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Currently, the gaming industry is divided into two different development 
processes, i.e. Indie development and traditional corporate development model. 
Even though not completely different from each other, major distinctive 
differences between these development models are present during the multiple 
development processes. A majority of traditional development companies tend 
to only focus on financial benefits, where Indie developers are focusing on 
passion in gaming and industry in itself.  
 
There are several objectives in this thesis work. Firstly, differences in traditional 
development and Indie development are examined from commercial, financial 
and development point of view. During this research work, a game demo was 
also created to have more in depth view towards Indie development. Further, 
multiple different development diaries and guidelines were examined, based on 
information gained through these guidelines the demo game was created. After 
the development process, the demo game was tested according to industry 
testing standards. Moreover, new programming language of C-Sharp was 
learned, in order to have more in depth views to the most common game 
development language. Additional help from developers’ friends and contact 
personnel were used during testing phase. In order to conduct industry standard 
testing procedures, people with different experiences towards gaming had to be 
used during the testing phase. 
 
Constructive research method was used during the research phase of this 
thesis work. However, during the development phase, spiral model was used in 
order to have successful project. Majority of developed scripts created during 
this project were unnecessary to be presented during this development work 
and, therefore, they were left out from the text format. 
 
The end result of this development work is a playable demo version of a game 
designed by the developers However, the game will not be presented to the 
public, due to further development in the future.  
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CONTENTS 
 
ABSTRACT 
 
SYMBOLS 
 
FIGURES, PICTURES AND TABLES  
 
FOREWORD 
 

1 INTRODUCTION ............................................................................................ 8 

1.1 Background and Motivation ....................................................................... 8 

1.2 Scope and Objectives ............................................................................... 8 

1.3 Research Methodology and Limitations .................................................. 10 

1.4 Research Questions ................................................................................ 11 

1.5 Regarding Sources .................................................................................. 12 

1.6 Structure of Thesis .................................................................................. 12 

2. TOOLS AND SOFTWARE USED ................................................................. 14 

2.1 Development Software ............................................................................ 14 

2.2 Platform and Unity Features .................................................................... 15 

2.3 Followed Protocols and Models ............................................................... 16 

3. TRADITIONAL DEVELOPMENT AND INDIE DEVELOPMENT ................... 19 

3.1 Traditional Development.......................................................................... 19 

3.2 Indie development ................................................................................... 19 

3.3 Advantages and Disadvantages of Indie Development ........................... 21 

4 PLANNED FEATURES AND OBJECTS ........................................................ 24 

4.1 Character Movement and Actions ........................................................... 24 

4.2 Enemy Design and AI .............................................................................. 24 

4.3  Environment Design ................................................................................ 25 

4.4 Camera Control ....................................................................................... 25 

4.5 Graphical User Interface .......................................................................... 26 

4.6 Sounds .................................................................................................... 27 

5  IMPLEMENTATION ..................................................................................... 28 

5.1 Methods ................................................................................................... 28 

5.2 Character Movement and Actions ........................................................... 28 

5.3 Enemies and AI Implementation .............................................................. 30 

5.4 Environment Implementation ................................................................... 31 

5.5 Camera Control ....................................................................................... 32 



5.6 Animation ................................................................................................ 33 

5.7 Graphical User Interface.......................................................................... 36 

5.8 Sounds .................................................................................................... 37 

6 TESTING ....................................................................................................... 38 

6.1 Troubleshooting and Testing ................................................................... 38 

6.2 Difference Between Black and White Box Testing .................................. 38 

6.3 Black Box Testing in Case Development Work ....................................... 39 

6.4 White Box Testing ................................................................................... 43 

6.5 Grey Box Testing ..................................................................................... 50 

7 CONCLUSIONS ............................................................................................. 51 

BIBLIOGRAPHY ............................................................................................... 52 

APPENDICES ................................................................................................... 55 

 

 
 

 



5 

 

SYMBOLLS AND ABBREVIATIONS 
 
RPG Role Playing Game 

JS JavaScript 

C# C-Sharp 

ESA Entertainment Software Association 

NPC Non-Playable Character 

GUI Graphical User Interface 



6 

 

FIGURES, PICTURES AND TABLES 
 
Figure 1. Constructive Research Method (Kasanen & Lukka 2000) ................. 10 

Figure 2. Animation Setup for Character Movement and Actions ..................... 16 

Figure 3. Spiral Model (Boehm 1988) ............................................................... 18 

Figure 5. Player Movable Character Animations. .............................................. 34 

Figure 6. Animation Sequences in Player Controlled Character ....................... 35 

 

Picture 1. Example of GUI Design Similar to Designed Game Genre ............... 26 

 

Table 1. PlayerController.cs script, Rigidbody Enabled .................................... 29 

Table 2. PlayerController.cs, Rigidbody Removed From the Script .................. 29 

Table 3. EnemyController.cs ............................................................................. 30 

Table 4. CameraController.cs, Automatically Created Camera Controller Script

 .......................................................................................................................... 33 

Table 5. Black Box Testing Procedures for GUI Testing ................................... 40 

Table 6. Black Box Testing Procedure for Player Controlled Character Controls 

and Animation ................................................................................................... 41 

Table 7. Black Box Testing Procedure for Enemy NPC Encounters ................. 42 

Table 8. White Box Testing to GUI .................................................................... 44 

Table 9. White Box Testing for Animation ......................................................... 45 

Table 10. White Box Testing of Sound Implementation .................................... 46 

Table 11. White Box Testing of the Camera Controls ....................................... 47 

Table 12. White Box Testing for Enemy AI ....................................................... 48 

Table 13. White Box Testing for Game Environment ........................................ 49 



7 

 

FOREWORD 

 

Gameplusjames guidelines provided by him through YouTube platform played a 

huge part in completing this thesis work. Without his guidelines, the starting 

phase of this thesis development work would have taken considerably more 

time. Test subjects contributing to black box testing and grey box testing 

deserve a special thank you for participating in this stage. The information 

gained through this process contributed to a huge amount of information 

necessary for this project. 

Unity sub Reddit community deserves a thank you for helping to complete this 

project and helping on the solutions created for this project. The community 

enabled a fast paced process creating layers and objects within the game 

environment. Special thanks go to “Nick X” for providing solutions for the 

beginning of the animation development; without her contribution this process 

would have never been successful. Special recognition is given to “Feihti” for 

providing resources throughout this process.  

 

 



8 

 

 

1 INTRODUCTION 

This chapter discusses the background of this thesis topic, together with the 

motivation, scope, methodology and limitations. The sources and structure of 

this thesis will also be discussed in this chapter. 

 

1.1 Background and Motivation 

The current indie game industry is blooming due to a highly popular names 

being released constantly by individual developers, “Binding of Isaac”, “Don’t 

starve”, “Risk of Rain”, “Faster Than Light” and multiple other names are 

trending in gaming industry. Before this thesis project began, both developers 

were already passionate gamers and Indie game enthusiasts. Currently Indie 

game industry has released names on almost every possible game category. 

However, one sector is lacking names, that is role playing games (hereinafter 

RPG). Shared passion between both developers towards RPG peaked interest 

towards this project of developing games, and the choice made towards 

designing and creating an RPG meant tremendous amount of research towards 

the subject of game development.   

 

Possibilities in Indie game development industry are limitless. However, since 

one field is missing mentionable names in the industry, the developers of this 

work found it appropriate to develop a game specifically to this category. The 

project in itself had a huge impact from an Indie developer “Gamesplusjames”. 

This developer created a similar type of game planned for this project and 

posted guidelines to YouTube for other developers to learn from his project. 

(Gamesplusjames 2015a.) 

 

1.2 Scope and Objectives  

This thesis work is focusing on the development process during Indie games 

and Unity programming. Since Unity utilizes two different programming 

languages JavaScript (hereinafter JS) and C-Sharp (hereinafter C#), the 



9 

 

programming part of this thesis will be focusing on the C# language due to past 

experience with JS and available sources of game development using C#. Due 

to the nature of programming using C#, there are multiple different possible 

ways of achieving the desired goal. However, different programming solutions 

will not be provided for this work. This thesis development work will work as an 

experimental work for the developers, rather than as a guidebook for new 

developers. Due to the high amount of existing guides and online courses, the 

developers found that making a guidebook would be unnecessary. The testing 

phase of this thesis work will be conducted by the thesis work developers and 

few selected close friends of the developers. In other words, this testing phase 

was concluded in a closed circle to prevent unnecessary distribution of the 

development work. 

 

The research part of this development work is to conduct research in 

differences between traditional and Indie game development processes. 

Additionally, research towards case development work was conducted, focusing 

mainly on PC platform due to hardware requirements unmet by the tools 

available during this project. 

 

Graphical design of this thesis work is a secondary objective, and during this 

development work graphical aspects are considered after the desired functions 

have been met. Due the lack of skills in graphical designing, during this process 

a close friend of the developers aided with the graphical design part, and free 

online sources were used to get graphical objects.   

 

Furthermore, the testing phase will be conducted to demo version created for 

this thesis development work. During the testing phase, possible flaws and bugs 

scripted during the development phase are found out. Due to the scale of this 

work, only a prototype version was developed. However, the game has most of 

the functionalities designed and developed but will not be implemented into the 

prototype version. Further development towards this prototype version will be 

conducted after this thesis project.  
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1.3 Research Methodology and Limitations 

During this thesis research project, multiple research methods were discussed 

as possibilities to reach the objectives set for this work, among them the 

constructive research method suggested by Kasanen (1993) and improved by 

Lukka (2000). The constructive research method suggested by Kasanen and 

Lukka is divided in six steps as seen from figure 1. However, for this work, steps 

1,2,3,4 and 6 were found to be most suitable for this development work.  

 

 

Figure 1. Constructive Research Method (Kasanen & Lukka 2000) 

 

The first and second step of this research method is discussed in design part of 

this development work. However, due to nature of this work, step two of this 

method is considered more important that step one. Step three is discussed in 

chapter four in this thesis work. Although, majority of the research results of 

step three are highly dependable on step two results, changes according to 

developers’ personal view were made. The development part of this thesis work 

focuses on step four, Implementation of designed features is conducted in this 

part. Finally, step six of the research method is implemented in the testing 

phase of this development work.  

 

In order to reach the objectives set for this development work, development 

diaries, Unity guidelines and documentation developed by Indie developers 

were analyzed in order to gain the necessary information for this work. 

Questionnaires, interviews and public polls were not necessary for this 

development work. However, during the testing phase outside help had to be 

used in order to gain the desired results. 
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The authors’ lack of experience in Unity development impacted the quality and 

complexity of features implemented in this work, although previous knowledge 

of gaming in general impacted on the final result of the development work. 

Additionally, previous of knowledge of other programming languages decreased 

the time required in order to learn C# language. Although, majority of the 

knowledge of C# language was gained through direct development work rather 

than studying from literature sources, guidelines and best practices provided by 

other developers were considered.  

 

1.4 Research Questions 

Three research questions are presented. Discussions of the research questions 

are provided. 

 

1. What are the benefits of Indie development compared to Traditional 

development? 

 

To answer this question, Indie game development point of view is analyzed 

from multiple different development diaries provided by developers. In order to 

accomplish this analysis, research towards Traditional development is done 

from sources provided by respected companies. Furthermore, to emphasize 

Indie development point of view, game demo was developed using guidelines 

and processes provided by other indie developers. 

 

2. How chosen development tools effect the development process? 

 

Current development tools used when developing games highly effect the 

development result. The research work thoroughly investigates differences 

between most popular development tools used in gaming industry. Furthermore, 

analysis of different programming languages used by development tools is also 

analyzed from same perspective as software.   
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1.5 Regarding Sources 

The Programming phase of this work depends highly on the quality of the 

sources. Due to the nature of C# language, there is countless amount of books 

and material available today. However, online support of Unity and C# 

programming with Unity has much more to offer online compared to literature 

sources, since programming techniques and software are changing at a fast 

pace and, therefore, online sources for this project were more desired.  Since 

Unity is open source software, the company itself is providing online guides, 

scripts, graphical objects and solutions free of charge. Therefore, Unity 

homepages will work as the main source of programming sources. Furthermore, 

other sources, including Reddit, YouTube and individual development diaries, 

were used to gain information about Unity functions and other possible solutions 

regarding the programming part of this thesis.  

 

Furthermore, majority of the sources used in this development work are taken 

from individual development diaries, YouTube videos and Reddit community 

guides. Therefore, only online nicknames are available to be used when 

referring to the authors.  

 

1.6 Structure of Thesis 

The tools and software chosen for this project are discussed in chapter 2 of this 

thesis development work, decision concerning these choices will be concluded 

in this chapter. Chapter 3 is used to discuss differences in traditional 

development and indie game development, advantages and disadvantages of 

different development processes are emphasized in this part. Chapter 4 of the 

thesis discusses features planned and designed to be used in the case 

development work, research concerning these choices and decisions will be 

described in this chapter. Chapter 5 will discuss the implementation of the 

designed and planned features. This chapter will work as the main body of this 

thesis development work. Chapter 5 discusses about bugs and troubles 

encountered during the development phase, together with the solutions to these 

problems. Chapter 6 focuses on the testing part of this work, this includes 
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discussion on the testing tools and methods of testing. Chapter 7 of this thesis 

draws conclusions concerning this development work. 

. 
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2. TOOLS AND SOFTWARE USED 

This chapter discusses the tools and software used when developing and 

scripting features designed and implemented in this work. Main focus of this 

part is on Unity platform due the nature of this development work. 

 

2.1 Development Software 

This project revolved highly around Unity development platform. However, other 

software had to be used in order to have successful development during the 

project. These software included Visual Studio, Tiled2Unity, Notepad++, 

Audacity and Photoshop. Unity as itself provides almost every function provided 

by other softwares that were used in this project. However, Visual Studio was 

used during the troubleshooting phase to gain much more elaborate solutions to 

programming flaws inside the scripts developed for this project. Visual studio is 

also the default software for Unity to respond to incase of programming errors. 

(Unity technologies 2016a.)  

 

Tiled2Unity is a software used to create textures inside the game. This software 

is just used to convert already existing objects and textures, to a form where 

unity recognizes these as different layers and objects. Uploading files inside 

Tiled2Unity converts these into .tmx files, these files are recognized as texture 

files by Unity. (Barton 2016.)  

 

Notepad++ was used as the primary script development tool. Due the lightness 

of the software, Notepad++ was favored over Visual Studio due to high 

processing power required by the Visual Studio. Notepad++ does provide 

troubleshooting in same manner as Visual Studio, however due the chosen 

programming language of C# which is not understood by Notepad++. (Ho 

2016.) 

 

Audacity software was used during the sound design and implementation 

phase, because Unity has its own sound mixing features, Audacity was mainly 



15 

 

used creating delay or shortening sound effects. Audacity software was not 

considered as a necessity for this project. However, due to previous knowledge 

of this software, it was used to ease the burden of sound development. (The 

Audacity team 2016.) 

 

Photoshop had a minor role in this project. Due to online libraries providing 

objects capable to be used in this project, Photoshop was only used in case 

changes into objects were desired.  

 

2.2 Platform and Unity Features       

A large part of this development work was done inside Unity. However, features 

provided by Unity can overcome the need of scripting, therefore ease the load 

of work needed to have desired functions inside the development work. Every 

script written using either Notepad++ or Visual Studio was compiled using Unity 

to work in harmony with other scripts.  

 

Unity recognizes two programming languages as a default, i.e. C# and JS. 

During this project, the focus was on C# language. Even though these 

languages provide the same functionality compared to each other, due to multi-

paradigm nature of C# language it fits as the more suitable option for this 

project.  

 

Unity functionality provides functions to facilitate the development of during the 

scripting phase. These functions include layering of different objects in the 

game, controlling setup for player movable objects, and mapping controls and 

object definitions. These functions play an important part of the project, since 

taking these aspects of development work out of the scripting phase degreases 

the chance of flaws in these aspects.  

 

Layering different objects inside the game allows developers to assign objects 

to work as desired, from ground level to aesthetic objects inside the game. 

Layering requires to be defined in specific format .tmx. Tiled2Unity is software 

designed to change different objects to this format.  
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Player movable objects control settings defined by scripting, leaves high chance 

of implemented flaws done by the developer. Unity offers simplistic functions to 

be assigned to player movable objects, including weight, speed, durability, 

actions and directional movement. Directional and actionable controls can 

simply be defined to any desired controls. However, when defining these 

controls animation will be defined to have visual effects during actions. As seen 

from Figure 2, animation can be attached to functions in simplistic manner. 

 

 

Figure 2. Animation Setup for Character Movement and Actions 

 

Object definition is most simplistic, yet one of the most crucial parts of every 

development work. Without defining player movable character, enemies or any 

other object within the game, the objects cannot behave in desired matter. To 

determine immovable and indestructible objects to create boundaries within the 

game can have crucial part during development work, without defining 

boundaries of the game objects would mean game being literally unplayable.  

 

2.3 Followed Protocols and Models 

During the development phase, important factors for game development must 

be followed. Version control, development models and script consistency are 

the major factors for game development. These development factors are not 

unique for game development rather than common along all software 

development phases. Although C# is a multiparadigm language and allows 

differences in scripting models, when every script follows the same model it is 

more developer friendly when further developing the scripts. For consistency in 
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this development work, guidelines for C# development provided by Mr. Lance 

Hunt fit this work perfectly. Even though his development standards are not 

necessary for game development, the standards provided by him work on this 

development work. (Hunt 2007.) 

 

Version controlling when using Unity development platform is done easy for 

developers. Unity does not provide version system control unit by themselves 

but supports Perforce and Plastic SCM natively. Even though these software 

functionalities are not immediately in use when setting up first development 

project, Unity itself suggest using version control system and provides these for 

free through asset store. Since this project has multiple developers and 

everyone has the different programming style, the software tracks and records 

all changes made into the scripts by different users. This is done to ease the 

following of change in every script developed by the developers; when mistakes 

occur, these are easier to be reverted and changed back into the original form. 

(Unity technologies 2017b.) 

 

When determining the models used when developing games, it is important to 

factor the designed game style. Since this development process is focusing on 

2D RPG game, the spiral development model was chosen for this project. Even 

though this model is not only used in game development, as presented by Mr. 

Boehm, the spiral model is constant development and testing towards 

developed functions. (Boehm et al. 2014.) 
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Figure 3. Spiral Model (Boehm 1988) 

 

As seen from Figure 3, the model is quite similar when comparing to the 

waterfall model. The model works perfectly in to game and software 

development. When implemented correctly, development and testing of different 

parts of work is constantly conducted in the project.  
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3. TRADITIONAL DEVELOPMENT AND INDIE DEVELOPMENT 

In this chapter, the difference between indie development and traditional 

development is discussed. Advantages and disadvantages of Indie 

development are heavily emphasized in this chapter. 

 

3.1 Traditional Development 

The term traditional development in the gaming industry is used when 

describing games produced by major companies in the industry. Squaresoft, 

Ubisoft, Bethesda and Blizzard are currently leading the RPG game industry. 

However, when inspecting the industry from the gamers’ point of view, majority 

of games produced by the respected companies produce similar and 

predictable content. Traditional development companies tend to follow the most 

selling trend in gaming. Therefore, majority of games developed are shooting 

games. Research conducted by Entertainment Software Association 

(hereinafter ESA) in 2014, 8 out of 20 most selling games were shooting games 

(ESA 2015). Of the eight most sold shooter games, four were by one 

developing company. Treyarch development company has received a high 

amount of criticism from gamers along the years for producing similar and 

predictable games. The development problems producing similar products is 

the concurring problem to multiple development companies. However, the 

problem is simply the result of industrialized game development field.  

 

Traditional development process compared to indie development is much more 

restricted from the developer point of view, developers are often just instructed 

to follow guidelines given by designers. Since the development process is more 

systematic and planned, products are developed in faster speed and follow 

strict quality throughout the whole process.  

 

3.2 Indie development 

The term indie development is used when describing games developed by 

small teams or individual developers, significant financial support from 
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publishers or other sources is common within Indie developers. Traditionally, 

indie development process takes much longer compared to traditional 

development processes, and the lack of financial aid highly impacts the time 

that developers can invest in the development. The major difference in Indie 

development and traditional development from the development point of view 

comes from the motivation towards the project. The traditional development 

companies aim strictly to gain most profit from the finished projects, Indie 

development motivation differs for every developer. The majority of the indie 

development games however are motivated to publish their projects from the 

personal passion to the industry. (VanEseltine 2015.) 

 

Majority of the games developed by indie development teams are quite small 

compared to traditional development games, however indie developers tend to 

focus on replay value rather than length of the one gameplay of the game. 

Comparing indie development and traditional development game sales, huge 

differences between these games is present when looking at the most sold 

games on the planet. From the 5 most sold games on this planet, only one 

game is indie development game (Tassi 2016). Game developed by Markus 

Persson was community driven, therefore the game became just like majority of 

the gamers desired it to be (Goldberg & Larson 2013). 

  

While Indie development is getting more popular among developers and 

gamers, traditional development companies do not seem to be interested in 

Indie development. Unless companies are not interested in buying the project 

developed by indie developers, traditional companies tend to stay in their own 

development strategies. Indie developers in general are not interested game 

companies from the business point of view. However, possible cooperation with 

game development companies is possible when the game is in the publishing 

phase. Even though unusual for traditional development companies aiding indie 

developers in publishing, the possibility is not unheard in publishing. (Pile 2012).  
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3.3 Advantages and Disadvantages of Indie Development 

While Indie development is seen to be the more developer friendly method, 

advantages following indie development usually cover the cost of 

disadvantages. Indie development is considered to be more developer friendly 

method compared to Traditional approach, although more open and accepting 

towards new ideas and concepts, Indie developers suffer considerable amount 

when considering funding when developing and publishing games. Lack of 

funding causes extended development time, lack of motivation, publishing 

problems and lack of testing for finished products. Since majority of traditional 

development companies already have their own testing teams and software, 

Indie development usually lacks these facilities and personnel doing these tests. 

Indie developers usually must buy testing software and services from other 

organizations, which can be costly depending on the scale of the game. 

Although, the majority of Indie games get funding from other sources than their 

own bank accounts, such as investors and Kickstarter, the cost of developing a 

complete game is also costly to developers usually requiring personal 

investment to project also. (Watsham 2013). 

 

Planning projects is considered the hardest part of the Indie development. The 

most crucial part of the work must be taken seriously or the ending result of 

project can lead into disaster without a game. When the planning phase of the 

project is conducted well, vision, technology, design and art style have been 

chosen, the developers must set to certain timetable for milestones and release. 

Traditional development companies follow different paths, while designers, 

investors and directors define time necessary for the project to be concluded. 

While work load from developer point of view in Traditional development is 

distinctively smaller when compared to Indie development, developers suffer 

from the lack of possibility to affect the designed game. Indie development 

being more open, enables the possibility for developers to affect the designed 

game without conflict between the designers and developers. (Watsham 2013). 

 

Publishing games as an Indie developer is always a disadvantage compared to 

traditional development. Even though, possible to publish games as an Indie 
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developer and gain a considerable amount of recognition among gaming 

community, traditionally large companies can finance large advertisement 

campaigns on multiple platforms where Indie developers are only able to focus 

on social media platforms. While traditional development companies spend 

considerable amounts of money to advertisement campaigns, usually 

developers themselves have almost no impact towards the campaign. 

Traditionally developers have no understanding toward advertisement. 

However, when development team is not closely connected to marketing team 

major issues can occur when publishing. Major incidents occurring when the 

development team and marketing team are not communicating is rare, however 

during the past few years lots of controversies circling around Hello Games 

publishing of “No Man’s Sky”. Incident concerning “No Man’s Sky” led to an 

investigation of Hello Games for false advertising, even though in the end 

allegations were dropped out as it was clear to the gaming community that a 

connection between developers and the marketing team was missing. 

(Crecente 2016). 

 

Finally, a major disadvantage Indie development is facing when compared to 

traditional development is in the hardware department of every developer. 

Majority of the tools and software used in game development are costly, and 

understandably not every developer can purchase everything necessary for the 

development project. Majority of Indie developers therefore tend to favorite 

open source and free software when developing their projects. Even though, 

software used by Indie developers are capable in creating same functionalities 

as paid software, majority of the most popular development tools are costly and 

better quality compared to open source software. Traditional development 

companies can invest considerable amounts of money in development tools 

and hardware during every development process. Therefore, better working 

environment and hardware are guaranteed in traditional development.  

 

While Indie developers are facing multiple disadvantages when comparing to 

traditional development companies, majority of Indie developers choose to work 

without restrictions from outside sources. Majority of Indie developers develop 

games from their own passions rather than money, which is a major difference 
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when comparing to traditional development companies. Although majority of 

indie games developed suffer from the lack of popularity, some of these games 

have become the most profitable games ever.  
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4 PLANNED FEATURES AND OBJECTS 

This chapter discusses and argues for the designed features for this project. 

Additionally, source information for the design of the features is dealt with in this 

chapter.  Reasoning behind every choice is also discussed in this chapter. 

 

4.1 Character Movement and Actions 

Designing character movements and actions depends heavily on the necessary 

functions required by the designed game. Due the nature of the project, we 

have chosen to focus on two-dimensional design. When designing and 

producing these functions, the game type mainly defines the required functions, 

and with basic “sidescrollers” the amount of required functions can be rounded 

to minimum. Jumping, shooting and movement controls would be enough. 

However due the passion to the industry and experience in programming in 

general, the decision of creating more complex game was decided. The main 

functions given to “main” character were movement in two horizontal and 

vertical direction, interaction with objects inside the game environment and 

attacking non-playable characters (hereinafter NPC). 

   

4.2 Enemy Design and AI 

The enemy design is heavily dependent on the player controlled character, 

enemy design cannot be created much more complicated compared to player 

controlled character. Enemies have been designed to be simple of nature and 

easy to edit and add to the game content, this way the amount of development 

flaws has been minimalized during enemy development phase. The enemies 

inside the game have been assigned their own “weight”, boundaries and 

durability, this way player cannot simply walk over these objects without any 

effect on player controlled character.  

 

Simply assigning enemies to work in same layer as player movable character 

and immovable object within environment allows them to have same physical 
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laws compared to others within the same layer. Since NPC cannot be controlled 

by player, AI had to be defined for these objects. Rather than just mindlessly 

roaming around the game environment, NPC will act only when player 

controlled character is within viewing distance. NPC will follow tasks assigned to 

them during the development phase. 

 

4.3 Environment Design 

Environment is designed to be as basic as possible with objects restricting 

player and enemy movement to certain directions. Environment is designed to 

have details such as shadows effected by light sources, immovable objects and 

boundaries for player controlled character. Environment design does not have 

huge impact within the development phase, only objects designed inside the 

environment have impact on development phase. Environment design is easily 

changed and aesthetic objects can be added simply even after every other 

development step has been finished.  

 

4.4 Camera Control 

Camera control for any game is crucial part, without camera controls or 

specifications it is absolutely impossibility to play the game. The camera 

behavior depends highly from the design of the game, 3D games often require 

first person view or third person view. 2D games often follow only third person 

view which makes designing camera controls for the game much simplistic and 

easier to manage, due to nature of game designed into this project the camera 

control follows the main character from third person point of view.  

 

Camera controls are designed to be unable to control specifically by the player, 

rather move automatically according to player’s moves with controlled 

character. This function can be assigned directly from unity from camera 

settings, by connecting camera to follow player movable object camera follows 

automatically players controls. (Burton 2016) 
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4.5 Graphical User Interface 

Graphical user interface (hereinafter GUI) design and functionality will revolve 

around simplicity and user friendliness. Titles screen, options and character 

information during game play are functions designed and necessary for this 

project. Quoting Albert Einstein “Make it simple, but no simpler”, the key factors 

of GUI design will follow this strictly. Since many of the games in same genre as 

designed game, the chosen GUI will resemble closely to these designs. Legend 

of Zelda: Ocarina of Time GUI resembles a perfect example of interface 

designed to this project, simplicity and functionality being the main factors of 

this design 

 

 

Picture 1. Example of GUI Design Similar to Designed Game Genre 

 

As seen from Picture 1, the design is simplistic yet informative. Following 

footsteps of Gamesplusjames, guidelines provided by him in his YouTube 

series will be used as an example and base of the design. Previously 

mentioned GUI example follows the 8-golden rules proposed by Ben 

Shneiderman, universal usability, reducing short-term memory load and keeping 

user in control are the main focus of the design (Shneiderman 2010). Picture 1 

pictures a working UI design and is therefore chosen for the development work, 

known as non-diegetic design. UI is never connected to game world, always 



27 

 

seen by the players and informative display eases the connection between the 

player and the game. (Stonehouse 2014.)  

 

4.6 Sounds 

Sound design chosen for this project would follow similar effects within the 

genre chosen for this game. Due to huge availability of online libraries providing 

sound effects to be used free in personal projects, choice of recording own 

sound effects for this project was neglected. Sound effects will be assigned as 

last part of this project if necessary, since this project is a prototype not every 

sound effect will be assigned for this project. Music within the game can be 

assigned directly from Unity interface, therefore scripting to have sounds within 

the game is not required.  

 

Sound effects can be assigned the same manner as assigning player 

controllable object actions, simply connecting sound effect to certain action can 

be used in order the sound effect to work. Sound effects can also be assigned 

to object immovable by the player, but similar matter these sounds are 

connected to objects behavior. 
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5  IMPLEMENTATION 

Designed features for this development work are implemented to prototype 

version in this chapter. Furthermore, software used during the implementation is 

mentioned in this chapter. 

 

5.1 Methods 

In order to create designed functions, guides provided by Unity development 

team and individual developers were used to construct scripts required to reach 

the desired goal. Information gathered from various developers’ guidelines and 

support provided by Unity Reddit community were used in case of programming 

errors and troubleshooting during the development process. Gamesplusjames 

development diary recorded to YouTube provides plenty of information 

regarding to designed functions chosen for this project. However, small 

changed into original script has been made for the script work in desired 

manner.  

 

5.2 Character Movement and Actions 

Generally player controlled character scripting is the easiest phase of 

development, the hardest part of these functions are controls and animation 

sequencing. The basic controls of pressing left to go left and so on, the script is 

simple and easily produced in couple of minutes. Physics of the character were 

created using Unitys own script called “Rigidbody”, the same function will be 

used later when implementing enemies to the game. Script “PlayerController.cs” 

is created to have functionalities appropriate to design, script before and after 

Rigidbody implementation can be seen from table 1 and table 2. 

 

Rigidbody allows to assign certain characteristics to objects inside the game, 

mass, force and collision are main characteristics required for the developed 

character to work. As illustrated in table 1, Rigidbody function is assigned to 

player movable objects by default. Assigning player controlled character mass, 
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allows the character to have momentum in his movement, this gives realistic 

behavior to objects.  

 

Table 1. PlayerController.cs script, Rigidbody Enabled 

if (Input.GetAxisRaw ("Horizontal") > 0.5f || Input.GetAxisRaw ("Horizontal") < 

-0.5f) 

myRigidbody.velocity = new Vector2(Input.GetAxisRaw(“Horizontal”) * 

moveSpeed, myRigidbody.velocity.y); 

if (Input.GetAxisRaw ("Vertical") > 0.5f || Input.GetAxisRaw ("Vertical") < -0.5f) 

myRigidbody.velocity = new Vector2(myRigidbody.velocity.x, 

Input.GetAxisRaw(“Vertical”) * moveSpeed); 

 

In this form the objects assigned with this script follow basic physics laws, 

however the script had to be changed to give desired characteristics to objects. 

Momentum of moved objects had to be changed in a way where when 

controlling of the object stops, the animation and object stop exactly on the 

spot. As seen from a table 2, Rigidbody was removed completely from the script 

to have correct functionality. 

 

Table 2. PlayerController.cs, Rigidbody Removed From the Script 

when(-0.5f<Input<0.5f) 

if(Input.GetAxisRaw(“Horizontal”) < 0.5f && Input.GetAxisRaw(“Horizontal”) > 

-0.5f) 

{ myRigidbody.velocity = new Vector2 (0f, myRigidbody.velocity.y);

 } 

if(Input.GetAxisRaw(“Vertical”) < 0.5f && Input.GetAxisRaw(“Vertical”) > -0.5f) 

{ myRigidbody.velocity = new Vector2 (myRigidbody.velocity.x, 0f);

 } 

 

Simply assigning these functionalities were enough for player controllable 

character, further scripting to create more functions for player movable 

character were unnecessary. Player movable character is not desired to have 

multiple functions at this point of time, however since further development 

towards this project is possible, the script has been created to be modified 

easily. (Gamesplusjames 2015b.) 
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5.3 Enemies and AI Implementation 

On a basis of basic design and functions required from enemies in designed 

game, the enemies do not differ from player moved character almost at all. The 

difference comes from making enemies act without players’ interaction with 

them, this is where AI design is crucial. Since every movement enemies have 

been designed to do and are not effected by players’ controls over controllable 

character, a script was created for enemies to behave certain way. Mainly NPC 

enemies have been created to guard areas and create difficulty for player when 

roaming around the environment. The enemies have been designed to hurt 

player movable character in contact, this is where enemy NPC rigidbody comes 

in use. When enemy NPC is in contact with player character, they can push 

them due to higher weight value assigned to them. Although enemy NPC can 

push player controlled character back, when they are attacked they are pushed 

back due to the rigidbody function. Assigning these functions to enemy NPC is 

like scripting player movable character, however since there is no get function 

inside the script, every function must be scripted individually to have every 

function desired for enemy NPC. (Unity technologies 2016c). 

As seen from Table 3, random variable was created to enemy NPC script to 

have behavior unexpected by the player. Also, seen from table time of every 

movement is also assigned inside the script. 

 

Table 3. EnemyController.cs 

void start()  

{ 

myRIgidbody = GetComponent<Rigidbody2D>();   

//timeBetweenMoveCounter = timeBetweenMove; 

timeBetweenMoveCounter = Random.Range (timeBetweenMove * 0.75f, 

timeBetweenMove * 1.25f) 

//timeToMoveCounter = timeToMove; 

timeToMoveCounter = Random.Range (timeToMove * 0.75f, timeToMove * 

1.25f); 

} 
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Time between every movement done by enemy NPC is controlled by function 

“bool moving”, this function is always looking for enemy NPC for movement. 

When bool moving detects enemy NPC moving it starts the scripts time counter 

as seen from Table 3, bool moving can be assigned directly from Unity features. 

(Gamesplusjames 2015c)  

 

5.4 Environment Implementation 

Implementation of environment was done mostly with Tiled2Unity software, 

using free resources provided by opengameart.org. Tiled2Unity was used to 

create layering to environment, bottom layer is used as a base for movable 

objects where in direct contact with base layer can be moved. By adding 

additional layers, objects within the game can be created which can cause 

collision between moving objects and layers therefore stopping objects. After 

creating this layering with Tiled2Unity, software can simply create file 

compatible directly with Unity. When importing environment to Unity, collision 

laws must be assigned to different layers. When Tiled2Unity is used, automated 

files are created in the process. Scripts named “ImportTiled2Unity.X” files are all 

automatically created, however small changes are made into the script 

changing behavior and class of the script. Multiple layers and objects can be 

assigned to single file, e.g. all player controlled character objects are connected 

to “ImportTiled2Unity.cs” script, although when importing single file through 

Tiled2Unity multiple files are created.  

   

When editing environment data using unity, different layer levels can be 

assigned to behave certain ways. However, when assigning different layer 

levels, layer with the highest assigned level will always cover layers assigned 

under them. Highest layer is used to adding details to environment, this also is 

used to add collision to highest layer creating objects unmovable and 

completely unaffected by player controlled character. Environmental 

implementation requires the least scripting during the whole development 

process, however layer sorting and creation is time consuming and tiring 

process. (Henley & Johnson 2014.) 
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5.5 Camera Control 

Unity provides every possible function for camera to behave in desired matter, 

however it is developers’ duty to assign the behavior. Default settings for 

camera controls would not follow player controlled character, assigning the 

camera controls to just follow player controlled character can be assigned 

simply by connecting camera view to player controlled character. Camera 

follows player controlled characters’ movement, this way the camera controls 

are not directly controlled by the player. (Unity technologies 2016d.) 

 

However, during this project some functionalities of the camera had to be 

changed for it to behave in desired manner, firstly the camera should not follow 

the player controlled character at the same speed as the character moves. This 

is done by adding small delay in the camera controls, also camera movement 

are limited in a way where camera cannot show objects outside the boundaries 

of the environment. Simply when player reaches the edge of the environment 

the camera stops moving in the direction where player is moving the character. 

Camera also works as trigger for enemies in this development process, when 

enemy NPC is not in the reach of the camera they remain idle and do not have 

any functions. Main functionalities of camera will be found from 

“CameraController.cs”, however this file only seeks the controls from Unity 

platform. Triggering points for camera loading can be found from this file, 

“Destroy” functionality mentioned in script controls all the objects loaded at the 

screen simultaneously. This is done to have lighter processing requirement from 

the game, rather than loading everything at once the game engine is loading 

only parts of the environment. (Burton 2014.) 

 

Even though all functionalities are provided by Unity, automated script will be 

defined for the controls. Illustrated in Table 4, camera controls have been 

assigned to follow game object. 
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Table 4. CameraController.cs, Automatically Created Camera Controller Script 

using System.Collections; 
using UnityEngine; 
public class CameraController : MonoBehaviour{ 
public GameObject followTarget; 
private Vector3 targetPos; 
public float moveSpeed; 
private static bool cameraExists; 
void Start(){ 
if (!cameraExists){ 
cameraExists = true; 
DontDestroyOnLoad(transform.gameObject);} 
else{ 
Destroy(gameObject);} 
}void Update(){ 
targetPos = new Vector3(followTarget.transform.position.x, 
followTarget.transform.position.y, transform.position.z); 
transform.position = Vector3.Lerp(transform.position, targetPos, moveSpeed 
* Time.deltaTime);}} 

 

As seen from Table 4, the script also defines camera speed, positioning and 

loading trigger. Even though the script is short and simplistic, it has all defining 

factors for it to work in desired manner. Functionalities of camera should not be 

developed in directly by adding functionalities to the script, since Unity does not 

update the camera functionalities automatically if not directly done so in Unity. 

Functionalities to camera behavior can be added from camera settings without 

having major effect to other parts of the game.  

 

5.6 Animation 

During the development of this thesis work the animation and graphical aspect 

of the game did not play a huge part. During the project, already existing online 

libraries providing objects and graphical designs were used to test everything to 

work in order. Some cases in this work some objects could not be found from 

free online sources, these animation objects were created in Photoshop and 

afterwards imported using Tiled2Unity. Animation for objects is simply done 

using sequencing of different states of same graphical object. As seen from 



34 

 

Figure 5, one object has multiple different states and they are used every time 

objects behave certain way. 

 

 

Figure 4. Player Movable Character Animations. 

 

Sequencing of animation does not require any scripting, however lots of work 

must be done to have working animation. During the development of this thesis 

work, lots of difficulties with animation sequencing were encountered. 

Troubleshooting for animation sequencing had to be done all by hand, Unity 

does not provide any features to help finding flaws in the development work of 

animation. Although lots of difficulties were encountered, all flaws were 

corrected in the end by starting the animation work from scratch after the first 

few failures.  
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As seen from the Figure 6, the animation matrix for player controlled character 

does not look too complicated.  

 

 

Figure 5. Animation Sequences in Player Controlled Character 

 

Although this matrix seems simple and easy to understand, lots of research had 

to be done to have correctly behaving animation. As seen from the figure above 

idle state is the starting and ending point of every animation, this means that 

after object is no longer controlled nor effected by anything within the game 

environment this should be the default animation state during that time. Main 

problem concerning the developers design of the animation sequencing came in 

the form of interaction between the player controlled character and enemy NPC, 

due the lack of connection between player controlled character and NPC 

animation they did not have any reaction towards each other from the animation 

point of view. Every animation in this project react with script “TileAnimator.cs”, 

this automatically created script lists automated animations of all objects within 

the game. “StartTime” and “Duration” controls the length of animation, ending 

point is not defined in this script to have desired behavior for enemy NPC since 

player controlled character does not have “StartTime” or “Duration” function 

defined in the script. 
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Even though the console of Unity gave information of interaction between player 

controlled character and NPC characters, animation was unaffected by this. 

Due the problems with the animator in the beginning of this part of the 

development work, this graphical aspect was hard to be fixed without any 

outside sources. Luckily to our chosen guide for this development work, 

Gamesplusjames has excellent guide how to work with animator of Unity. The 

problem within our development work was corrected by adding trigger points for 

certain animations when any of the deciding factors would be true. When player 

controlled character has interaction between enemy NPC, the enemy NPC 

causes damage to player character, this is used as one of the triggering points 

for animation. When player controlled character is touched by the enemy NPC 

the animation of the player controlled character flashes, for this part new 

animations were not needed to be created and this function was found from 

Unity animator. (Strout 2015.)  

Although animation development part of this thesis work took so much time, the 

developers are not satisfied to the result. Every part of the animation works as 

wanted, but room for improvement for the sequencing and timing is required in 

order to finish the end result of the game.  

 

5.7 Graphical User Interface 

GUI developed for this project is highly similar to the interface illustrated on the 

Figure 2. The GUI build for this project focuses more on functionality than any 

other aspects, the GUI behaves as a layer and object inside the game all at the 

same time. This is one reason why GUI development part of this work did not 

have any new obstacles concerning other parts of the work. GUI behaves 

similar to other game objects within the game, change happens when certain 

trigger actions happen. Enemy NPC contact, picking up items, change in the 

map and quest updates, all these parts have effect on GUI. Design part of the 

GUI follows strictly the design found in similar games in this category, during the 

development phase the aim was to create as simple as possible design. As 

seen from Figure 2, the design can be simple yet include lots of knowledge 

concerning the game. Because the GUI plays a small part in this project, the 

further development is not necessary for this project. (Alismuffin 2011.) 
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GUI also includes functional part to it, player is able to control the chosen 

weapon and item that they have collected. Some functions developed during 

the scripting phase have been connected to the GUI, however the changes 

happening to the GUI does not have any effect to the game, only to the 

graphical changes are happening inside the GUI.  

 

5.8 Sounds 

During the animation development phase, the developers focus did not expand 

to the sound effects and music. The sound effects can be attached to 

animations directly, or they can be set up to be played when certain triggering 

effects are happening in the game. Online libraries of free sound effects were 

used in this development part of the thesis work, therefore recording own sound 

effects was not required for this project. During the sound implementation, the 

developers ran into problem with the difference in time between the animation 

and sound. Because the sounds and animation length time wise was different, 

already existing sounds did not match the sound effects available online. When 

the sound development process started, everything began from testing how to 

attach certain sounds to certain animations. The main problem was that sound 

effect would start immediately when moving, rather than making step sounds 

when feet hit the ground, the stepping sound started when the feet got off the 

ground. (Uccello 2016).  

 

The problem with sounds starting from wrong points was corrected using 

Audacity software, small tweaking to the sound effects was done in order to 

have their starting points to have same as the animation. Ending of the sound 

effect can be defined to end exactly when the animation ends, or to have them 

played completely after the ending of the animation. Sound implementation for 

this thesis work was considered even from the beginning as the least important 

feature. Most important sound effects were assigned to the development work, 

majority of the game sound effects were left out from this development work.  
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6 TESTING 

The testing phase is crucial to every software development process. In this 

chapter, the functions and scripts are tested for bugs and flaws implemented 

during the development phase. Improvement of existing features were 

implemented during the testing phase.  Additionally, research for future 

development of this thesis work will be defined in this chapter.  

 

6.1 Troubleshooting and Testing 

Since the best way of finding flaws and bugs inside game is by playing it, the 

developers assigned friends to test the end result and report possible flaws 

inside the game. People chosen for this process were chosen from close by 

friends of the developers who have history in gaming and in game development, 

although these people have experience in game development they did not have 

experience in game testing. During the testing phase, test subjects were given 

instructions to play the game normally at first and following small guidelines 

provided by the developers. The testing phase also included tests done by the 

developers, this way the game had tests from black box and white box testing. 

(Software Testing Fundamentals 2016a). 

 

6.2 Difference Between Black and White Box Testing 

The testing phase of this project was divided into two main phases, people who 

are not familiar with the design, structure and implementation of the designed 

software will be taking part in black box testing. People who are familiar with 

everything done for the software will be taking white box test, usually people 

who conduct the white box testing are the developers of the software, like in this 

thesis work also. (Software Testing Fundamentals 2016b.) 

Black box testing is used to get more in depth view towards the system and its 

design, this is a great way of finding suitable solutions for existing flaws within 

the design. Test subjects do not require any programming knowledge to 

evaluate the product, this way the focus is more on the output of the program 
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rather than the internal mechanism of the software developed. During black box 

testing it is crucial for the testers to have no access to source code, the only 

concept defined for the testers should be the expected outcome. The test 

should return results from difference between expected outcome and actual 

outcome, however black box testing can be considered redundant if the 

developers have run the testing before the test subjects. (Williams 2006a).  

 

White box testing is considered more in depth testing of the software, since the 

software design, implementation and structure are already familiar to the test 

subjects’ source code will be provided during this phase. During white box 

testing the subjects were testing individual cases of the designed software, 

rather than focusing on the large view of the solution. End result of white box 

testing should find internal flaws from programming flaws to design flaws, since 

the test subjects are required to have previous knowledge towards 

programming and design of the software test subjects can be divided to focus 

on different parts of the software. (Williams 2006b). 

  

6.3 Black Box Testing in Case Development Work 

The black box testing begins from designing suitable plan for the test subject, 

since this test does not require any programming knowledge from the test 

subjects close by friends without programming experience were chosen for this 

part. The test was designed for subjects to gain view from mainly of the game 

design and functions, this was done by sending asking the test subjects to walk 

around the environment of the game and encounter the first enemy NPC. The 

test was focusing on the players point of view, this way developers would get 

more in depth view of the design flaws and desired functions. (Software testing 

fundamentals 2016c.) 

 

The test was concluded in one session with the test subjects, as seen from the 

following tables, the black box test was divided in to three major categories. 

During the black box testing software testing fundamentals were used to create 

the tables, this procedure is typical for any software testing procedure. 

(Software testing fundamentals 2016d.) 
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As seen from table 5, GUI was the first aspect of development tested in this 

phase. Even though, the GUI development was successful from test subject 

point of view, further development is necessary when game is developed 

further. 

 
Table 5. Black Box Testing Procedures for GUI Testing 

Features GUI 

Requirements Game demo and platform 

Test procedure 1. GUI assessment and testing when moving around 
the game environment 

Expected 

results 

GUI reacts to test subjects actions 

Results GUI reacted according to the programming 

Test status Success 

Notes GUI reacted to player controlled character movement and 
actions 

Test date December 20, 2016 

 

During the testing phase of GUI, test subject pointed out the minimalistic design 

and functionalities. Even though, working GUI is success for this project, lacking 

functionalities were mentioned by the test subjects. 

 

Following table consists test results from player controlled character controls 

and animation, simplistic design of the planned features was expected to 

provide excellent results of this test. 



41 

 

 

Table 6. Black Box Testing Procedure for Player Controlled Character Controls 

and Animation 

Features Player controlled character controls and animation 

Requirements Test subject controls the player controlled character 

Test 

procedures 

1. Test subjects control the character around the game 
environment 

2. Explore the controls and access the animations 

Expected 

results 

Character animation and movement is according to 

developed features 

Results Character animation was flawed and movement was 

according to developed controls 

Test status Partial success 

Notes Character moved perfectly according to designed controls, 

while moving left the character had animation while moving 

right. 

Test date December 20, 2016 

 
As seen from table 6, expected results were not met during this phase. Even 

though, the flaw occurring during the testing phase was minor failure. However, 

correction towards the animation flaw was corrected easily and animation was 

considered success after the correction. 

 

Enemy NPC testing for this development work was done by using only one 

enemy character. Even though the test was small in order to test enemy NPC, 

all necessary information was reached during the tests. 
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Table 7. Black Box Testing Procedure for Enemy NPC Encounters 

Feature Encountering enemy NPC 

Requirements Player encountered Character has contact with enemy 

NPC 

Test procedures 1. Test subject moves player controlled character to 

enemy NPC 

Expected 

results 

Player controlled character reacts to enemy NPC and 

initiates correct animation 

Results Player controlled character reacts to enemy NPC and 

correct animation is played 

Status Success 

Notes When player controlled character meets enemy NPC, 

player controlled is harmed and correct animation is 

played. 

Test Date December 20, 2016. 

 

As seen from table 7, the scripted functions for enemy AI were success. While 

features tested in this phase were working and according to design, further 

development towards enemy AI is desired in order to create complete game.  

 

During the black box testing procedures most of the features were found to be 

successfully developed, working according to design and having correct 

reactions. However, during the testing phase animations proved to have been 

including flaws and had to be corrected after the black box testing. Majority of 

the tests done in white box testing cover up the test procedures left out from 

black box testing, camera controls, sound implementation and environment 

testing is taken into more in depth view during the white box testing. 

 

Although Majority of the features tested during the black box test were 

successful and liked by the test subjects, the feedback given by the test 

subjects left space for improvement. Animation of the characters seemed bit 

stiff and incorrectly timed, the GUI had information connected to it that did not 
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have any use in the test version of the game and enemy NPC reaction range 

was proven to be too big compared to the size of the object in game.  

 

Black box testing was executed by using two test subjects, JESSH91 and 

Mäksä asked to remain under their online alias during the test. The test subjects 

have extensive experience in gaming and large amount of knowledge towards 

the development work game genre.  

 

6.4 White Box Testing 

White box testing procedures are highly more sophisticated and accurate 

compared to black box testing, although the black box testing reveals flaws 

within the game, it cannot explain the reason behind them. The reason why 

white box testing was also used as a part of this project, is to find flaws from the 

programming point of view and resolve these problems during the testing. While 

white box testing procedures were divided into different parts similar to the 

development process, flaws encountered during the development phase could 

have been listed to white box testing procedures. However, the end result of 

this development work would have extended far too much and therefore was left 

out.  

 

As seen from the following tables, the white box testing procedure has more in 

depth view of different aspects of the game. Animations, enemy AI, camera 

controls, sounds, environment and player controlled character controls were 

taken into the test and occurring flaws were corrected after the test. Suggested 

features were not implemented during this phase. The following tables are 

developed from Software testing fundamentals guide. (Software Testing 

Fundamentals 2016e). 

 

During white box testing, same functionalities tested during the black box 

testing were conducted using new test subject. As seen from table 8, GUI was 

also taken as a first testing subject. However, during the GUI testing, emphasis 

was on functionality rather than design.  
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Table 8. White Box Testing to GUI 

Feature GUI design and features 

Requirements Unity platform and the development case work 

Test procedure 1. GUI design and features are tested for connectivity 
and reaction to game environment 

2. Scripts connecting player controlled character and 
GUI are reviewed and tested 

3. Connection between GUI and other layers is tested 

Expected 

results 

1. GUI features are working according to the design 

2. Player controlled character actions have effect to 
GUI 

3. GUI does not have any physical connection to other 
layers 

Results 1. GUI has implemented features that are not 
connected to anything 

2. Player controlled characters actions, i.e contact with 
enemy NPC has effect to GUI 

3. GUI is not connected to other layers 

Status Partial success 

Notes Game currency feature in GUI is not connected to any 
feature within the game. Other aspects worked according 
to the design, room for improvement detected. 

Test Date December 21, 2016 

 

As seen from the table 8, the white box testing is more sophisticated and 

follows more developers point of view rather than players point of view. White 

box testing is more time consuming and can reveal the same results as black 

box testing, but when using both tests equally can reveal shortcomings from 

players and developers point of view.  

 

Animation testing during white box testing was seen as a necessity for this 

project, considerable amount of time was invested in this development the 

results were expected to be successful. As shown in table 9, during the test 

character controls are not taken into account during animation testing like in the 

black box testing. 
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Table 9. White Box Testing for Animation 

Feature Animation 

Requirements  Unity platform, development case work and test subjects 
control the player controlled character and inspect the 
animations 

Test procedure 1. Test subjects controls the player movable character 
and inspects the animations 

2. Animations other than player controlled character 
are tested 

3. Reaction between different animations is tested 

Expected 

results 

1. Player controlled reacts to controls are initiates the 
correct animation 

2. Enemy NPC animation works similar to the player 
controlled character 

3. Animations have correct reactions to other 
animations 

Results 1. Player controlled character animation while moving 
to right has the animation while moving left 

2. Enemy NPC has correct animation 

3. Some animations lack the reaction to other 
animations 

Status Partial success 

Notes The player controlled character animation while moving 
right was never connected to the function of moving right. 
Some implemented animations lack the reaction to other 
animations. 

Test date December 22, 2016 

 

As seen from table 9, animations occurred to be returning problem for this case 

development work. Flaws occurred during the animation test were dealt with 

when they occurred during the testing, this extended the time required for every 

test. Correcting flaws from animations could take a tremendous amount of time, 

from ten minutes to one day, however the ends result is worth the time invested 

in this process. 

 

The following table is describing the sound implementation white box testing, 

because this process could have been done by black box test subjects rather 



46 

 

than the white box test subjects, the end result is not satisfactory for the 

developers point of view.  

 

Table 10. White Box Testing of Sound Implementation 

Feature Sound implementation 

Requirements Unity platform, access to development work and source 
code 

Test procedure 1. Player controlled character is controlled and tested 
for correct sound effects 

2. Enemy NPC is tested for sound effects 

3. Background music implementation is reviewed 

Expected 

results 

1. Player controlled character reacts to all functions 
and correct sound effect is played 

2. Enemy NPC has similar reaction as player 
controlled character 

3. Background music plays and loops after ending 

Results 1. Player controlled character did not have sound 
effects connected to every function 

2. Enemy NPC is lacking all sound effects 

3. Background music does not loop 

Status Failure 

Notes Player controlled character did not have sound effects 
when walking right, interacting with enemy NPC or when 
the player dies. 

Test date December 23, 2016 

 

As seen from table 10, major issues from sound implementation was 

encountered during the white box testing phase. Problem did not occur during 

the black box testing, sounds for the game were disabled during the black box 

testing. Major improvements were discovered from the sound implementation 

phase, due the lack of experience with Unity platform in general, the 

development process after white box testing took longer than expected. The 

process of further sound development was neglected at this time and will be 

dealt with in the future.  
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The following table is focusing on the camera controls and implementation of 

the case development work, this test was left out from black box testing phase 

because camera behavior seemed correct at that time. 

 

Table 11. White Box Testing of the Camera Controls 

Feature Camera controls  

Requirements Unity platform, access to development case work and 
source code concerning camera controls 

Test procedure 1. Move player controlled character to every corner of 
the game environment 

2. Test reaction of sudden changes of character 
movement 

Expected 

results 

1. Camera has small delay when following player 
controlled character 

2. Camera stops moving when meeting the end of the 
game environment 

3. Camera follows player controlled character when 
changes in direction occur 

Results 1. Camera has small delay and follows player 
controlled character where every it is controlled to 

2. Camera continues moving even when player 
controlled character find obstacle stopping the 
movement 

3. Camera has problems following the player 
controlled character when sudden change in 
direction occurs 

Status Partial success 

Notes  Camera scripting requires more development and 
boundaries for camera movement has to be further tested. 

Test Date December 24, 2016 

 

Tests done to camera controls found multiple problems that did not occur during 

the black box testing, possible reason for this result might be due the 

instructions given to the test subjects. Although camera controls did not meet 

the requirements set up to it during the development phase, small adjustments 

after the testing phase corrected most of the flaws. Boundaries set up to the 

camera still has flaws in it and require extensive development work in the future. 
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Enemy AI was developed for this project to give hostile NPC to behave in 

desired matter in this game. The enemy AI cannot be seen during the game 

play, therefore testing the AI from the backend during the testing phase was 

necessary. The table 12 shows the testing procedure for enemy AI.  

 
 
Table 12. White Box Testing for Enemy AI 

Feature Enemy AI 

Requirements Unity platform, access to source code and controlling 
player controlled character with enemy NPC interaction 

Test procedure 1. Player controlled character is moved to viewing 
distance from the enemy NPC 

2. Enemy reaction to player is tested  

3. Reaction to other objects in game is tested 

Expected results 1. Enemy NPC starts moving only when the player 
controlled character is in viewing distance from the 
enemy NPC 

2. Enemy NPC reacts to player according to the 
design 

3. Enemy NPC changes direction when meeting 
immovable obstacles or game environment edge 

Results 1. Enemy NPC starts moving when in viewing 
distance from player controlled character 

2. Enemy NPC has contact with player and deals 
damage 

3. Enemies do not change direction when meeting 
obstacles or edge of the environment 

Status Partial success 

Notes Enemy NPC has correct AI functions, reaction to game 
environment was not enabled during the testing phase. 

Test date December 27, 2016 

 

As seen from table 12, any major flaws from enemy AI was not found. Main flaw 

found from enemy AI was reaction with other game objects, fortunately this was 

not found to be too difficult flaw to be bypassed with small tweaking with the 

enemy script.  

 

The following table is from the last white box testing done during this 

development work, environment testing consist mostly inspecting different 
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layers used in the game. During the white box testing every flaw found was 

corrected, also new improvements were implemented during this phase. The 

table 13 shows the procedure conducted to the game environment. 

 

Table 13. White Box Testing for Game Environment 

Feature Game environment 

Requirements Access to Unity platform and source code 

Test procedure 1. Visual inspection of different layers of the game 
environment, excluding the GUI layer 

Expected 

results 

1. Layers do not run into a conflict between different 
layers 

2. Every object is assigned to correct layer 

3. Layers have been defined correctly and boundaries 
have been added to objects 

Results 1. Layers have been assigned correctly in desired level 

2. Objects were assigned to correct layer 

3. Layers are defined correctly, some boundaries 
between objects was encountered. 

Status Success 

Notes Correcting the boundaries of objects was done immediately 
when encountered, this required little no time therefore it is 
not considered as a failure. 

Date December 30, 2016 

 

As seen from the table 13, the environment design was the most successful 

developed feature of this development work. Flaws occurring during the white 

box testing of the game environment were easy to be corrected and improved, 

further development towards game environment is not required at this point. 

Expanding the game environment is possible in the future development of this 

development work 

 

White box testing is time consuming phase were many programming and 

scripting errors can be discovered easily, during this thesis development work 

the main test subjects were the developers themselves. Both developers 

conducted their own tests for every category of the white box testing, in the end 

information was gathered and combined to create these tables. 
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6.5 Grey Box Testing 

The last phase of testing for the developed case work is combination of black 

box testing and white box testing, this means that the developed work will be 

presented to a person who has no previous experience in the developed work 

but has knowledge of the programming and source code will be supplied to the 

subject. This part of the testing was concluded by a close friend of the 

developers, however from the test subjects request she wanted to remain 

unnamed. This part of the testing phase does not include any tables, due to 

large similarity between the white box testing results and grey box test results it 

was seen as unnecessary portion for this thesis development work. 

Main difference between white box testing subjects and grey box testing subject 

was the experience using the programming software and sound editing 

software.  (Software testing fundamentals 2016f.)  

During the testing phase majority of the flaws occurred during white box and 

black box testing were discovered by the test subject, further more improvement 

towards sound implementation was suggested by the test subject. New major 

flaws were not encountered in this phase of the testing, however small minor 

flaws in unknown in advance was found from animation. These flaws will be 

developed further after this development work.  

The grey box testing was not done extensively like white box testing, every 

category was reviewed and tested in five hour period in January 2, 2017. During 

the testing phase, only one of the developers was present when grey box 

testing was conducted, this does not affect the end result of the test in anyway. 

 

Main issues occurring during the grey box testing phase were graphical, from 

developers point of view the scripts are correct and working. However, from 

graphical point of view there is plenty of room for improvement, since online 

sources were used for this thesis work project this was expected. When the 

tests were concluded by the test subject, her input to sound implementation was 

used in order to create more functioning sound effects. Further cooperation with 

the test subject is expected from the future.
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7 CONCLUSIONS 

The objectives of this thesis was to expand the knowledge of the developers 

towards the game development and indie games. Using other developers’ 

development diaries and blogs to create the development case work played a 

huge part in this work. At the beginning of this development work, other game 

development platforms were considered. On the basis of this consideration, 

Unity was found to be the best for beginners and experienced programmers. 

Due to a huge amount of online resources and guidelines provided by Unity 

company, it would have been an unnecessary step to try to find similar support 

for other development platforms. Completing a full game from the chosen 

category was perceived as a too large an objective for this process and, 

therefore, only a demo version of the game was developed.  

 

Carrying out different stages of this project proved to be totally different from 

what was expected. A lot less of scripting was required from the developers due 

to the functions provided by the Unity platform. However, in order to create 

desired functions and actions for the designed case work, most of the scripts 

automatically created by Unity were changed to have desired functionalities. 

The choice of using #C as the scripting language proved to be the correct 

choice. Even though JS was already a familiar language to the developers, the 

majority of the online communities is using #C to complete their projects.  

 

This thesis work proved to be much harder than originally expected. The largest 

obstacle during this project proved to be the Unity platform and computing 

power of the development tools used in this process. During this project, one of 

the main development computers used had major complications and the 

majority of the information stored in it was lost. Additionally, the majority of the 

developed game was lost at that time. Overcoming these obstacles taught 

valuable lessons to both programmers, in that one must never underestimate 

the value of backup save files.  
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Appendix 1. PlayerController.cs 

 

using System.Collections; 
using UnityEngine; 
public class CameraController : MonoBehaviour 
{ 
    public GameObject followTarget; 
    private Vector3 targetPos; 
    public float moveSpeed; 
    private static bool cameraExists; 
    // Use this for initialization 
    void Start() 
    { 
        if (!cameraExists) 
        { 
            cameraExists = true; 
            DontDestroyOnLoad(transform.gameObject); 
        } 
        else 
        { 
            Destroy(gameObject); 
        } 
    } 
    // Update is called once per frame 
    void Update() 
    { 
        targetPos = new Vector3(followTarget.transform.position.x, 
followTarget.transform.position.y, transform.position.z); 
        transform.position = Vector3.Lerp(transform.position, targetPos, 
moveSpeed * Time.deltaTime); 
 
    } 
} 
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Appendix 2. EnemyControl.cs  

 

public float moveSpeed;        
private Rigidbody2D myRigidbody;    
private bool moving;      
public float timeBetweenMove;    
public float timeBetweenMoveCounter;   
public float timeToMove;     
private Vector3 moveDirection;   
void start()  
{ 
myRIgidbody = GetComponent<Rigidbody2D>();  
timeBetweenMoveCounter = timeBetweenMove; 
timeBetweenMoveCounter = Random.Range (timeBetweenMove * 0.75f, 
timeBetweenMove * 1.25f) 
timeToMoveCounter = timeToMove; 
timeToMoveCounter = Random.Range (timeToMove * 0.75f, timeToMove * 
1.25f); 
} 
Void Update()  
{ 

If (moving) 
{    timeToMoveCounter -= timeToMove.deltaTime 
myRigidbody.velocity = moveDirection; 
    if (timeToMoveCounter < 0f){ 
    moving = false; 
    timeBetweenMoveCounter = timeBetweenMove; 

        timeBetweenMoveCounter = Random.Range (timeBetweenMove * 0.75f, 
timeBetweenMove * 1.25f) 

} 
} else 

{    
timeBetweenMoveCounter -=Time.deltaTime; 
myRigidbody.velocity = Vector2.zero;     
if(timeBetweenMoveCounter < 0f){    
moving = true; 
timeToMoveCounter = timeToMove; 
timeToMoveCounter = Random.Range (timeToMove * 0.75f, 

timeToMove * 1.25f); 
moveDirection = new Vector3(Random.Range(-1f, 1f), Random.Range(-

1f, 1f), 0f); 
} 

} 
}
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Appendix 3. ImportTiled2Unity.cs    1(3) 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.IO; 
using System.Text; 
using System.Xml; 
using UnityEditor; 
using UnityEngine; 
 
namespace Tiled2Unity 
{ 
    partial class ImportTiled2Unity : IDisposable 
    { 
        private string fullPathToFile = ""; 
        private string pathToTiled2UnityRoot = ""; 
        private string assetPathToTiled2UnityRoot = ""; 
 
        public ImportTiled2Unity(string file) 
        { 
            this.fullPathToFile = Path.GetFullPath(file); 
 
            // Discover the root of the Tiled2Unity scripts and assets 
            this.pathToTiled2UnityRoot = 
Path.GetDirectoryName(this.fullPathToFile); 
            int index = this.pathToTiled2UnityRoot.LastIndexOf("Tiled2Unity", 
StringComparison.InvariantCultureIgnoreCase); 
            if (index == -1) 
            { 
                Debug.LogError(String.Format("There is an error with your 
Tiled2Unity install. Could not find Tiled2Unity folder in {0}", file)); 
            } 
            else 
            { 
                this.pathToTiled2UnityRoot = 
this.pathToTiled2UnityRoot.Remove(index + "Tiled2Unity".Length); 
            } 
 
            this.fullPathToFile = 
this.fullPathToFile.Replace(Path.DirectorySeparatorChar, '/'); 
            this.pathToTiled2UnityRoot = 
this.pathToTiled2UnityRoot.Replace(Path.DirectorySeparatorChar, '/'); 
 
            // Figure out the path from "Assets" to "Tiled2Unity" root folder 
            this.assetPathToTiled2UnityRoot = 
this.pathToTiled2UnityRoot.Remove(0, Application.dataPath.Count()); 
            this.assetPathToTiled2UnityRoot = "Assets" + 
this.assetPathToTiled2UnityRoot; 
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        }         2(3) 
        public bool IsTiled2UnityFile() 
        { 
            return this.fullPathToFile.EndsWith(".tiled2unity.xml"); 
        } 
        public bool IsTiled2UnityTexture() 
        { 
            bool startsWith = this.fullPathToFile.Contains("/Tiled2Unity/Textures/"); 
            bool endsWithTxt = this.fullPathToFile.EndsWith(".txt"); 
            return startsWith && !endsWithTxt; 
        } 
 
        public bool IsTiled2UnityWavefrontObj() 
        { 
            bool contains = this.fullPathToFile.Contains("/Tiled2Unity/Meshes/"); 
            bool endsWith = this.fullPathToFile.EndsWith(".obj"); 
            return contains && endsWith; 
        } 
 
        public bool IsTiled2UnityPrefab() 
        { 
            bool startsWith = this.fullPathToFile.Contains("/Tiled2Unity/Prefabs/"); 
            bool endsWith = this.fullPathToFile.EndsWith(".prefab"); 
            return startsWith && endsWith; 
        } 
 
        public string GetMeshAssetPath(string file) 
        { 
            string name = Path.GetFileNameWithoutExtension(file); 
            string meshAsset = String.Format("{0}/Meshes/{1}.obj", 
this.assetPathToTiled2UnityRoot, name); 
            return meshAsset; 
        } 
 
        public string GetMaterialAssetPath(string file) 
        { 
            string name = Path.GetFileNameWithoutExtension(file); 
            string materialAsset = String.Format("{0}/Materials/{1}.mat", 
this.assetPathToTiled2UnityRoot, name); 
            return materialAsset; 
        } 
 
        public string GetTextureAssetPath(string filename) 
        { 
            // Keep the extention given (png, tga, etc.) 
            filename = Path.GetFileName(filename); 
            string textureAsset = String.Format("{0}/Textures/{1}", 
this.assetPathToTiled2UnityRoot, filename); 
            return textureAsset; 
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3(3) 
        } 
        public string GetXmlImportAssetPath(string name) 
        { 
#if !UNITY_WEBPLAYER 
            name = 
Tiled2Unity.ImportBehaviour.GetFilenameWithoutTiled2UnityExtension(name); 
#endif 
            string xmlAsset = String.Format("{0}/Imported/{1}.tiled2unity.xml", 
this.assetPathToTiled2UnityRoot, name); 
            return xmlAsset; 
        } 
        public string GetPrefabAssetPath(string name, bool isResource, string 
extraPath) 
        { 
            string prefabAsset = ""; 
            if (isResource) 
            { 
                if (String.IsNullOrEmpty(extraPath)) 
                { 
                    // Put the prefab into a "Resources" folder so it can be instantiated 
through script 
                    prefabAsset = String.Format("{0}/Prefabs/Resources/{1}.prefab", 
this.assetPathToTiled2UnityRoot, name); 
                } 
                else 
                { 
                    // Put the prefab into a "Resources/extraPath" folder so it can be 
instantiated through script 
                    prefabAsset = 
String.Format("{0}/Prefabs/Resources/{1}/{2}.prefab", 
this.assetPathToTiled2UnityRoot, extraPath, name); 
                } 
            } 
            else 
            { 
                prefabAsset = String.Format("{0}/Prefabs/{1}.prefab", 
this.assetPathToTiled2UnityRoot, name); 
            } 
 
            return prefabAsset; 
        } 
        public void Dispose() 
        { 
        } 
    } 
} 
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Appendix 4. CameraController.cs 
 
using System.Collections; 
using UnityEngine; 
 
public class CameraController : MonoBehaviour 
{ 
    public GameObject followTarget; 
    private Vector3 targetPos; 
    public float moveSpeed; 
 
    private static bool cameraExists; 
 
    // Use this for initialization 
    void Start() 
    { 
 
        if (!cameraExists) 
        { 
            cameraExists = true; 
            DontDestroyOnLoad(transform.gameObject); 
        } 
        else 
        { 
            Destroy(gameObject); 
        } 
    } 
 
    // Update is called once per frame 
    void Update() 
    { 
        targetPos = new Vector3(followTarget.transform.position.x, 
followTarget.transform.position.y, transform.position.z); 
        transform.position = Vector3.Lerp(transform.position, targetPos, 
moveSpeed * Time.deltaTime); 
 
    } 
} 
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Appendix 5. TileAnimator.cs    1(2) 

 

#if UNITY_4_0 || UNITY_4_0_1 || UNITY_4_2 || UNITY_4_3 || UNITY_4_5 || 
UNITY_4_6 || UNITY_4_7 || UNITY_5_0 
#undef T2U_USE_ASSERTIONS 
#else 
// Assertion library introduced with Unity 5.1 
#define T2U_USE_ASSERTIONS 
#endif 
using System; 
using System.Collections; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
using UnityEngine; 
 
#if T2U_USE_ASSERTIONS 
using UnityEngine.Assertions; 
#endif 
 
namespace Tiled2Unity 
{ 
    public class TileAnimator : MonoBehaviour 
    { 
        public float StartTime = -1; 
        public float Duration = -1; 
        public float TotalAnimationTime = -1; 
 
        private float timer = 0; 
 
        private MeshRenderer meshRenderer = null; 
 
        private void Awake() 
        { 
            this.meshRenderer = this.GetComponent<MeshRenderer>(); 
        } 
 
        private void Start() 
        { 
#if T2U_USE_ASSERTIONS 
            Assert.IsTrue(this.StartTime >= 0, "StartTime cannot be negative"); 
            Assert.IsTrue(this.Duration > 0, "Duration must be positive and non-
zero."); 
            Assert.IsTrue(this.TotalAnimationTime > 0, "Total time of animation 
must be positive non-zero"); 
#endif 
            this.timer = 0.0f; 
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        } 
 

2(2) 
        private void Update() 
        { 
            this.timer += Time.deltaTime; 
 
            // Roll around the time if needed 
            while (this.timer > this.TotalAnimationTime) 
            { 
                this.timer -= this.TotalAnimationTime; 
            } 
 
            this.meshRenderer.enabled = timer >= this.StartTime && timer < 
(this.StartTime + this.Duration); 
        } 
 
    } 
} 


