

CREATION OF GAME

Unity game for PC platform

Helavirta Antti
Xie Yuting

Bachelor’s Thesis

School of Business and Culture
Business Information Technology

Bachelor of Business Administration

2017

School of Business and Culture
Business Information Technology
Bachelor of Business Administration

Abstract of Thesis

Authors Antti Helavirta & Yuting Xie Year 2017
Supervisor Johanna Vuokila
Commissioned by -
Title of Thesis Creation of game
Number of pages 49 + 7

Currently, the gaming industry is divided into two different development
processes, i.e. Indie development and traditional corporate development model.
Even though not completely different from each other, major distinctive
differences between these development models are present during the multiple
development processes. A majority of traditional development companies tend
to only focus on financial benefits, where Indie developers are focusing on
passion in gaming and industry in itself.

There are several objectives in this thesis work. Firstly, differences in traditional
development and Indie development are examined from commercial, financial
and development point of view. During this research work, a game demo was
also created to have more in depth view towards Indie development. Further,
multiple different development diaries and guidelines were examined, based on
information gained through these guidelines the demo game was created. After
the development process, the demo game was tested according to industry
testing standards. Moreover, new programming language of C-Sharp was
learned, in order to have more in depth views to the most common game
development language. Additional help from developers’ friends and contact
personnel were used during testing phase. In order to conduct industry standard
testing procedures, people with different experiences towards gaming had to be
used during the testing phase.

Constructive research method was used during the research phase of this
thesis work. However, during the development phase, spiral model was used in
order to have successful project. Majority of developed scripts created during
this project were unnecessary to be presented during this development work
and, therefore, they were left out from the text format.

The end result of this development work is a playable demo version of a game
designed by the developers However, the game will not be presented to the
public, due to further development in the future.

Key words Indie, C-Sharp, Development, Scripting, Unity

CONTENTS

ABSTRACT

SYMBOLS

FIGURES, PICTURES AND TABLES

FOREWORD

1 INTRODUCTION .. 8

1.1 Background and Motivation ... 8

1.2 Scope and Objectives ... 8

1.3 Research Methodology and Limitations .. 10

1.4 Research Questions .. 11

1.5 Regarding Sources .. 12

1.6 Structure of Thesis .. 12

2. TOOLS AND SOFTWARE USED ... 14

2.1 Development Software .. 14

2.2 Platform and Unity Features .. 15

2.3 Followed Protocols and Models ... 16

3. TRADITIONAL DEVELOPMENT AND INDIE DEVELOPMENT 19

3.1 Traditional Development.. 19

3.2 Indie development ... 19

3.3 Advantages and Disadvantages of Indie Development 21

4 PLANNED FEATURES AND OBJECTS .. 24

4.1 Character Movement and Actions ... 24

4.2 Enemy Design and AI .. 24

4.3 Environment Design .. 25

4.4 Camera Control ... 25

4.5 Graphical User Interface .. 26

4.6 Sounds .. 27

5 IMPLEMENTATION ... 28

5.1 Methods ... 28

5.2 Character Movement and Actions ... 28

5.3 Enemies and AI Implementation .. 30

5.4 Environment Implementation ... 31

5.5 Camera Control ... 32

5.6 Animation .. 33

5.7 Graphical User Interface.. 36

5.8 Sounds .. 37

6 TESTING ... 38

6.1 Troubleshooting and Testing ... 38

6.2 Difference Between Black and White Box Testing 38

6.3 Black Box Testing in Case Development Work 39

6.4 White Box Testing ... 43

6.5 Grey Box Testing ... 50

7 CONCLUSIONS ... 51

BIBLIOGRAPHY ... 52

APPENDICES ... 55

5

SYMBOLLS AND ABBREVIATIONS

RPG Role Playing Game

JS JavaScript

C# C-Sharp

ESA Entertainment Software Association

NPC Non-Playable Character

GUI Graphical User Interface

6

FIGURES, PICTURES AND TABLES

Figure 1. Constructive Research Method (Kasanen & Lukka 2000) 10

Figure 2. Animation Setup for Character Movement and Actions 16

Figure 3. Spiral Model (Boehm 1988) ... 18

Figure 5. Player Movable Character Animations. .. 34

Figure 6. Animation Sequences in Player Controlled Character 35

Picture 1. Example of GUI Design Similar to Designed Game Genre 26

Table 1. PlayerController.cs script, Rigidbody Enabled 29

Table 2. PlayerController.cs, Rigidbody Removed From the Script 29

Table 3. EnemyController.cs ... 30

Table 4. CameraController.cs, Automatically Created Camera Controller Script

 .. 33

Table 5. Black Box Testing Procedures for GUI Testing 40

Table 6. Black Box Testing Procedure for Player Controlled Character Controls

and Animation ... 41

Table 7. Black Box Testing Procedure for Enemy NPC Encounters 42

Table 8. White Box Testing to GUI .. 44

Table 9. White Box Testing for Animation ... 45

Table 10. White Box Testing of Sound Implementation 46

Table 11. White Box Testing of the Camera Controls 47

Table 12. White Box Testing for Enemy AI ... 48

Table 13. White Box Testing for Game Environment .. 49

7

FOREWORD

Gameplusjames guidelines provided by him through YouTube platform played a

huge part in completing this thesis work. Without his guidelines, the starting

phase of this thesis development work would have taken considerably more

time. Test subjects contributing to black box testing and grey box testing

deserve a special thank you for participating in this stage. The information

gained through this process contributed to a huge amount of information

necessary for this project.

Unity sub Reddit community deserves a thank you for helping to complete this

project and helping on the solutions created for this project. The community

enabled a fast paced process creating layers and objects within the game

environment. Special thanks go to “Nick X” for providing solutions for the

beginning of the animation development; without her contribution this process

would have never been successful. Special recognition is given to “Feihti” for

providing resources throughout this process.

8

1 INTRODUCTION

This chapter discusses the background of this thesis topic, together with the

motivation, scope, methodology and limitations. The sources and structure of

this thesis will also be discussed in this chapter.

1.1 Background and Motivation

The current indie game industry is blooming due to a highly popular names

being released constantly by individual developers, “Binding of Isaac”, “Don’t

starve”, “Risk of Rain”, “Faster Than Light” and multiple other names are

trending in gaming industry. Before this thesis project began, both developers

were already passionate gamers and Indie game enthusiasts. Currently Indie

game industry has released names on almost every possible game category.

However, one sector is lacking names, that is role playing games (hereinafter

RPG). Shared passion between both developers towards RPG peaked interest

towards this project of developing games, and the choice made towards

designing and creating an RPG meant tremendous amount of research towards

the subject of game development.

Possibilities in Indie game development industry are limitless. However, since

one field is missing mentionable names in the industry, the developers of this

work found it appropriate to develop a game specifically to this category. The

project in itself had a huge impact from an Indie developer “Gamesplusjames”.

This developer created a similar type of game planned for this project and

posted guidelines to YouTube for other developers to learn from his project.

(Gamesplusjames 2015a.)

1.2 Scope and Objectives

This thesis work is focusing on the development process during Indie games

and Unity programming. Since Unity utilizes two different programming

languages JavaScript (hereinafter JS) and C-Sharp (hereinafter C#), the

9

programming part of this thesis will be focusing on the C# language due to past

experience with JS and available sources of game development using C#. Due

to the nature of programming using C#, there are multiple different possible

ways of achieving the desired goal. However, different programming solutions

will not be provided for this work. This thesis development work will work as an

experimental work for the developers, rather than as a guidebook for new

developers. Due to the high amount of existing guides and online courses, the

developers found that making a guidebook would be unnecessary. The testing

phase of this thesis work will be conducted by the thesis work developers and

few selected close friends of the developers. In other words, this testing phase

was concluded in a closed circle to prevent unnecessary distribution of the

development work.

The research part of this development work is to conduct research in

differences between traditional and Indie game development processes.

Additionally, research towards case development work was conducted, focusing

mainly on PC platform due to hardware requirements unmet by the tools

available during this project.

Graphical design of this thesis work is a secondary objective, and during this

development work graphical aspects are considered after the desired functions

have been met. Due the lack of skills in graphical designing, during this process

a close friend of the developers aided with the graphical design part, and free

online sources were used to get graphical objects.

Furthermore, the testing phase will be conducted to demo version created for

this thesis development work. During the testing phase, possible flaws and bugs

scripted during the development phase are found out. Due to the scale of this

work, only a prototype version was developed. However, the game has most of

the functionalities designed and developed but will not be implemented into the

prototype version. Further development towards this prototype version will be

conducted after this thesis project.

10

1.3 Research Methodology and Limitations

During this thesis research project, multiple research methods were discussed

as possibilities to reach the objectives set for this work, among them the

constructive research method suggested by Kasanen (1993) and improved by

Lukka (2000). The constructive research method suggested by Kasanen and

Lukka is divided in six steps as seen from figure 1. However, for this work, steps

1,2,3,4 and 6 were found to be most suitable for this development work.

Figure 1. Constructive Research Method (Kasanen & Lukka 2000)

The first and second step of this research method is discussed in design part of

this development work. However, due to nature of this work, step two of this

method is considered more important that step one. Step three is discussed in

chapter four in this thesis work. Although, majority of the research results of

step three are highly dependable on step two results, changes according to

developers’ personal view were made. The development part of this thesis work

focuses on step four, Implementation of designed features is conducted in this

part. Finally, step six of the research method is implemented in the testing

phase of this development work.

In order to reach the objectives set for this development work, development

diaries, Unity guidelines and documentation developed by Indie developers

were analyzed in order to gain the necessary information for this work.

Questionnaires, interviews and public polls were not necessary for this

development work. However, during the testing phase outside help had to be

used in order to gain the desired results.

11

The authors’ lack of experience in Unity development impacted the quality and

complexity of features implemented in this work, although previous knowledge

of gaming in general impacted on the final result of the development work.

Additionally, previous of knowledge of other programming languages decreased

the time required in order to learn C# language. Although, majority of the

knowledge of C# language was gained through direct development work rather

than studying from literature sources, guidelines and best practices provided by

other developers were considered.

1.4 Research Questions

Three research questions are presented. Discussions of the research questions

are provided.

1. What are the benefits of Indie development compared to Traditional

development?

To answer this question, Indie game development point of view is analyzed

from multiple different development diaries provided by developers. In order to

accomplish this analysis, research towards Traditional development is done

from sources provided by respected companies. Furthermore, to emphasize

Indie development point of view, game demo was developed using guidelines

and processes provided by other indie developers.

2. How chosen development tools effect the development process?

Current development tools used when developing games highly effect the

development result. The research work thoroughly investigates differences

between most popular development tools used in gaming industry. Furthermore,

analysis of different programming languages used by development tools is also

analyzed from same perspective as software.

12

1.5 Regarding Sources

The Programming phase of this work depends highly on the quality of the

sources. Due to the nature of C# language, there is countless amount of books

and material available today. However, online support of Unity and C#

programming with Unity has much more to offer online compared to literature

sources, since programming techniques and software are changing at a fast

pace and, therefore, online sources for this project were more desired. Since

Unity is open source software, the company itself is providing online guides,

scripts, graphical objects and solutions free of charge. Therefore, Unity

homepages will work as the main source of programming sources. Furthermore,

other sources, including Reddit, YouTube and individual development diaries,

were used to gain information about Unity functions and other possible solutions

regarding the programming part of this thesis.

Furthermore, majority of the sources used in this development work are taken

from individual development diaries, YouTube videos and Reddit community

guides. Therefore, only online nicknames are available to be used when

referring to the authors.

1.6 Structure of Thesis

The tools and software chosen for this project are discussed in chapter 2 of this

thesis development work, decision concerning these choices will be concluded

in this chapter. Chapter 3 is used to discuss differences in traditional

development and indie game development, advantages and disadvantages of

different development processes are emphasized in this part. Chapter 4 of the

thesis discusses features planned and designed to be used in the case

development work, research concerning these choices and decisions will be

described in this chapter. Chapter 5 will discuss the implementation of the

designed and planned features. This chapter will work as the main body of this

thesis development work. Chapter 5 discusses about bugs and troubles

encountered during the development phase, together with the solutions to these

problems. Chapter 6 focuses on the testing part of this work, this includes

13

discussion on the testing tools and methods of testing. Chapter 7 of this thesis

draws conclusions concerning this development work.

.

14

2. TOOLS AND SOFTWARE USED

This chapter discusses the tools and software used when developing and

scripting features designed and implemented in this work. Main focus of this

part is on Unity platform due the nature of this development work.

2.1 Development Software

This project revolved highly around Unity development platform. However, other

software had to be used in order to have successful development during the

project. These software included Visual Studio, Tiled2Unity, Notepad++,

Audacity and Photoshop. Unity as itself provides almost every function provided

by other softwares that were used in this project. However, Visual Studio was

used during the troubleshooting phase to gain much more elaborate solutions to

programming flaws inside the scripts developed for this project. Visual studio is

also the default software for Unity to respond to incase of programming errors.

(Unity technologies 2016a.)

Tiled2Unity is a software used to create textures inside the game. This software

is just used to convert already existing objects and textures, to a form where

unity recognizes these as different layers and objects. Uploading files inside

Tiled2Unity converts these into .tmx files, these files are recognized as texture

files by Unity. (Barton 2016.)

Notepad++ was used as the primary script development tool. Due the lightness

of the software, Notepad++ was favored over Visual Studio due to high

processing power required by the Visual Studio. Notepad++ does provide

troubleshooting in same manner as Visual Studio, however due the chosen

programming language of C# which is not understood by Notepad++. (Ho

2016.)

Audacity software was used during the sound design and implementation

phase, because Unity has its own sound mixing features, Audacity was mainly

15

used creating delay or shortening sound effects. Audacity software was not

considered as a necessity for this project. However, due to previous knowledge

of this software, it was used to ease the burden of sound development. (The

Audacity team 2016.)

Photoshop had a minor role in this project. Due to online libraries providing

objects capable to be used in this project, Photoshop was only used in case

changes into objects were desired.

2.2 Platform and Unity Features

A large part of this development work was done inside Unity. However, features

provided by Unity can overcome the need of scripting, therefore ease the load

of work needed to have desired functions inside the development work. Every

script written using either Notepad++ or Visual Studio was compiled using Unity

to work in harmony with other scripts.

Unity recognizes two programming languages as a default, i.e. C# and JS.

During this project, the focus was on C# language. Even though these

languages provide the same functionality compared to each other, due to multi-

paradigm nature of C# language it fits as the more suitable option for this

project.

Unity functionality provides functions to facilitate the development of during the

scripting phase. These functions include layering of different objects in the

game, controlling setup for player movable objects, and mapping controls and

object definitions. These functions play an important part of the project, since

taking these aspects of development work out of the scripting phase degreases

the chance of flaws in these aspects.

Layering different objects inside the game allows developers to assign objects

to work as desired, from ground level to aesthetic objects inside the game.

Layering requires to be defined in specific format .tmx. Tiled2Unity is software

designed to change different objects to this format.

16

Player movable objects control settings defined by scripting, leaves high chance

of implemented flaws done by the developer. Unity offers simplistic functions to

be assigned to player movable objects, including weight, speed, durability,

actions and directional movement. Directional and actionable controls can

simply be defined to any desired controls. However, when defining these

controls animation will be defined to have visual effects during actions. As seen

from Figure 2, animation can be attached to functions in simplistic manner.

Figure 2. Animation Setup for Character Movement and Actions

Object definition is most simplistic, yet one of the most crucial parts of every

development work. Without defining player movable character, enemies or any

other object within the game, the objects cannot behave in desired matter. To

determine immovable and indestructible objects to create boundaries within the

game can have crucial part during development work, without defining

boundaries of the game objects would mean game being literally unplayable.

2.3 Followed Protocols and Models

During the development phase, important factors for game development must

be followed. Version control, development models and script consistency are

the major factors for game development. These development factors are not

unique for game development rather than common along all software

development phases. Although C# is a multiparadigm language and allows

differences in scripting models, when every script follows the same model it is

more developer friendly when further developing the scripts. For consistency in

17

this development work, guidelines for C# development provided by Mr. Lance

Hunt fit this work perfectly. Even though his development standards are not

necessary for game development, the standards provided by him work on this

development work. (Hunt 2007.)

Version controlling when using Unity development platform is done easy for

developers. Unity does not provide version system control unit by themselves

but supports Perforce and Plastic SCM natively. Even though these software

functionalities are not immediately in use when setting up first development

project, Unity itself suggest using version control system and provides these for

free through asset store. Since this project has multiple developers and

everyone has the different programming style, the software tracks and records

all changes made into the scripts by different users. This is done to ease the

following of change in every script developed by the developers; when mistakes

occur, these are easier to be reverted and changed back into the original form.

(Unity technologies 2017b.)

When determining the models used when developing games, it is important to

factor the designed game style. Since this development process is focusing on

2D RPG game, the spiral development model was chosen for this project. Even

though this model is not only used in game development, as presented by Mr.

Boehm, the spiral model is constant development and testing towards

developed functions. (Boehm et al. 2014.)

18

Figure 3. Spiral Model (Boehm 1988)

As seen from Figure 3, the model is quite similar when comparing to the

waterfall model. The model works perfectly in to game and software

development. When implemented correctly, development and testing of different

parts of work is constantly conducted in the project.

19

3. TRADITIONAL DEVELOPMENT AND INDIE DEVELOPMENT

In this chapter, the difference between indie development and traditional

development is discussed. Advantages and disadvantages of Indie

development are heavily emphasized in this chapter.

3.1 Traditional Development

The term traditional development in the gaming industry is used when

describing games produced by major companies in the industry. Squaresoft,

Ubisoft, Bethesda and Blizzard are currently leading the RPG game industry.

However, when inspecting the industry from the gamers’ point of view, majority

of games produced by the respected companies produce similar and

predictable content. Traditional development companies tend to follow the most

selling trend in gaming. Therefore, majority of games developed are shooting

games. Research conducted by Entertainment Software Association

(hereinafter ESA) in 2014, 8 out of 20 most selling games were shooting games

(ESA 2015). Of the eight most sold shooter games, four were by one

developing company. Treyarch development company has received a high

amount of criticism from gamers along the years for producing similar and

predictable games. The development problems producing similar products is

the concurring problem to multiple development companies. However, the

problem is simply the result of industrialized game development field.

Traditional development process compared to indie development is much more

restricted from the developer point of view, developers are often just instructed

to follow guidelines given by designers. Since the development process is more

systematic and planned, products are developed in faster speed and follow

strict quality throughout the whole process.

3.2 Indie development

The term indie development is used when describing games developed by

small teams or individual developers, significant financial support from

20

publishers or other sources is common within Indie developers. Traditionally,

indie development process takes much longer compared to traditional

development processes, and the lack of financial aid highly impacts the time

that developers can invest in the development. The major difference in Indie

development and traditional development from the development point of view

comes from the motivation towards the project. The traditional development

companies aim strictly to gain most profit from the finished projects, Indie

development motivation differs for every developer. The majority of the indie

development games however are motivated to publish their projects from the

personal passion to the industry. (VanEseltine 2015.)

Majority of the games developed by indie development teams are quite small

compared to traditional development games, however indie developers tend to

focus on replay value rather than length of the one gameplay of the game.

Comparing indie development and traditional development game sales, huge

differences between these games is present when looking at the most sold

games on the planet. From the 5 most sold games on this planet, only one

game is indie development game (Tassi 2016). Game developed by Markus

Persson was community driven, therefore the game became just like majority of

the gamers desired it to be (Goldberg & Larson 2013).

While Indie development is getting more popular among developers and

gamers, traditional development companies do not seem to be interested in

Indie development. Unless companies are not interested in buying the project

developed by indie developers, traditional companies tend to stay in their own

development strategies. Indie developers in general are not interested game

companies from the business point of view. However, possible cooperation with

game development companies is possible when the game is in the publishing

phase. Even though unusual for traditional development companies aiding indie

developers in publishing, the possibility is not unheard in publishing. (Pile 2012).

21

3.3 Advantages and Disadvantages of Indie Development

While Indie development is seen to be the more developer friendly method,

advantages following indie development usually cover the cost of

disadvantages. Indie development is considered to be more developer friendly

method compared to Traditional approach, although more open and accepting

towards new ideas and concepts, Indie developers suffer considerable amount

when considering funding when developing and publishing games. Lack of

funding causes extended development time, lack of motivation, publishing

problems and lack of testing for finished products. Since majority of traditional

development companies already have their own testing teams and software,

Indie development usually lacks these facilities and personnel doing these tests.

Indie developers usually must buy testing software and services from other

organizations, which can be costly depending on the scale of the game.

Although, the majority of Indie games get funding from other sources than their

own bank accounts, such as investors and Kickstarter, the cost of developing a

complete game is also costly to developers usually requiring personal

investment to project also. (Watsham 2013).

Planning projects is considered the hardest part of the Indie development. The

most crucial part of the work must be taken seriously or the ending result of

project can lead into disaster without a game. When the planning phase of the

project is conducted well, vision, technology, design and art style have been

chosen, the developers must set to certain timetable for milestones and release.

Traditional development companies follow different paths, while designers,

investors and directors define time necessary for the project to be concluded.

While work load from developer point of view in Traditional development is

distinctively smaller when compared to Indie development, developers suffer

from the lack of possibility to affect the designed game. Indie development

being more open, enables the possibility for developers to affect the designed

game without conflict between the designers and developers. (Watsham 2013).

Publishing games as an Indie developer is always a disadvantage compared to

traditional development. Even though, possible to publish games as an Indie

22

developer and gain a considerable amount of recognition among gaming

community, traditionally large companies can finance large advertisement

campaigns on multiple platforms where Indie developers are only able to focus

on social media platforms. While traditional development companies spend

considerable amounts of money to advertisement campaigns, usually

developers themselves have almost no impact towards the campaign.

Traditionally developers have no understanding toward advertisement.

However, when development team is not closely connected to marketing team

major issues can occur when publishing. Major incidents occurring when the

development team and marketing team are not communicating is rare, however

during the past few years lots of controversies circling around Hello Games

publishing of “No Man’s Sky”. Incident concerning “No Man’s Sky” led to an

investigation of Hello Games for false advertising, even though in the end

allegations were dropped out as it was clear to the gaming community that a

connection between developers and the marketing team was missing.

(Crecente 2016).

Finally, a major disadvantage Indie development is facing when compared to

traditional development is in the hardware department of every developer.

Majority of the tools and software used in game development are costly, and

understandably not every developer can purchase everything necessary for the

development project. Majority of Indie developers therefore tend to favorite

open source and free software when developing their projects. Even though,

software used by Indie developers are capable in creating same functionalities

as paid software, majority of the most popular development tools are costly and

better quality compared to open source software. Traditional development

companies can invest considerable amounts of money in development tools

and hardware during every development process. Therefore, better working

environment and hardware are guaranteed in traditional development.

While Indie developers are facing multiple disadvantages when comparing to

traditional development companies, majority of Indie developers choose to work

without restrictions from outside sources. Majority of Indie developers develop

games from their own passions rather than money, which is a major difference

23

when comparing to traditional development companies. Although majority of

indie games developed suffer from the lack of popularity, some of these games

have become the most profitable games ever.

24

4 PLANNED FEATURES AND OBJECTS

This chapter discusses and argues for the designed features for this project.

Additionally, source information for the design of the features is dealt with in this

chapter. Reasoning behind every choice is also discussed in this chapter.

4.1 Character Movement and Actions

Designing character movements and actions depends heavily on the necessary

functions required by the designed game. Due the nature of the project, we

have chosen to focus on two-dimensional design. When designing and

producing these functions, the game type mainly defines the required functions,

and with basic “sidescrollers” the amount of required functions can be rounded

to minimum. Jumping, shooting and movement controls would be enough.

However due the passion to the industry and experience in programming in

general, the decision of creating more complex game was decided. The main

functions given to “main” character were movement in two horizontal and

vertical direction, interaction with objects inside the game environment and

attacking non-playable characters (hereinafter NPC).

4.2 Enemy Design and AI

The enemy design is heavily dependent on the player controlled character,

enemy design cannot be created much more complicated compared to player

controlled character. Enemies have been designed to be simple of nature and

easy to edit and add to the game content, this way the amount of development

flaws has been minimalized during enemy development phase. The enemies

inside the game have been assigned their own “weight”, boundaries and

durability, this way player cannot simply walk over these objects without any

effect on player controlled character.

Simply assigning enemies to work in same layer as player movable character

and immovable object within environment allows them to have same physical

25

laws compared to others within the same layer. Since NPC cannot be controlled

by player, AI had to be defined for these objects. Rather than just mindlessly

roaming around the game environment, NPC will act only when player

controlled character is within viewing distance. NPC will follow tasks assigned to

them during the development phase.

4.3 Environment Design

Environment is designed to be as basic as possible with objects restricting

player and enemy movement to certain directions. Environment is designed to

have details such as shadows effected by light sources, immovable objects and

boundaries for player controlled character. Environment design does not have

huge impact within the development phase, only objects designed inside the

environment have impact on development phase. Environment design is easily

changed and aesthetic objects can be added simply even after every other

development step has been finished.

4.4 Camera Control

Camera control for any game is crucial part, without camera controls or

specifications it is absolutely impossibility to play the game. The camera

behavior depends highly from the design of the game, 3D games often require

first person view or third person view. 2D games often follow only third person

view which makes designing camera controls for the game much simplistic and

easier to manage, due to nature of game designed into this project the camera

control follows the main character from third person point of view.

Camera controls are designed to be unable to control specifically by the player,

rather move automatically according to player’s moves with controlled

character. This function can be assigned directly from unity from camera

settings, by connecting camera to follow player movable object camera follows

automatically players controls. (Burton 2016)

26

4.5 Graphical User Interface

Graphical user interface (hereinafter GUI) design and functionality will revolve

around simplicity and user friendliness. Titles screen, options and character

information during game play are functions designed and necessary for this

project. Quoting Albert Einstein “Make it simple, but no simpler”, the key factors

of GUI design will follow this strictly. Since many of the games in same genre as

designed game, the chosen GUI will resemble closely to these designs. Legend

of Zelda: Ocarina of Time GUI resembles a perfect example of interface

designed to this project, simplicity and functionality being the main factors of

this design

Picture 1. Example of GUI Design Similar to Designed Game Genre

As seen from Picture 1, the design is simplistic yet informative. Following

footsteps of Gamesplusjames, guidelines provided by him in his YouTube

series will be used as an example and base of the design. Previously

mentioned GUI example follows the 8-golden rules proposed by Ben

Shneiderman, universal usability, reducing short-term memory load and keeping

user in control are the main focus of the design (Shneiderman 2010). Picture 1

pictures a working UI design and is therefore chosen for the development work,

known as non-diegetic design. UI is never connected to game world, always

27

seen by the players and informative display eases the connection between the

player and the game. (Stonehouse 2014.)

4.6 Sounds

Sound design chosen for this project would follow similar effects within the

genre chosen for this game. Due to huge availability of online libraries providing

sound effects to be used free in personal projects, choice of recording own

sound effects for this project was neglected. Sound effects will be assigned as

last part of this project if necessary, since this project is a prototype not every

sound effect will be assigned for this project. Music within the game can be

assigned directly from Unity interface, therefore scripting to have sounds within

the game is not required.

Sound effects can be assigned the same manner as assigning player

controllable object actions, simply connecting sound effect to certain action can

be used in order the sound effect to work. Sound effects can also be assigned

to object immovable by the player, but similar matter these sounds are

connected to objects behavior.

28

5 IMPLEMENTATION

Designed features for this development work are implemented to prototype

version in this chapter. Furthermore, software used during the implementation is

mentioned in this chapter.

5.1 Methods

In order to create designed functions, guides provided by Unity development

team and individual developers were used to construct scripts required to reach

the desired goal. Information gathered from various developers’ guidelines and

support provided by Unity Reddit community were used in case of programming

errors and troubleshooting during the development process. Gamesplusjames

development diary recorded to YouTube provides plenty of information

regarding to designed functions chosen for this project. However, small

changed into original script has been made for the script work in desired

manner.

5.2 Character Movement and Actions

Generally player controlled character scripting is the easiest phase of

development, the hardest part of these functions are controls and animation

sequencing. The basic controls of pressing left to go left and so on, the script is

simple and easily produced in couple of minutes. Physics of the character were

created using Unitys own script called “Rigidbody”, the same function will be

used later when implementing enemies to the game. Script “PlayerController.cs”

is created to have functionalities appropriate to design, script before and after

Rigidbody implementation can be seen from table 1 and table 2.

Rigidbody allows to assign certain characteristics to objects inside the game,

mass, force and collision are main characteristics required for the developed

character to work. As illustrated in table 1, Rigidbody function is assigned to

player movable objects by default. Assigning player controlled character mass,

29

allows the character to have momentum in his movement, this gives realistic

behavior to objects.

Table 1. PlayerController.cs script, Rigidbody Enabled

if (Input.GetAxisRaw ("Horizontal") > 0.5f || Input.GetAxisRaw ("Horizontal") <

-0.5f)

myRigidbody.velocity = new Vector2(Input.GetAxisRaw(“Horizontal”) *

moveSpeed, myRigidbody.velocity.y);

if (Input.GetAxisRaw ("Vertical") > 0.5f || Input.GetAxisRaw ("Vertical") < -0.5f)

myRigidbody.velocity = new Vector2(myRigidbody.velocity.x,

Input.GetAxisRaw(“Vertical”) * moveSpeed);

In this form the objects assigned with this script follow basic physics laws,

however the script had to be changed to give desired characteristics to objects.

Momentum of moved objects had to be changed in a way where when

controlling of the object stops, the animation and object stop exactly on the

spot. As seen from a table 2, Rigidbody was removed completely from the script

to have correct functionality.

Table 2. PlayerController.cs, Rigidbody Removed From the Script

when(-0.5f<Input<0.5f)

if(Input.GetAxisRaw(“Horizontal”) < 0.5f && Input.GetAxisRaw(“Horizontal”) >

-0.5f)

{ myRigidbody.velocity = new Vector2 (0f, myRigidbody.velocity.y);

 }

if(Input.GetAxisRaw(“Vertical”) < 0.5f && Input.GetAxisRaw(“Vertical”) > -0.5f)

{ myRigidbody.velocity = new Vector2 (myRigidbody.velocity.x, 0f);

 }

Simply assigning these functionalities were enough for player controllable

character, further scripting to create more functions for player movable

character were unnecessary. Player movable character is not desired to have

multiple functions at this point of time, however since further development

towards this project is possible, the script has been created to be modified

easily. (Gamesplusjames 2015b.)

30

5.3 Enemies and AI Implementation

On a basis of basic design and functions required from enemies in designed

game, the enemies do not differ from player moved character almost at all. The

difference comes from making enemies act without players’ interaction with

them, this is where AI design is crucial. Since every movement enemies have

been designed to do and are not effected by players’ controls over controllable

character, a script was created for enemies to behave certain way. Mainly NPC

enemies have been created to guard areas and create difficulty for player when

roaming around the environment. The enemies have been designed to hurt

player movable character in contact, this is where enemy NPC rigidbody comes

in use. When enemy NPC is in contact with player character, they can push

them due to higher weight value assigned to them. Although enemy NPC can

push player controlled character back, when they are attacked they are pushed

back due to the rigidbody function. Assigning these functions to enemy NPC is

like scripting player movable character, however since there is no get function

inside the script, every function must be scripted individually to have every

function desired for enemy NPC. (Unity technologies 2016c).

As seen from Table 3, random variable was created to enemy NPC script to

have behavior unexpected by the player. Also, seen from table time of every

movement is also assigned inside the script.

Table 3. EnemyController.cs

void start()

{

myRIgidbody = GetComponent<Rigidbody2D>();

//timeBetweenMoveCounter = timeBetweenMove;

timeBetweenMoveCounter = Random.Range (timeBetweenMove * 0.75f,

timeBetweenMove * 1.25f)

//timeToMoveCounter = timeToMove;

timeToMoveCounter = Random.Range (timeToMove * 0.75f, timeToMove *

1.25f);

}

31

Time between every movement done by enemy NPC is controlled by function

“bool moving”, this function is always looking for enemy NPC for movement.

When bool moving detects enemy NPC moving it starts the scripts time counter

as seen from Table 3, bool moving can be assigned directly from Unity features.

(Gamesplusjames 2015c)

5.4 Environment Implementation

Implementation of environment was done mostly with Tiled2Unity software,

using free resources provided by opengameart.org. Tiled2Unity was used to

create layering to environment, bottom layer is used as a base for movable

objects where in direct contact with base layer can be moved. By adding

additional layers, objects within the game can be created which can cause

collision between moving objects and layers therefore stopping objects. After

creating this layering with Tiled2Unity, software can simply create file

compatible directly with Unity. When importing environment to Unity, collision

laws must be assigned to different layers. When Tiled2Unity is used, automated

files are created in the process. Scripts named “ImportTiled2Unity.X” files are all

automatically created, however small changes are made into the script

changing behavior and class of the script. Multiple layers and objects can be

assigned to single file, e.g. all player controlled character objects are connected

to “ImportTiled2Unity.cs” script, although when importing single file through

Tiled2Unity multiple files are created.

When editing environment data using unity, different layer levels can be

assigned to behave certain ways. However, when assigning different layer

levels, layer with the highest assigned level will always cover layers assigned

under them. Highest layer is used to adding details to environment, this also is

used to add collision to highest layer creating objects unmovable and

completely unaffected by player controlled character. Environmental

implementation requires the least scripting during the whole development

process, however layer sorting and creation is time consuming and tiring

process. (Henley & Johnson 2014.)

32

5.5 Camera Control

Unity provides every possible function for camera to behave in desired matter,

however it is developers’ duty to assign the behavior. Default settings for

camera controls would not follow player controlled character, assigning the

camera controls to just follow player controlled character can be assigned

simply by connecting camera view to player controlled character. Camera

follows player controlled characters’ movement, this way the camera controls

are not directly controlled by the player. (Unity technologies 2016d.)

However, during this project some functionalities of the camera had to be

changed for it to behave in desired manner, firstly the camera should not follow

the player controlled character at the same speed as the character moves. This

is done by adding small delay in the camera controls, also camera movement

are limited in a way where camera cannot show objects outside the boundaries

of the environment. Simply when player reaches the edge of the environment

the camera stops moving in the direction where player is moving the character.

Camera also works as trigger for enemies in this development process, when

enemy NPC is not in the reach of the camera they remain idle and do not have

any functions. Main functionalities of camera will be found from

“CameraController.cs”, however this file only seeks the controls from Unity

platform. Triggering points for camera loading can be found from this file,

“Destroy” functionality mentioned in script controls all the objects loaded at the

screen simultaneously. This is done to have lighter processing requirement from

the game, rather than loading everything at once the game engine is loading

only parts of the environment. (Burton 2014.)

Even though all functionalities are provided by Unity, automated script will be

defined for the controls. Illustrated in Table 4, camera controls have been

assigned to follow game object.

33

Table 4. CameraController.cs, Automatically Created Camera Controller Script

using System.Collections;
using UnityEngine;
public class CameraController : MonoBehaviour{
public GameObject followTarget;
private Vector3 targetPos;
public float moveSpeed;
private static bool cameraExists;
void Start(){
if (!cameraExists){
cameraExists = true;
DontDestroyOnLoad(transform.gameObject);}
else{
Destroy(gameObject);}
}void Update(){
targetPos = new Vector3(followTarget.transform.position.x,
followTarget.transform.position.y, transform.position.z);
transform.position = Vector3.Lerp(transform.position, targetPos, moveSpeed
* Time.deltaTime);}}

As seen from Table 4, the script also defines camera speed, positioning and

loading trigger. Even though the script is short and simplistic, it has all defining

factors for it to work in desired manner. Functionalities of camera should not be

developed in directly by adding functionalities to the script, since Unity does not

update the camera functionalities automatically if not directly done so in Unity.

Functionalities to camera behavior can be added from camera settings without

having major effect to other parts of the game.

5.6 Animation

During the development of this thesis work the animation and graphical aspect

of the game did not play a huge part. During the project, already existing online

libraries providing objects and graphical designs were used to test everything to

work in order. Some cases in this work some objects could not be found from

free online sources, these animation objects were created in Photoshop and

afterwards imported using Tiled2Unity. Animation for objects is simply done

using sequencing of different states of same graphical object. As seen from

34

Figure 5, one object has multiple different states and they are used every time

objects behave certain way.

Figure 4. Player Movable Character Animations.

Sequencing of animation does not require any scripting, however lots of work

must be done to have working animation. During the development of this thesis

work, lots of difficulties with animation sequencing were encountered.

Troubleshooting for animation sequencing had to be done all by hand, Unity

does not provide any features to help finding flaws in the development work of

animation. Although lots of difficulties were encountered, all flaws were

corrected in the end by starting the animation work from scratch after the first

few failures.

35

As seen from the Figure 6, the animation matrix for player controlled character

does not look too complicated.

Figure 5. Animation Sequences in Player Controlled Character

Although this matrix seems simple and easy to understand, lots of research had

to be done to have correctly behaving animation. As seen from the figure above

idle state is the starting and ending point of every animation, this means that

after object is no longer controlled nor effected by anything within the game

environment this should be the default animation state during that time. Main

problem concerning the developers design of the animation sequencing came in

the form of interaction between the player controlled character and enemy NPC,

due the lack of connection between player controlled character and NPC

animation they did not have any reaction towards each other from the animation

point of view. Every animation in this project react with script “TileAnimator.cs”,

this automatically created script lists automated animations of all objects within

the game. “StartTime” and “Duration” controls the length of animation, ending

point is not defined in this script to have desired behavior for enemy NPC since

player controlled character does not have “StartTime” or “Duration” function

defined in the script.

36

Even though the console of Unity gave information of interaction between player

controlled character and NPC characters, animation was unaffected by this.

Due the problems with the animator in the beginning of this part of the

development work, this graphical aspect was hard to be fixed without any

outside sources. Luckily to our chosen guide for this development work,

Gamesplusjames has excellent guide how to work with animator of Unity. The

problem within our development work was corrected by adding trigger points for

certain animations when any of the deciding factors would be true. When player

controlled character has interaction between enemy NPC, the enemy NPC

causes damage to player character, this is used as one of the triggering points

for animation. When player controlled character is touched by the enemy NPC

the animation of the player controlled character flashes, for this part new

animations were not needed to be created and this function was found from

Unity animator. (Strout 2015.)

Although animation development part of this thesis work took so much time, the

developers are not satisfied to the result. Every part of the animation works as

wanted, but room for improvement for the sequencing and timing is required in

order to finish the end result of the game.

5.7 Graphical User Interface

GUI developed for this project is highly similar to the interface illustrated on the

Figure 2. The GUI build for this project focuses more on functionality than any

other aspects, the GUI behaves as a layer and object inside the game all at the

same time. This is one reason why GUI development part of this work did not

have any new obstacles concerning other parts of the work. GUI behaves

similar to other game objects within the game, change happens when certain

trigger actions happen. Enemy NPC contact, picking up items, change in the

map and quest updates, all these parts have effect on GUI. Design part of the

GUI follows strictly the design found in similar games in this category, during the

development phase the aim was to create as simple as possible design. As

seen from Figure 2, the design can be simple yet include lots of knowledge

concerning the game. Because the GUI plays a small part in this project, the

further development is not necessary for this project. (Alismuffin 2011.)

37

GUI also includes functional part to it, player is able to control the chosen

weapon and item that they have collected. Some functions developed during

the scripting phase have been connected to the GUI, however the changes

happening to the GUI does not have any effect to the game, only to the

graphical changes are happening inside the GUI.

5.8 Sounds

During the animation development phase, the developers focus did not expand

to the sound effects and music. The sound effects can be attached to

animations directly, or they can be set up to be played when certain triggering

effects are happening in the game. Online libraries of free sound effects were

used in this development part of the thesis work, therefore recording own sound

effects was not required for this project. During the sound implementation, the

developers ran into problem with the difference in time between the animation

and sound. Because the sounds and animation length time wise was different,

already existing sounds did not match the sound effects available online. When

the sound development process started, everything began from testing how to

attach certain sounds to certain animations. The main problem was that sound

effect would start immediately when moving, rather than making step sounds

when feet hit the ground, the stepping sound started when the feet got off the

ground. (Uccello 2016).

The problem with sounds starting from wrong points was corrected using

Audacity software, small tweaking to the sound effects was done in order to

have their starting points to have same as the animation. Ending of the sound

effect can be defined to end exactly when the animation ends, or to have them

played completely after the ending of the animation. Sound implementation for

this thesis work was considered even from the beginning as the least important

feature. Most important sound effects were assigned to the development work,

majority of the game sound effects were left out from this development work.

38

6 TESTING

The testing phase is crucial to every software development process. In this

chapter, the functions and scripts are tested for bugs and flaws implemented

during the development phase. Improvement of existing features were

implemented during the testing phase. Additionally, research for future

development of this thesis work will be defined in this chapter.

6.1 Troubleshooting and Testing

Since the best way of finding flaws and bugs inside game is by playing it, the

developers assigned friends to test the end result and report possible flaws

inside the game. People chosen for this process were chosen from close by

friends of the developers who have history in gaming and in game development,

although these people have experience in game development they did not have

experience in game testing. During the testing phase, test subjects were given

instructions to play the game normally at first and following small guidelines

provided by the developers. The testing phase also included tests done by the

developers, this way the game had tests from black box and white box testing.

(Software Testing Fundamentals 2016a).

6.2 Difference Between Black and White Box Testing

The testing phase of this project was divided into two main phases, people who

are not familiar with the design, structure and implementation of the designed

software will be taking part in black box testing. People who are familiar with

everything done for the software will be taking white box test, usually people

who conduct the white box testing are the developers of the software, like in this

thesis work also. (Software Testing Fundamentals 2016b.)

Black box testing is used to get more in depth view towards the system and its

design, this is a great way of finding suitable solutions for existing flaws within

the design. Test subjects do not require any programming knowledge to

evaluate the product, this way the focus is more on the output of the program

39

rather than the internal mechanism of the software developed. During black box

testing it is crucial for the testers to have no access to source code, the only

concept defined for the testers should be the expected outcome. The test

should return results from difference between expected outcome and actual

outcome, however black box testing can be considered redundant if the

developers have run the testing before the test subjects. (Williams 2006a).

White box testing is considered more in depth testing of the software, since the

software design, implementation and structure are already familiar to the test

subjects’ source code will be provided during this phase. During white box

testing the subjects were testing individual cases of the designed software,

rather than focusing on the large view of the solution. End result of white box

testing should find internal flaws from programming flaws to design flaws, since

the test subjects are required to have previous knowledge towards

programming and design of the software test subjects can be divided to focus

on different parts of the software. (Williams 2006b).

6.3 Black Box Testing in Case Development Work

The black box testing begins from designing suitable plan for the test subject,

since this test does not require any programming knowledge from the test

subjects close by friends without programming experience were chosen for this

part. The test was designed for subjects to gain view from mainly of the game

design and functions, this was done by sending asking the test subjects to walk

around the environment of the game and encounter the first enemy NPC. The

test was focusing on the players point of view, this way developers would get

more in depth view of the design flaws and desired functions. (Software testing

fundamentals 2016c.)

The test was concluded in one session with the test subjects, as seen from the

following tables, the black box test was divided in to three major categories.

During the black box testing software testing fundamentals were used to create

the tables, this procedure is typical for any software testing procedure.

(Software testing fundamentals 2016d.)

40

As seen from table 5, GUI was the first aspect of development tested in this

phase. Even though, the GUI development was successful from test subject

point of view, further development is necessary when game is developed

further.

Table 5. Black Box Testing Procedures for GUI Testing

Features GUI

Requirements Game demo and platform

Test procedure 1. GUI assessment and testing when moving around
the game environment

Expected

results

GUI reacts to test subjects actions

Results GUI reacted according to the programming

Test status Success

Notes GUI reacted to player controlled character movement and
actions

Test date December 20, 2016

During the testing phase of GUI, test subject pointed out the minimalistic design

and functionalities. Even though, working GUI is success for this project, lacking

functionalities were mentioned by the test subjects.

Following table consists test results from player controlled character controls

and animation, simplistic design of the planned features was expected to

provide excellent results of this test.

41

Table 6. Black Box Testing Procedure for Player Controlled Character Controls

and Animation

Features Player controlled character controls and animation

Requirements Test subject controls the player controlled character

Test

procedures

1. Test subjects control the character around the game
environment

2. Explore the controls and access the animations

Expected

results

Character animation and movement is according to

developed features

Results Character animation was flawed and movement was

according to developed controls

Test status Partial success

Notes Character moved perfectly according to designed controls,

while moving left the character had animation while moving

right.

Test date December 20, 2016

As seen from table 6, expected results were not met during this phase. Even

though, the flaw occurring during the testing phase was minor failure. However,

correction towards the animation flaw was corrected easily and animation was

considered success after the correction.

Enemy NPC testing for this development work was done by using only one

enemy character. Even though the test was small in order to test enemy NPC,

all necessary information was reached during the tests.

42

Table 7. Black Box Testing Procedure for Enemy NPC Encounters

Feature Encountering enemy NPC

Requirements Player encountered Character has contact with enemy

NPC

Test procedures 1. Test subject moves player controlled character to

enemy NPC

Expected

results

Player controlled character reacts to enemy NPC and

initiates correct animation

Results Player controlled character reacts to enemy NPC and

correct animation is played

Status Success

Notes When player controlled character meets enemy NPC,

player controlled is harmed and correct animation is

played.

Test Date December 20, 2016.

As seen from table 7, the scripted functions for enemy AI were success. While

features tested in this phase were working and according to design, further

development towards enemy AI is desired in order to create complete game.

During the black box testing procedures most of the features were found to be

successfully developed, working according to design and having correct

reactions. However, during the testing phase animations proved to have been

including flaws and had to be corrected after the black box testing. Majority of

the tests done in white box testing cover up the test procedures left out from

black box testing, camera controls, sound implementation and environment

testing is taken into more in depth view during the white box testing.

Although Majority of the features tested during the black box test were

successful and liked by the test subjects, the feedback given by the test

subjects left space for improvement. Animation of the characters seemed bit

stiff and incorrectly timed, the GUI had information connected to it that did not

43

have any use in the test version of the game and enemy NPC reaction range

was proven to be too big compared to the size of the object in game.

Black box testing was executed by using two test subjects, JESSH91 and

Mäksä asked to remain under their online alias during the test. The test subjects

have extensive experience in gaming and large amount of knowledge towards

the development work game genre.

6.4 White Box Testing

White box testing procedures are highly more sophisticated and accurate

compared to black box testing, although the black box testing reveals flaws

within the game, it cannot explain the reason behind them. The reason why

white box testing was also used as a part of this project, is to find flaws from the

programming point of view and resolve these problems during the testing. While

white box testing procedures were divided into different parts similar to the

development process, flaws encountered during the development phase could

have been listed to white box testing procedures. However, the end result of

this development work would have extended far too much and therefore was left

out.

As seen from the following tables, the white box testing procedure has more in

depth view of different aspects of the game. Animations, enemy AI, camera

controls, sounds, environment and player controlled character controls were

taken into the test and occurring flaws were corrected after the test. Suggested

features were not implemented during this phase. The following tables are

developed from Software testing fundamentals guide. (Software Testing

Fundamentals 2016e).

During white box testing, same functionalities tested during the black box

testing were conducted using new test subject. As seen from table 8, GUI was

also taken as a first testing subject. However, during the GUI testing, emphasis

was on functionality rather than design.

44

Table 8. White Box Testing to GUI

Feature GUI design and features

Requirements Unity platform and the development case work

Test procedure 1. GUI design and features are tested for connectivity
and reaction to game environment

2. Scripts connecting player controlled character and
GUI are reviewed and tested

3. Connection between GUI and other layers is tested

Expected

results

1. GUI features are working according to the design

2. Player controlled character actions have effect to
GUI

3. GUI does not have any physical connection to other
layers

Results 1. GUI has implemented features that are not
connected to anything

2. Player controlled characters actions, i.e contact with
enemy NPC has effect to GUI

3. GUI is not connected to other layers

Status Partial success

Notes Game currency feature in GUI is not connected to any
feature within the game. Other aspects worked according
to the design, room for improvement detected.

Test Date December 21, 2016

As seen from the table 8, the white box testing is more sophisticated and

follows more developers point of view rather than players point of view. White

box testing is more time consuming and can reveal the same results as black

box testing, but when using both tests equally can reveal shortcomings from

players and developers point of view.

Animation testing during white box testing was seen as a necessity for this

project, considerable amount of time was invested in this development the

results were expected to be successful. As shown in table 9, during the test

character controls are not taken into account during animation testing like in the

black box testing.

45

Table 9. White Box Testing for Animation

Feature Animation

Requirements Unity platform, development case work and test subjects
control the player controlled character and inspect the
animations

Test procedure 1. Test subjects controls the player movable character
and inspects the animations

2. Animations other than player controlled character
are tested

3. Reaction between different animations is tested

Expected

results

1. Player controlled reacts to controls are initiates the
correct animation

2. Enemy NPC animation works similar to the player
controlled character

3. Animations have correct reactions to other
animations

Results 1. Player controlled character animation while moving
to right has the animation while moving left

2. Enemy NPC has correct animation

3. Some animations lack the reaction to other
animations

Status Partial success

Notes The player controlled character animation while moving
right was never connected to the function of moving right.
Some implemented animations lack the reaction to other
animations.

Test date December 22, 2016

As seen from table 9, animations occurred to be returning problem for this case

development work. Flaws occurred during the animation test were dealt with

when they occurred during the testing, this extended the time required for every

test. Correcting flaws from animations could take a tremendous amount of time,

from ten minutes to one day, however the ends result is worth the time invested

in this process.

The following table is describing the sound implementation white box testing,

because this process could have been done by black box test subjects rather

46

than the white box test subjects, the end result is not satisfactory for the

developers point of view.

Table 10. White Box Testing of Sound Implementation

Feature Sound implementation

Requirements Unity platform, access to development work and source
code

Test procedure 1. Player controlled character is controlled and tested
for correct sound effects

2. Enemy NPC is tested for sound effects

3. Background music implementation is reviewed

Expected

results

1. Player controlled character reacts to all functions
and correct sound effect is played

2. Enemy NPC has similar reaction as player
controlled character

3. Background music plays and loops after ending

Results 1. Player controlled character did not have sound
effects connected to every function

2. Enemy NPC is lacking all sound effects

3. Background music does not loop

Status Failure

Notes Player controlled character did not have sound effects
when walking right, interacting with enemy NPC or when
the player dies.

Test date December 23, 2016

As seen from table 10, major issues from sound implementation was

encountered during the white box testing phase. Problem did not occur during

the black box testing, sounds for the game were disabled during the black box

testing. Major improvements were discovered from the sound implementation

phase, due the lack of experience with Unity platform in general, the

development process after white box testing took longer than expected. The

process of further sound development was neglected at this time and will be

dealt with in the future.

47

The following table is focusing on the camera controls and implementation of

the case development work, this test was left out from black box testing phase

because camera behavior seemed correct at that time.

Table 11. White Box Testing of the Camera Controls

Feature Camera controls

Requirements Unity platform, access to development case work and
source code concerning camera controls

Test procedure 1. Move player controlled character to every corner of
the game environment

2. Test reaction of sudden changes of character
movement

Expected

results

1. Camera has small delay when following player
controlled character

2. Camera stops moving when meeting the end of the
game environment

3. Camera follows player controlled character when
changes in direction occur

Results 1. Camera has small delay and follows player
controlled character where every it is controlled to

2. Camera continues moving even when player
controlled character find obstacle stopping the
movement

3. Camera has problems following the player
controlled character when sudden change in
direction occurs

Status Partial success

Notes Camera scripting requires more development and
boundaries for camera movement has to be further tested.

Test Date December 24, 2016

Tests done to camera controls found multiple problems that did not occur during

the black box testing, possible reason for this result might be due the

instructions given to the test subjects. Although camera controls did not meet

the requirements set up to it during the development phase, small adjustments

after the testing phase corrected most of the flaws. Boundaries set up to the

camera still has flaws in it and require extensive development work in the future.

48

Enemy AI was developed for this project to give hostile NPC to behave in

desired matter in this game. The enemy AI cannot be seen during the game

play, therefore testing the AI from the backend during the testing phase was

necessary. The table 12 shows the testing procedure for enemy AI.

Table 12. White Box Testing for Enemy AI

Feature Enemy AI

Requirements Unity platform, access to source code and controlling
player controlled character with enemy NPC interaction

Test procedure 1. Player controlled character is moved to viewing
distance from the enemy NPC

2. Enemy reaction to player is tested

3. Reaction to other objects in game is tested

Expected results 1. Enemy NPC starts moving only when the player
controlled character is in viewing distance from the
enemy NPC

2. Enemy NPC reacts to player according to the
design

3. Enemy NPC changes direction when meeting
immovable obstacles or game environment edge

Results 1. Enemy NPC starts moving when in viewing
distance from player controlled character

2. Enemy NPC has contact with player and deals
damage

3. Enemies do not change direction when meeting
obstacles or edge of the environment

Status Partial success

Notes Enemy NPC has correct AI functions, reaction to game
environment was not enabled during the testing phase.

Test date December 27, 2016

As seen from table 12, any major flaws from enemy AI was not found. Main flaw

found from enemy AI was reaction with other game objects, fortunately this was

not found to be too difficult flaw to be bypassed with small tweaking with the

enemy script.

The following table is from the last white box testing done during this

development work, environment testing consist mostly inspecting different

49

layers used in the game. During the white box testing every flaw found was

corrected, also new improvements were implemented during this phase. The

table 13 shows the procedure conducted to the game environment.

Table 13. White Box Testing for Game Environment

Feature Game environment

Requirements Access to Unity platform and source code

Test procedure 1. Visual inspection of different layers of the game
environment, excluding the GUI layer

Expected

results

1. Layers do not run into a conflict between different
layers

2. Every object is assigned to correct layer

3. Layers have been defined correctly and boundaries
have been added to objects

Results 1. Layers have been assigned correctly in desired level

2. Objects were assigned to correct layer

3. Layers are defined correctly, some boundaries
between objects was encountered.

Status Success

Notes Correcting the boundaries of objects was done immediately
when encountered, this required little no time therefore it is
not considered as a failure.

Date December 30, 2016

As seen from the table 13, the environment design was the most successful

developed feature of this development work. Flaws occurring during the white

box testing of the game environment were easy to be corrected and improved,

further development towards game environment is not required at this point.

Expanding the game environment is possible in the future development of this

development work

White box testing is time consuming phase were many programming and

scripting errors can be discovered easily, during this thesis development work

the main test subjects were the developers themselves. Both developers

conducted their own tests for every category of the white box testing, in the end

information was gathered and combined to create these tables.

50

6.5 Grey Box Testing

The last phase of testing for the developed case work is combination of black

box testing and white box testing, this means that the developed work will be

presented to a person who has no previous experience in the developed work

but has knowledge of the programming and source code will be supplied to the

subject. This part of the testing was concluded by a close friend of the

developers, however from the test subjects request she wanted to remain

unnamed. This part of the testing phase does not include any tables, due to

large similarity between the white box testing results and grey box test results it

was seen as unnecessary portion for this thesis development work.

Main difference between white box testing subjects and grey box testing subject

was the experience using the programming software and sound editing

software. (Software testing fundamentals 2016f.)

During the testing phase majority of the flaws occurred during white box and

black box testing were discovered by the test subject, further more improvement

towards sound implementation was suggested by the test subject. New major

flaws were not encountered in this phase of the testing, however small minor

flaws in unknown in advance was found from animation. These flaws will be

developed further after this development work.

The grey box testing was not done extensively like white box testing, every

category was reviewed and tested in five hour period in January 2, 2017. During

the testing phase, only one of the developers was present when grey box

testing was conducted, this does not affect the end result of the test in anyway.

Main issues occurring during the grey box testing phase were graphical, from

developers point of view the scripts are correct and working. However, from

graphical point of view there is plenty of room for improvement, since online

sources were used for this thesis work project this was expected. When the

tests were concluded by the test subject, her input to sound implementation was

used in order to create more functioning sound effects. Further cooperation with

the test subject is expected from the future.

51

7 CONCLUSIONS

The objectives of this thesis was to expand the knowledge of the developers

towards the game development and indie games. Using other developers’

development diaries and blogs to create the development case work played a

huge part in this work. At the beginning of this development work, other game

development platforms were considered. On the basis of this consideration,

Unity was found to be the best for beginners and experienced programmers.

Due to a huge amount of online resources and guidelines provided by Unity

company, it would have been an unnecessary step to try to find similar support

for other development platforms. Completing a full game from the chosen

category was perceived as a too large an objective for this process and,

therefore, only a demo version of the game was developed.

Carrying out different stages of this project proved to be totally different from

what was expected. A lot less of scripting was required from the developers due

to the functions provided by the Unity platform. However, in order to create

desired functions and actions for the designed case work, most of the scripts

automatically created by Unity were changed to have desired functionalities.

The choice of using #C as the scripting language proved to be the correct

choice. Even though JS was already a familiar language to the developers, the

majority of the online communities is using #C to complete their projects.

This thesis work proved to be much harder than originally expected. The largest

obstacle during this project proved to be the Unity platform and computing

power of the development tools used in this process. During this project, one of

the main development computers used had major complications and the

majority of the information stored in it was lost. Additionally, the majority of the

developed game was lost at that time. Overcoming these obstacles taught

valuable lessons to both programmers, in that one must never underestimate

the value of backup save files.

52

BIBLIOGRAPHY

Alismuffin 2011. Creating custom GUI Skins Part 1. Accessed 10 December
2016
https://forum.unity3d.com/threads/creating-custom-gui-skins-part-one.113055/.

The Audacity team 2016. Open source, cross-platform audio software for
multi-track recording and editing. Accessed December 5, 2016
http://www.audacityteam.org/.

Barton, S. 2016. Tiled2Unity: Tiled Support for Unity. Accessed December
2, 2016
http://www.seanba.com/tiled2unity.

Boehm, B., Lane, J. A., Koolmanojwong, S. & Turner, R. 2014. The incremental
commitment Spiral Model. Accessed 27 February 2017
http://ptgmedia.pearsoncmg.com/images/9780321808226/samplepages/032180
8223.pdf.

Burton, C. 2016. Working with 2D cameras (Unity 2D) Accessed December 6,
2016
http://adventurecreator.org/tutorials/working-2d-cameras-unity-2d.

Crecente, B. No Man’s Sky creator cleared of false advertising allegations.
Accessed February 20, 2017.
https://www.polygon.com/2016/11/30/13791782/no-mans-sky-false-
advertising-results.

Entertainment software association 2015. Essential facts about the computer
and video game industry. Accessed February 15, 2017
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-
2015.pdf.

Gamesplusjames 2015a. Unity RPG tutorial – Learn to make RPG
game and learn C#!. Accessed December 10, 2016.
https://www.youtube.com/watch?v=Pk3GCgaNVTY&list=PLiyfvmtjWC_X6e
0EYLPczO9tNCkm2dzkm.

Gamesplusjames 2015b. Unity RPG tutorial #11 – Making enemies
Accessed December 9, 2016
https://www.youtube.com/watch?v=d3lhb1y_89U&list=PLiyfvmtjWC_X6e0EYLP
czO9tNCkm2dzkm&index=11.

Gamesplusjames 2015c. Unity RPG tutorial #2 – Player movement. Accessed
December 8, 2016.
https://www.youtube.com/watch?v=Tm2L-
_0eIeY&list=PLiyfvmtjWC_X6e0EYLPczO9tNCkm2dzkm&index=2.

Goldberg, D. & Larsson, L. 2013. The Amazingly unlikely story of how
Minecraft was born. Accessed February 20, 2017.
https://www.wired.com/2013/11/minecraft-book/.

https://forum.unity3d.com/threads/creating-custom-gui-skins-part-one.113055/
http://www.audacityteam.org/
http://www.seanba.com/tiled2unity
http://ptgmedia.pearsoncmg.com/images/9780321808226/samplepages/
http://adventurecreator.org/tutorials/working-2d-cameras-unity-2d
https://www.polygon.com/2016/11/30/13791782/no-mans-sky-false-
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-
https://www.youtube.com/watch?v=Pk3GCgaNVTY&list=PLiyfvmtjWC_X6e
https://www.youtube.com/watch?v=d3lhb1y_89U&list=PLiyfvmtjWC_X6e0EYLPczO9tNCkm2dzkm&index=11
https://www.youtube.com/watch?v=d3lhb1y_89U&list=PLiyfvmtjWC_X6e0EYLPczO9tNCkm2dzkm&index=11
https://www.youtube.com/watch?v=Tm2L-_0eIeY&list=PLiyfvmtjWC_X6e0EYLPczO9tNCkm2dzkm&index=2
https://www.youtube.com/watch?v=Tm2L-_0eIeY&list=PLiyfvmtjWC_X6e0EYLPczO9tNCkm2dzkm&index=2

53

Henley, J. A. & Johnson, M. 2014. Learning 2D game development
with Unity. Accessed December 10, 2016
http://ptgmedia.pearsoncmg.com/images/9780321957726/samplepages/97
80321957726.pdf.

Hunt, L. 2007. C# Coding standards for .NET. Accessed February 25, 2017
https://aspblogs.blob.core.windows.net/media/lhunt/Publications/CSharp
Coding Standards.pdf.

Lehtinen, L., Junnonen, J. A., Kärmä, S. & Pekuri, L. Accessed March 20, 2017
http://www.gpmfirst.com/books/designs-methods-and-practices-research-
project-management/constructive-research-approach.

Notepad++ 2016. About. Accessed December 1, 2016
https://notepad-plus-plus.org/.

Pile, J 2012. The difference Between Indie and Non-Indie Game
Developers. Accessed February 12, 2017
http://prof.johnpile.com/2012/07/08/the-difference-between-indie-and-non-
indie-game-developers/.

Shneiderman, B 2010. The Eight Golden Rules of Interface Design.
Accessed December 7, 2016
https://www.cs.umd.edu/users/ben/goldenrules.html.

Software Testing Fundamentals 2016a. Difference between Black Box Testing
and White Box Testing. Accessed January 5, 2016
http://softwaretestingfundamentals.com/differences-between-black-box-
testing-and-white-box-testing/.

Software Testing Fundamentals 2016b. Difference between Black Box Testing
and White Box Testing. Accessed January 5, 2016
http://softwaretestingfundamentals.com/differences-between-black-box-
testing-and-white-box-testing/.

Software testing fundamentals 2016c. Black box testing. Accessed January 11,
2016
http://softwaretestingfundamentals.com/black-box-testing/.

Software testing fundamentals 2016d. White box testing. Accessed January 14,
2016
http://softwaretestingfundamentals.com/white-box-testing/.

Software testing fundamentals 2016e. Test case. Accessed January 20,
2016.
http://softwaretestingfundamentals.com/test-case.

Software testing fundamentals 2016f. Grey box testing. Accessed January 20,
2016.
http://softwaretestingfundamentals.com/gray-box-testing/.

http://ptgmedia.pearsoncmg.com/images/9780321957726/samplepages/97
http://www.gpmfirst.com/books/designs-methods-and-practices-research-
http://prof.johnpile.com/2012/07/08/the-difference-between-indie-and-non-
https://www.cs.umd.edu/users/ben/goldenrules.html
http://softwaretestingfundamentals.com/differences-between-black-box-
http://softwaretestingfundamentals.com/differences-between-black-box-
http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/gray-box-testing/

54

Stonehouse, A 2014. User interface design in video games. Accessed
February 25, 2016
http://www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_i
nterface_design_in_video_games.php.

Strout, J 2015. 2D animation methods in Unity Accessed December 5,
2016
http://www.gamasutra.com/blogs/JoeStrout/20150807/250646/2D_Animation_M
ethods_in_Unity.php.
Tassi, P 2016. Here are The Five Best-Selling Video Games Of All Time.
Accessed May 15, 2017.
https://www.forbes.com/sites/insertcoin/2016/07/08/here-are-the-five-best-
selling-video-games-of-all-time/#330ca2055926.

Uccello, A 2016. Introduction to Unity sound. Accessed January 7, 2016.
https://www.raywenderlich.com/132145/introduction-unity-sound.

Unity Technologies 2016a. 2D Game Development Walkthrough. Accessed
December 2, 2016.
https://unity3d.com/learn/tutorials/topics/2d-game-creation/2d-game-
development-walkthrough.

Unity Technologies 2017b. Version control integration. Accessed February 27,
2017
https://docs.unity3d.com/Manual/Versioncontrolintegration.html.

VanEseltine, C 2015. Motivation for the Solo Indie Game Dev.
Accessed February 15, 2017
http://www.gamasutra.com/blogs/CarolynVanEseltine/20150609/245543/motivat
ion_for_the_Solo_Indie_Game_Dev_with_commentary_by_yayfrens.php.

Watsham, J 2013. Self-publishing vs. having a (traditional) publisher, as
told by Renegade Kid. Accessed February 20, 2017
http://indiegames.com/2013/10/self-publishing_vs_working_wit.html.

Williams, L 2006a. Testing overview and Black box testing. Accessed
January 8, 2016
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf.

Williams, L 2006b. White Box Testing. Accessed January 9, 2016.
http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf.

http://www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_interface_design_in_video_games.php
http://www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_interface_design_in_video_games.php
http://www.gamasutra.com/blogs/JoeStrout/20150807/250646/2D_Animation_Methods_in_Unity.php
http://www.gamasutra.com/blogs/JoeStrout/20150807/250646/2D_Animation_Methods_in_Unity.php
https://www.forbes.com/sites/insertcoin/2016/07/08/here-are-the-five-best-
https://www.raywenderlich.com/132145/introduction-unity-sound
https://unity3d.com/learn/tutorials/topics/2d-game-creation/2d-game-
http://www.gamasutra.com/blogs/CarolynVanEseltine/20150609/245543/
http://indiegames.com/2013/10/self-publishing_vs_working_wit.html
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf

55

APPENDICES

Appendix 1. PlayerController.cs

Appendix 2. EnemyControl.cs

Appendix 3. ImportTiled2Unity.cs

Appendix 4. CameraController.cs

Appendix 5. TileAnimator.cs

56

Appendix 1. PlayerController.cs

using System.Collections;
using UnityEngine;
public class CameraController : MonoBehaviour
{
 public GameObject followTarget;
 private Vector3 targetPos;
 public float moveSpeed;
 private static bool cameraExists;
 // Use this for initialization
 void Start()
 {
 if (!cameraExists)
 {
 cameraExists = true;
 DontDestroyOnLoad(transform.gameObject);
 }
 else
 {
 Destroy(gameObject);
 }
 }
 // Update is called once per frame
 void Update()
 {
 targetPos = new Vector3(followTarget.transform.position.x,
followTarget.transform.position.y, transform.position.z);
 transform.position = Vector3.Lerp(transform.position, targetPos,
moveSpeed * Time.deltaTime);

 }
}

57

Appendix 2. EnemyControl.cs

public float moveSpeed;
private Rigidbody2D myRigidbody;
private bool moving;
public float timeBetweenMove;
public float timeBetweenMoveCounter;
public float timeToMove;
private Vector3 moveDirection;
void start()
{
myRIgidbody = GetComponent<Rigidbody2D>();
timeBetweenMoveCounter = timeBetweenMove;
timeBetweenMoveCounter = Random.Range (timeBetweenMove * 0.75f,
timeBetweenMove * 1.25f)
timeToMoveCounter = timeToMove;
timeToMoveCounter = Random.Range (timeToMove * 0.75f, timeToMove *
1.25f);
}
Void Update()
{

If (moving)
{ timeToMoveCounter -= timeToMove.deltaTime
myRigidbody.velocity = moveDirection;
 if (timeToMoveCounter < 0f){
 moving = false;
 timeBetweenMoveCounter = timeBetweenMove;

 timeBetweenMoveCounter = Random.Range (timeBetweenMove * 0.75f,
timeBetweenMove * 1.25f)

}
} else

{
timeBetweenMoveCounter -=Time.deltaTime;
myRigidbody.velocity = Vector2.zero;
if(timeBetweenMoveCounter < 0f){
moving = true;
timeToMoveCounter = timeToMove;
timeToMoveCounter = Random.Range (timeToMove * 0.75f,

timeToMove * 1.25f);
moveDirection = new Vector3(Random.Range(-1f, 1f), Random.Range(-

1f, 1f), 0f);
}

}
}

58

Appendix 3. ImportTiled2Unity.cs 1(3)

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Text;
using System.Xml;
using UnityEditor;
using UnityEngine;

namespace Tiled2Unity
{
 partial class ImportTiled2Unity : IDisposable
 {
 private string fullPathToFile = "";
 private string pathToTiled2UnityRoot = "";
 private string assetPathToTiled2UnityRoot = "";

 public ImportTiled2Unity(string file)
 {
 this.fullPathToFile = Path.GetFullPath(file);

 // Discover the root of the Tiled2Unity scripts and assets
 this.pathToTiled2UnityRoot =
Path.GetDirectoryName(this.fullPathToFile);
 int index = this.pathToTiled2UnityRoot.LastIndexOf("Tiled2Unity",
StringComparison.InvariantCultureIgnoreCase);
 if (index == -1)
 {
 Debug.LogError(String.Format("There is an error with your
Tiled2Unity install. Could not find Tiled2Unity folder in {0}", file));
 }
 else
 {
 this.pathToTiled2UnityRoot =
this.pathToTiled2UnityRoot.Remove(index + "Tiled2Unity".Length);
 }

 this.fullPathToFile =
this.fullPathToFile.Replace(Path.DirectorySeparatorChar, '/');
 this.pathToTiled2UnityRoot =
this.pathToTiled2UnityRoot.Replace(Path.DirectorySeparatorChar, '/');

 // Figure out the path from "Assets" to "Tiled2Unity" root folder
 this.assetPathToTiled2UnityRoot =
this.pathToTiled2UnityRoot.Remove(0, Application.dataPath.Count());
 this.assetPathToTiled2UnityRoot = "Assets" +
this.assetPathToTiled2UnityRoot;

59

 } 2(3)
 public bool IsTiled2UnityFile()
 {
 return this.fullPathToFile.EndsWith(".tiled2unity.xml");
 }
 public bool IsTiled2UnityTexture()
 {
 bool startsWith = this.fullPathToFile.Contains("/Tiled2Unity/Textures/");
 bool endsWithTxt = this.fullPathToFile.EndsWith(".txt");
 return startsWith && !endsWithTxt;
 }

 public bool IsTiled2UnityWavefrontObj()
 {
 bool contains = this.fullPathToFile.Contains("/Tiled2Unity/Meshes/");
 bool endsWith = this.fullPathToFile.EndsWith(".obj");
 return contains && endsWith;
 }

 public bool IsTiled2UnityPrefab()
 {
 bool startsWith = this.fullPathToFile.Contains("/Tiled2Unity/Prefabs/");
 bool endsWith = this.fullPathToFile.EndsWith(".prefab");
 return startsWith && endsWith;
 }

 public string GetMeshAssetPath(string file)
 {
 string name = Path.GetFileNameWithoutExtension(file);
 string meshAsset = String.Format("{0}/Meshes/{1}.obj",
this.assetPathToTiled2UnityRoot, name);
 return meshAsset;
 }

 public string GetMaterialAssetPath(string file)
 {
 string name = Path.GetFileNameWithoutExtension(file);
 string materialAsset = String.Format("{0}/Materials/{1}.mat",
this.assetPathToTiled2UnityRoot, name);
 return materialAsset;
 }

 public string GetTextureAssetPath(string filename)
 {
 // Keep the extention given (png, tga, etc.)
 filename = Path.GetFileName(filename);
 string textureAsset = String.Format("{0}/Textures/{1}",
this.assetPathToTiled2UnityRoot, filename);
 return textureAsset;

60

3(3)
 }
 public string GetXmlImportAssetPath(string name)
 {
#if !UNITY_WEBPLAYER
 name =
Tiled2Unity.ImportBehaviour.GetFilenameWithoutTiled2UnityExtension(name);
#endif
 string xmlAsset = String.Format("{0}/Imported/{1}.tiled2unity.xml",
this.assetPathToTiled2UnityRoot, name);
 return xmlAsset;
 }
 public string GetPrefabAssetPath(string name, bool isResource, string
extraPath)
 {
 string prefabAsset = "";
 if (isResource)
 {
 if (String.IsNullOrEmpty(extraPath))
 {
 // Put the prefab into a "Resources" folder so it can be instantiated
through script
 prefabAsset = String.Format("{0}/Prefabs/Resources/{1}.prefab",
this.assetPathToTiled2UnityRoot, name);
 }
 else
 {
 // Put the prefab into a "Resources/extraPath" folder so it can be
instantiated through script
 prefabAsset =
String.Format("{0}/Prefabs/Resources/{1}/{2}.prefab",
this.assetPathToTiled2UnityRoot, extraPath, name);
 }
 }
 else
 {
 prefabAsset = String.Format("{0}/Prefabs/{1}.prefab",
this.assetPathToTiled2UnityRoot, name);
 }

 return prefabAsset;
 }
 public void Dispose()
 {
 }
 }
}

61

Appendix 4. CameraController.cs

using System.Collections;
using UnityEngine;

public class CameraController : MonoBehaviour
{
 public GameObject followTarget;
 private Vector3 targetPos;
 public float moveSpeed;

 private static bool cameraExists;

 // Use this for initialization
 void Start()
 {

 if (!cameraExists)
 {
 cameraExists = true;
 DontDestroyOnLoad(transform.gameObject);
 }
 else
 {
 Destroy(gameObject);
 }
 }

 // Update is called once per frame
 void Update()
 {
 targetPos = new Vector3(followTarget.transform.position.x,
followTarget.transform.position.y, transform.position.z);
 transform.position = Vector3.Lerp(transform.position, targetPos,
moveSpeed * Time.deltaTime);

 }
}

62

Appendix 5. TileAnimator.cs 1(2)

#if UNITY_4_0 || UNITY_4_0_1 || UNITY_4_2 || UNITY_4_3 || UNITY_4_5 ||
UNITY_4_6 || UNITY_4_7 || UNITY_5_0
#undef T2U_USE_ASSERTIONS
#else
// Assertion library introduced with Unity 5.1
#define T2U_USE_ASSERTIONS
#endif
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using UnityEngine;

#if T2U_USE_ASSERTIONS
using UnityEngine.Assertions;
#endif

namespace Tiled2Unity
{
 public class TileAnimator : MonoBehaviour
 {
 public float StartTime = -1;
 public float Duration = -1;
 public float TotalAnimationTime = -1;

 private float timer = 0;

 private MeshRenderer meshRenderer = null;

 private void Awake()
 {
 this.meshRenderer = this.GetComponent<MeshRenderer>();
 }

 private void Start()
 {
#if T2U_USE_ASSERTIONS
 Assert.IsTrue(this.StartTime >= 0, "StartTime cannot be negative");
 Assert.IsTrue(this.Duration > 0, "Duration must be positive and non-
zero.");
 Assert.IsTrue(this.TotalAnimationTime > 0, "Total time of animation
must be positive non-zero");
#endif
 this.timer = 0.0f;

63

 }

2(2)
 private void Update()
 {
 this.timer += Time.deltaTime;

 // Roll around the time if needed
 while (this.timer > this.TotalAnimationTime)
 {
 this.timer -= this.TotalAnimationTime;
 }

 this.meshRenderer.enabled = timer >= this.StartTime && timer <
(this.StartTime + this.Duration);
 }

 }
}

