

Jere Lyytinen

An Android Application for Communicating

with 'Internet of Things' Devices

Tekniikka

2017

VAASAN AMMATTIKORKEAKOULU

Tietotekniikka

TIIVISTELMÄ

Tekijä Jere Lyytinen

Opinnäytetyön nimi An Android Application for Communicating with ’Internet

of Things’ Devices

Vuosi 2017

Kieli englanti

Sivumäärä 44

Ohjaaja Timo Kankaanpää

Opinnäytetyö suoritettiin Comsel System Oy:lle. Työssä toteutettiin sovellus, joka

listasi ympärillä olevat Bluetooth Low Energy -laitteet, haki laitteen kuormasta

Eddystone-viestin, joka sisälsi Comsel System Oy:n nimiavaruuden sekä instans-

sin. Ohjelma suodatti pois muut kuin Comselin laitteet Eddystone-viestin sisältä-

män nimiavaruuden perusteella, ja käytti Comsel-laitteen instanssissa olevaa

UUID-tunnusta, jotta Comselin Corona-pilvipalvelusta saatiin haettua Comselin

laitetta tukeva IP-osoite. Tällä IP-osoitteella vaihdettiin fyysinen linkki verkkora-

japintaan, jolla suoritettiin CoAP-kutsut, joiden perusteella saatiin selville laitteen

tyyppi sekä laitteesta haluttavat data-arvot. Lopuksi nämä listattiin Androidin nä-

kymään käyttäjälle luettavaksi. Sovelluksen avulla yritys tai asiakas voi reaa-

liajassa seurata laitteiden keräämää tietoa ja huomata, jos jokin laite on esimerkik-

si alkanut toimia virheellisesti.

Opinnäytetyössä käytettiin Comselin tarjoamaa Texas Instruments CC2650 sensor

tagia sekä Android-puhelinta. Sovellus kehitettiin Java-ohjelmointikielellä

Android Studiolla.

Lopputuloksena oli sovellus, joka toi näytölle listan löydetyistä Comselin

Bluetooth Low Energy-beaconeista, sekä niiden reaaliajassa päivittyvistä arvoista.

Sovelluksen esiin listaamia arvoja on tarvittaessa helppo muokata ja sovellus on

tehokas ja hyödyllinen väline niin asiakkaalle kuin Comselille, ja sovellukseen on

jo suunnitteilla jatkokehitystä.

Avainsanat Bluetooth Low Energy, Android, CoAP, Eddystone

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Tietotekniikka

ABSTRACT

Author Jere Lyytinen

Title An Android Application for Communicating with ’Internet

of Things’ Devices

Year 2017

Language English

Pages 44

Name of Supervisor Timo Kankaanpää

The thesis work was made for Comsel System Oy. The goal was to create an ap-

plication that lists the nearby Bluetooth Low Energy -devices and their payloads

that would contain the instance and the payload of the device. The application

used the namespace to filter off the non-Comsel devices and then used the UUID-

information obtained from the instance to connect to the Comsel’s Corona cloud-

service to obtain the IP address supporting the Comsel’s device. Using the ob-

tained IP, the application switched from Bluetooth to a network interface and per-

formed CoAP-requests to find the type of the beacon and its measurement values

and displayed them in the user interface to the user.

The beacon used in the thesis work was a Texas Instrument CC2650 sensor tag

along with an Android phone offered by Comsel System Oy. The software was

created using Java programming language in Android Studio environment.

The result was a software that displayed the list of found Comsel Bluetooth Low

Energy -devices and their real-time values. Now it is easy to configure what data

to display from the found devices and the finished software is an effective and

handy tool for both the customer and Comsel System Oy. Further development

plans for the software are already being designed.

Keywords Bluetooth Low Energy, Android, CoAP, Eddystone

SISÄLLYS

TIIVISTELMÄ

ABSTRACT

1 SUMMARY ... 8

1.1 ”Internet of Things” as a term ... 8

1.2 Thesis work and its stages... 10

1.3 Comsel System Oy .. 10

1.4 Texas Instruments CC2650 Sensor Tag .. 11

1.5 Huawei Y511 CUN-L21 ... 12

1.6 Android ... 13

1.7 Android Versions .. 14

1.8 Android’s Platform Architecture .. 15

2 PROGRAMMING ENVIROMENT AND LANGUAGE 17

2.1 Android Studio Structure .. 17

2.2 Android Studio Completion .. 18

2.3 Gradle Build System ... 18

2.4 Java programming language ... 18

3 SOFTWARE ANALYSIS .. 20

3.1 UML Use Case Diagram ... 20

3.2 Sequence diagram ... 21

3.3 General View .. 23

3.4 Functions ... 23

3.5 External Interface .. 24

3.6 Test Plan.. 24

4 THE IMPLEMENTATION .. 29

4.1 Android Manifest .. 29

4.2 XML user interface ... 29

4.3 Main Activity class ... 30

4.4 Eddystone .. 31

4.5 Eddystone-UID ... 31

4.6 HTTP REST API .. 32

4.7 Constrained Application Protocol ... 33

4.8 CoAP in the thesis work ... 35

4.9 Test Report .. 37

5 CONCLUSION .. 41

6 SOURCES .. 42

6

KUVIO- JA TAULUKKOLUETTELO

Figure 1. A demonstration of a city and its districts that could be connected to

Iinternet of Things -network. /2/ ... 9

Figure 2. Texas Instruments CC2650 Sensor Tag.. 12

Figure 3. Huawei Y5II CUN-L21. /5/ .. 13

Figure 4. The Android version numbers and their codenames. /7/ 14

Figure 5. Android Architecture. /8/ .. 16

Figure 6. Android project structure. ... 17

Figure 7. Use Case Diagram. ... 21

Figure 8. Sequence Diagram. ... 22

Figure 9. Android Manifest. ... 29

Figure 10. XML user interface. .. 30

Figure 11. Main Activity class. .. 31

Figure 12. Eddystone beacon and Eddystone-UID. /13/ 32

Figure 13. CoAP layer structure. .. 34

Figure 14. CoAP and HTTP co-operation. ... 34

Figure 15. A final view where the found device(s) and their values are being

listed in the user interface. .. 36

Table 1. Functions .. 23

Table 2. External Interface ... 24

Table 3. Test Plan ... 25

Table 4. Test Report ... 37

file:///D:/oppari/Jere_Lyytinen_2017.rtf%23_Toc491630092

7

LYHENTEET JA TERMIT

BLE Bluetooth Low Energy. A wireless personal area

network technology.

EDDYSTONE Google's open Bluetooth Low Energy beacon pro-

file.

RSSI Received Signal Strength Indication. A measure-

ment of the power present in a received signal

MAC Media Access Control address in the unique identi-

fier for network interfaces for communications at

the data link layer.

UUID Universally Unique Identifier. 128-bit number used

in computer systems to identify information

JSON JavaScript Object Notation is an open-standard file

format that transmits data objects by using human-

readable text

API Application Programming Interface is a set of

methods that communicate between software com-

ponents.

COAP Constrained Application Protocol is a protocol for

constrained devices.

SSL Secure Shell is a protocol for secured data transmit-

ting. Most commonly used for a secured remote

connection to another computer via a character

based console.

HTTP Hypertext Transfer Protocol is a protocol used by

web browsers and WWW-services for transmitting

data

8

1 SUMMARY

Purchasing and installing an Internet of Things (IoT) networked embedded system

as an end consumer today can be prohibitively difficult because of the plethora of

technologies involved and the often-convoluted setup processes. To ease the setup

process, the tools need to be created and these tools need to be available to the end

consumer, preferably by using the devices they already own, for example,

smartphones.

This thesis work examines building an Android application to handle communica-

tion with IoT devices.

1.1 ”Internet of Things” as a term

Internet of Things is a network of objects that are connected to the internet and

can collect and exchange data with embedded sensors and software. The inter-

net connected, “Internet of Things” devices can be monitored and/or con-

trolled remotely and are widely used today in companies and in the daily life.

By estimate, over 34 billion IoT devices will be connected to the internet by

2020, of which 24 billion are IoT devices and 10 billion traditional computing

devices such as smartphones and tablets. The phrase for the future is “Any-

thing that can be connected, will be connected” and already today Internet of

Things devices can be anything from cellphones to tablets, lamps, headphones

or toasters and the list just keeps increasing. /1/

Internet of Things is the top adopt for businesses and companies due to its de-

creasing costs and increased productivity. In addition, Internet of Things keeps

expanding to the new markets and developing new products. Furthermore, In-

ternet of Things offers new chances for the government, public services and

cities to build “smart cities” that will help us to reduce waste and improve ef-

ficiently and the way we work and live. (See Figure 1.)

9

Figure 1. A demonstration of a city and its districts that could be connected to a

Internet of Things -network. /2/

IoT is a door opener for endless opportunities and connections, and most of its

uses are yet to be discovered. The Internet of Things will affect people in every

day’s life and be visible everywhere around us both indoors and outdoors. In a

nutshell Internet of Things is our technological future. /2/

10

1.2 Thesis work and its stages

The thesis project has three distinct stages: locating and identifying the device

in proximity of the user, obtaining the IP address from Comsel System Oy’s

Corona cloud service that supports the found Comsel device and, finally,

switching into a network interface by using the obtained IP address and per-

forming a CoAP request to identify the device and its values (such as the tem-

perature from a heat beacon). These three steps are completed fully within the

project.

The first step is achieved using the Bluetooth Low Energy beacon (BLE bea-

con) protocol. The BLE beacon protocol is a simple, non-IP based, one way

communication protocol used to exchange a Universally Unique Identifier

(UUID) from the device to the client. The second step is to involve commu-

nicating with a control system to the Comsel’s Corona cloud service in order

to translate the UUID into a network address (IP) to facilitate direct network

communication between the Android application and the device. Finally, the

third step is to use the IP-address to swap into a web interface to perform a

CoAP request to obtain the device type and its values that would be useful to

the company and the customer. Due to the timeframe the nice-to-have feature

for direct communicating back and forth between the IoT devices and the

Android Application is left out. However, this step is completed with the one

way communication from the beacon to the application.

1.3 Comsel System Oy

Comsel System is a product design and development company specialized in

developing and industrializing engineering for the energy factor. /3/ Comsel

System Oy was founded in 1989 and today its headquarters are in Yliopis-

tonranta, Vaasa. Initially the company was focused on planning and imple-

menting electricity installations, data network services and automatic equip-

ment, also known as embedded systems. In 1995 Comsel System Oy started

11

developing TCP/IP based remote acquisition and Internet of Things CI/OS

products that consist both hardware and software. The main use of the CI/OS-

products was to remotely read electricity-, district heating-, gas and water con-

sumption data, known as communication products for automatic meter read-

ing.

In 2000, Comsel System Oy delivered GPRS TCP/IP-based metering points to

different projects in the Nordic countries, for example to two of the largest

AMR-projects in Sweden (Fortum Sweden and E.On Sweden).

Year 2012 was a milestone year when Comsel System Oy launched three

smart metering research & development projects, namely; Comsel Corona

Service Hub, an Information Technology-infrastructure system for managing

the equipment involved in smart metering and the measurement data, Comsel

Zodiac Smart Metering Module, a communication module for stand-alone op-

erations as well as integration into various meters, and Neuron, a sensor sys-

tem that enables communication and exchanging useful information between

devices and interact to form an useful application.

By 2016 Comsel Corona Service Hub and Comsel Zodiac Smart Metering

Modules have delivered over 65 million electricity and district heating meas-

urements from installations in the Nordic countries.

1.4 Texas Instruments CC2650 Sensor Tag

Texas Instruments is a technology company that designs and manufactures

semiconductors, which are sold globally to manufacturers and electronics de-

signers.

The sensor tag used in this thesis work is a Texas Instruments CC2650 Sensor

Tag, which supports the wireless MCU that targets the Bluetooth remote con-

trol applications. It is mainly used due to its cost efficiency and ultralow pow-

er. It is a multi-standard device that supports wireless technology. In the thesis

12

work the application is built to discover this specific sensor tag, which con-

tains the payload that is used to fetch the IP address of the beacon from Com-

sel System Oy’s Corona cloud service using the UUID-information. /4/

Figure 2. Texas Instruments CC2650 Sensor Tag.

1.5 Huawei Y511 CUN-L21

Due to the required Bluetooth connection, a physical phone is needed and the

virtual phone environment cannot be used for testing as usually when develop-

ing an application. The phone used for building this application is a Huawei

Y5II CUN-L21 smartphone with an Android version 5.1 (Lollipop). The

phone model was launched in June 2016 and it offers a new platform (Lolli-

pop) which supports the Eddystone Bluetooth Beacon -technology that is es-

sential for this thesis work. The phone is provided by Comsel System Oy. To

use the phone in development purposes, development settings must be turned

on and the Bluetooth tracking and connecting have to be enabled. In addition,

13

the phone requires an address pair connection with the computer that is push-

ing the application into the device.

Figure 3. Huawei Y5II CUN-L21. /5/

1.6 Android

Android is Google's mobile operating system released in 2008. It is found on sev-

eral devices, for example on TVs and tablets but is mainly known for being the

most popular operating system for smartphones. Android uses a Linux kernel op-

erating system and has a source code under Google's open source license. Most

Android devices have a combination of both open and non-free software. In addi-

tion, Android applications, known as apps, can be downloaded from Google

Store. By February 2017, over 2.7 million apps can be found Google Play. /6/

14

The responsible branch for founding and developing Android operating system is

an Open Handset Alliance -consortium that includes software, hardware and tele-

communicating companies that are aiming to evolve and increase the open stand-

ards for mobile devices.

In April 2017, after the breakthrough growth of smartphones in Asian countries,

Android overtook Microsoft Windows as the most popular operating system for

total internet usage across desktop, laptops, tablets and mobile combined. /6/

1.7 Android Versions

Android Mobile OS began their version history with the release of their alpha ver-

sion (Android alpha) in 2007. The first commercial version, Android 1.0, released

a year later. The versions 1.1 and 1.2 had no code names in them but since then

the code names have been onfectionery-themed in alphabetical order, starting with

the Android 1.5 version called ”Cupcake”. The latest major version released in

August 2016 was the Android 7.0 version called ”Nougat”. (See Figure 4 below.)

Figure 4. The Android version numbers and their codenames. /7/

15

1.8 Android’s Platform Architecture

The Linux Kernel is the lowest level in the Android’s platform architecture. It al-

lows Android to take advantage of key security features and enables the manufac-

turers to develop hardware drivers for it by controlling the resource management.

/8/

Together with the upper level called Hardware Abstraction Layer (HAL), Linux

Kernel and HAL are also responsible for the communication with the physical de-

vices. HAL consists of multiple library modules, which implements the interface

for the specific types of hardware components.

Android Runtime (ART) is the third level in the architecture that consists the Java

libraries. The devices which run with Android version 5.0 or higher have their

apps running their own process with their own instances of the ART. The key fea-

tures of this level are the Ahead-of-time and the Just-in-time compilations, the op-

timized garbage collection and the better debugging support that includes a sam-

pling profiler and a better dialogic exception and a report system for crashes.

In addition, the third level contains the native C and C++ libraries that are re-

quired for the Android system's core components and services like ART and

HAL.

The fourth level contains the Java API framework that the entire Android OS fea-

ture-set uses. These APIs form the building blocks that is required to create An-

droid apps.

The fifth and highest level is the System Application level that contains the appli-

cations in Android, both core applications installed by the system such as the

clock, calendar and email and the applications installed by the user.

16

Figure 5. Android Architecture. /8/

17

2 PROGRAMMING ENVIROMENT AND LANGUAGE

2.1 Android Studio Structure

The thesis work is made on Android Studio. It is the Intellij IDEA based Integrat-

ed Development Environment for Android app development. /9/ It is structured to

contain the Android app, the library and the Google App Engine modules. By de-

fault, it uses an Android project view as shown below. The build files are dis-

played under the Gradle Scripts and every app module contains the manifest, the

Java and the res folders. The Manifests contains the AndroidManifest.xml -file

which provides the information about the app to the Android System and it is re-

quired before the app's code can be run. The Java folder contains the Java code

source files, including the Junit test files and codes. Lastly, the res-folder contains

the UI-elements such as the XML-layout, UI-strings, bitmap images and

stylesheets.

Figure 6. Android project structure.

18

2.2 Android Studio Completion

Android Studio uses three types of a code completion. The first one is the basic

completion that displays the basic suggestions for the variables, the types, the

methods and the expressions. The second one is a smart completion that displays

the relevant options on the context, excluding the unnecessary parts. The last

completion is the statement completion which completes the statement, adding the

missing parts for the completion such as the parentheses, the formats and the

braces.

2.3 Gradle Build System

Android Studio uses Gradle as the foundation of the build system. The build sys-

tem is used for customizing, configuring and extending the build, to create multi-

ple APKs with different features and to reuse the resources and the codes across

the source. /10/ The build file is named in the project as build.gradle and it is the

text file to configure the build with elements provided by the Android plugin. The

Android automatically generates both the top-level build file and the module-level

files for each file when importing an existing project into the program.

2.4 Java programming language

The thesis work is made with Java programming language. Java is a programming

language and a computing platform first released by Sun Microsystems in 1995.

/11/ The Java language is a C-language derivative, so the syntax rules look much

like in C-programming. The code blocks are modularized into methods and delim-

ited by braces, and the variables are declared before they are used.

The Java language uses packages which are Java's namespace mechanic. Inside

the packages are the classes and inside them the methods, the variables, the cons-

tants and the other programming entities. In Java programming, the source code is

19

written in the .java files and then compiled. The compiler checks the code and

then writes the bytecode into the .class files. The bytecode is a set of instructions

targeted to run on a Java virtual machine (JVM). The JVM reads and interprents

the .class files and executes the program's instructions on the native hardware

platform for which the JVM was written to.

20

3 SOFTWARE ANALYSIS

This is a thesis work for Comsel System Oy. The goal is to create an Android Ap-

plication for communicating with ‘Internet of Things’ devices by using a Blue-

tooth low energy beacon (BLE beacon).

3.1 UML Use Case Diagram

The software requires minimal user actions. Once the application is run, it will

scan all the nearby BLE-devices, parse the Eddystone message from the payload,

filter out the non-Comsel devices, obtain the device’s IP address from Comsel’s

Corona cloud service by using the discovered UUID and perform the CoAP call-

backs to obtain the device type and its measurement data using the obtained IP-

address. In the end the application will list the found devices and their values in

the user interface for the user. (See Figure 7 below.)

21

Figure 7. Use Case Diagram.

3.2 Sequence diagram

The sequence diagram shows the sequence of actions done by the application.

(See Figure 8 below.) After the user runs the application, the app will create an

empty list view into the user interface. After that the MainActivity method in the

DeviceScanActivity class will start the BluetoothScanner class to scan the

Bluetooth Low Energy -beacons around. When a device is found, the class will

return it into the DeviceScanActivity main class which checks if it belongs into

the Comsel’s namespace. If it does, it will parse its instance to obtain the UUID.

22

The UUID is sent as a HTTP-callback into the Comsel’s corona cloud service

where the best quality IP-address is parsed from the JSON and returned into the

MainClass activity. The class then performs a CoAP-request over IPv6 network to

obtain the device’s type from the CoAP. Based on the returned device type, the

app will perform a call to obtain the values wanted for the specific type of a bea-

con. The type of the beacon and the measurement data are listed into the listview

of the user interface and the user can find the found Comsel System Oy beacons,

their types and their values from it.

Figure 8. Sequence Diagram.

23

3.3 General View

The project is divided into three phases; 1) locating and identifying the device in

proximity of the user by using Bluetooth Low Energy beacon and fetching its uni-

versally unique identifier (UUID) from its payload, 2) establishing an IP network

link by communicating with Domain Name System to translate the UUID into an

IP address and 3) fetching the device's type and its important data with the CoAP

requests and printing them to the user. If time had allowed, the application could

have performed direct application layer communication between the application

and the device but this step is left out.

3.4 Functions

The functions and the functionality of the application were created at the start of

the thesis work. Number 1 in the Priorize tab means a number 1 priority function

and it is a must have function in order to get the final thesis work result accepted

by Comsel System Oy. (See Table 1 below.)

Table 1. Functions

Reference Description Priorize

F1 Setting up an Android application 1

F2 Picking up a Bluetooth Low Energy protocol 1

F3 Extract the payload’s “Universally unique identifier” 1

F4 Translate the Universally unique identifier into a network address 1

F5 Use the network address to perform a CoAP request 1

F6 Filter out the unnecessary data and create a request to the key values 2

F7 Display the fetched device type and the data to the user 1

F8 Perform direct application layer communication between Android ap- 4

24

plication and the device

3.5 External Interface

The external interface includes the external parts in the application that were not

coded in the application but came from the outside of the application. For example

the Comsel System Oy’s Corona cloud service was the target for the HTTP-call

instead of being created in the code itself. (See Table 2 below.)

Table 2. External Interface

Reference Description

I1 Bluetooth low energy beacon (BLE

beacon) using Android API

I2 Universally unique identifier (UUID)

I3 Comsel Cloud Service

I4 CoAP

3.6 Test Plan

The test plan was created to guarantee that each part in the application performs as

intended and throws a defined error or a permission response to the user if some

part needed adjusting or an input from the user. (See Table 3 below.)

25

Table 3. Test Plan

ID Goal Params/class Test Procedure

A1 DeviceScanActivity’s

onCreate method creates

the Listview for the devi-

ces

DeviceScanActivity, onCreate Test that the DeviceS-

canActivity’s onCreate

method creates the

Listview for the devices

A2 Application checks if the

Bluetooth is enabled and

alerts if not

DeviceScanActivity, onCreate Test that the application

checks if the Bluetooth

is enabled. If not, it

throws an alert.

B1 Blescanner starts DeviceScanActivity, onCreate Test that the scanner is

starting to scan the de-

vices

B2 Bluetooth asks for locati-

on access if not already

enabled

DeviceScanActivity, requestCoar-

seLocationPermission, onRe-

questPermissionResult

Test that if the location

access is not given, the

phone will perform a

request for it.

B3 BleScanner adds found

devices to its list, upda-

ting the list periodically

and adding new devices

into it too

BleScanner Test that the BleScan-

ner adds a found device

to the list and keeps ad-

ding a new found devi-

ces into it aswell by

using a random genera-

ted number ending for

both the found device

and its value.

26

C1 DeviceScanActivity par-

ses the Eddystone messa-

ge into a namespace and

an instance

DeviceScanActivity,

onNewScanResultList

Test that the application

parses the payload pro-

perly into a namespace

and an instance

C2 DeviceScanActivity

checks if the namespace

matches with Comsel’s

namespace

DeviceScanActivity,

onNewScanResultList

Test that non-Comsel

devices will not be par-

sed forward. The Na-

mespace must match to

that of Comsel’s

C3 Comsel device’s message

is parsed to obtain the

UUID

DeviceScanActivity,

onNewScanResultList

Test that the devices

matching to Comsel’s

namespace have their

instance parsed to

obtain the UUID

D1 DeviceScanActivity calls

for HTTP class to per-

form a HTTP callback

using UUID as its para-

meter

DeviceScanActivity,

onNewScanResultList

Test that the HTTP-

class starts properly and

the call is working

D2 HTTP-class checks for

connection and alerts if

connection fails

HttpHandler Test that the connection

is enabled and an alert

is displayed if not

D3 DeviceScanActivity gi-

ves Comsel Corona

address for the HTTP-

callback

DeviceScanActivity,

onNewScanResultList

Test that the address is

correct and the callback

functions

D4 HTTP-callback uses IP, DeviceResponse, HttpHandler, Check that the JSON-

27

type, quality and error as

its parameters and parses

the JSON from Comsel

Corona address

CallbackFunction, IP, type, quali-

ty, (error)

message in Corona

cloud has the right pa-

rameters

D5 HTTP-class returns the

best quality IP-address to

DeviceScanActivityclass

DeviceResponse, HttpHandler,

CallbackFunction

Test that the IP returned

comes from the JSON

property that has the

highest ”Quality” value

E1 DeviceScanActivity uses

the IP-address to create a

CoAP call to check the

device type

DeviceScanActivity,

onNewScanResultList

Test that the IP-address

is used when initiali-

zing the CoAP-request

E2 CoAP class checks that

IPv6 is enabled

AsyncBleCoapClient Test that the IPv6 is

enabled and alert if not

E3 CoAP callback performs

a CoAP request and re-

turns the device type

AsyncBleCoapClient, CoapCall-

back

Test that the correct

type of a device is re-

turned

E4 DeviceScanActivity se-

lects the correct address

to obtain the data for the

specific type of a device

found

DeviceScanActivity,

GetDeviceData

Test that the path for

the device’s data re-

quest is correct and is

based on the device ty-

pe returned previously

E5 CoAP callback performs

a CoAP request and re-

turns the device data

AsyncBleCoapClient, CoapCall-

back

Test that the data is re-

turned and parsed right

E6 DeviceScanActivity adds

the found results into the

DeviceScanActivity, SetDevi- Test that the parsed da-

ta is forwarded to the

28

user interface cedata user interface

F1 User interface displays

all the found devices and

their wanted values in a

listview, appending new

devices to the list when

found.

Layout, activity_main, listi-

tem_device

Test that the listview in

the layout displays the

type of the device and

its values

F2 Listview appends new

devices to the list when

found and displays their

values.

Layout, activity_main, listi-

tem_device

Test that the listview

appends a new device

to the list when a new

device is found, disp-

laying its type and a

value correctly

F3 Listview updates the de-

vice and value list

Layout, activity_main, listi-

tem_device

Test that the listview

updates the value of the

found devices.

F4 The application keeps

scanning for BLE-

devices without crashing

or shutting down as long

as the application is open

and active

BleScanner, Layout, activi-

ty_main, listitem_device

Test that the application

keeps scanning for

BLE-devices without

crashing or shutting

down as long as the ap-

plication is open and

active

29

4 THE IMPLEMENTATION

The thesis work is made for Huawei Y5II CUN-L21 Android phone using

Android Studio. The phone was offered along with the sensor tag by Comsel Sys-

tem Oy.

4.1 Android Manifest

Android manifest is used in the Android Studio project to specify the required

properties for the application such as the user permission to connect to the internet

and enable using the bluetooth and the coarse location.

When the application is being run, the phone will also ask these permissions from

the user.

Figure 9. Android Manifest.

4.2 XML user interface

The user interface components are created with a XML-structure where the attri-

butes and the view are being defined. The XML-structure in this project is divided

into a linear layout that contains an inner layout and a textview for both the device

name and its value(s). The XML-components are specified more specifically in

the values-folder that contains the colors, the strings and the styles for the layout.

30

Figure 10. XML user interface.

4.3 Main Activity class

Android API offers to the BluetoothScanner class the functionality to scan and

communicate with both Bluetooth- and Bluetooth Low Energy- devices.

The user interface components are created and the Bluetooth Low Energy Beacon

-scanner are initialized in the MainActivity class' OnCreate method. The

Bluetooth Scanner constantly scans for the nearby beacons and once a device is

found, it is added into the list view to display its basic data resources. The most

important resources to display in this thesis work were the MAC address and the

payload containing the Eddystone message. The Eddystone message includes a 10

bytes long namespace and a 6 bytes long instance that was, in this case, UUID of

the Comsel beacon device. This data was transferred as a HTTP REST call to

Comsel’s Corona cloud to obtain the best quality IP-address of the beacon.

31

4.4 Eddystone

Eddystone is an open Bluetooth 4.0 protocol from Google that supports both

Android and iOS. Eddystone support in the Android SDKs is based on a single

method called Eddystone discovery which provides proximity estimations and

works when the application is being active. The beacon system supports multiple

data packet types; Eddystone-UID and Eddystone-URL. /12/ The first one

(Eddystone-UID) is used in this thesis work.

4.5 Eddystone-UID

Eddystone-UID contains an identifier of a beacon. An app on the phone uses the

identifier to trigger an event. Eddystone-UID is 16 bytes long and split into the

namespace containing 10 bytes, and into the instance consisting 6 bytes. The in-

stance is what differentiates individual beacons from each other. In the thesis

 Figure 11. Main Activity class.

32

work the Eddystone-UID contains Comsel System Oy's namespace and the in-

stance contains the specific UUID that is used to obtain the device's IP-address

from Comsel's Corona cloud.

Figure 12. Eddystone beacon and Eddystone-UID. /13/

4.6 HTTP REST API

HTTP REST API provides a typical CREATE, READ, UPDATE DELETE

(CRUD) API. GET has no payload, only an URL that defines which resource is

wanted to be accessed. POST and PUT contain the payload and the user saves da-

ta from the client to the server. DELETE is for removing an existing resource

from the server. The data is usually saved into a database.

Comsel Corona cloud provides a stateless application programming interface

(API) which uses the HTTP REST API. The REST API is a stateless service. It

means that the user or the server session state do not affect the data return perfor-

med by the API. When the client requests for the resource, the current state of the

resource obtained with GET is always returned and it is not affected by the current

state of the client or the server. The current resource is stated as it is in the data-

base.

The HTTP calls are made asynchronously, which means that a new thread is allo-

cated for the use of the process and so that the user interface updates and operates

33

while the HTTP call is being performed. When the HTTP call finishes, the appli-

cations callback function is executed and the response data can be handled in the

function without interruptions.

4.7 Constrained Application Protocol

Constrained Application Protocol (CoAP) is a software protocol for simple

electronic devices (such as power sensors, switches, valves and, as in this thesis

work, beacons) to communicate over the Internet. CoAP supports translating

HTTP for simplified integration with the internet. Importantly, CoAP also has a

multicast support which is important for the Internet of Things -devices, which

have less memory and power supply than the traditional internet devices. /14/

CoAP is mapped over IP-protocol and employs a two layer structure which con-

sists a message layer and a request/response layer (see the picture below). The

message layer supports a Confirmable (CON), a non-confirmable (NON), an

Acknoledgement (ACK) and a reset (RST) types of messages. The message layer

is for re-transmitting the lost packets and the request/response layer for methods

like GET, PUT, POST and DELETE. (See Figure 13 below.)

34

Figure 13. CoAP layer structure.

The implementation of CoAP in the thesis work is Java based nCoap, which uses

CoAP version RFC 7252 and includes both client and server sites. To gain access

to HTTP, CoAP has to use a proxy over the IPv6 network. The URI scheme for

accessing CoAP is ”coap://” (similar to http's ”http(s)://”). /15/

Figure 14. CoAP and HTTP co-operation.

35

4.8 CoAP in the thesis work

An nCoap-library in this thesis work implements a CoAP protocol. It offers a

CoAP protocol implementation; functions for sending a CoAP-request and an ob-

servation and a subscription for the CoAP-resources. When the client subscribes

to the server’s resource, the server transfers and updates the resource to the client.

This way the CoAP supports a two-way communication unlike HTTP. In addition,

the server notifies about the status of the resource, meaning the client doesn’t need

to keep making callbacks to ask for it.

Like the HTTP call, CoAP call needs to be asynchronous so that the software can

operate while the CoAP request are being made over the IPv6 address network.

When the response arrives, the application performs a callback-function that uses

the data to parse the response, to catch the beacon type and to fetch the wanted

beacon data that is then displayed in the user interface.

The format for the CoAP request is coap://<url>/to/resource/<device’s ip address/

+ the path to get the device type or the measurement data. The Comsel cloud of-

fers the CoAP server that is used to perform these CoAP requests. The response

received tells what type of a device the beacon is.

Once the type of the beacon is recognized, the application performs another re-

quest to get the measured data based on what type of a device the found beacon is.

For example, a district heat beacon receives a temperature measurement and a

room humidity beacon a humidity level.

36

Figure 15. A final view where the found device(s) and their values are being lis-

ted in the user interface.

37

4.9 Test Report

In the end it is tested that all the steps in the test plan were tested and found wor-

king. Table 4 below shows a full list of the tests performed. All the tests perfor-

med turned out to be working as intended.

Table 4. Test Report

ID Test Procedure Test Date Test Result

(1 success, 0 fail)

A1 Test that the DeviceS-

canActivity’s onCreate

method creates the

Listview for the devices

10.06.2017 1

A2 Test that the application

checks if the Bluetooth

is enabled. If not, it

throws an alert.

10.06.2017 1

B1 Test that the scanner is

starting to scan the devi-

ces

10.06.2017 1

B2 Test that if the location

access is not given, the

phone will perform a

request for it.

10.06.2017 1

B3 Test that the BleScanner

adds a found device to

the list and keeps adding

a new found devices in-

10.06.2017 1

38

to it aswell by using a

random generated num-

ber ending for both the

found device and its va-

lue.

C1 Test that the application

parses the payload pro-

perly into a namespace

and an instance

10.06.2017 1

C2 Test that non-Comsel

devices will not be par-

sed forward. The na-

mespace must match to

that of Comsel’s

10.06.2017 1

C3 Test that the devices

matching to Comsel’s

namespace have their

instance parsed to obtain

the UUID

10.06.2017 1

D1 Test that the HTTP-class

starts properly and the

call is working

10.06.2017 1

D2 Test that the connection

is enabled and an alert is

displayed if not

10.06.2017 1

D3 Test that the address is

correct and the callback

10.06.2017 1

39

functions correctly

D4 Check that the JSON-

message in Corona

cloud has the right pa-

rameters

10.06.2017 1

D5 Test that only the best

quality IP-address is re-

turned

10.06.2017 1

E1 Test that the IP-address

is used when initializing

the CoAP-request

10.06.2017 1

E2 Test that the IPv6 is

enabled and throw an

alert if not

10.06.2017 1

E3 Test that the correct type

of a device is returned

10.06.2017 1

E4 Test that the path for the

device’s data request is

correct and is based on

the device type returned

previously

10.06.2017 1

E5 Test that the data is re-

turned and parsed right

11.06.2017 1

E6 Test that the parsed data

is forwarded to the user

interface

11.06.2017 1

40

F1 Test that the listview in

the layout displays the

type of the device and

its values

11.06.2017 1

F2 Test that the listview

appends a new device to

the list when a new de-

vice is found, displaying

its type and the value

correctly

11.06.2017 1

F3 Test that the listview

updates the value of the

found devices.

11.06.2017 1

F4 Test the app keeps scan-

ning for devices without

crashing or shutting

down

15.08.2017 1

41

5 CONCLUSION

The result of the thesis work is an application that can discover the nearby Blue-

tooth Low Energy beacons and parse the namespace and the instance from the

payload’s Eddystone message. If the namespace matches to the Comsel System

Oy’s namespace, the UUID contained in the instance is then used to perform a

HTTP call to obtain the best quality IP-address supporting the Comsel network

interface by parsing a JSON in Comsel’s Corona cloud. With the obtained IP-

address, the application performs a CoAP-request to first obtain the device type

and then the desired measurement data with a CoAP-callback. Lastly, the result is

displayed in the user interface to the user.

The thesis work and its three steps required more than expected in the beginning.

The biggest step in the thesis work was to be able to scan the Bluetooth Low En-

ergy -beacons and display them in the user interface the way that the payload

message could be parsed into a namespace and an instance. In addition, CoAP

protocol was a completely new protocol that required a lot of research and under-

standing to be used correctly.

One of the biggest changes and stepbacks during the thesis work was that the bea-

con system was an Eddystone beacon system instead of a normal Bluetooth Low

Energy -beacon system. This meant that the thesis work had to be done using a

newer 5.1 Nougat Android version and several parts in the code had to be rewrit-

ten to support this version. Nevertheless, the thesis work was finished in time and

Comsel System Oy was very satisfied with the result. All the required steps were

completed in time.

For the future development, the nice to have feature for direct application level

communication between the device and the application could be implemented. In

addition, now the application only displays the key values wanted from the specif-

ic types of beacons. The further developed application could include selecting a

specific device from the list to display more specific and detailed values from it.

42

6 SOURCES

/1/ IoT

Reference 28.07.2017

http://www.businessinsider.com/what-is-the-internet-of-things-definition-2016-

8?r=US&IR=T&IR=T

/2/ IoT

Reference 28.07.2017

https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-

internet-things-that-anyone-can-understand/#265c16ad1d09

/3/ Comsel System Oy

Reference 26.08.2017

http://comsel.no/about.html

/4/ Texas Instrument CC2650 Sensor Tag

Reference 28.07.2017

http://www.ti.com/product/CC2650

/5/ Huawei 5YII Cun 121

Reference 28.07.2017

http://imged.pl/huawei-y5ii-cun-l21-czarny-polska-dystrybuc-sklep-2-

18811957.html

http://www.businessinsider.com/what-is-the-internet-of-things-definition-2016-8?r=US&IR=T&IR=T
http://www.businessinsider.com/what-is-the-internet-of-things-definition-2016-8?r=US&IR=T&IR=T
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#265c16ad1d09
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#265c16ad1d09
http://comsel.no/about.html
http://www.ti.com/product/CC2650

43

/6/ Android operating system

Reference 28.07.2017

http://gs.statcounter.com/press/android-overtakes-windows-for-first-time

/7/ Android versions

Reference 28.07.2017

https://www.jsys.co/android-flavors-and-its-features/

/8/ Android Structure

Reference 30.07.2017

https://developer.android.com/guide/platform/index.html#linux-kernel

/9/ Android Structure

Reference 30.07.2017

https://developer.android.com/guide/platform/index.html#linux-kernel

/10/ Android Studio

Reference 01.08.2017

https://developer.android.com/studio/intro/index.html

/11/ Java

Reference 01.08.2017

https://www.java.com/en/download/faq/whatis_java.xml

http://gs.statcounter.com/press/android-overtakes-windows-for-first-time
https://www.jsys.co/android-flavors-and-its-features/
https://www.java.com/en/download/faq/whatis_java.xml

44

/12/ Eddystone

Reference 02.08.2017

http://developer.estimote.com/eddystone/

/13/ Eddystone

Reference 02.08.2017

https://support.kontakt.io/hc/en-us/article_attachments/203776115/Eddystone-

Data-Packets-for-Adrian_1.png

/14/ CoAP

Reference 03.08.2017

http://www.networxsecurity.org/members-area/glossary/c/coap.html

/15/ CoAP

Reference 03.08.2017

https://zaidmufti.wordpress.com/2016/08/23/coap-an-application-layer-protocol-

for-smart-dust/

http://developer.estimote.com/eddystone/
https://support.kontakt.io/hc/en-us/article_attachments/203776115/Eddystone-Data-Packets-for-Adrian_1.png
https://support.kontakt.io/hc/en-us/article_attachments/203776115/Eddystone-Data-Packets-for-Adrian_1.png
http://www.networxsecurity.org/members-area/glossary/c/coap.html

