)

Tero Kokkonen, Jari Hautamäki

Toimeksiantajat

-

Tiivistelmä

Tutkimuksen tarkoituksena oli tutkia perinteisen verkko-operaatiokeskuksen valvonta- tai
käytönohjaustoimintojen hyötynäkökulmia, kun toimintoja täydennetään loogisen päätte-
lyn metodein muodostetuilla kuvaajilla, jotka mallintavat kohdeympäristön mahdollisia
hyökkäyspolkuja.

Tutkimustyön aluksi määritettiin hyökkäyspolkujen analysointikykyyn liittyviä operatiivisia
ja teknisiä vaatimuksia, jonka jälkeen katselmoitiin aiemmissa tutkimuksissa esiintyneitä ja
olemassa olevia haavoittuvuustiedon jakamiseen liittyviä viitekehyksiä, standardeja ja
malleja. Seuraavaksi tutkimuksessa esiteltiin olemassa oleva konsepti, jolla verkottuneissa
toimintaympäristöissä tapahtuvien, monivaiheisten hyökkäysten analysointi on mahdol-
lista. Kuvaajiin perustuva analysointimenetelmä piti sisällään verkon loogisesta raken-
teesta ja siinä olevien laitteiden laiteasetuksista johdettuja loogisen päättelyn toimintoja.
Tutkimuksessa käytetty ohjelmisto valittiin aiempien tutkimuksien perusteella.

Tutkimuksen teknisen konstruktion hyötyjä tutkittiin kuvitteellisen organisaation yhtey-
teen rakennetuilla tapauksilla, jossa verkko-operaatiokeskuksen tuli valvoa monikansal-
lista, yhteiskäyttöistä toimintaympäristöä palveluineen.

Tuloksena todettiin verkko-operaatiokeskuksen voivan hyötyä hyökkäyspolkujen mallin-
nuksesta. Tunnetuista haavoittuvuuksista analysoidut kuvaajat osoittautuivat monesti liian
suuriksi seurata, mutta analyysia voitiin silti hyödyntää ja kasvattaa tietojärjestelmien ky-
bersietoisuutta laiteasetuksiin tehtävillä parannuksilla.

 Avainsanat (asiasanat)

Attack graphs, Hyökkäyspolut, Kybersietoisuus, MulVAL, Prolog, SCAP

Muut tiedot

http://www.finto.fi/

1

Contents

1 Introduction ... 8

1.1 Background .. 8

1.2 Research Objective .. 11

1.3 Research Method .. 12

1.4 Thesis Structure ... 14

2 Requirements for Attack Graph Analysis ... 16

2.1 Operational requirements ... 16

2.1.1 Situational Awareness .. 17

2.1.2 Impact Mitigation ... 18

2.2 Technical Requirements .. 19

2.2.1 Vulnerability, Software and Configuation Information 19

2.2.2 Host Access Lists ... 20

2.2.3 Intrusion Detection ... 20

2.2.4 Counteractions ... 20

3 Attack Graphs ... 21

3.1 Multistage attacks ... 21

3.2 Vulnerability Information Sharing ... 22

3.2.1 OVAL® ... 24

3.2.2 CVSS .. 25

3.2.3 CVE .. 27

3.2.4 NVD ... 27

3.2.5 SCAP .. 28

3.3 Vulnerability Assessment .. 28

3.4 Examples of Vulnerability scanners ... 29

3.4.1 Nessus ... 29

2

3.4.2 OpenVAS ... 30

3.4.3 Nexpose .. 31

3.4.4 OpenSCAP ... 31

3.5 Attack Graph Analysis Logic .. 33

3.5.1 Prolog .. 33

3.5.2 Datalog .. 40

3.5.3 XSB .. 40

3.6 Attack Graph Analysis Engine .. 42

3.6.1 MulVAL Framework .. 42

3.6.2 MulVAL Input Data Types ... 43

3.6.3 MulVAL Analysis and Graph Building Algorithm 45

3.6.4 Attack Graph Construction ... 48

3.6.5 Grouping Algorithms .. 49

3.6.6 A Practical Example .. 51

4 Construction ... 52

4.1 Thesis Test Network .. 52

4.2 Access-lists ... 54

4.3 Vulnerability Information .. 54

4.3.1 MulVAL statistics .. 54

4.3.2 OpenVAS statistics .. 57

4.4 Asset Vulnerability Assessment... 58

4.5 Attack Graph Compilation ... 61

4.6 Quantitative Risk Analysis ... 63

5 Use Case “HMN” ... 64

5.1 HMN NOC Capabilities ... 64

5.1.1 Security Incident and Event Management (SIEM) System 64

5.1.2 Centralized Real-Time Logging System ... 66

3

5.1.3 Full Packet Capture and Analysis .. 67

5.1.4 Vulnerability Feed Update over an Air Gap .. 67

5.2 HMN Organizational structure .. 70

5.3 Recognized Threats in HMN .. 71

5.4 Planning the Response .. 71

5.5 Attack Cases... 73

5.5.1 Unknown Malware ... 73

5.5.2 Remote Connection Through Side Channel (ircd) 75

5.5.3 Data Exfiltration using ICMP echo requests and DNS requests 77

6 Conclusions .. 79

6.1 Areas of Future Research .. 83

References ... 84

Appendices .. 92

Abbreviations

APT Advanced Persistent Threat

AV Anti-Virus

C2 Command and Control

CAPEC Common Attack Pattern Enumeration and Classification

CCE Common Configuration Enumeration

CCSS Common Configuration Scoring System

CEE Common Event Expression

CERT Computer Emergency Response Team

CLI Command-Line Interface

CPE Common Platform Enumeration

CRC2 C2 system via Connection node “R”

CSV Comma-Separated Values

CVE Common Vulnerabilities and Exposures

4

CVRF Common Vulnerability Reporting Framework

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWSS Common Weakness Scoring System

CybEX Cybersecurity information EXchange framework

CybOX Cyber Observable eXpression

DDL Dataset Description Language

DSA Designated Security Authority

ELK Elkstack Logstash Kibana

EPS Encapsulated PostScript

EW Electronic Warfare

FEC Forward Error Correction

FIRST Forum of Incident Response and Security Teams

GNU GPL GNU General Public License

GSA Greenbone Security Assistant

HACL Host Access Control List

HIDS Host-based Intrusion Detection System

HMN Harbinger Mission Network

HTML HyperText Markup Language

IA Information Assurance

ICMP Internet Control Message Protocol

ICT Information and Communication Technology

IDS Intrudion Detection System

IEC International Electrotechnical Commission

IODEF Incident Object Description Exchange Format

IPS Intrusion Prevention System

ISE Information Services Environment

ISMS Information Systems Security Managment

ISO International Organization for Standardization

ISSM Information Systems Security Manager

ISSO Information Systems Security Officer

KVM Kernel-based Virtual Machine

MAC Medium Access Control

5

MAEC Malware Attribute Enumeration and Characterization

MSM Making Security Measurable

MulVAL Multihost, Multistage Vulnerability Analysis Language

NCSA National Communications Security Authority

NIST National Institute of Standards and Technology

NOC Network Operations Centre

NVD National Vulnerability Database

NVT Network Vulnerability Test

OCIL Open Checklist Interactive Language

OpenIOC Open Indicators of Compromise

OpenVAS Open Vulnerability Assessment System

OSSIM Open Source SIEM

OVAL Open Vulnerability and Assessment Language

PCAP Packet CAPture

PDF Portable Document Format

Prolog PROgrammation en LOGique

RADIUS Remote Authentication Dial-In User Service

RID Real-time Inter-network Defense

RID-T Real-time Inter-network Defense Messages Transport

SA Situational Awareness

SCAP Security Content Automation Protocol

SE Security Engineer

SIEM Security Information and Event Management

SOC Security Operations Centre

SSG SCAP Security Guide

SSL Secure Socket Layer

STIG Security Technical Implementation Guides

STIX Structured Threat Information Expression

SWID Software Identification

USM Unified Security Management

VM Virtual Machine

XCCDF eXtensible Configuration Checklist Definition Format

XML eXtensible Markup Language

6

Figures

Figure 1. Vulnerabilities by Year (www.cvedetails.com, referred 21.6.2016) 10

Figure 2. Crucial Steps in Constructive Research Approach by Labro & Tuomela (2013)

 .. 14

Figure 3. CVSS Metric Groups by Mell et al. (2007) ... 26

Figure 4. OpenVAS Architecture (About OpenVAS) ... 31

Figure 5. Direct and Recursed Connections of link.P program 37

Figure 6. MulVAL Framework (Ou et al. 2005) ... 43

Figure 7. Attack Graph Building Algorithm (Ou et al. 2006) .. 47

Figure 8. Architecture for the Logical Attack Graph Generator (Ou et al. 2006) 48

Figure 9. Logical depiction of the thesis test network (HMN) 53

Figure 10. CVE Vulnerabilities by Year ... 55

Figure 11. Screenshot of OpenVAS GSA SecInfo Dashboard 58

Figure 12. Vulnerability assessment of key assets ... 61

Figure 13. A Portion of the ISE Server Initial Attack Graph .. 62

Figure 14. Attack Graph with Quantitative Risk Assessment 63

Figure 15. A Typical Security Incident and Event Management (SIEM) System

Architecture. Quoted from Bhatt et al. (2014). ... 65

Figure 16. A Network Tap for Copper Medium. Quoted from IXIA White Paper (2014).

 .. 69

Figure 17. ISSM and ISSO Roles in the HMN Use Case ... 70

Figure 18. File Alterations of a Polymorphic Malware in ISEServer 74

Figure 19. An Excerpt of a Custom SCAP (OVAL) Test for the Polymorphic Malware . 75

Figure 20. ICMP Exfiltration Time Variation ... 79

Tables

Table 1. MSM Standards and Knowledge Areas. Quoted from Hernandez-Ardieta et

al. (2013). .. 24

Table 2. Logical operands in Prolog (Bratko, 2011) ... 35

Table 3. Thesis Network Host Access-lists ... 54

7

Table 4. Attack Graph Vertices ... 62

8

1 Introduction

1.1 Background

In the modern and digital world of today, businesses, organizations and governments

increasingly rely on networked information systems to produce, exchange and store

different types of business- or- otherwise-critical information. During the digital age

organizations have ever increasingly brought their businesses online to utilize the

landscape of eCommerce to their best advantage.

Information systems in which the digital information is being processed sometimes

present complex and highly sophisticated technology. The information itself, all the

combinations of 0s and 1s (and in the future their quantum superpositions) in the

storage drives, network attached storages, databases and distributed cloud services,

may be important for some and critical for others. For commercial businesses, the

importance may be established through competitiveness, market value and patented

innovations. A radar manufacturer, on the other hand, may use completely different

criteria of, for example, integrated circuitry details of a frequency-hopping EW

resistant radar.

 In the meantime, governments have also started to make their services available to

the public online. Such eServices have been launched by several agencies enabling,

e.g. electronic voting, social security services, electronic passport applications, and

vehicle registration service.

There is even a possibility to become a virtual e-resident of Estonia, allowing for

establishing and starting of real businesses that fully integrate to the Estonian

electronic services of the digital infrastructure (Hammersley, 2015).

Along with the emerging eServices, responsibilities have also grown. The users of the

services need to be assured of their security. This is a common denominator for the

service providers in business-to-business, consumer-to-business, as well as

government-to-public operations. Service providers in each operational area are

required to assure the security of their environment, the part of the whole digital

9

space, in which all the electronic information is being accessed, processed and stored

through computers, countless servers and myriad of information systems.

Malicious software, malware, that is nowadays being discovered, has evolved

significantly from the ones that were the first to utilize computer networks as their

propagation paths. One of the first, even if not intentionally malicious, was the

Morris Worm, discovered in 1988 and named after its creator Robert Morris. The

worm was designed to propagate the network and to demonstrate the inadequacies

of computer network security measures (Spafford, 1988; Morris, 1988). Even if the

malware today has several similarities to the persistent, obfuscating and encrypting

code of the Morris Worm, the most advanced of them are being used in a completely

different types of campaigns with far more serious motivation in their background, as

seen in several report and trend publications (FireEye APT28, APT29, APT30;

Mandiant APT1, M-Trends; F-Secure Threat Report 2015).

As operations have become increasingly reliant on networks, securing them has also

become more demanding, and resource consuming for the network and system

engineers. Even disregarding the fact that the number of vulnerabilities within a

network easily gets multiplied by the software combinations of the devices within,

the rate at which they are reported (Figure 1) can be overwhelming. Assuring the

security of the information systems may prove difficult to achieve, especially for

small-to-medium-sized businesses and their perhaps cost-effectively balanced

network security or administrator teams- but also for larger companies that may

have outsourced their whole ICT functions.

10

Figure 1. Vulnerabilities by Year (www.cvedetails.com, referred 21.6.2016)

In an information ecosystem where different operating systems and products from

multiple device and software vendors with various software versions and subversions

coexist, vulnerabilities and their possible combinations can present significant risks

to the environment. Vulnerabilities may exist in the operating systems, in the

firmware software, in the application software and in their library objects already

when they are released, only to be discovered later. New vulnerabilities can also

make their ways into the environment during new software releases, software

upgrades and even security updates. When exploitable, they can cause serious

damage to the assets in the environment and endanger the confidentiality, integrity

and availability of the information.

Single vulnerabilities are easily seen as individual threats, which by themselves, may

seem to present only a minor threat, while they may in fact be involved in a series of

actions through a combination of multiple vulnerabilities in a campaign against the

organizations assets, ultimately putting the entire environment at risk.

In addition to vulnerabilities, also sub-optimal configuration or configuration errors

can expose the environment to threat agents and eventually lead to realization of

risks. Configuration changes often link to scheduled maintenance or incident

resolving- but can also occur during services, business operations, or just network

expansion. Without a thoroughly implemented and maintained configuration or

11

asset management, how can one determine whether there have been any such

changes in the software base or in the configurations that could introduce threats

into the environment?

Wang, Jajodia, Singhal & Noel (2010) and Ou & Singhal (2011) underline that one

cannot improve what one cannot measure. During the last decade, a considerable

amount of research has been conducted on measuring network security. Ou, Boyer &

McQueen (2006) presented a logical approach to represent and generate attack

graphs, designed to illustrate the logical dependencies among attack goals and

configuration information. In their research they established the necessity of

considering multi-stage and multi-host attacks. Ou & Singhal (2011) suggest that the

overall security of a network environment cannot be determined by simply listing the

number of vulnerabilities they contain; instead, they presented a methodology for a

composition of multiple vulnerabilities being modelled using probabilistic attack

graphs, ultimately showing all paths of attacks that when combined, will enable

multistage network attacks.

Situational awareness is at focal point in protecting networked environments. In that

respect attack graphs can be seen as a source for ample information for the network

and security administrators. Information security automation has brought different

kinds of data streams and analytical functions in great numbers for the network

operators to use. But instead of assistance, do they in fact cause disorientation

through information overflow? Can the security or network engineer handle all the

information flows and effectively correlate the security related events?

Could the analysis itself be automated in such a way that it would support the

engineer by providing readily prioritized and weighed suggestions or

recommendations as to how to react and what actions they should take to protect

their environment most effectively?

1.2 Research Objective

The objective of this thesis consisted of two parts: Firstly, to help solve the problem

of measuring and analyzing overall security of a semi-isolated network environment

in which several information systems coexist, most of which are interconnected, and

12

where the vulnerability information may be few and scattered and cover only

individual assets. Secondly, to assess whether an attack graph analysis system could

be integrated into a Network Operations Center and how such integration would

improve the ability to defend against an attack.

In support of the primary objective, the research aimed to provide technical

assistance for existing risk assessment by enabling cyclic attack graph analysis that

could become a part of the process for managing software upgrades and

configuration changes in the operational environment.

Supporting the secondary objective, this research sought to find an answer to the

question is a logic-based attack graph analysis system suitable for Network

Operations Center’s (NOC) use? The usability was assessed through a fictitious use

case involving an Information Systems Security Manager (ISSM) and an Information

Systems Security Officer (ISSO), with limited initial situational awareness which was

correlated with new information in the environment on which the ISSM and ISSO

could (re)act.

The work conducted in this thesis is expected to contribute to the risk management

process of the organization, to provide a high-level perspective of a functional SIEM

system complemented with attack-graph-analysis capabilities, and to initiate course

of action algorithm development focusing on information systems’ autonomous

defenses.

1.3 Research Method

The method of research selected for this thesis is constructive research. Constructive

research was chosen regardless of the risk of lacking objectivity.

 Constructive research is a method for producing a construction intended to help

solve real-world problems or part of the problems. Realizations of the construction,

artifacts solve a domain specific problem in order to build knowledge on how the

problem can be solved (or understood, explained or modelled) in principle. Artifacts

such as models, plans, organizational charts, information system designs, algorithms

and software development methods are typical constructs used in research and

13

engineering. Characteristic to them, they are invented and developed, not

discovered (Dodig-Crnkovic, G. 2010, Lukka, K. (Internet, N.D.).

Lukka (2000) also suggests that the core characteristics for a constructive research

include that it

 focuses on real-world problems felt relevant to be solved in practice

 produces an innovative construction meant to solve the initial real-world

problem

 includes an attempt for implementing the developed construction and

thereby a test for its practical applicability

 implies a close involvement and co-operation between the researcher and

practitioners in a team-like manner, in which experimental learning is

expected to take place

 is explicitly linked to prior theoretical knowledge, and

 pays particular attention to reflecting the empirical findings back to theory

Similarly, Labro & Tuomela (2003) present seven crucial steps in the constructive

research approach as illustrated in segments of three phases in Figure 2: 1) find a

practically relevant and theoretically interesting problem; 2) examine the potential

for long-term co-operation with the organization; 3) obtain a comprehensive

understanding of the topic; 4) innovate and construct a theoretically grounded

solution; 5) implement the solution and test whether it works in practice; 6) examine

the scope of the construct’s applicability and; 7) show the theoretical connections

and the research contribution of the construction.

14

Figure 2. Crucial Steps in Constructive Research Approach by Labro & Tuomela (2013)

For this research, the recognized real-world problem is presented in the previous

chapters 1.1 and 1.2: Improve computer network defense performance for cyber

operations decision makers and NOC by providing analysis capability for multistage

computer network attacks and course of action guidance. The potential for a long

term co-operation with the organization fundamentally exists, with the involvement

of cyber operations decision makers and the NOC. In this research the construction

application is the integration – technical implementation – of the attack graph

analysis system in a semi-isolated network environment where NOC capability

already exists. Significant theoretical contribution is not expected from this research.

1.4 Thesis Structure

The first chapter of the thesis is an introduction, describing the background, method

and the objectives for the thesis. The second chapter presents the functional and

technical requirements for attack graph analysis.

The third chapter introduces the attack graph concept: the ability to perform analysis

and risk assessment of multistage attacks in a network-centric environment, and how

and based on what information the actual attack graphs are generated.

15

Vulnerability information and their common sources and respective standards and

specifications are introduced, as well as how the attack graph system is utilizing the

vulnerability information, and what metrics and scoring systems are involved in the

risk quantification. Additionally in chapter three, some of the vulnerability

information sharing models are presented through previous work and studies on

vulnerability data structuration and sharing standardization.

The third chapter will also briefly introduce some of the most common vulnerability

scanners, one of which was used extensively for the attack graph engine included in

this research.

The logic behind the attack graph analysis engine’s deduction process is presented

through logic programming paradigm. Three of the most important logic

programming components in the attack graph analysis framework are looked into in

more detail.

Concluding chapter three, the algorithms for the attack graph analysis and graph

construction are introduced. The attack graph architecture is presented and the

attack graph compilation is demonstrated with a practical example.

The fourth chapter of the thesis presents the construction of the attack graph

analysis: how the vulnerability assessment data of the test network is compiled for

graphical presentation and, how the grouping algorithm and the quantitative risk

assessment change the attack graph abstraction.

The attack graph concept and its construction are tested in chapter five with a

fictitious joint mission network use case.

Chapter six presents the conclusions on the usability of the construction against the

preconditions and research method together with some plausible paths for future

research.

16

2 Requirements for Attack Graph Analysis

Attribution of the malefactors and analysis of their motivations would be essential in

effective cyber defense, however for the brevity of this research, they were excluded

and the actors were assumed as state-sponsored malefactors. The environment in

this research was treated as semi-isolated as it was not directly connected to the

Internet or any network other than those in the Harbinger Mission Network (HMN)

use case.

2.1 Operational requirements

To allow the network operators to perform analysis over any data, a concept needs

to be defined. Ultimately the network or cyber operations decision makers must be

provided with enough valuable data in such a way that the operations can be run

safely enough and long enough relative to the operational need. The sheer amount

of data sources and data types necessitate that the data will have to be formatted to

and presented in human understandable form, to help decision makers understand

the possibly complex overall situation.

The decision makers also need to understand what kind of decisions they are

required to make and what kind of actions exist in the “playbook” with which the

NOC is able to protect the respective assets in the environment. The analysis and

implementation of such decision support is, however, outside the scope of this

thesis. Therefore the decision making process was simplified and was considered

well prepared and temporally effective.

The ability to construct a practical presentation of the possible attacks requires that

they can be modelled. The modelling will have to take into account the existence of

single or multiple vulnerabilities and also device and software configurations such

that present risks to the environment by running configurations that are against best

practice or vendor recommendations or otherwise sub-optimal.

The underlying risk management process requires that the vulnerability data for the

operational environment will have to be updated on a regular basis, despite the fact

that the operation takes place in a semi-isolated network environment.

17

The aim with the solution in this research is to enable safe operation of the services

within the network environment, to help assess the risks against the assets, to

provide sufficient protection against targeted cyberattacks, to assist in mitigating and

stopping multi-staged attacks, to provide protection against zero-day attacks, and

finally to enable autonomous protection mechanisms to suppress the attackers and

wear their resources.

In this research, the operational requirements are derived from the following three

tenets from Jacobson (2013):

1. predict plausible impact of cyberattack situations before they occur

2. survive through adaptation and degradation during the attacks

3. recover operational capacities after the attack

Through attack graph analysis the aim was to predict the attacker’s probable steps in

multistage attacks and to enable the planning of manual and automated parallelized

or serialized responses that help sustain the attack and strain the attackers’

resources.

2.1.1 Situational Awareness

To be able to successfully operate in the cyberspace, situational awareness must be

effectively utilized to enable decision makers lead and come up with timely decisions

(Dressler et al. 2014).

Situational awareness seems seldom used in conjunction with the words cyber or

cyber security. While a great amount research has been conducted on attack graphs,

not many seem to highlight the importance of the situational awareness angle to it.

In their research on operational data classes Dressler et al. (2014) referred to

battlespace awareness as a closest candidate for the definition.

Conti et al. (2013), referred to U.S. Military Doctrine in their definition situational

awareness as “the requisite current and predictive knowledge of the environment

upon which operations depend…”

18

Conventional solutions such as intrusion detection and prevention systems and anti-

virus products, all of which build to situational awareness, but by themselves do not

suffice especially with isolated networked environments and state-sponsored actors.

Such conclusion is established by Hutchins et al. (2010), in their paper on adversary

campaigns and intrusion kill chains. They underline that solutions relying on

conventional methods fail due to their fundamentally false assumptions such that a

response takes place only after a compromise and that the compromise was a result

of a problem that is easily fixable.

In their work, Hutchins et al. (2010) claim that regardless of the positive

development in information management tools that have resulted in, e.g. best

practices, hardening and rapid patch deployment, the state-sponsored malefactors

have still been able to continually demonstrate system compromise capabilities

through advanced tools, customized malware and zero-day exploits.

To effectively build to the resilience of the protected assets in the thesis network, the

decision makers must have at their disposal at a minimum, a graphical presentation

of the outstanding vulnerabilities discovered in the protected assets and also of the

interdependencies of the assets in the infrastructure. In the scope of the thesis, this

requirement represented the required level of situational awareness for the

correlation, and fusion of the analysis data.

2.1.2 Impact Mitigation

Established by Hutchins et al. (2010), the methodology that uses knowledge-based

conventional solutions would not be efficient against multi-staged APT attacks in

which the malefactors continually change their actions according to the

environment.

The attack graph analysis used in this thesis will need to, to an extent, assist the NOC

for predicting the most probable steps in a multistage attack in the given

environment. Optimally, the construction would enable for the dynamic and

continual changes in the defended environment in order to increase the attack cost

19

for the malefactors and to increase the resiliency of the environment against

repeatedly used techniques.

The solution in this research will need to support for the adaptation of the

environment to enable for instance the following mitigative abilities:

1. rerouting and slowing down traffic

2. straining the attacker’s resources

3. shutting down, moving, or creating new hosts for taking over processes

Additionally, the ability to investigate the incidents to be able to increase and

enhance the knowledge in our knowledge-based counteraction engines is desirable.

Such ability would mean, for instance, creating and altering signatures for the IDS-

sensors of the SIEM system.

The solution will also need to consider the so-called zero-day vulnerabilities, such

that are currently unknown to any hardware or software vendors and not yet

“fixable” with a conventional software upgrade or patching. This method will

increase the resiliency before the attacks, and enable in-time planning for

counteractions in the thesis test network.

According to Hutchins et al. (2010), the ability to revisit the attacks and reconstruct

intrusions is particularly useful. Being able to recognize patterns or signatures of

unorthodox and advanced methods could prevent their reuse and would likely

increase the required cost of the malefactors’ campaigns.

2.2 Technical Requirements

2.2.1 Vulnerability, Software and Configuation Information

The capability to predict multistage attacks such that utilize known exploits requires

an ability to produce a comprehensive list of all the vulnerabilities that exist in the

thesis network environment. In addition, the ability is needed to assess and interpret

every possible combination of individual steps that allow for a multistage attack to

take place.

20

With regard to the vulnerability information, the categorized information sources

and their standardized formats, that are currently considered the most commonly

used in cyber and vulnerability information sharing, will be utilized.

Software and configuration information will be established by using vulnerability

scanners, through compliance audits and via an asset database, the latter of which

will be an internal component of the SIEM system.

2.2.2 Host Access Lists

A comprehensive access list of all the hosts in the internal as well as the DMZ and

perimeter networks will need to be created for the logic engine. Without such a list,

the multistage attack graph would be imprecise and could lead to ineffective

reactions to the attack(s) and making the preplanning of the counteractions difficult.

2.2.3 Intrusion Detection

Along with the SIEM system, a knowledge based IDS will be deployed, consisting of

one network sensor, with the option to produce new sensors through an automated

virtual guest machine response mechanism. The IDS will be installed from the OSSIM

installation media, and the IDS will report possible events and suspected malicious

activities to the SIEM system for the NOC to further analyze. The patterns and

signatures for malicious activity will be provided by the Emerging Threat Open

ruleset.

2.2.4 Counteractions

Manual and automated counteractions will be made available through the

management network and the HIDS component which is integrated into the SIEM

system. The HIDS agent will be installed to the supervised hosts where applicable.

Active network devices such as routers and switches, where the installation of HIDS

agent is not possible, will be supervised from within the SIEM system as agentless

hosts.

Counteraction capabilities include, but are not limited to:

1. reactive firewall rule addition(s) on the core firewall and Linux-based hosts through

orchestration

21

2. proactive and reactive full packet capture for analysis and forensic investigation

3. scripted known-safe-configuration revertations through orchestration

4. manual or semi-automated reallocation of a VM guest into a quarantine network

based on a triggered event

5. manual or semi-automated deployment of the IDS sensor to the subnet in which the

event occured

6. relocation of the IDS sensor to the network subnet into which (based on the

probability analysis) the attack would likely be directed

The counteractions can be triggered based on network events, and also manually

through the HIDS component or by scripted orchestration through the management

network.

3 Attack Graphs

3.1 Multistage attacks

An attack that consists of several subsequent steps and utilizes exploits to known

vulnerabilities can be modelled with a tool that can present all the steps in the attack

and such that also has information on the assets in the network, their

interdependencies as well as information on their individual vulnerabilities. Gallon &

Bascou (2011) introduce attack graphs as visualizations of the attack model

derivations, of every possible scenarios in which an attacker can achieve certain goals

in the network. Similarly, Kotenko & Chechulin (2013) define attack graph as a graph

representing every possible sequence that lead the attackers to their goals. As they

mention such cyberattack modelling as one of the promising approaches, they also

underline the computational complexity of the graphs and challenges in their

utilization in near-real-time systems.

To be able to operate in cyberspace, organizations have to have a certain level of

awareness of the operating environment (Dressler et al. 2014). The required level of

broadness and depth varies greatly depending on the size and trade of the business.

However, without access to databases and knowledge base of vulnerabilities, or the

22

respective collaborative networks, the organization may have limited or a completely

false view of their situation and of the security posture of their assets.

For an organization that does not have resources for analysis, processing and

dissemination of such vulnerability related information, it could be highly beneficial

to participate in programs for vulnerability information sharing frameworks and

platforms.

3.2 Vulnerability Information Sharing

Tosh et al. (2015) underlined an important aspect regarding companies that after a

discovered compromise, in fear of an image hit, negative publicity, will likely refrain

from disseminating or publishing information of the particular incident. That

information could be of great value to other companies that share similarly

configured infrastructure, e.g. the same cloud infrastructure. Refrainment from

disclosing such information may of course derive from outstanding laws, especially in

case of agencies and governmental institutes, and service providers for that sector.

Information security and cyber-related threat information sharing has been the topic

in several studies and work projects in the recent past. Kamhoua et al. (2015), for

instance, applied game theory to investigate when multiple self-interested

companies could invest in vulnerability discovery and sharing their threat-related

information. Game theory was also used in Tosh et al. (2015) paper, where they

formulated a non-cooperative cybersecurity information sharing game to guide the

companies to independently decide whether or not to share information.

In the absence of effective publishing and sharing mechanisms, Gadelrab & Ghorbani

(2012) proposed an approach to express network and security dataset metadata

using a Dataset Description Language (DDL). According to their paper, the proof-of-

concept prototype implementation produced XML output, such that could be

integrated with Security Content Automation Protocol (SCAP) tools.

Since the work of Gadelrab & Ghorbani, several standardized and automated

information expression and sharing standardization and structuration attempts have

emerged. In their work on semantic ontologies for cyber threat sharing standards,

Asgarli & Burger (2016) mention STIX, IODEF and OpenIOC as examples. MITRE’s

23

Structured Threat Information eXpression , STIX™ according to Asgarli & Burger’s is

considered the most extensive standard, having definitions for cyber observables,

indicators, incidents, exploit targets, attack methodologies, courses of action, threat

actors and campaigns (Asgarli & Burger, 2016).

In a study on information sharing models Hernandez-Ardieta et al. argued that

effective policies for near-real time information sharing must rely on firstly, on

development of formal models estimating subjective value of the shared information

and secondly, on identifying the trust and reputation models that consider dynamic

behavior and changing factors of the information sharing community. In their work

they also wrote about efforts on categorizing and standardizing data formats and

exchange protocols on information concerning cyber security: the assets and their

configurations, threats and tactics utilized by the attackers, as well as indicators of

compromise and risk mitigating counter-actions. As an example of such structural

model they mention Making Security Measurable™ initiative, by The MITRE

Corporation. (Hernandez-Ardieta et al. 2013.)

Architecturally MSM™ includes building blocks such as enumerations of common

concepts that need to be shared, languages defining how to find and disseminate

such concepts and repositories through which to share the standardized content in a

machine-consumable form (Introduction to Making Security Measurable, The MITRE

Corporation, 2016).

Some of the most notable MSM enumerations include Common Vulnerabilities and

Exposures (CVE ®) detailing standard identifiers for publicly known vulnerabilities,

Common Platform Enumeration (CPE) with standard identifiers for platforms,

operating systems and software packages, and Common Weakness Enumeration

(CWE™) identifying software weaknesses in architecture, design or implementation

that lead to vulnerabilities (Introduction to MSM).

Languages and formats in MSM include, among others, Open Vulnerability and

Assessment Language (OVAL ®), a language to write XML-based tests on current state

of assets and for displaying the results, and Common Vulnerability Scoring System

(CVSS), a methodology for disseminating vulnerability related risks and risk

measurements (Introduction to MSM).

24

MSM repositories for sharing the standardized content in machine-readable format,

such that are publicly available, include (U.S.) National Vulnerability Database (NVD),

a vulnerability database based on CVE that integrates all the publicly available

resources and references, and the OVAL repository for OVAL vulnerability,

compliance, inventory and patch definitions (Introduction to MSM).

In their work Hernandez-Ardieta et al. (2013) presented a grouping of the current

standards into processes and their mapping into six knowledge areas [A]sset

definition (inventory), [C]onfiguration guidance (analysis), [V]ulnerability alerts

(analysis), [T]hreat alerts (analysis), [I]ndicators (intrusion detection), and [R]eport

(management), (Hernandez-Ardieta et al. 2013).

The MSM standards and their respective knowledge area mapping as in Hernandez-

Ardieta (2013) are shown in Table 1.

Table 1. MSM Standards and Knowledge Areas. Quoted from Hernandez-Ardieta et
al. (2013).

The components in the construction in this research will utilize some of the

aforementioned standards such as OVAL, CVSS and XCCDF all of which are included

in the knowledge areas listed by Hernandez-Ardieta et al. (2013).

3.2.1 OVAL®

Open Vulnerability Assessment Language is an international, information security,

community standard for promoting open and publicly available security content, and

to standardize the transfer of this information across the entire spectrum of security

C
P

E

O
V

A
L

SW
ID

X
C

C
D

F

C
C

E

O
C

IL

C
C

SS

C
V

E

C
W

E

C
V

SS

C
A

P
EC

C
V

R
F

M
A

EC

C
yb

O
X

In
d

EX

ST
IX

IO
D

EF

C
EE

R
ID

R
ID

-T

C
YB

EX

C
W

SS

 A • • •

C • • • • •

V • • • • •

T • • • • • • • • • • • •

I • • • • • • • • • •

R • • • • • • • • • • • • • •

25

tools and services. OVAL includes a language used to encode system detail, and an

assortment of content repositories help throughout the community (About OVAL).

The OVAL community has developed three schemas, written in XML, to serve as the

framework and vocabulary of the OVAL language. The schemas correspond to the

three steps of the assessment process: System Characteristics schema for step 1)

representing configuration information of systems for testing; an OVAL Definition

schema for step 2) analyzing the system for the presence of the machine state

(vulnerability, configuration, patch state); and an OVAL Results schema for step 3)

reporting the result of the assessment (About OVAL).

3.2.2 CVSS

Common Vulnerability Scoring System is a specific scoring system designed as an

open framework and standardized method for rating and disseminating vulnerability

characteristics and their impacts for ICT components. CVSS assists organizations in

prioritizing and channeling resources needed for handling security incidents. The

quantitative model of the CVSS ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that were used to

generate the scores. Thus, CVSS is well suited as a standard measurement system for

industries, organizations, and governments that need accurate and consistent

vulnerability impact scores (CVSS, FIRST.org.)

CVSS assessment consists of three metric groups; Base, Temporal and Environmental,

each with its own set of metrics, as shown in Figure 3. Each group produces a

numeric score ranging from 0 to 10, and a Vector, a textual representation of the

values that were used to derive the score (CVSS, FIRST.org).

26

Figure 3. CVSS Metric Groups by Mell et al. (2007)

The metric groups are described as follows (CVSS, FIRST.org):

Base: represents the intrinsic and fundamental characteristics of a vulnerability

that are constant over time and user environments.

Temporal: represents the characteristics of a vulnerability that change over

time but not among user environments.

Environmental: represents the characteristics of a vulnerability that are

relevant and unique to a particular user's environment

The base metric group defines the characteristics of the vulnerabilities that remain

unchanged over time and over different environments. In Figure 3 the Access Vector,

Access Complexity and Authentication metrics define, the vectors from which the

vulnerabilities can be exploited, how difficult their exploitations are and whether or

not authentication is needed for them to succeed. The impact metrics for

Confidentiality, Integrity and Availability on the other hand, independently define

how the successful exploits can affect the confidentiality, integrity and availability of

the assets (CVSS, FIRST.org).

27

3.2.3 CVE

Common Vulnerabilities and Exposures (CVE®) is a dictionary of common identifiers

for publicly known information security vulnerabilities. CVE was launched in 1999

when most information security tools used their own databases and naming

conventions for vulnerability related information, and distinguishing problem

descriptions from another, potentially resulting in multiple referrals to the same

problem. CVE started producing standardized identifiers (CVE identifiers) for

reference points for vulnerability data exchange. CVE identifiers also provide a

baseline for evaluating the coverage of tools and services so that users can

determine which tools are most effective and appropriate for their organization’s

needs. CVE is currently the industry standard for vulnerability and exposure names.

(CVE, About CVE.)

3.2.4 NVD

NIST Computer Security Division's National Vulnerability Database (NVD) provides a

framework for disseminating the vulnerability characteristics and their potential

impacts on ICT infrastructure (NVD Home, 2015).

NVD is the U.S. government repository of standards based vulnerability

management data represented using the Security Content Automation

Protocol (SCAP). This data enables automation of vulnerability

management, security measurement, and compliance. NVD includes

databases of security checklists, security related software flaws,

misconfigurations, product names, and impact metrics. (NVD Home,

2015.)

NVD supports the CVSS v2 standard for all CVE vulnerabilities, although it provides

only the CVSS base scores for vulnerabilities. NVD does, however, provide CVSS

calculators for adding temporal scores, and to some extent measuring environmental

scores to reflect an impact of a vulnerability to a specific organization’s environment

(NVD Home, 2015).

28

3.2.5 SCAP

Security Content Automation Protocol is a specification for expressing and handling

security-related data in a standardized way. Using many individual specifications,

SCAP automates continuous configuration monitoring and vulnerability

management. The eXtensible Configuration Checklist Description Format, XCCDF,

that is a part of SCAP specification, is a language for writing security checklist and

benchmarks for use in compliance checklists and security policies (Security Content

Automation Protocol, SCAP).

The currently effective version of SCAP (specification version 1.0) contains XCCDF and

OVAL languages, CCE, CPE and CVE enumerations and CVSS metrics (SCAP

Specification). Currently, most of the SCAP validation products support the version

1.2 of the specification (NVD, Security Content Validation Products).

According to Alsaleh & Al-Shaer (2011), SCAP is a set of interrelated specifications

that represent the standard format and nomenclature by which security software

communicates information about known software flaws and configurations. In their

work, Alsaeh & Al-Shaer (2011) take on SCAP as a standard way for representing and

measuring information security within a system. Similarly, Hlyne et al. (2015)

introduce SCAP as a suite of specifications that help organizations to automatically

assess their network devices, operating systems and applications for their respective

security configuration compliance, and to help automate security management tasks.

SCAP validation software utilities such as OpenSCAP allow for system administrators

to check configuration settings and examine the system for signs of possible

compromise through the use of rules that are based on SCAP standard and

specification (OpenSCAP User Manual).

3.3 Vulnerability Assessment

To be able to improve the security or resiliency of the network-centric environment

against threats and attacks, the initial status of the environment needs to be

established. For enterprise networks, vulnerability assessment is the way to test

29

whether any discovered and known vulnerabilities exist in their environment, and

decide on the level of the risk they introduce. (Gallon & Bascou, 2011.)

Vulnerability assessment is usually determined by combining various factors such as

how much effort is needed for a malefactor to reach and exploit a vulnerability, the

required mode of authentication in the target system, if they are exploitable locally

or via remote access, and the impact on the confidentiality, integrity and availability

of the information (Zhang et al. 2011).

For such factors, CVSS scoring provides intrinsic assessments on the fundamental

characteristics of the vulnerabilities, such that do not change over time and

environments through the metrics of the base group (Gallon & Bascou, 2011).

3.4 Examples of Vulnerability scanners

3.4.1 Nessus

Nessus is a commercial vulnerability scanner by Tenable Network Security, Inc.

Nessus is used to discover all the assets on the network and test them for existing

vulnerabilities or missing patches. In addition to a non-credentialed, remote scans,

Nessus also supports deeper, granular analysis of assets through credentialed scans,

and offline auditing for network devices. For configuration and compliance auditing,

Nessus utilizes over 450 templates (Nessus Professional).

Newly discovered vulnerability information is transformed into plugins by the

Tenable’s research staff to enable Nessus to detect them. The plugins are written in

the Nessus Attack Scripting Language (NASL), and they contain vulnerability

information, a generic set of remediation actions and the algorithm to test for the

presence of the security issue. The plugins are provided as streams, Feeds, which are

available as a subscription purchase (Nessus Plugins).

Nessus also provides a plugin feed for home users, Nessus® Home, which can be used

for scanning an environment up to 16 individual IP addresses. In comparison with

Nessus Professional, Nessus® Home lacks the ability to conduct compliance checks or

content audits (Nessus ® Home).

30

According to Daud et al. (2014), the Home Feed release only includes the latest

plugins up to the installation date, whereas the Professional release gets the plugins

updated continuously as per the outstanding subscription.

In addition to the Nessus Professional’s ability to conduct compliance audits through

the plugins provided by the paid subscription, Windows and Linux SCAP compliance

checks are enabled through the “SCAP Windows Compliance Checks” and “SCAP Linux

Compliance Checks”, respectively, provided that the specified policy against which

the audit be performed, contains XCCDF or OVAL-formatted SCAP content (Nessus

Compliance Checks, Nessus v6 SCAP Assessments).

3.4.2 OpenVAS

Open Vulnerability Assessment System (OpenVAS) is a framework of several services

and tools offering a comprehensive and powerful vulnerability scanning and

vulnerability management solution. The OpenVAS Scanner service is accompanied

with a regularly updated feed of Network Vulnerability Tests (NVTs). All OpenVAS

products are Free Software, and the components, most of which are licensed under

the GNU General Public License (GNU GPL). (About OpenVAS)

Figure 4 depicts the OpenVAS architecture. OpenVAS CLI and Greenbone Security

Assistant are the applications for user interaction with OpenVAS Manager, which is

the central service that consolidates plain vulnerability scanning into a full

vulnerability management solution. The OpenVAS Scanner is the core of the

OpenVAS architecture, in charge of executing the actual Network Vulnerability Tests,

which are served via the NVT Feed. (OpenVAS Architecture Overview)

31

Figure 4. OpenVAS Architecture (About OpenVAS)

OpenVAS is an official participant in OVAL Adoption Program by MITRE (OpenVAS

Architecture Overview).

3.4.3 Nexpose

Nexpose is a commercial vulnerability management product by Rapid7. Nexpose

provides a dashboard view for managing vulnerabilities, security patches, and

analytics and reports in large infrastructures. Nexpose claims to provide live view

into vulnerabilities as they happen, and provides remediation and best practices for

secure configurations. (Nexpose)

3.4.4 OpenSCAP

OpenSCAP is not particularly a vulnerability scanner. Rather, it is more of a

configuration assessment framework. According to their web site SCAP is a project,

providing a wide variety of hardening guides and configuration guidelines. It is also

an ecosystem providing a collection of open source tools for implementing and

enforcing the U.S. NIST Security Content Automation Protocol, SCAP. Vulnerability

assessment in OpenSCAP is enabled through an automated software inspection and

32

security configuration settings check mechanism, looking for signs of compromise by

using rules based on standards and specifications (OpenSCAP).

OpenSCAP uses SCAP, processing mainly the XCCDF, which is a standard way of

expressing checklist contents and defining security checklists. It also combines with

other specifications such as CPE, CCE and OVAL to create SCAP-expressed checklist

(OpenSCAP User Manual).

OpenSCAP is able to evaluate both XCCDF benchmarks and OVAL definitions and

creating the respective results. The following are two example commands for

invoking evaluations for OVAL and SCAP on a Red Hat Enterprise Linux 6 with a

sample security policy, and a sample security guide template, respectively:

oscap oval eval --results rhva-results-oval.xml –

report oval-report-highside.html Red_Hat-

Enterprise_Linux_6.xml

oscap xccdf eval --profile

xccdf_org.ssgproject.content_profile_usgcb-rhel6-

server --results-arf arf.xml --report xccdf-report-

highside.html /usr/share/xml/scap/ssg/content/ssg-

rhel6-ds.xml

During the testing of OpenSCAP for its applicability for vulnerability assessments it

was interesting to make note that OpenSCAP had the ability not only to perform

compliance audits based on completely customized benchmarks, but also to apply

remediations.

Another quite remarkable feature of OpenSCAP together with the XCCDF was the

support for running practically any scripted action during compliance checks, which

33

could effectively expand the usability of OpenSCAP also to reactive defensive

mechanisms.

3.5 Attack Graph Analysis Logic

Wang et al. (2008) and Zhang et al. (2011) argued that intrinsic metrics defining the

severity of the vulnerabilities through CVSS are not sufficient for security

measurement in contexts such as network environments which contain complicated

configuration, where an overall security posture of the whole network environment

needs to be established. Similar findings have been established in research on attack

modelling through graphs, for instance, by Gallon & Bascou (2011), Ingols et al.

(2009), Kotenko & Chechulin (2013), Lu et al. (2009), Ou et al. (2005, 2006), Wang et

al. (2007, 2008, 2011).

Many of the above research included logic-based programs to model such attack

graphs. Logic programming, often referred to as declarative style of programming is

quite unique paradigm in that, the programmer defines only what needs to be

computed without explicitly specifying how to compute it. The capability of finding

solutions to such given problems is in the logic-based program’s ability to logically

deduce facts using sets of rules which are defined in the logical statements of the

program itself (Pfenning, 2007). It is left for the interpreter to decide how to perform

the computation. In contrast, in procedural style programming, languages such as C

and Java, the program explicitly describes the procedures, routines and subroutines

for every series of computational steps of the computation. (Smaill, 2015.)

3.5.1 Prolog

Prolog (an abbreviation for PROgrammation en LOGique) is a logic programming

language invented in 1972 by Alan Colmerauer, Robert Kowalski and Philippe Russel.

It was originally designed to process natural language, performing deductions based

on a text written in French. The man-machine communication system was the first

large Prolog program ever to be written, which quickly evolved to a theorem-proving

programming language (Colmerauer & Roussel, 1992.)

34

Prolog combines the concepts of logical and algorithmic programming, and is

recognized not just as an important tool in AI and expert systems, but also as a

general purpose high-level programming language with unique features such as

unification and backtracking (ISO/IEC 13211-1:1995).

Prolog language is based on a set of mechanisms such as pattern matching, tree-

based data structuring and backtracking that make it well suited for symbolic, non-

numeric problems involving objects and relations between them. (Bratko, 2011.)

The way Prolog programs are written and how they are interpreted, both

syntactically and semantically are defined in the ISO/IEC Prolog Standard (ISO/IEC

13211:1-1995). Prolog uses syntax of First-order predicate logic, in which formulas

are written in so-called clause form (a conjunctive normal form in which quantifiers

are not explicitly written), and are further restricted to Horn clauses only that have at

most one positive literal (Bratko 2011).

A Prolog program consists of one to many clauses, which in Prolog is the term for an

inference rule with a Head :- Body structure (Pfenning, 2007). Clauses can be

facts, rules or questions. A clause that only has the head and no body structure is

considered a fact whereas a clause with only body and no head structure is

considered a question (Bratko, 2011).

A fact is a clause that always holds true regardless of the conditions of the domain.

Clauses that have the Head :- Body structure, rules, hold true only conditionally

(Bratko, 2011).

 The algorithm for Prolog’s way of answering questions, satisfying goals, by Bratko

(2011) is in Appendix 1.

Semantically, the clauses in the Prolog program form the base knowledge of the

existing “world” for the logic engine. The knowledge base is basically a collection of

known facts and rules against which the logic engine tries to prove queries, and also

to deduce new knowledge (Bratko, 2011).

The common logical operands in the knowledge bases for Prolog programs are

expressed according to the following table:

35

Table 2. Logical operands in Prolog (Bratko, 2011)

Logical operation Translation Prolog operator

implication if :-

conjunction and ,

disjunction or ;

negation not \+

A Prolog equivalent to the well-known modus ponens rule of inference is written in

the following knowledge base, a sample program called modusponens.P:

 q(X) :- p(X). %rule which states that
 %∀𝑋𝑃(𝑋) → 𝑄(𝑋)

p(e). %fact which instantiates variable
%X with a chosen value 𝑒 of the
%domain

In Prolog prompt, after the above knowledge base was loaded, the conclusion of

𝑞(𝑋) could be queried by simply entering:

 ?- q(e).

 yes

Above, Prolog answered “yes”. Prolog evaluated the query and the truth of 𝑞(𝑒) and

logically deduced the goal from the program.

If the query contains variables, Prolog also has to discover for which of those

variables the goals can be satisfied. If none of the instantiation of the variables satisfy

the goals, Prolog will simply answer to the query “no” (Bratko 2011).

 Returning to the modusponens.P example, all instantiations of the variable 𝑋 of

our program are to be listed. This is achieved with the following query:

36

?- q(X).

Here Prolog found an instantiation for the variable X, and produced an answer:

X = e

This is only the first of the answers. To retrieve the rest of the possible answers a

semicolon, the Prolog operand for logical disjunction “;” was entered after the

previous answer:

X = e;

no

Now Prolog answered “no”. Prolog found no additional elements in the program for

which the goal would satisfy. This is logical, since no other instantiations of the

variable 𝑋 existed in the knowledge base.

One of Prolog’s powerful abilities is recursion with which the program is able to

derive new facts from the previous solutions within the same query when a predicate

contains a goal that refers to itself (Bratko, 2011). Consider the following example

program link.P in which there are five nodes a1…a5:

link(a1,a2).

link(a2,a3).

link(a3,a4).

link(a4,a5).

connected(X,Y) :- link(X,Y).

connected(X,Y):- link(X,Z),connected(Z,Y).

37

The above program consists of four facts and two rules. The four facts define that

there exist a link of some sort between nodes a1 and a2; a2 and a3; a3 and a4; a4

and a5, respectively. The concept of connection is defined in the subsequent rules.

The first rule states that X and Y are connected if there exist a link between X and Y.

The recursion occurs in the second rule of the program, which states that X and Y

are connected if there exists a link between X and Z, and Z and Y are connected. The

connection is defined with a recursion, with a goal referring to itself. Using the two

rules the program is able to deduce all connections for the nodes in our example.

Below, Figure 5 is a logical depiction of the link.P program, where the direct and

recursed connections are shown as arrows:

Figure 5. Direct and Recursed Connections of link.P program

Logically the order in which the proofs are searched should not be relevant

(Pfenning, 2007). Both Pfenning and Bratko (2011) find, however that the order by

which the goals and clauses are presented in the knowledge base, greatly affects the

efficiency of the Prolog query resolution. This is demonstrated by following Bratko’s

(2011) examples with two additional variations of the link.P example. In

comparison with the original program, variation1 reverses the order of the clauses

and variation2 reverses the goals of the second clause:

38

 variation1: connected(X,Y) :- link(X,Z),connected(Z,Y).

 connected(X,Y) :- link(X,Y).

 variation2: connected(X,Y) :- link(X,Y).

 connected(X,Y) :- connected(X,Z),link(Z,Y).

By instructing Prolog to enable tracing, every step of the program execution is

shown. Below is the program trace for the question “does a2 have a connection to

a4”, translated to Prolog input as a query: connected(a2,a4).

 ?- trace.

 yes

 [trace]

 ?- connected(a2,a4).

(0) Call: connected(a2,a4) ?

(1) Call: link(a2,a4) ?

(1) Fail: link(a2,a4) ?

(2) Call: link(a2,_h236) ?

(2) Exit: link(a2,a3) ?

(3) Call: connected(a3,a4) ?

(4) Call: link(a3,a4) ?

(4) Exit: link(a3,a4) ?

(3) Exit: connected(a3,a4) ?

(0) Exit: connected(a2,a4) ?

yes

In the trace above, as Bratko (2011) explained, Prolog first (0) executed the initial

query as its primary goal connected(a2,a4). Following the first rule of the

knowledge base, it continued to (1) execute the subgoal link(a2,a4). The

39

knowledge base did not contain fact for such direct link, so the subgoal failed. Prolog

then followed the second rule of the knowledge base and (2) executed the goal

link(a2,_h236). Here the _h236 is a temporary substitute for the variable Z in

the second rule of our program. It is a free variable that is used only once in a clause,

and can be instantiated with any value. From the trace we can see that the goal

succeeded with the free variable now having a3 (the only direct link to a2) as its

instantiation. Next, the program continued to (3) execute the second goal in the

body of the second rule of our program, connected(a3,a4). Again following the

first rule of the knowledge base, Prolog continued to (4) execute the subgoal

link(a3,a4). This time the knowledge base contained a fact for such link, so the

subgoal, and also the second goal (3) succeeded. Finally the primary goal (0) also

succeeded, and Prolog answered to the query “does a2 have connection to a4” with:

 yes.

Interestingly, even if all three variations of the same program are semantically equal

to one another, the goal satisfaction with variation1 is inefficient compared to the

other two, which perform equally efficiently. This is because reversing the order of

the clauses, as in variation1, makes Prolog search for the solution first by looking for

such additional nodes that exist between the two, and also have links to both of

them, rather than trying to establish whether the queried connection arguments

immediately satisfy the corresponding link (Bratko, 2011.)

Bratko also underlines that it is important to realize that it is possible to cause Prolog

programs to run indefinitely. This may occur in situations which Prolog tries to find

the answer by choosing wrong path in the process, leading to an infinite loop the

program is unable to escape from (Bratko 2011). Following Bratko’s examples, such

situation was established with yet another variation of the link.P program. If the

order of the goals and also the order of the clauses were reversed to the original

version, Prolog would end up running the program until it ran out of memory, not

able to deduce the answer:

variation3: connected(X,Y) :- connected(X,Z),link(Z,Y).

 connected(X,Y) :- link(X,Y).

40

The declarative meaning of the program was unchanged and was shared among all

versions: there is a connection from X to Y if there is a link from X to some node Z,

and there is a link from Z to Y, or if there is a link from X to Y. Regardless of the

declaratively correct definition of variation3, Prolog was unable to answer the same

query: connected(a2,a4). (Bratko, 2011.)

3.5.2 Datalog

Datalog is a declarative logic programming language in which each formula is a

function-free Horn clause (Datalog User Manual). Datalog does not allow function

symbols as arguments, meaning that the so-called Herbrand universe of ground

instances of predicates is infinite (Pfenning, 2007). Datalog terms must be variables

or be drawn from a fixed set of constant symbols. Another restriction is that any

variables used in the head of a clause also have to exist in a nonarithmetic positive in

the body of the rule (Pfenning, 2007).

An advantage in Datalog syntax over Prolog is that it does not limit the order of the

clauses, and the queries are quaranteed to terminate. It uses an efficient evaluation

method by binding the start and goal stop and deducing every possible answer in

between (Datalog User Manual, 2002).

3.5.3 XSB

XSB is a module-centric research-oriented logic programming and deductive

database system with semantically enriched superset of Prolog. XSB is compatible

with both ISO-Prolog and Datalog programs. It includes enhancements which allow

for tabling with negation and higher-order logic programming (XSB Documentation).

XSB has two ways of evaluating predicates. Prolog-style evaluation, and tabling or

tabled resolution. The ability of tabled resolution provides more declarative

programs than Prolog. Additionally, the ability to store calls to tabled predicates in a

searchable structure with their proven instances, and to compile predicates as

tabled, allows for the programs to properly terminate with an answer (XSB

Documentation).

41

The concept of tabled resolution is that it governs the procedure calls in a way that it

remembers every call and also the answers that are returned. If a similar call is made

again, the previously deduced answers are used to satisfy the new request. That way

the same procedure call is not performed twice (XSB, Documentation).

Recall the program that caused Prolog to run in a loop indefinitely, variation3 of the

program link.P from chapter 3.4.1. When the same program is run with XSB and

when the interpreter is instructed to use tabling, XSB ensures that all calls to the

predicate connected are tabled throughout the program (XSB Documentation):

:- table connected/2.

connected(X,Y) :- connected(X,Z),link(Z,Y).

 connected(X,Y) :- link(X,Y).

Given the complete program above, XSB was able to deduce the correct answer to

the same query that effectively caused Prolog to enter infinite loop as shown in the

following:

?- connected(a2,a4).

yes

The ability to solve recursive queries has proven useful in number of areas, such as

deductive databases, language processing, program analysis, model checking and

diagnosis (XSB, Documentation).

XSB’s support for higher-order logic programming allows for programs that have

complex terms as predicates. Higher-order enhancements in XSB enable

incorporation of some higher-order constructs in a declarative way within logic

programs, while retaining first-order declarative semantics (XSB, Documentation).

42

3.6 Attack Graph Analysis Engine

The main utility for the data analysis component used in this research was a logic-

based data-driven network security analyzer, MulVAL. MulVAL research tool stands

for Multihost, Multistage Vulnerability Analysis Language. It is free software,

released under GNU GPL version 3, and is developed and maintained by Kansas State

University (MulVAL, Argus CyberSecurity Lab, Kansas University).

MulVAL was chosen as the main utility largely because of its past presence in several

attack graph-related research projects. For instance, MulVAL has appeared in

research on scalable approach to attack graph generation (Ou et al. 2006), on logic-

based network security analyzer (Ou et al. 2005), on measuring overall security of

network configurations (Wang et al. 2007) and on measuring security risks on

networks using attack graphs (Wang et al. 2010).

In addition to the existing research, MulVAL seemed particularly suitable for this

research, too, due to its versatile configurability in custom network environments.

3.6.1 MulVAL Framework

MulVAL uses Datalog as its modelling language for the elements in the analysis. The

main idea behind MulVAL was that most configuration information can be presented

as Datalog facts, and most attack techniques and OS security semantics can be

specified using Datalog rules (Ou et al. 2006). The logic inside MulVAL uses XSB to

evaluate the Datalog interaction rules against the input data. XSB environment was

chosen for the analysis in MulVAL because it supported tabled resolution of facts (Ou

et al. 2005).

Architecturally the framework for the version of MulVAL used in this Thesis is

described by Ou et al. (2005), and is depicted in Figure 6.

43

Figure 6. MulVAL Framework (Ou et al. 2005)

MulVAL logically evaluates and combines all the various elements: the network

configuration, system-specific software and services configuration and the user rights

policies, and then iteratively applies interaction rules on the combined input data.

The Interaction rules define how the analysis will model the effect of the discovered

vulnerabilities. Inside the interaction rule set, predicates are declared in both

Datalog-style and as tabled predicates. The Datalog-style predicates are read from

the translated vulnerability assessment result file, and the tabled predicates are used

in the recursive deductions, characteristic to XSB (MulVAL Readme). The interaction

rules can be customized to accommodate different network environments.

3.6.2 MulVAL Input Data Types

MulVAL consumes several individual sources for information on the state and

configuration of the environment, the elements, all of which are encoded as Datalog

facts. There are four main types of information that form the input data for MulVAL:

1) the vulnerabilities that are known to exist and are reported; 2) the vulnerabilities

that exist the hosts and devices; 3) the outstanding configurations for the software

and services running on all the hosts in the environment and; 4) the configuration of

the network, the access-lists for the hosts and their services within the environment.

Additional information types include user credentials and their use policy in the

44

environment and the interaction rules, which define how all the input types interact

(Ou et al. 2005).

For the analysis, the first three input data types are mandatory. MulVAL will require a

list, a database, of the all the vulnerabilities that exists in the domain of discourse

that could also exist inside the environment to be analyzed. For this, MulVAL uses its

own, internal database into which the vulnerability information will be pulled from

NVD manually using the nvd_sync.sh script. The internal database is used in

conjunction with the vulnerability assessment result file when the engine will begin

deducing the existence of possible vulnerabilities and the paths for their potential

exploitations in between the hosts in the environment.

Vulnerability scanners such that support credentialed authentication during the

assessment scans are able to produce result files that contain the elements for the

input types 2 and 3. The quality and precision of the software and service level

results for input data type 3 is dependent on the accuracy of the policy, compliance

or best practices template of the vulnerability scanner, based on which the result will

be generated. MulVAL supports input files of type 2 and 3 in XML format. More

specifically, Nessus and OVAL XML file types are supported (MulVAL Readme).

The analysis can be performed with the just the first three input file types, however,

the ability to also use additional information types will enable much more precise

analysis output. For instance, without specifying input data type 4, network

configuration or, access-lists, MulVAL will assume that each host or device is able to

connect with every other host or device in the environment. By providing accurate

host-to-service access-lists, MulVAL will produce much more usable analysis results.

The two additional input data types include the users and their access policies in the

network environment and, interaction rules (Ou et al. 2005).

An example of an interaction rule for a remote exploit of a privilege-escalation

vulnerability in a service program, represented as a Datalog rule, by Ou et al. (2006):

execCode(Attacker, Host, User) :-

 networkService(Hpst, Program, Protocol, Port, User),

45

vulExists(Host, VulID, Program, remoteExploit,
privEscalation),

 netAccess(Attacker, Host, Protocol, Port).

MulVAL interaction rules, such as above, are written in Prolog form, where the first

line represents the goal and the following lines represent facts that will satisfy the

goal. Capitalized letters represent free variables, which can be instantiated with any

term. The interaction rule has the following meaning: if a Program, running as User

on Host as a service, listening on Protocol and Port, contains a vulnerability that is

remotely exploitable, and whose impact is privilege escalation, and the attacker can

access the service through network the network, then he can execute arbitrary code

on the Host as User (Ou et al. 2006.)

In MulVAL, predicates for input types 2 and 3, are primitive, and they represent

configuration information reported by vulnerability scanners. Predicates such as

execCode and netAccess are derived and they are computed from the configuration

information (Ou et al. 2006).

3.6.3 MulVAL Analysis and Graph Building Algorithm

The analysis algorithm in MulVAL is divided in two phases: 1) Attack simulation and

2) policy checking. In the attack simulation phase, all possible data accesses that can

result from multistage, multihost attacks are being derive through the Datalog

program (Ou et al. 2005):

access(P, Access, Data) :-

dataStore(Data, H, Path),

accessFile(P, H, Access, Path).

The meaning above is that, if Data is stored on machine H under Path, and user P

can access files under the Path, then P can access the Data. The attack simulation

occurs in the derivation of accessFile, which involves the Datalog interaction rules

and data inputs from various components of MulVAL. In the policy checking phase,

46

the data access tuples output from the attack simulation phase are compared with

the given security policy. If access is not allowed by the policy, a violation is reported.

The following Prolog program is in charge of the policy checking (Ou et al. 2005):

policyViolation(P, Access, Data) :-

access(P, Access, Data),

not allow(P, Access, Data).

For abstractions of the attack paths, MulVAL uses an analysis algorithm, such that

returns all possible attack paths. To achieve the computational goal, the analysis

engine must traverse all possible derivation paths. While performing the derivations,

MulVAL also records every step in the process by utilizing tabled execution. (Ou et al.

2006).

For the traversal of all of the derivation paths, another sub-goal is implemented. The

additional sub-goal will call the assert_trace() function, which, during a successful

evaluation of a rule, records all successful derivations into a temporary trace file,

eventually allowing for the logical attack graph to be constructed (Ou et.al, 2006).

The definition for an attack simulation trace has the following format (Ou et al.

2006):

TraceStep ::= because(interactionRule, Fact,
Conjunct)

Fact ::= predicate(list of constant)

Conjunct ::= [list of Fact]

With the addition of the new subgoal, the interaction rule from 3.5.2. now had the

following presentation (Ou et al. 2006):

execCode(Attacker, Host, User) :-

 networkService(Hpst, Program, Protocol, Port, User),

vulExists(Host, VulID, Program, remoteExploit,
privEscalation),

 netAccess(Attacker, Host, Protocol, Port),

47

assert_trace(because('remote exploit of a server
program', execCode (Attacker, Host, User),

 [networkService(Host, Program, Protocol, Port, User),

vulExists(Host, VulID, Program, remoteExploit,
privEscalation),

 netAccess(Attacker, Host, Protocol, Port)])).

Finally, MulVAL’s graph building algorithm is depicted in Figure 7, in which every

TraceStep term becomes a derivation node in the attack graph. The Fact field in the

trace step becomes the node’s parent and the Conjunct field becomes its children

(Ou et al. 2006):

Input: set 𝜏 containing all the TraceStep terms,
attacker’s goal 𝐺

 Output: logical attack graph (𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿, 𝐺).

1. 𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿 ← 0
2. For each 𝑡 ∈ 𝜏 {

let 𝑡 = 𝑏𝑒𝑐𝑎𝑢𝑠𝑒(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒, 𝐹𝑎𝑐𝑡, 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡)
3. Create a derivation node 𝑟

 𝑁𝑟 ← 𝑁𝑟 ∪ {𝑟}
 𝐿 ← 𝐿 ∪ {𝑟 → 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒}

4. Look up 𝑛 ∈ 𝑁𝑑 such that 𝐿(𝑛) = 𝐹𝑎𝑐𝑡,
5. If such 𝑛 does not exist

 {
create a new fact node 𝑛
𝐿 ← 𝐿 ∪ {𝑛 → 𝐹𝑎𝑐𝑡}
𝑁𝑑 ← 𝑁𝑑 ∪ {𝑛}
}

6. 𝐸 ← 𝐸 ∪ {(𝑛, 𝑟)}
7. For each fact 𝑓 in 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡 {
8. Look up fact node 𝑐 ∈ (𝑁𝑝 ∪ 𝑁𝑑) such that

𝐿(𝑐) = 𝑓,
9. If such 𝑐 does not exist

{
create a new fact node 𝑐
𝐿 ← 𝐿 ∪ {𝑐 → 𝑓}
If 𝑓 is primitive { 𝑁𝑝 ← 𝑁𝑝 ∪ {𝑐}}

else { 𝑁𝑑 ← 𝑁𝑑 ∪ {𝑐}}
}

10. 𝐸 ← 𝐸 ∪ {(𝑟, 𝑐)}
}
}

Figure 7. Attack Graph Building Algorithm (Ou et al. 2006)

48

3.6.4 Attack Graph Construction

The constructed logical attack graph depicts the combinations of different

vulnerabilities and how they may be put together to conduct a multistage attack in

an environment in which the assets have dependencies. Figure 8 shows the MulVAL

architecture of the logical attack graph construction (Ou et al. 2006).

Figure 8. Architecture for the Logical Attack Graph Generator (Ou et al. 2006)

MulVAL can be used to construct an attack graph in two ways. Either 1) running the

attack-graph generator directly by invoking the graph generation script with an input

file or; 2) by using adapters to prepare an input file for the attack-graph generator

(MulVAL Readme).

In the latter case, an input file will be created after performing a translation on the

vulnerability assessment result file. The built-in nessus_translate script, for instance,

will walk the Nessus XML result file and look for vulnerabilities that are listed. The

script goes through the vulnerability details as to how they are exploitable, their

CVSS scoring and access complexity, and their existence in the assessed

environment. Finally, the script will list every discovered services running on the

hosts in the environment, and how they are reachable from outside and also

laterally, inside the environment. This information is then translated into MulVAL as

Datalog clauses, as components to the knowledge base.

49

By default, the attack graph will be generated in .TXT and .XML formats. By

instructing the graph generator to perform visualization, the graph will be saved also

in .CSV, .EPS and .PDF formats.

3.6.5 Grouping Algorithms

Zhang et al. (2011) find it is quite possible even in relatively small environments that

the attack graph will become large, contested and visually too dense to interpret.

According to them, various techniques and approaches have been introduced in past

research to both, addressing the visualization challenge, and using traditional

method to produce an attack graph without taking targets’ similarities into account

(Zhang et al. 2011).

MulVAL utilizes special algorithms by Zhang et al. designed for creating abstract

network models for large-scale networks based on network reachability and host

configuration information. In their work they find that the abstracted models

dramatically reduce the complexity of the attack graphs by improving the

visualization but also correcting a possibly distorted quantitative vulnerability

assessment result (Zhang et al. 2011).

A caveat presented by Zhang et al. underline that their proposed abstractions are

suitable for risk assessment on a macroscopic level of an enterprise network. They

find that abstraction inevitably loses information which in some cases may lead to

not catching such subtle security breaches that may occur due to, for instance,

misconfiguration of a single host which is falsely considered similar to a group of

hosts (Zhang et al. 2011).

The network abstraction models are applied in three steps: 1) reachability-based

grouping, 2) vulnerability grouping and 3) configuration-based grouping.

Reachability-based grouping

In reachability-based grouping, all hosts are being grouped based on their

reachability information, host access list (hacl). All hosts in the same reachability

group can be abstracted as a single node, and the grouping is applied to all assets in

50

the same subnet. Algorithm for reachability-based grouping is in Appendix 3 (Zhang

et al. 2011).

Vulnerability grouping

In MulVAL, vulnerability grouping is conducted based on the application-level

identification. Zhan et al. (2011) established that a single host can contain dozens or

even hundreds of vulnerabilities, all of which may appear in a distinct attack graph to

further compromise the system. They claim that not all those paths provide unique

information since many of such vulnerabilities are similar in nature. Zhang et al.

(2011) also claim that it is more important, at a higher level to know that some

vulnerability in an application could result in a security breach, rather than

enumerating all the distinct but similar attack paths, since vulnerabilities in the same

application are often exploited by the same mechanisms.

In MulVAL, vulnerability grouping will display the vulnerable applications instead of a

list of CVE-numbers. The vulnerability grouping algorithm assigns the highest metric

to indicate aggregated vulnerability score after the grouping, with the ability to alter

the aggregation method through customization (Zhang et al. 2011). The algorithm for

vulnerability grouping is in Appendix 4.

Configuration-based grouping

Configuration-based grouping in MulVAL will iterate over all hosts in the same

reachability group and record their configuration information. If the discovered

configuration matches one previously recorded, the new information will not be

recorded in the set. The result set of the algorithm will only contain unique

representative hosts for each group of hosts in the same reachability and

configuration (Zhang et al. 2011). The algorithm for configuration-based grouping is

in Appendix 5.

51

3.6.6 A Practical Example

One host in the test network was taken as an example. This server runs as the

platform for the Information Services Environment (ISE), the internal information

portal. The platform is a modular object-based publishing environment on top of a

Windows Server 2003 operating system. Nessus vulnerability scanner detected and

identified a known vulnerability in one of the services running on the server. After

running the translation script, the vulnerability information was presented to MulVAL

with the following clause structure:

vulExists(ISEserver,’CVE-2003-
0352’,windows_2003_server).

vulProperty('CVE-2003-
0352',remoteExploit,privEscalation).

cvss(‘CVE-2003-0352’,l).

networkServiceInfo('ISEserver',windows_2003_server,tc
p,'445',someUser).

hacl(_,_,_,_).

Looking at the translations more closely;

vulExists(ISEserver,’CVE-2003-

0352’,windows_2003_server).

Here, the existence of a vulnerability that was discovered during vulnerability

assessment is presented as a Datalog fact. This information does not contain detailed

information on how the vulnerability can be exploited, only that it exists in the host.

Depending on the method of the utility that performed the assessment, the

existence may be have been decided based on the version of the discovered service

or, it may also have been confirmed through functional testing of the service.

The property information of the discovered vulnerability offer more information on

the vulnerability's exploitability with regard to access vector and impact type. From

CVSS v2 severity scoring, also the metric for access complexity is recorded, and the

respective information is then converted as a Datalog fact into MulVAL:

52

vulProperty('CVE-2003-

0352',remoteExploit,privEscalation).

cvss(‘CVE-2003-0352’,l).

The first of the two new Datalog facts defines that the discovered vulnerability is

prone to being exploited remotely which can then result in privilege escalation. The

second new fact define that the required access complexity is low.

Next, the input information of the software and services running in the host are

translated as Datalog facts. Continuing with the ISE example:

networkServiceInfo(ISEserver,windows_2003_server,tcp,

445,someUser).

The clause structure above defines that a system service is running on host ISEserver,

uses TCP protocol, listens on port 445 and is being run with someUser privileges.

Network configuration of the environment, containing router, firewalls, switches and

their respective broadcast domains are modeled as host access lists HACL. Unless

specified in the input file, MulVAL assumes each host has connection to every other

host in the environment. The corresponding Datalog fact for such access list is:

hacl(_,_,_,_).

Above, the free variable is used to indicate full connectivity for MulVAL. Should the

example include more complex evaluation, the free variables would enable the

recursive use of the same access rule across the whole program.

4 Construction

4.1 Thesis Test Network

The test network in this thesis is a semi-isolated environment (Figure 9.) in which

there are four logical network segments auth, core, ise and monitor. Semi-isolated in

this case means that logically there is no connection from the outside of the

perimeter firewall to any of the respective network segments. This is, however, not

53

an explicit condition. The test network environment is constructed in a way that it

mimics a mission network environment, such that are deployed into different

operations and such that enables for candidate C2 systems to connect to and

consume services that are being produced.

Candidate C2 systems apply for an Information Assurance (IA) assessment before

they are able to connect. Due to the connection window during the candidate C2

systems' IA process, there is a possibility that the network environment will become

exposed to external networks by proxy, and is therefore considered only semi-

isolated.

Additionally, a separated management network (mgmt) is deployed for all assets in

the environment to enable maintenance tasks on the assets. The management

network is separated, in that every asset is equipped with another network interface

dedicated to management use. The Kernel-based Virtual Machine (KVM) hosts and

guests do not, however, use kernel isolation or kernel separation in this construction.

Figure 9. Logical depiction of the thesis test network (HMN)

54

4.2 Access-lists

Table 3 shows the hosts and their respective firewall rules, required for the

availability of the HMN service set in the four network segments:

Table 3. Thesis Network Host Access-lists

HOST Network
segment

Allowed ports &
protocols

RADIUS AUTH 1812/UDP, 1813/UDP

CHAT CORE 5222/TCP, 5223/TCP,
6667/TCP, 777/TCP,
9090/TCP, 22/TCP

DATA CORE 80/TCP, 443/TCP, 22/TCP

ISE ISE 80/TCP, 8085/TCP,
137/TCP, 137/UDP,
138/UDP, 139/TCP,
445/TCP

LOG MONITOR 514/UDP, 514/TCP,
10514/TCP

SIEM MONITOR 80/TCP, 443/TCP, 22/TCP,
514/UDP, 514/TCP,
1514/UDP, 162/UDP,
12000/UDP, 40001-
40005/TCP*, 40011/TCP*,
555/UDP*, 6380/TCP*,
9390/TCP*, 33800/TCP*

* the ports marked with an asterisk are required if the SIEM sensor is being deployed

as a separate unit instead running all the components in one SIEM installation

(Alienvault® USM™ Depoyment Guide).

4.3 Vulnerability Information

4.3.1 MulVAL statistics

The vulnerability related information utilized in the MulVAL analysis engine used the

feed from NVD as the baseline. More specifically, the NVD XML feed with version

1.2.1 schema.

55

Prior to synchronizing the NVD vulnerability feed, the statistics in NVD page (NVD

Home) showed:

 77 607 CVE vulnerabilities

 356 Checklists

 249 US-CERT Alerts

 4 433 US-CERT Vuln Notes

 10 286 OVAL Queries

 113 937 CPE Names

The NVD repository and their CVSS and CPE analysis amendments may well be the

most referenced collection of MITRE’s CVE data, but there has been some scrutiny

about the completeness of the CVE and NVD, at least from a commercial competitor

(Risk Based Security, 2015). While being a commercial ad, really, the article questions

the coverage of MITRE’s CVE dictionary. Due to lack of funding resources for the

thesis, it was not possible to look into the coverage of the Risk Based Security’s

VulnDB, or Rapid7’s vulnerability database or any other commercial vulnerability

databases to find out whether the claim had any grounds.

It was possible, however, to take a closer look into the contents of the NVD

repository. The statistics from both NVD and cvedetails.com were put for comparison

in the Excel chart, in Figure 10.

Figure 10. CVE Vulnerabilities by Year

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

CVE Vulnerabilities by Year

nvd_tot

nvd_norm

cvedetails.com

56

After performing the synchronization script nvd_sync.sh , the total number of

vulnerabilities reported in the MulVAL’s internal database, nvd_tot, equaled to the

number of CVE vulnerabilities in the NVD website (NVD Home), as seen from the

following database query:

select count(*) from nvd;
+----------+
| count(*) |
+----------+
| 77607 |
+----------+
1 row in set (0.03 sec)

Inside the NVD data, there were some inconsistencies with the CVE records. Some of

the records were obviously meant for testing purposes, for instance regarding CVE ID

syntax change (CVE - CVE ID Syntax Change, 13.9.2016). Some were duplicates, or

records that have wrong id number, or contained incomplete confidentiality,

integrity or availability impact categorization information, and so forth.

<entry type="CVE" name="CVE-2014-59156" seq="2014-59156"
published="2015-01-13" modified="2015-01-13" reject="1">

 <desc>

 <descript source="cve">** REJECT ** DO NOT USE THIS
CANDIDATE NUMBER. ConsultIDs: CVE-2014-2352. Reason: This
candidate is a duplicate of CVE-2014-2352. The wrong ID was
used. Notes: All CVE users should reference CVE-2014-2352

 instead of this candidate. All references and descriptions in
this candidate have been removed to prevent accidental
usage.</descript>

 </desc>

Incomplete or redundant or duplicate records, such as the one above, distort the

statistics of real vulnerabilities and ought to be left out of the calculations. Therefore,

in Figure 10, also a normalized total number of vulnerabilities nvd_norm was

presented. Normalization in this case means filtering out the above mentioned,

undesired vulnerability records.

57

According to the graph the long-term trend for newly discovered vulnerabilities has

been on an incline ever since the CVE vulnerabilities have started recording, from

1999. The most number of vulnerabilities in one year have been recorded in 2014.

Interestingly, as noted also by Yung-Yu et al. (2011), there is a decline of three-year

period from 2008 to 2011 where the frequency of newly reported vulnerabilities was

indeed decreasing before again starting to increase from 2012 onwards.

The outstanding peak for the year 2014 was found to be caused by well over a

thousand (1 395) Android OS and Android library based locally exploitable

vulnerabilities regarding SSL server x.509 certificate verification inability.

4.3.2 OpenVAS statistics

The GSA component of the OpenVAS architecture displays the statistics of the

vulnerability feed sources inside the OpenVAS. An example is shown in Figure 11 in

which four dashboard elements show CVE’s by CVSS severity, CVE’s vulnerabilities by

year, OVAL definitions by CVSS severity and OVAL definitions by class, respectively.

The statistics in Figure 11 are from April, 2016.

58

Figure 11. Screenshot of OpenVAS GSA SecInfo Dashboard

4.4 Asset Vulnerability Assessment

The main utility that was used for the majority of the vulnerability assessments in the

network environment was the Nessus vulnerability scanner. The Nessus Home Feed

version had a limitation of being able to scan only 16 individual IP addresses, which

did not affect the scanning of the test network’s assets due to the small number of

them.

Where applicable, vulnerability assessments were conducted also with Nexpose,

OpenVAS and OpenSCAP. While the other utilities performed vulnerability

assessments, OpenSCAP was instead used to perform compliance checks on the

Linux-based assets against Red Hat Enterprise Linux 6 Security Technical

Implementation Guide (STIG) and customized SCAP Security Guide (SSG) checklists to

look for sub-optimal configuration in the operating system or software components.

The SIEM system had the capability of running vulnerability scans with the integrated

OpenVAS vulnerability scanner. This enabled for the presentation of the environment

59

status with regard to vulnerabilities and risk levels and also, to establish an asset

database for the environment.

The results of the vulnerability assessment (depicted in Figure 12.) show that the

Windows-based ISE server contained the highest number of known vulnerabilities. In

total, Nessus found 177 vulnerabilities with severity ratings of low, medium, high or

critical and 109 additional conditions that it flagged as informational. In comparison,

OpenVAS found 387 vulnerabilities with severity ratings of medium, high or critical in

the same ISE server, along with 30 informational conditions. Nexpose, the scanner

that was used only with the ISE server, found 142 vulnerabilities that it flagged as

medium, high or critical. Most of the critical and high level vulnerabilities were

discovered in the underlying operating system suggesting poor security and patch

management.

Statistically the second highest total amount of vulnerabilities was discovered in the

LOG server that was used for centralized logging. Nessus found 233 vulnerabilities

with severity rating of low, medium, high or critical and 67 informational conditions.

OpenVAS was able to find 205 vulnerabilities and 45 informational conditions in the

LOG server.

The third highest amount of vulnerabilities and almost similar results and severity

profile was discovered in the RADIUS server, with vulnerabilities and informational

results for Nessus and OpenVAS, 229 – 65 and 196 – 226, respectively.

Based on the vulnerability assessments with Nessus and OpenVAS, CHAT and DATA

servers were the least vulnerable at least with regard to known vulnerabilities. In

CHAT server, Nessus found 7 vulnerabilities of which 5 had medium severity and 2

had low severity rating. The amount of informational conditions was 61. OpenVAS

found 8 vulnerabilities of which 3 were high, 5 were medium, and additional 45 for

info. Similarly, in DATA server, the numbers were 8 in total of which 6 medium and 2

low and 43 info for Nessus, and 5 in total of which 2 high and 3 medium, and 31 info,

for OpenVAS.

The vulnerability assessment in this thesis did not seek to compare the performance

or the accuracy of the scanners used. The results from Nessus vulnerability

assessments were the only ones that were further utilized in the MulVAL analysis

60

engine and Nexpose and OpenVAS contributed in providing enriched information for

the NOC.

In addition to the vulnerability assessment, SCAP compliance evaluations were

conducted on the linux-based hosts in search for sub-optimal configurations that

could affect the security posture of the environment by exposing the hosts as

potential stepping stones for the malefactors in their campaigns. Two different

profiles were used for the SCAP compliance evaluations: SSG RHEL6 XCCDF and

RedHat_6_V1R12_STIG_SCAP XCCDF.

The SSG and the STIG checklists consisted of 175 and 178 evaluation rules,

respectively. The results of the evaluations were generated in both machine

readable XML format and a regular HTML report. The overall scores are shown in

Figure 12 as percentage bars. The bars show the relative amount of evaluated rules

such that matched the ones on the implementation guidelines.

The host with the highest SCAP evaluation score was the LOG server with relative

equivalence scores of 71.30 % and 50.86 % for the SSG and STIG checklists,

respectively. Interestingly the same server contained the highest amount of

vulnerabilities among the Linux-based hosts.

While the differences in vulnerability assessments were clear, the configuration

check indicated almost similar configurations in the underlying operating system and

the software base. Depicted in Figure 12, the variations for the four hosts are within

46.86 .. 50.86 for the STIG and 65.90 .. 71.30 for the SSG evaluations.

61

Figure 12. Vulnerability assessment of key assets

4.5 Attack Graph Compilation

The Nessus vulnerability assessment results were provided as the input data for

MulVAL to process and to compile the initial attack graph for the environment. The

access-lists were configured in the MulVAL configuration as they were listed in 4.2.

Due to the very high amount of vulnerabilities in three of the hosts, and the all-

connecting management network, the attack graph became extremely large. Figure

13 shows just a small portion of the attack graph for the ISE server.

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

N
es

su
s

O
p

en
V

A
S

N
ex

p
o

se

N
es

su
s

O
p

en
V

A
S

SC
A

P
 S

SG
SC

A
P

 S
TI

G

N
es

su
s

O
p

en
V

A
S

SC
A

P
 S

SG
SC

A
P

 S
TI

G

N
es

su
s

O
p

en
V

A
S

SC
A

P
 S

SG
SC

A
P

 S
TI

G

N
es

su
s

O
p

en
V

A
S

SC
A

P
 S

SG
SC

A
P

 S
TI

G

ISE RADIUS CHAT DATA LOG

INFO

LOW

MEDIUM

HIGH

CRITICAL

Compliance-%

62

Figure 13. A Portion of the ISE Server Initial Attack Graph

Above, the screenshot shows multiple vertices that produce the possible paths for

the attacks that can ultimately lead to running arbitrary code in the ISE Server with

administrative rights. Each vertex was logically deduced by MulVAL engine from the

Nessus assessment result.

Table 4 lists only a small portion of the vertices depicted in the Figure 13 graph.

Table 4. Attack Graph Vertices

1 execCode(iseServer,root) OR

2 RULE 0 (local exploit) AND

3 cvss('CVE-2003-0350',l) LEAF

4 vulExists(iseServer,'CVE-2003-0350',windows_2000,localExploit,privEscalation) LEAF

5 execCode(iseServer,someUser) OR

6 RULE 1 (remote exploit of a server program) AND

7 netAccess(iseServer,tcp,'445') OR

8 RULE 5 (direct network access) AND

9 hacl(hmn,iseServer,tcp,'445') LEAF

10 attackerLocated(hmn) LEAF

63

4.6 Quantitative Risk Analysis

The MulVAL's quantitative risk assessment algorithm, based on Wang et al. (2008),

combines the CVSS metrics existing in the discovered vulnerabilities with the attack

graph to calculate probabilistic risk metrics for the environment network. The script

for the quantitative analysis requires the input files to contain summarized

information, either summ_nessus or summ_oval for Nessus and OVAL XML formats,

respectively, as it will always perform grouping.

A quantitative risk assessment for the construction was calculated based on the

attack graph and CVSS scoring which was then presented to the NOC in parallel to

the other rendered attack graphs.

Figure 14 – although still greatly reduced in size – shows a portion of a risk assessed

attack graph for the environment. The use of grouping algorithms, especially

vulnerability based grouping, clearly enhanced the graph’s usability comparing to the

one on Figure13.

Figure 14. Attack Graph with Quantitative Risk Assessment

64

5 Use Case “HMN”

Not having a sponsor the thesis, the assessment for the attack graph integration

could not be conducted in a real operational environment. Therefore, the usability

assessment for the construction was carried out with a use case of a joint mission

network where core services were published for the participating C2 systems to

consume.

Harbinger Mission Network (HMN) is a fictitious deployable network-enabled-

capability environment participating in and supporting joint command and control-

lead operations. HMN is a platform for several information services that are actively

advertised and published throughout the HMN network. C2 systems from

participating nations can connect to the HMN to cooperate and collaborate in the

joint missions, consuming the available services as well as publish their own set of

services for other C2 systems to consume.

The security posture of the HMN was established from the assessment and

configuration data of the construction in chapter 4.

5.1 HMN NOC Capabilities

5.1.1 Security Incident and Event Management (SIEM) System

The purpose of a Security Information and Event Management (SIEM) system is

generally to provide centralized management for the collective log-based

information and correlation of the log data with other information that is gathered

through various types of data from their respective sources.

A SIEM system accepts information from numerous types of security related

information sources, such as devices and sensors, network firewalls and IDS/IPS

systems, host based IDSs, and is capable of performing normalization and correlation

of the data it receives through these sources, to build a common view – a

representation of the state of the environment to a SOC. SIEM will help the SOC to

perform analytical and forensic investigations to the events that have occurred, it will

65

provide the SOC with tools that provide some level of threat intelligence, which

together with an asset database, will build to the situational awareness of the

network environment for an organization. Figure 15 depicts a typical SIEM

architecture. (Bhatt et al. 2014)

Figure 15. A Typical Security Incident and Event Management (SIEM) System
Architecture. Quoted from Bhatt et al. (2014).

An Open Source SIEM from AlienVault Inc., OSSIM, was chosen as the SIEM system

for HMN use in this thesis. OSSIM is an open source variant of the AlienVault's

commercial SIEM product, USM. OSSIM contains the sensor and SIEM components

for quick single-tier deployment, in which all the components are installed into a

single server. For expansion, additional sensors can be later added and deployed into

the environment. Additionally, OSSIM includes community-developed correlation

rules for the threat analysis performed in the SIEM, with the ability to create

customized correlation rules. (AlienVault®, OSSIM vs USM™).

Plugins are used in OSSIM sensors to extract data from logs produced by different

data sources, which can then be used to create alarms into the SIEM dashboard.

OSSIM comes with several built-in plugins for various log formats and provides the

ability to build plugins for custom specific log formats (Alienvault® USM™

Deployment Guide).

66

Host-based Intrusion Detection System (HIDS) component in OSSIM watchguards the

behavior and state of the Windows-based computer systems the HIDS agent is

installed on by monitoring and collecting logs, detecting rootkits, monitoring file

integrity and MS Windows registry integrity. Additionally, HIDS can be run in

agentless mode in UNIX/Linux hosts and with network devices such as routers and

firewalls to perform, for instance, configuration integrity checks (Alienvault® USM™

Deployment Guide).

Another feature with the HIDS component with OSSIM is active response that can be

configured to launch applications and perform actions based on certain triggers (AV

USM deployment guide)and can also be used to monitor network devices such as

routers and firewalls and their configuration integrity with agentless operating mode

(AlienVault® USM™ Deployment Guide).

In this thesis, OSSIM was used to 1) build an asset database of the environment, 2)

run vulnerability assessments on the assets with the integrated OpenVAS scanner, 3)

deploy and manage HIDS agents through management network and 4) monitor one

network segment for intrusion signatures. For the latter, an additional OSSIM sensor

was deployed as an IDS sensor. The deployed IDS was configured to use suricata as

the IDS engine with a customized rule set that was based on the Emerging Threats

Open rule set, included in OSSIM (AlienVault® OSSIM vs USM™).

5.1.2 Centralized Real-Time Logging System

One limitation with OSSIM was that the Alienvault logging component is available

only for the commercial Alienvault USM product. For the construction, an open-

source-based real-time logging system was built to provide the log analysis capability

in the test network environment, to complement the SIEM system. Requirements for

the logging components were 1) the ability to collect log messages from networks

such that were 2) unstructured and that would be recorded at 3) high rate.

A centralized logging system was implemented with open-source components

including syslog-ng-ose, Elasticsearch, Logstash and Kibana.

67

Syslog-ng was configured as the log collector capable of high-frequency operation,

whose sole purpose was to catch all the log messages that were sent towards the

logging component in the network. The components in the ELK stack (Elasticsearch,

Logstash, Kibana) were used for structuring, analyzing and presentation of the log

data. The logging system had the ability to receive any type of log data, and when a

structure was required for analysis and presentation, it was possible to produce

one’s own parser for the log data.

5.1.3 Full Packet Capture and Analysis

In the HMN network environment, a full packet capturing and indexing analysis was

implemented as a capability for the NOC to perform analysis over the network traffic.

The analysis was possible once the initial vulnerability assessment had been

completed and when both the host-based access lists and the set of required services

had been studied, so that the NOC was able to establish a baseline for the network

traffic that was considered normal in the HMN. The actual traffic record and

metadata index analysis was carried out with a KVM VM instance that had the traffic

capture and indexing service installed, and with a network interface dedicated to

recording the traffic.

Normally, full packet capture would require significant resources just to store the

network traffic data and a high bandwidth capable tap device. In the HMN use cases,

however, the traffic was very light, which meant that the utilization of the hardware

was minimal and that the limited dedicated resources were sufficient.

5.1.4 Vulnerability Feed Update over an Air Gap

Since the network environment did not have internet connection – direct or proxy –

the vulnerability definitions were not automatically updated. To manually update the

vulnerability definitions into MulVAL analysis engine while still maintaining the cross-

domain principle, a unidirectional, one-way data transfer was implemented.

Unidirectional data transfer means the ability to limit network data to flow only in

one direction. It is often achieved with information exchange gateways and so-called

68

data diodes in high security implementations involving industrial control systems

(Jeon & Na, 2016), or components of critical infrastructure, where there are typically

several security level areas and domains

The most common form of a data diode is an optical link, in which the physical

structure of the transmitting laser emitter and the receiving laser detector allows the

data to pass through in one-way only (Barker & Cheese, 2012).

A network tap device can be installed between two network devices, switches,

firewalls or routers as a secure way to connect a network flow monitoring tool to the

network. Similarly to the data diodes, the traffic is allowed to pass one-way only. In

tap devices using copper medium, this is accomplished with a break in the path

between physical Ethernet interfaces’ and the Medium Access Controller (MAC) (Ixia

White Paper, 2014).

Typically, network tap devices can be configured into aggregating or non-aggregating

modes. The aggregating mode enables the device to combine the two full duplex

network streams of data into a single monitor output. In non-aggregating mode, the

traffic flow from either of the two devices is copied onto a single monitor output

(Datacom Systems, Network Taps). Conceptually, this mode of operation enables

one-way data flow. Figure 16 depicts the functional design of the network tap device

used in the thesis network (Ixia White Paper, 2014):

69

Figure 16. A Network Tap for Copper Medium. Quoted from IXIA White Paper (2014).

Forward error correction mechanisms, such as the Reed-Solomon implementation

used by Heo et al. (2016) in their security gateway design, are generally used to

assure that the integrity of the data being transferred in unidirectional applications

will remain intact. Some implementations such as the Feedback Node, depicted by

Jeon & Na (2016), have introduced the use of multiple data diodes for data transfer

assurance, enabling retransmissions of the packets that were lost in transit.

Due to the simple structure of the network in this construction, a conceptually

similar setup was achieved with using two raspberry pc's each having their host-

based firewalls configured either to send or to receive, respectively, and a small

program udpcast to handle one-way packet transfer during the manual NVD Feed

vulnerability definitions update.

Udpcast is a program designed to broadcast data to multiple hosts simultaneously. It

can be applied to a unidirectional data transfer as well, by instructing the program to

perform a point-to-point asynchronous transmit.

70

Forward error correction in udpcast compensates for the packets lost in transit in a

way, such that, for every S blocks of data there will be R number of redundant blocks

and the data is divided among I stripes. Using the command below, udpcast was

instructed to use unidirectional transfer with limited bitrate and a FEC with S=64, R=6

and I=8, which allowed for losing 48 subsequent packets and still be able to complete

the transmission. (Udpcast Documentation)

udp-sender -f /opt/nvd_feed_data.tar.gz --async --

pointopoint -m 10.0.7.3 --max-bitrate 16k --fec 8x6/64

5.2 HMN Organizational structure

The fictitious organization for the HMN can be seen in Figure 17. The roles involved

in the use case – ISSM and ISSO, highlighted in the figure – were tasked to

watchguard and maintain the cyber security of the HMN with the support of the

existing NOC capabilities.

Figure 17. ISSM and ISSO Roles in the HMN Use Case

71

Ideally before connecting the candidate C2 system to the HMN network the C2

system would need to have an Infosec Assurance liaison assigned who, together with

a Security Officer (SO) or a Security Engineer (SE), would help the ISSM and ISSO to

establish an initial state, a baseline, of the candidate system’s security posture. This

would include the vulnerability and configuration assessments and provide ISSM with

a view on the possible threat increase against HMN through the candidate C2

system. In this use case however, such process was not mandatory for the candidate

C2 systems and their security posture remained unknown. Existence of possible

malware and sub-optimal configuration was simulated through the attack cases in

the following chapters.

5.3 Recognized Threats in HMN

Following threats regarding candidate C2 systems were recognized, such that could

endanger the HMN. The list is artificially limited for the brevity of this use case.

1. Known malware is introduced to the HMN environment through a candidate C2

2. Unknown malware is introduced through candidate C2 and is able to persist in the

HMN environment

3. Administrator exposes vulnerabilities by committing configuration errors or through

poor management of the candidate C2

4. Devices that connect to HMN are not known due to not having enforced a strict

device policy

5. Uncontrolled data exfiltration through newly connected devices and out-of-band

communication channels

6. Uncontrolled candidate C2 system modification, changing services behavior and

possibly allowing for unauthorized access

7. Undetected system access due to missing or falsely configured access control

5.4 Planning the Response

Regardless of not having implemented host valuation or other ISMS (ISO 27001,

27002 and 27005) risk management methods or controls in the construction, ISE

72

server, RADIUS server and LOG servers were designated as the most critical hosts in

the environment.

Mitigating 0-day attacks

The conventional vulnerability assessment conducted with scanners such as those

listed in chapter 3.3 will only detect known vulnerabilities. In the context of the HMN

network, the most interesting vulnerabilities became those of which there is no

previous knowledge.

In the absence of a sponsor, the operational aspect of the decision making process

was not included with regard to tasking the NOC. Instead, the functionality of NOC

was purely technical. As reactive and proactive countermeasures, the NOC decided

to use methods: 1) reactive firewall rules; 2) full packet capture; and 3) revertation

scripts of the planned counteractions from chapter 2.2.4.

Referred to as 0-day or Zero-day vulnerabilities, for instance, by Bilge & Dumitras

(2012), Wang et al. (2010), Patel & Thaker (2011) and Zhang et al. (2011), are the

kind of vulnerabilities that are not yet known to the public. Companies that are

specializing in discovering 0-day vulnerabilities and such that are capable of

supplying them on an annual basis even have subscription service models for their

exploitation (Herr, 2016), and have also been reported selling the 0-day details to

companies and governments (Fung, 2013).

According to Hutchins et al. (2010), even the use of zero-day exploits by the

malefactors may be discovered if they are delivered or exploited using a method that

has been used before. Hutchins et al. (2010) suggest that the ability to revisit the

attacks and reconstruct intrusions would be particularly useful. Being able to

recognize patterns or signatures of unorthodox and advanced methods could

effectively prevent their reuse and would likely increase the required cost of the

malefactors’ campaigns. (Hutchins et al. 2010).

In HMN, NOC decided to plan for the mitigative actions against 0-day attacks using

the configuration information from chapter 4 as the starting point. NOC gathered

that the vulnerability scanners used in those assessments were of little use.

73

Additionally, NOC used MulVAL to generate probabilistic attack graph and

implemented reverse logic into the decision making process. In other words, NOC

decided that the multistage attack that seemed as the most likely attack paths were,

in fact, the least probable the malefactors would utilize. NOC concluded that the

malefactors would unlikely risk being seen by using an exploit to a known

vulnerability as there might be signature for the exploit available.

NOC used the HMN attack graph in conjunction with the configuration information

and opted for hardening the core services as thoroughly as possible, following some

of the models and guidelines of the k-zero day safety, by Wang et al (2010).

5.5 Attack Cases

5.5.1 Unknown Malware

In this attack, a previously unknown malware had been introduced into HMN

through a C2 system. The malware had been able to make its way to and infect the

ISE server. It was unclear how the initial distribution of the encrypted or obfuscated

binaries had been delivered to the ISE server.

The first indicator of the infection was spotted by NOC through the centralized

logging system several days after they had deployed the HIDS file integrity

component, sending its daily logs to the log server. The initial run for the malware

and the delivery of the encrypted executables had to have happened before the HIDS

deployment.

Once infected, the malware had launched a process with at least two threads. The

first thread was actively – yet slowly – scanning for windows-based computers in the

networks the server had access to. The second thread was used to deobfuscate or

decrypt the previously planted 36 polymorphic copies of the program in order to

create persistency and to allow for later remote commands through a reverse

connection through port 445. Figure 18 shows the file operations for the ISE server

where the initial indicator, the decryption phase of the malware on September 12th,

is highlighted with the first vertical bar.

74

Once decrypted, the malware had produced several executable that were identical to

the size of the first version that was encountered – 92447 bytes. The new

polymorphic versions of the malware were named randomly, having eight random

characters and 2 to 3-digit padding or suffix at the end.

Figure 18. File Alterations of a Polymorphic Malware in ISEServer

After the indication NOC was quickly able to isolate the malware having learned its

propagation attempts in the full packet capture metadata indexer.

 The remediation actions performed by the NOC consisted of two phases, the effects

of which can also be seen in the Figure 18 graph. The first remediation step included

orchestrating an enforcement script, which effectively prevented the malware from

altering files in the existing filesystem, after which the file integrity database was

signed for approval, highlighted with the second vertical line in the graph timeline.

The malware still persisted, but its functionality was now reduced. The second

remediation step included finding and removing the main process, effectively

disarming the malware in the ISE Server.

Since the time of initial infection was unknown, NOC created a manual SCAP-

compatible OVAL-test (Figure 19) that would indicate the presence of the

encountered malware in a Windows-based system. This information and

identification signature was then distributed to the C2 that was connected to the

HMN at the time of the malware discovery.

-50

0

50

100

150

200

29.7.2016 18.8.2016 7.9.2016 27.9.2016 17.10.2016 6.11.2016

overall

additions

removals

changes

75

Figure 19. An Excerpt of a Custom SCAP (OVAL) Test for the Polymorphic Malware

In a small environment such as the HMN, the unknown malware attack case

demonstrated limited benefit from the attack graph analysis of the construction. The

attack graph did show that a multipath combination was not possible within the

HMN, which was quite obvious since no other Windows-based machine existed in

the network. However, this was not immediately known to the NOC, not before the

malware had been thoroughly investigated. This meant that until the dissection of

the malware, NOC needed to take preventive measures to ensure the protection of

the HMN assets and for this purpose the attack graph was well utilized.

5.5.2 Remote Connection Through Side Channel (ircd)

In this attack, the main utility used for the operational instant messaging system

(chat) in the HMN environment contained a trojan, a backdoored binary through

which a malefactor had been able to control the host machine with the same (root)

privileges that the chat service daemon was running.

The backdoored version of the chat server was listening on the port 6667, which was

flagged as legit traffic by the NOC team based on the initial service and vulnerability

assessments. An attack graph was not available for the chat server, since the server

was clear of vulnerabilities based on the assessment result and therefore no attack

paths could be rendered.

76

When a C2 system was connected through node CR (named CRC2) to the HMN, and

the routing information had been exchanged and configured, the network security

engineer in charge of the CRC2 soon notified the NOC that they had seen traffic

through their network towards the HMN chat server, even if they themselves had

not yet configured their chat clients to use that server.

During the investigation NOC had the advantage of relatively accurate time window

in which the event had occurred. The time window together with the relevant IP

information from the CRC2 network engineer, NOC was rather quickly on top of the

specific time of the event. In the SIEM system, they found nothing out of the ordinary

in the specific timeframe and IDS logs.

In the packet capture metadata, on the other hand, the NOC was able to revisit the

specific time window and they were able to go through the specific TCP session. NOC

immediately applied a firewall rule to the perimeter firewall to prevent further

connections to the destination IP that was discovered.

The NOC were able to discover that the server daemon was indeed backdoored, and

that there was no patch available that would remediate its further exploitation. The

HMN requirement that the instant messaging had to be available through TCP port

6667 forced the NOC to search for another form of mitigation.

Lacking any attack graph analysis for chat server NOC decided that isolating the

attacker to just to the chat server required the host-based (iptables) firewall to

prevent outgoing connections to the other network segments, which was then

enforced with a SCAP XCCDF evaluation rule with forced remediation, resulting in an

iptables rule being inserted into the OUTPUT rule chain.

This did not however, remove the remote access to the backdoored daemon.

Knowing only one IP address from which the remote connection had been

established was not sufficient. During the further investigation NOC was able to

discover that the backdoor triggering packet contained letters “QQS”, which were

not seen in any of the subsequent packets in the session data. The NOC then ended

up implementing a remediation script, very specific to the particular backdoor that

enforced an iptables rule to block incoming TCP packets through port 6667 that

contained the signature “QQS”,

77

iptables -I INPUT 3 –i ens3 -m state --state NEW –p

tcp --dport 6667 –m string --algo bm --string “QQS”

–j DROP

This effectively prevented the further exploitation of the backdoor regardless of the

source IP address.

Similarly to the unknown malware attack case, NOC was unable to remove the binary

that was backdoored and they had to implement mitigative actions such that

increased the resiliency of the server, in which the backdoor persisted. In this attack

case no attack graph analysis was readily available for the chat server since the

vulnerability assessment did not find vulnerabilities in the server.

Since the MulVAL utility does allow for versatile customization, the NOC were able to

create an attack graph for chat server for later use. In the Nessus translated input file

they simply added a custom line describing the newly discovered backdoor and the

privileges the daemon was being run with (root).

The new attack graph then added to the resilience of the chat server because after

visualizing the new graph NOC noticed that they had only enforced the string based

drop rule to the core network interface (ens3), but the backdoor could still be

exploitable through management network. The NOC therefore expanded the firewall

rule to also include the management network.

5.5.3 Data Exfiltration using ICMP echo requests and DNS requests

In this attack data from was being exfiltrated inside what appeared like ICMP ping

requests and DNS queries towards an outside IP address over Side Channel

connection. The NOC operator had not noticed anything out of the ordinary during

the overwatch of the network traffic profile.

The data exfiltration was carried out using two phases: 1) first by sending the data to

an undocumented core network IP address using ICMP protocol. A rogue device had

been installed into the core network and was functioning as the receiving host. The

78

receiver compiled the received data and in turn started to send the data using DNS

queries through a mobile access point uplink, the receiver was attached to.

A backdoor that existed in the chat server (attack case 5.5.2) had allowed for a

remote access to the chat server with privileged rights. Even though the NOC had

been successful in remediating the backdoor exploitation in 5.5.2 the attacker had

been able to build a script that was slowly sending the chat server internal user

database to a receiver in encoded and subsequent ICMP echo requests.

It seems the NOC was able to discover the ongoing exfiltration by chance. The SIEM

system had discovered a new device during an automated asset sweep, but the

discovery had been left unnoticed until the NOC was starting to perform a

vulnerability assessment on another host.

Having only recently finished the chat server backdoor case, the discovery of a new

device immediately triggered a thorough investigation during which the lateral ICMP

requests were also discovered from within the packet capture indexer.

The echo requests were slowed down to not raise attention in the environment. The

ICMP “ping” was performed every one second plus a randomized delay of 0 to 8

seconds. During the investigation NOC was able to discover the variance from within

the centralized logging system, where luckily the chat server was configured to send

all the kernel-level logs, including firewall logs. The discovered time variance is

depicted in Figure 20.

The rogue device was disconnected from the network, but kept running to further

examine the attack case. The device was sending data, assumingly the partially

gathered user database, encrypted within DNS queries over UDP port 53.

79

Figure 20. ICMP Exfiltration Time Variation

In this attack case, the attack graph provided little use to the NOC. New device

insertion by an insider threat actor in this attack case was only detectable through

the SIEM system.

The attack case did eventually improve the future resiliency of the HMN network,

since after this attack case, NOC implemented audit logging on every host so that in

the future, every console command would be securely sent do the centralized

logging system which the NOC would be able to monitor for specific commands such

that are common to malefactors when arriving at new, undiscovered hosts.

6 Conclusions

Taking into account that the construction and its usability assessments were in fact

built and performed by the same individual, the conclusions are not entirely

objective.

Despite not having the opportunity of a sponsor for the thesis and thus not being

allowed to test the construction in a truly operational environment to enable course

0

1

2

3

4

5

6

7

8

9

10

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

6
9

7

7
2

6

7
5

5

7
8

4

8
1

3

Ti
m

e
 B

e
tw

e
e

n
 IC

M
P

 E
ch

o
 R

e
q

u
e

st
 (

s)

Sequence Nr.

ICMP Echo Request Time Variation

80

of action planning, the construction was considered useful in the context of this

research.

Through the construction the research was able to support a very small NOC – some

might even refer to as a One-man SOC – in measuring the overall security of a limited

set of hosts in a semi-isolated network. The integration of the attack graph analysis

system was successful and the construction was able to provide additional

information for the NOC operator with respect to the measurement and analysis of

the static-like security posture of the semi-isolated environment, utilized particularly

in the HMN use case. MulVAL provided the ability to analyze the overall security

combining vulnerability information with the underlying service and network-level

interdependencies, and to create visual presentation for the analysis.

Additionally, traditional procedures for maintaining software and security updates

could benefit for the cyclic analysis of the data, although the processed data would

likely be more useful to integrate as machine-readable .xml as opposed to a

rendered visualization. That way the data would be more convenient to refine or

restructure for various different uses, manual or automated.

During the attacks, the construction provided means to rapidly react to them,

allowing for the actions to intercept lateral expansion or to cut before the next phase

of the attack could take place.

Before the potential attacks, the most vulnerable assets were identified. The

mitigation planning was possible to be conducted then based on the probabilistic

analysis and quantitative risk assessment by MulVAL. Being able to visualize the most

probable attack steps and to use that information to prioritize the mitigative actions

was beneficial.

In the real-world operational networks, however, especially when the state-

sponsored malefactor are involved, the attack graphs representing the most likely

exploited vulnerabilities and the respective attack paths can be misleading. Normally,

one would think the attackers would always be looking for the easiest and least-cost

attack path in every environment and every situation. While in contrast, state-

sponsored malefactors will likely build their strategy on reverse logic and decide that

what would seem as the most sensible attack path is in fact unusable due to the

81

existence of the defender. Similarly, following the more expensive and resource

consuming attack path could be selected as the most convenient strategy. This would

render the most expensive attack path the most likely, which of course would create

completely different attack graph visualization.

The use cases in this research were overall very simple, as was the environment they

were tested in. Still, three of the servers running inside the HMN network contained

so many known vulnerabilities that the rendered attack graph visualizations became

challenging for the NOC to read, and they were practically unusable without applying

MulVAL’s grouping algorithms on them. Two of the servers contained practically no

known vulnerabilities, so they didn’t constitute to any of the graphs.

However, again in an operational environment, the unknown vulnerabilities were

more interesting than the known vulnerabilities. While the two servers appeared

having no vulnerabilities, they were still configured similarly to the other two that

contained the highest number of the vulnerabilities. As with the known

vulnerabilities, the underlying configuration could allow also for the exploitation of

the currently unknown, zero-day vulnerabilities.

The construction proved useful in this regard as well: Even if the CVSS-scoring-based

probabilistic attack graphs did not render for an unknown malware, the underlying

dependencies resulting from the host and network configuration still allowed for

basic attack graph block visualization in text format. Instead of weighing it with

characteristics that didn’t exist, the graph depicted the logical connections, which in

turn allowed for mitigation planning against zero-day attacks. The practical use cases

demonstrated the usability of orchestrated counteractions that were easily deployed

through the Security Content Automation Protocol and the OpenSCAP utility.

OpenSCAP supported manually created checklists, which turned out as very efficient

and resource preserving way of checking for malware in the HMN unknown malware

use case in which new signature had to be created manually by the ISSO as the

malware was unknown to any AV. Additionally, this specific use case simulated a

situation involving a legacy system where such AV scanner was not possible to install.

82

OpenSCAP also allowed for the automated XCCDF compliance checks to be reported

centrally to the logging system, and a deviation from a known-good configuration set

was quickly detected.

The SIEM system of the construction provided another level of visibility over the

environment, allowing for the NOC operator to supervise the network for signature-

based intrusions and perform automated vulnerability scanning for the assets as well

as discovery of new assets.

In parallel to MulVAL, another tool that was most valuable to the NOC was the full

packet capture, indexing and analysis system that allowed the NOC to very

effectively supervise all the sessions, protocols and ports, packets and databytes,

even files that were being transferred in the network. It also provided the NOC

operator the possibility to chronologically revise the network-utilizing attacks.

Through the construction it was possible for the NOC to monitor the use of the

allowed services also laterally. For instance in the HMN exfiltration attack case where

the ICMP echo requests were not a violations per se, the incident was escalated by

the NOC as an anomaly based on the full packet capture metadata indexing data.

The construction applied in this research provided methods for a NOC operator to

protect a small operational environment and also to improve its security poster,

resulting in a narrower and more confined threat landscape for the malefactors. In

that regard, the work conducted in this research will likely assist in solving some of

the real-world operational network problems in the future.

Decision makers involved in network-centric operations should possess at least

moderate knowledge of how cyber operations are conducted especially with regard

to state-sponsored actors’ involvement, so that the resiliency of the cyber operations

would not be as heavily depending on the availability of the subject matter experts.

Automation of network-enabled defenses can help only so much, and conventional

methods will still be required for resilience and persistence in the network-centric

operations.

Lastly, the attack graph analysis contributed to the planning of some level of tactical

and operational level countermeasures, which ideally could allow for the creation of

unique and practical “playbook” for the cyber operation defense decision makers.

83

6.1 Areas of Future Research

To further develop the resiliency of operational networks, the many applications of

Artificial Intelligence should be intensively studied especially with regard to

autonomous systems in cyber defense and cyber offense. Dynamic learning abilities,

self-healing and dynamically adapting networks and other autonomous capabilities

leveraging artificial intelligence would be intriguing.

In their work, Alsaleh & Al-Shaer (2011) presented a framework combining regular

SCAP-based host configuration compliance checks with network configuration

analysis such as network path compliance, and transformed as logical objects to be

presented as Prolog facts. Areas such as this, especially when utilizing the machine

readable outputs for example for expert systems, learning systems, semi-

autonomous defense systems could also be interesting.

84

References

Alienvault® USM™ Deployment Guide. Accessed on 18.10.2016. Retrieved from
https://www.alienvault.com/documentation/resources/pdf/usm-
deploymentguide.pdf.

AlienVault®, OSSIM vs USM™ whitepaper. Accessed on 18.10.2016. Retrieved from
https://www.alienvault.com/resource-center/white-papers/ossim-vs-usm.

Alsaleh, M. N & Al-Shaer, E. SCAP Based Configuration Analytics for Comprehensive
Compliance Checking. In proceedings on the 4th Symposium on Configuration
Analytics and Automation (SAFECONFIG), 2011.

Argus CyberSecurity Lab, Kansas State University. 2012. MulVAL v1.1: A logic-based,
enterprise network security analyzer. Source code. Retrieved from
http://www.arguslab.org/mulval.html.

Asgarli, E. & Burger, E. 2016. Semantic Ontologies for Cyber Threat Sharing
Standards. In proceedings on IEEE Symposium on Technologies for Homeland
Security (HST).

Balabit PLC. 2016. The syslog-ng Open Source Edition 3.4 Administrator Guide,
Accessed on 5.11.2016. Retrieved from https://www.balabit.com/documents/syslog-
ng-ose-3.4-guides/en/syslog-ng-ose-guide-admin/pdf/syslog-ng-ose-guide-
admin.pdf.

Barker, R.T. & Cheese, C.J. 2012. The Application of Data Diodes for Securely
Connecting Nuclear Power Plant Safety Systems to the Corporate IT Network. 7th IET
International System Safety Conference, incorporating the Cyber Security.

Bhatt, S; Manadhata, P.K; Zomlot, L. 2014. The Operational Role of Security
Information and Event Management Systems. IEEE Security & Privacy, Volume: 12,
Issue: 5, pp. 35-41.

Bilge, L and Dumitras, T. 2012. Before We Knew it: An Empirical Study of Zero-Day
Attacks in the Real World. In proceedings on the 2012 ACM conference on Computer
and communications security. pp 833-844.

Bratko, I. 2011. Prolog Programming for Artificial Intelligence. Harlow: Pearson
Education Limited, Fourth Edition.

Casenove, M. 2015. Exfiltrations Using Polymorphic Blending Techniques: Analysis
and Countermeasures. In Proceedings on the 7th International Conference on Cyber
Conflict. pp. 217-230.

Casola, V; De Benedicts, A; Rak, M. 2015. Security Monitoring in the Cloud: An SLA-
Based Approach. In proceedings on the 10th International Conference on Availability,
Reliability and Security (ARES). pp. 749-755.

CERT Advisory. 1988. Computer Emergency Response Team, Carnegie Mellon
University. CA-1988-01: ftpd Vulnerability. Accessed on 10.11.2014. Retrieved from
http://www.cert.org/historical/advisories/CA-1988-01.cfm.

85

Colmerauer, A; Roussel, P. 1992. The birth of Prolog. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7438&rep=rep1&type
=pdf.

Conti, G; Nelson, J; Raymond, D. 2013. Towards a Cyber Common Operating Picture.
In Proceedings on the 5th International Conference on Cyber Conflict. pp. 279-296.

CVE – Common Vulnerabilities and Exposures. About CVE. Accessed on 7.12.2015.
Retrieved from https://cve.mitre.org/about/.

CVE – CVE ID Syntax Change. Updated 13.9.2016. Accessed on 9.10.2016. Retrieved
from https://cve.mitre.org/cve/identifiers/syntaxchange.html.

CVSS – A Complete Guide to the Common Vulnerability Scoring System Version 2.0.
FIRST.org, Inc. Accessed on 11.11.2015. Retrieved from
http://www.first.org/cvss/v2/guide.

Dandurand, L; Serrano. O.S. 2013. Towards Improved Cyber Security Information
Sharing. In Proceedings on the 5th International Conference on Cyber Conflict. pp. 9-
25.

Datalog User Manual. 2004. Version 2.2. The MITRE Corporation.
http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html.

Datacom Systems Inc. Network Taps. Accessed on 16.10.2016. Retrieved from
http://datacomsystems.com/products/network-taps.

Daud, N.I; Bakar, K.A.A; Hasan, M.S. 2014. A Case Study on Web Application
Vulnerability Scanning Tools. In proceedings on the Science and Information
Conference (SAI). pp. 595-600.

Dodig-Crnkovic, G. 2010. Constructive Research and Info-Computational Knowledge
Generation In Model-Based Reasoning in Science and Technology. Studies in
Computational Intelligence. Volume 314. pp 359-380.

Dressler, J, Moody, W, Bowen, Calvert L. III; Koepke, J. 2014. Operational Data
Classes for Establishing Situational Awareness in Cyberspace. In Proceedings on the
6th International Conference on Cyber Conflict. pp.175-186.

FireEye®. 2014. Special Report APT28: A Window into Russia’s Cyber Espionage
Operations? Accessed on 2.5.2016. Retrieved from
https://www2.fireeye.com/Services_Campaign_APT28_EMEA.html.

FireEye®. 2015. Special Report APT29: Hammertoss: Stealthy Tactics Define a Russian
Cyber Threat Group. Accessed on 2.5.2016. Retrieved from
https://www2.fireeye.com/rs/848-DID-242/iamges/rpt-apt-29-hammertoss.pdf.

FireEye®. 2015. Special Report APT30 and the Mechanics of a Long-Running Cyber
Espionage Operation. Accessed on 2.5.2016. Retrieved from
http://www2.fireeye.com/rs/fireye/images/rpt-apt30.pdf.

F-Secure® Threat Report. 2015. Accessed on 2.5.2016. Retrieved from
https://secure.f-secure.com/threat_report.html.

86

Fung, Brian. 31.8.2013. The NSA hacks other countries by buying millions of dollars’
worth of computer vulnerabilities. The Washington Post article. Accessed on
22.10.2016. Retrieved from https://www.washingtonpost.com/news/the-
switch/wp/2013/08/31/the-nsa-hacks-other-countries-by-buying-millions-of-dollars-
worth-of-computer-vulnerabilities/.

Gadelrab, M, S & Ghorbani, A. 2012. A New Framework for Publishing and Sharing
Network and Security Datasets. In SC Companion: High Performance Computing,
Networking, Storafe and Analysis (SCC). pp. 539-546.

Gallon, L; Bascou, Jean-Jacques. 2011. CVSS Attack Graphs. In Proceedings of the 7th
International Conference on Signal Image Technology & Internet-Based Systems. pp.
24-31.

Guarino, A. 2013. Autonomous Intelligent Agents in Cyber Offence. In Proceedings on
the 5th International Conference on Cyber Conflict. pp. 377-389.

Hammersley, B. 4.2.2015. Why you should be a e-resident of Estonia. The Wired
Magazine article. Accessed on 6.7.2016. Retrieved from
http://www.wired.co.uk/article/estonia-e-resident.

Haaster, Jelle van. 2016. Assessing Cyber Power. In Proceedings on the 8th
International Conference on Cyber Conflict. pp. 7-22.

Heinl, Caitríona H. 2014. Artificial (Intelligent) Agents and Active Cyber Defence:
Policy Implications. In Proceedings on the 6th International Conference on Cyber
Conflict. pp. 53-67.

Heo, Y; Kim, B; Kang, D; Na, J. 2016. A Design of Unidirectional Security Gateway for
Enforcement Reliability and Security of Transmission Data in Industrial Control
Systems. In proceedings on the 8th International Conference on Advanced
Communication Technology (ICACT). pp. 310-313.

Hernandez-Ardieta, J.L; Tapiador, J.E; Suarez-Tangil, G. 2013. Information Sharing
Models for Cooperative Cyber Defence. In Proceedings on the 5th International
Conference on Cyber Conflict. pp. 63-91.

Herr, T. 2016. Malware Counter-Proliferation and the Wassenaar Arrangement. In
Proceedings on the 8th International Conference on Cyber Conflict. pp. 175-190.

Hlyne, C. N. N; Zavarsky, P; Butakov, S. 2015. SCAP Benchmark for Cisco Router
Security Configuration Compliance. In proceedings on the 10th International
Conference for Internet Technology and Secured Transactions (ICITST). pp. 270-176.

Hutchins, E. M; Cloppert, M. J; Amin, R. M. 2016. Intelligence-Driven Computer
Network Dedense Informed by Analysis of Adversart Campaigns and Intrusion Kill
Chains. Accessed on 18.5.2016. Retrieved from
http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/document
s/LM-White-Paper-Intel-Driven-Defense.pdf

Im, Sun-young; Shin, Seung-Hun; Ryu, K.Y. 2016. Performance Evaluation of Network
Scanning Tools with Operation of Firewall. In proceedings on the 8th International
Conference on Ubiquitious and Future Networks (ICUFIN). pp.876-881.

87

Ingols, K; Chu, M; Lippmann, R; Webster, S; Boyer, S. 2009. Modeling Modern
Network Attacks and Countermeasures Using Attack Graphs. In Computer Security
Applications Conference. pp. 117 -126.

Introduction to Making Security Measurable. The MITRE Corporation. Accessed on
3.3.2016. Retrieved from
https://makingsecuritymeasurable.mitre.org/about/index.html.

ISO/IEC 13211-1:1995. Information Technology – Programming Languages – Prolog –
Part 1: General Core. April 20th 1995.

Ixia. 2014. Secure, Unidirectional Data Flow with Network Taps. White Paper 915-
6894-01 Rev. A. Accessed on 16.10.2016. Retrieved from
https://www.ixiacom.com/sites/default/files/resources/whitepaper/915-6894-01-
secure-unidirectional-data_flow-network-taps.pdf.

Jakobson, G. 2013. Mission-Centricity in Cyber Security: Architecting Cyber Attack
Resilient Missions. In Proceedings on the 5th International Conference on Cyber
Conflict. pp. 357-375.

Jeon, Boo-Sun & Na, Jung-Chan. 2016. A Study of Cyber Security Policy in Industrial
Control System Using Data Diodes. In proceedings on 8th International Conference
on Advanced Communication Technology (ICACT). pp. 314-317.

Kalutarage, Harsha K; Shaikh, Siraj A; Zhou, Q; James, Anne E. 2012. Sensing for
Suspicion at Scale: A Bayesian Approach for Cyber Conflict Attribution and Reasoning.
In Proceedings on the 4th International Conference on Cyber Conflict. pp. 393-412.

Kamhoua, C; Martin, A; Tosh, D; Kwiat, Kevin A; Heitzenrater, C; Sengupta, S. 2015.
Cyber-Threats Information Sharing in Cloud Computing: A Game Theoretic Approach.
In proceedings on the 2nd International Conference on Cyber Security and Cloud
Computing (CSCloud). pp. 382-389.

Kaur, R; Singh, M. 2014. Efficient hybrid technique for detecting zero-day
polymorphic worms. In proceedings on the 2014 IEEE International Advance
Computing Conference (IACC). pp.95-100.

Koch, R; Golling, M. 2013. Architecture for Evaluating and Correlating NIDS in Real-
World Networks. In Proceedings on the 5th International Conference on Cyber
Conflict. 335-355.

Koch, R; Golling, M. 2016. Weapon Systems and Cyber Security – A Challenging
Union. In Proceedings on the 8th International Conference on Cyber Conflict. pp.
191-204.

Koch, R; Rodosek, G.D. 2013. The Role of COTS Products for High Security Systems. In
Proceedings on the 4th International Conference on Cyber Conflict. pp. 413-427.

Koch, R. 2011. Towards Next-Generation Intrusion Detection. In Proceedings on the
3rd International Conference on Cyber Conflict. pp.151-168.

88

Kornmaier, A; Jaouën, F. 2014. Beyond technical data – a more comprehensive
Situational Awareness fed by available Intelligence Information. In Proceedings on
the 6th International Conference on Cyber Conflict. pp. 139-155.

Kotenko, I, Chechulin, A. 2013. A Cyber Attack Modeling and Impact Assessment
Framework. In Proceedings on the 5th International Conference on Cyber Conflict.
pp.119-143.

Labro, E. and Tuomela, T-S. 2003. On bringing more action into management
accounting research: process considerations based on two constructive case studies.
European Accounting Review. Vol. 12 No. 3. pp. 409-42.

Linda, O; Vollmer, T; Manic, M. 2009. Neural Network Based Intrusion Detection
System for Critical Infrastructures. In 2009 International Conference on Neural
Networks.

Lu, L; Safavi-Naini, R; Hagenbuchner, M; Susilo, W; Horton, J. 2009. Ranking Attack
Graphs with Graph Neural Networks. In The 5th Information Security Practices and
Experience Conference.

Lukka, K. 2000. The Key Issues of Applying the Constructive Approach to Field
Research. In Reponen, T. (ed.). Management Expertise for the New Millenium. In
Commemoration of the 50th Anniversary of the Turku School of Economics and
Business Administration. Publications of the Turku School of Economics and Business
Administration, Series A-1:2000. pp.113-128.

Maconachy, V. W; Schou, C. D; Ragsdale D; and Welch, D. 2001. A Model for
Information Assurance: An Intergrated Approach. In Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security. United States Military Academy.
Accessed on 3.2.2015. Retrieved from
http://grothoff.org/christian/teaching/2007/3704/w2c3.pdf

Mandiant® M-Trends. 2015. A View from the Front Lines. Accessed on 2.5.2016.
Retrieved from https://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf.

Mandiant® APT1. 2013. Exposing One of China’s Cyber Espionage Units. Accessed on
2.5.2016. Retrieved from
https://intelreport.mandiant.com/Mandiant_APT1_Report.pdf.

Marchetti, M; Pierazzi F; Guido, A; Colajanni, M. 2016. Countering Advanced
Persistent Threats through Security Intelligence and Big Data Analytics. In
Proceedings on the 8th International Conference on Cyber Conflictp. pp. 243-262.

Mell, P; Scarfone, K; Romanosky, S. 2007. A Complete Guide to the Common
Vulnerability Scoring System Version 2.0. Accessed on 16.11.2014. Retrieved from
https://www.first.org/cvss/v2/guide.

Mepham, K; Ghinea, G; Louvieris, P; Clewley, N. 2014. Dynamic Cyber-Incident
Response. In Proceedings on the 6th International Conference on Cyber Conflict. pp.
121-137.

Mohammed, M.M.Z.E.; Chan, H.A; Ventura, N.; Pathan, A-S.K. 2013. An Automated
Signature Generation Method for Zero-Day Polymorphic Worms Based on Multilayer

89

Perceptron Model. In proceedings on the International Conference on Advanced
Computer Science Applications and Technologies. pp 450-455.

Morris, R.T. 928 F.2D 504. 1991. Decision. United States Court of Appeals. Accessed
on 18.11.2014. Retrieved from
http://morrisworm.larrymcelhiney.com/morris_appeal.txt.

Mulazzani, F; Sarcia, Salvatore A. 2011. Cyber Security on Military Deployed
Networks. In Proceedings on the 3rd International Conference on Cyber Conflict. pp.
13-28.

Munir, R; Disso, J.P; Awan, I; Mufti, M. R. 2013. A Quantitative Measure of the
Security Risk Level of Enterprise Networks. In proceedings on the 8th International
Conference on Broadband and Wireless Computing, Communications and
Applications (BWCCA). pp. 437-442.

Nessus Compliance Checks – Tenable Network Security. Accessed on 12.10.2016.
Retrieved from https://support.tenable.com/support-
center/nessus_compliance_checks.pdf.

Nessus v6 SCAP Assessment – Tenable Network Security. Accessed on 21.10.2016.
Retrieved from
http://static.tenable.com/documentation/Nessus_v6_SCAP_Assessments.pdf.

Nessus® Home. Accessed on 8.7.2016. Retrieved from
http://www.tenable.com/products/nessus-home.

Nessus Professional – The Most Widely-Deployed Vulnerability Assessment Solution.
Accessed on 8.7.2016. Retrieved from http://www.tenable.com/products/nessus-
vulnerability-scanner/nessus-professional.

Nessus Plugins. Accessed on 8.7.2016. Retrieved from
http://www.tenable.com/plugins/.

Nexpose. Accessed on 8.7.2016. Retrieved from
https://www.rapid7.com/products/nexpose/

NIST National Vulnerability Database, NVD. NVD Home. Accessed on 6.7.2016.
Retrieved from https://nvd.nist.gov/.

NIST National Vulnerability Database, NVD. Data Feed. Accessed on 6.7.2016.
Retrieved from https://nvd.nist.gov/download.cfm.

OpenSCAP. OpenSCAP Features. Accessed on 8.10.2016. Retrieved from
https://www.open-scap.org/features/.

OpenSCAP User Manual, version 1.0. Accessed on 2.9.2016. Retrieved from
https://static.open-scap.org/openscap-1.0/oscap_user_manual.html.

OpenVAS. Open Vulnerability Assessment System, About OpenVAS. Accessed on
8.7.2016. Retrieved from http://www.openvas.org/about.html.

OpenVAS Architecture Overview. Accessed on 8.7.2016. Retrieved from
http://www.openvas.org/software.html#architecture_overview.

90

Ou, X; Boyer, Wayne F; McQueen, Miles A. 2006. A Scalable Approach to Attack
Graph Generation. In proceedings of the 13th ACM CCS Conference. pp 336-345.

Ou, X; Govindavajhala, S; Appel, A.W. 2005. MulVAL: A Logic-based Network Security
Analyzer. 14th USENIX Security Symposium.

OVAL®. Open Vulnerability and Assessment language. The MITRE Corporation, About
OVAL. Accessed on 9.1.2015. Retrieved from https://oval.mitre.org/about.

Patel, R and Thaker, C. 2011. Zero-Day Attack Signatures Detection Using Honeypot.
In proceedings on International Conference on Computer Communication and
Networks. pp 79-85.

Pfenning, Frank. 2007. Logic Programming, Lecture Notes, Carnegie Mellon
University, Pennsylvania. Retrieved from
http://www.cs.cmu.edu/~fp/courses/lp/index.html.

Raymond, D; Conti, G; Cross, T; Fanelli, R. 2013. A Control Measure Framework to
Limit Collateral Damage and Propagation of Cyber Weapons. In Proceedings on the
5th International Conference on Cyber Conflict. pp. 181-197.

Risk Based Security. 2015. CVE/NVD: The High Price of ‘Free’. Accessed on 12.7.2016.
Retrieved from https://www.riskbasedsecurity.com/reports/CVE%20&%20NVD%20-
%20The%20High%20Price%20Of%20Free.pdf

Security Content Automation Protocol. SCAP. Accessed on 2.9.2016. Retrieved from
http://scap.nist.gov/index.html.

SCAP Specifications. SCAP 1.0. Accessed on 9.10.2016. Retrieved from
https://scap.nist.gov/revision/1.0/index.html.

Smaill, Alan. 2015. Logic Programming: Semester 1, Lecture Notes. University of
Edinburgh. http://www.inf.ed.ac.uk/teaching/courses/lp.

Spafford, Eugene H. 1988. The Internet Worm Program: An Analysis. Purdue
University Technical Report. Accessed on 12.7.2016. Retrieved from
http://spaf.cerias.purdue.edu/tech-reps/823.pdf.

Tapscott, D; 1997. The digital economy: promise and peril in the age of networked
intelligence. New York: McGraw-Hill.

Tosh, D; Sengupta, S; Kamhoua, C; Kwiat, K; Martin, A. 2015. An Evolutionary Game-
theoretic Framework for Cyber-threat Information Sharing. In proceedings on the
IEEE International Conference on Communications (ICC). pp. 7431-7346.

Tyugu, E. 2011. Artificial Intelligence in Cyber Defence. In Proceedings on the 3rd
International Conference on Cyber Conflict. pp. 95-106.

Tyugu, E. 2012. Command and Control of Cyber Weapons. In Proceedings on the 4th
International Conference on Cyber Conflict. pp. 333-343.

Udpcast. Introduction. Accessed on 16.10.2016. Retrieved from
https://www.udpcast.linux.lu/.

Wang, L; Jajodia, S; Singhal, A. 2007. Measuring the Overall Security of Network
Configurations Using Attack Graphs. In proceedings on the 21st Annual IFIP WG 11.3

91

Working Conference on Data and Applications Security. Redondo Beach, CA. USA. pp
98-112.

Wang, L; Islam, T; Long, T; Singhal, A; Jajodia, S. 2008. An Attack Graph-based
Probabilistic Security Metric. In proceedings of the 22nd Annual IFIP WG 11.3
Working Conference on Data and Applications Security (DBSEC'08). pp. 283-296.

Wang, L; Jajodia, S; Singhal, A. 2010. k-Zero Day Safety: Measuring the Security Risk
of Networks against Unknown Attacks. In proceedings on the 15th European
Symposium on Research in Computer Security (ESORICS 2010). Springer-Verlag
Lecture Notes in Computer Science (LNCS). Vol. 6345. pp 573-587.

Wang, L; Jajodia, S; Singhal, A. Noel, S. 2010. Measuring Security Risks of Networks
Using Attack Graphs. International Journal of Next-Generation Computing. Vol. 1, No.
1. pp 113-123.

XSB. A Logic Programming and Deductive Database System. Documentation, Volume
1. Accessed on 27.4.2015. Retrieved from
http://xsb.sourceforge.net/manual1/manual1.pdf.

Yung-Yu, C; Zavarsky, P; Ruhl, R; Lindskog, D. 2011. Trend Analysis of the CVE for
Software Vulnerability Management. In the IEEE International Conference on Privacy,
Security, Risk, and Trust, and IEEE International Conference on Social Computing.
Boston, MA. USA.

Zhang, S; Ou, X; Homer, J. 2011. Effective Network Vulnerability Assessment through
Model Abstraction. In the 8th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA).

Zhang, S; Ou, X. 2011. README Documentation of the MulVAL system. MulVAL v1.1.
Retrieved from http://www.arguslab.org/mulval.html.

92

Appendices

Appendix 1. Algorithm for Prolog’s Question Answering Procedure,
Bratko (2011).

procedure execute (Program, GoalList, Success);

Input arguments:

Program: list of clauses

GoalList: list of goals

Output argument:

Success: truth value; Success wil become true if GoalList is true with

respect to Program

Local variables:

Goal: goal

OtherGoals: list of goals

Satisfied: truth value

MatchOK: truth value

Instant: instantiation of variables

H,H’,B1,B1’,…,Bn,Bn’: goals

Auxiliary functions:

 empty(L): returns true if L is the empty list

 head(L): returns the first element of list L

 tail(L): returns the rest of list L

 append(L1,L2): appends list L2 at the end of list L1

match(T1,T2,MatchOK,Instant): tries to match terms T1 and T2; if

succeeds then MatchOK is true and Instant is the corresponding

instantiation of variables substitute(Instant, Goals): substitutes variables

in Goals according to instantiation Instant

begin

if empty(GoalList) then Success := true

else

 begin

 Goal := head(GoalList);

 OtherGoals := tail(GoalList);

93

 Satisfied := false;

 while not Satisfied and “more clauses in the program” do

 begin

 Let next clause in Program be

 H :- B1,…,Bn.

 Construct a variant of this clause

 H’ :- B1’,…,Bn’.

 match(Goal,H’,MatchOK,Instant);

 if MatchOK then

 begin

 NewGoals := append([B1’,…,Bn’],OtherGoals);

 NewGoals := substitute(Instant,NewGoals);

 execute(Program,NewGoals,Satisfied)

 end

 end;

 Success := Satisfied

 end

end;

94

Appendix 2. Prolog Execution Traces for Three Variations of The
Program link.P

95

Appendix 3. Algorithm for Reachability-based Grouping, Zhang et al.
(2011)

Input: A set of (reachTo(h), reachFrom(h)) for each host h in a

subnet
Output: A hash map L, which maps a group label α to a list of hosts

having the same reachability (reachTo and reachFrom).

1. 𝐿𝑟 ← {} {Lr is a set of triples (𝛼, reachToSet, reachFromSet).}
2. Queue 𝑄 ← all the hosts of the given subnet{
3. 𝐿 ← empty map {initialize the return value}

4. while 𝑄 is not empty do

𝑛 ← dequeue(𝑄)

if 𝐿𝑟 contains (𝛼, reachTo(n), reachFrom(n)) then

𝐿[𝛼] ← 𝐿[𝛼] ∪ {𝑛} {if the reachability of 𝑛 is the same as

some other host that has been processed, add 𝑛 to its

equivalent class.}

else

create a fresh 𝛼

𝐿𝑟 ← 𝐿𝑟 ∪ (𝛼, reachTo(n), reachFrom(n)) {Otherwise

put its reachability information into Lr}

𝐿[𝛼] ← {𝑛}

end if

end while
5. return 𝐿

96

Appendix 4. Algorithm for Vulnerability Grouping, Zhang et al. (2011)

Input: A set of ungrouped vulnerabilities on a machine (Su)

Output: A hash map 𝐿 that maps an application to its vulnerability

score

1. 𝐿𝑟 ← {} {Lr is a set of applications that have appeared so far}

2. 𝐿 ← empty hash map

3. while Su ≠ {} do

take 𝑣 from Su

if 𝐿𝑟 contains (v.application) then

 if L[v.application] < v.score then

 L[v.application] = v.score

 end if

else
 L[v.application] = v.score

 Lr.add(v.application)

end if

 end while
4. return 𝐿

97

Appendix 5. Algorithm for Configuration-based Grouping, Zhang et al.
(2011)

Input: set 𝜏 containing all the TraceStep terms,
attacker’s goal 𝐺

 Output: logical attack graph (𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿, 𝐺).

1. 𝑁𝑟, 𝑁𝑝, 𝑁𝑑, 𝐸, 𝐿 ← 0
2. For each 𝑡 ∈ 𝜏 {

let 𝑡 = 𝑏𝑒𝑐𝑎𝑢𝑠𝑒(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒, 𝐹𝑎𝑐𝑡, 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡)
3. Create a derivation node 𝑟

 𝑁𝑟 ← 𝑁𝑟 ∪ {𝑟}
 𝐿 ← 𝐿 ∪ {𝑟 → 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒}

4. Look up 𝑛 ∈ 𝑁𝑑 such that 𝐿(𝑛) = 𝐹𝑎𝑐𝑡,
5. If such 𝑛 does not exist

 {
create a new fact node 𝑛
𝐿 ← 𝐿 ∪ {𝑛 → 𝐹𝑎𝑐𝑡}
𝑁𝑑 ← 𝑁𝑑 ∪ {𝑛}
}

6. 𝐸 ← 𝐸 ∪ {(𝑛, 𝑟)}
7. For each fact 𝑓 in 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡 {
8. Look up fact node 𝑐 ∈ (𝑁𝑝 ∪ 𝑁𝑑) such that

𝐿(𝑐) = 𝑓,
9. If such 𝑐 does not exist

{
create a new fact node 𝑐
𝐿 ← 𝐿 ∪ {𝑐 → 𝑓}
If 𝑓 is primitive { 𝑁𝑝 ← 𝑁𝑝 ∪ {𝑐}}

else { 𝑁𝑑 ← 𝑁𝑑 ∪ {𝑐}}
}

10. 𝐸 ← 𝐸 ∪ {(𝑟, 𝑐)}
}
}

