

Push Service with ASP.NET

SignalR

Case ModulErp

LAHTI UNIVERSITY OF APPLIED
SCIENCES
Faculty of Technology
Information Technology
Software Engineering
Bachelor’s Thesis
Autumn 2017
Maija Kekkonen

Lahti University of Applied Sciences
Degree Programme in Information Technology

KEKKONEN, MAIJA: Push Service with ASP.NET SignalR
 Case ModulErp

Bachelor’s Thesis in Software Engineering, 51 pages

Autumn 2017

ABSTRACT

The goal of this thesis was to design and implement a prototype of a push
service to the ModulERP enterprise resource planning solution. The push
service would be used in the browser interface of the system. A push
service enables real-time data transfer from a server to a client without the
client having to specifically request the data.

The research problem was to implement the push service prototype by
using the SignalR library. SignalR enables push services to be quickly
implemented in ASP.NET environments. The Visual Studio development
environment and the SQL Server Management Studio software were used
in the implementation. The programming languages used were C#, Visual
Basic and JavaScript.

The result was a prototype of a push service that could be used to transmit
real-time data into the browser interface of the ModulERP system. Popups
based on the Telerik user interface component library, a status bar, and a
message drop-down menu were added to the browser interface. The
prototype has been used in informing users about the zipping of possibly
large amounts of files and in informing key users about large attachment
files in the system.

Key words: ASP.NET, push service, SignalR, web development

Lahden ammattikorkeakoulu
Tietotekniikka

KEKKONEN, MAIJA: Push Service with ASP.NET SignalR
 Case Modulerp

Ohjelmistotekniikan opinnäytetyö, 51 sivua

Syksy 2017

TIIVISTELMÄ

Opinnäytetyön tavoitteena oli suunnitella ja toteuttaa push-palvelun
prototyyppi JL-Soft Oy:n ModulERP-toiminnanohjausohjelmistoon sen
selainkäyttöliittymässä käytettäväksi. Push-palvelu mahdollistaa
reaaliaikaisen tiedonvälityksen palvelimelta asiakkaalle ilman, että
asiakkaan tarvitsee erikseen pyytää palvelimelta dataa.

Tutkimusongelma oli push-palvelun prototyypin toteutus käyttäen avoimen
lähdekoodin SignalR-kirjastoa, joka mahdollistaa push-palveluiden nopean
toteutuksen ASP.NET-ympäristöihin. Toteutuksessa käytettiin Visual
Studio –kehitysympäristöä ja SQL Server Management Studio –ohjelmaa.
Ohjelmointikieliä olivat C#, Visual Basic ja JavaScript.

Tuloksena oli push-järjestelmän prototyyppi, jolla voitiin välittää
reaaliaikaista dataa ModulERP-järjestelmän selainkäyttöliittymään. Push-
palveluun liittyy selainkäyttöliittymään lisätty statuspalkki ja
pudotusvalikko, jossa push-viestit näkyvät, sekä Telerik-
käyttöliittymäkomponenttikirjastolla toteutetut ponnahdusviestit.
Prototyyppiä on alustavasti hyödynnetty mahdollisesti suurten
tiedostomäärien paketoinnissa ZIP-tiedostoihin sekä avainkäyttäjien
informoinnissa järjestelmässä olevista suurista liitetiedostoista.

Asiasanat: ASP.NET, push-palvelu, SignalR, web-kehitys

TABLE OF CONTENTS

1 INTRODUCTION 1

2 THE OPERATING ENVIRONMENT 2

2.1 General Description 2

2.2 Customers 3

2.3 The Need for a Push Service 3

3 SIGNALR 4

3.1 SignalR Basics 4

3.1.1 Transports 4

3.2 Architecture of a System Using SignalR 5

3.2.1 Communication Models 6

3.3 The SignalR Hub Class 7

3.3.1 The OWIN Startup Class 9

3.3.2 Methods That Clients Can Call 12

3.3.3 Calling Client Methods From the Hub 15

3.3.4 Managing Group Membership 17

3.3.5 Connection Lifetime Events 18

3.3.6 The Context Property and the State Object 18

3.3.7 Error Handling 20

3.3.8 Customizing the Hubs Pipeline 22

3.4 The JavaScript Client 23

3.4.1 The Proxy Generated by SignalR 23

3.4.2 Establishing a connection 25

3.4.3 Connection Lifetime Events on the Client 26

3.4.4 Configuring the connection 27

3.4.5 Error Handling and Client-Side Logging 29

3.5 The .NET Client 31

3.5.1 Basics 31

3.5.2 Configuring the Connection 32

3.5.3 Methods That the Server Can Call 33

3.5.4 Invoking Methods on the Server 37

3.5.5 Error Handling and Client-Side Logging 38

4 IMPLEMENTATION: CASE MODULERP 40

4.1 The OWIN Startup Class 40

4.2 Settings 40

4.3 The Database 41

4.4 The Hub Class 42

4.4.1 Connection Lifetime Events 42

4.5 Broadcasting from the Web Service 43

4.6 SignalR on the Client 44

4.6.1 Notifications and Popups 44

4.6.2 Client-side methods callable by the server 46

4.7 Implementations 46

5 CONCLUSION 48

SOURCES 49

APPENDIXES 52

1 INTRODUCTION

The goal of this thesis was to design a push service for the ModulERP

enterprise resource planning solution maintained by JL-Soft. The library

used was ASP.NET SignalR. Reaching the goal involved two sub-goals.

The first one was researching the topic in order to find out how to

implement a push service with the library. The second one was the actual

design and creation of a prototype of the push service. The results of the

research are presented in chapter 2. The design and implementation are

described in chapter 3. The subject of the thesis was narrowed down to

the SignalR library and the implementation of the prototype with it.

A push service delivers messages to clients without specific requests from

them (Rouse & Steele 2014). This can be contrasted with more traditional

HTTP connections, where the client always initiates them (Fielding 1999).

Push technology enables clients to be notified instantly as the data

becomes available without them needing to, for example, periodically poll

for the data. SignalR, the library on which this thesis focuses on, is

designed to enable and simplify the creation of a push service in ASP.NET

applications.

The ModulERP solution is actively developed and maintained by JL-Soft

Oy. The company is based in Lahti and was founded in 1990. It employs a

little over ten people – the headquarters and developers are in Finland, but

there are other employees in other cities and countries. The company has

customers around the world. (JL-Soft Oy 2017.)

2

2 THE OPERATING ENVIRONMENT

2.1 General Description

ERP solutions, in general, help organizations manage their business by

enabling decisions to be data-driven. They often gather and present data

about finance, human resource management, inventory management etc.

(Rouse 2017.) JL-Soft’s ModulERP solution is based on modules that

focus on these and other facets of business. These modules are described

next.

• The sales module includes features for managing sales orders,

shipping, invoicing, products, and offers. The module can be

integrated with web stores. Transport documents can be created

with it, and the module can also generate reports and statistics.

• The purchasing module can generate automatic, timed material

purchasing proposals. It also handles invoices and their verification,

linking to orders etc. The module generates reports, statistics and

forecasts.

• The manufacturing module includes features for production

planning, work time-tracking, workgroups and work roster. The

module can be used to support preventive machine maintenance.

An electronic work list can be maintained with the module. Product

structure and data can be imported from external product design

software. The module generates reports, statistics, and production

forecasts. Production can be managed and monitored through the

system.

• The warehouse module can be used to manage inventory,

reclamations, and picking and receiving goods. Inventory can be

tracked by batches. This module, like the other modules, also

generates reports and statistics.

• The accounting module can be used to maintain a sales and a

purchase ledger. It can also be used for managing payments and a

payroll.

3

• The maintenance module includes features for scheduled

maintenance, maintenance contracts, inputting and managing work

orders, managing spare parts etc. The module includes a web

interface for employees and customers. (JL-Soft Oy 2017.)

2.2 Customers

JL-Soft Oy has customers in over 30 countries. The customers represent a

range of fields, such as electronics, metal and plastics industry, and

import, installation and maintenance. The solution is used in companies of

different sizes. (JL-Soft Oy 2017.)

Each customer’s ERP solution is separate from the others. The solution

can be delivered either as a standalone Windows application, or as a web-

based cloud service. Solutions for multiple customers can be located on

the same server.

2.3 The Need for a Push Service

A push service was identified as a solution to the need for real-time

information. This need was apparent especially in the browser-based client

interface. The push messages would be sent from JL-Soft’s web service,

and received by individual users when using the browser-based client.

Each message could be directed to specific users only. There were other

requirements in addition to real-time data, such as the buffering of

messages when the client application is not running, and the logging of

whether the messages have been read or not.

4

3 SIGNALR

3.1 SignalR Basics

SignalR is a library that simplifies adding real-time functionality to

ASP.NET applications. This means that the server pushes data to clients,

instead of clients requesting it. SignalR manages connections

automatically. The connection between the client and the server is

persistent, in contrast to classic HTTP connections that are re-established

every time. (Fletcher 2014a.)

3.1.1 Transports

SignalR is an abstraction over transports that do the actual work between

the client and the server. There are four transport types:

• WebSocket: This is the only transport that establishes a true

persistent, two-way connection between the client and the server.

• Server Sent Events/EventSource: This transport type receives

server-sent events. It connects to a server by using HTTP and

receives events in text/event-stream MIME format without closing

the connection. (Mozilla Developer Network 2015a; Mozilla

Developer Network 2015b.)

• Forever Frame: This transport type can be used only with Internet

Explorer as the client. It creates a hidden Iframe which makes a

request to the server that does not complete. The server then

continually sends script to the client that is immediately executed.

The server and client connections are separate.

• Ajax long polling: A persistent connection is not created. This

transport type polls the server with a request that stays open until

the server responds, after which the connection is reset. (Fletcher

2014a.)

5

3.2 Architecture of a System Using SignalR

When using SignalR, there are at least two applications – a server

application and a client application. In the case of ModulERP, the .NET

server application is a web service written in C# and Visual Basic. It

contains a Hub class that handles connections and contains methods

callable by a client, and another class that contains functionality for

• fetching message, user and client data from a database,

• creating new messages, and

• broadcasting the messages.

The parts of the client application relevant to SignalR are written in

JavaScript. This code initiates a new connection with the server every time

a page is loaded, and contains methods that are callable by the server on

each client. The RPCs, the client-callable server methods and the server-

callable client methods, are how most of the data is transferred with

SignalR. This is illustrated by Figure 1, which shows how the SignalR

components in each application interact with each other.

6

FIGURE 1. Remote procedure calls (Fletcher 2014a).

3.2.1 Communication Models

In SignalR there are two models available for communicating between

clients and servers: Persistent Connections and Hubs. A Connection

represents an endpoint for messages, be they single-recipient, grouped, or

broadcasted. With the Connection API, the developer can directly access

the low-level features of SignalR. The Hubs API is built upon the

Connection API, and with the Hubs API clients can call server methods

directly and vice versa. The Hubs API is used in this thesis. A diagram of

the whole SignalR architecture can be seen in Figure 2. (Fletcher 2014a.)

7

FIGURE 2. SignalR Architecture (Fletcher 2014a).

3.3 The SignalR Hub Class

The Hub class is in the center of push, or real-time, functionality. It allows

remote procedure calls from client to server and vice versa. The “client-to-

server plumbing” is hidden under the Hubs API. Multiple Hubs can be

defined in an application. (Dykstra & Fletcher 2014b.)

Remote procedure calls are a Microsoft’s technology for creating

distributed client/server programs. They are intended to reduce

developers’ time and effort by providing a common interface between

applications. They enable two-way communication between the client and

the server. RPCs handle common tasks like security, synchronization and

data flow. (Microsoft 2003.)

Hub classes are instantiated automatically by the SignalR Hubs pipeline.

Thus, Hub classes are never instantiated from code on the server. Hub

instances are transient – a new instance is created every time a client

8

connects, disconnects, or calls a method on the server. (Dykstra &

Fletcher 2014b.)

When a client method is called from the server, a packet that contains the

name and parameters of the method to be called is sent across the

transport. A method call viewed from the monitoring tool Fiddler is shown

in Figure 3. The method updateShape is called from the Hub

MoveShapeHub. (Fletcher 2014a.)

FIGURE 3. A method call viewed from Fiddler (Fletcher 2014a).

Multiple Hubs can be defined in a single application. In such a case, the

SignalR connection is shared but named groups of clients are separate.

Using multiple Hubs does not cause a performance difference in the

application. If a query string is specified to pass data from the client to the

server, different query strings cannot be specified for different Hubs. All

Hubs receive the same query string. This is because all Hubs get the

same HTTP request information. Also, the generated JavaScript proxies

file contains all the proxies for all Hubs in a single file.

By default, clients refer to Hubs by using the camel-cased name of the

Hub. A different name can be specified by using the HubName attribute.

An example of this is shown in Figure 4. There, the HubName attribute is

enclosed in square brackets on line 2. On line 6 there is a demonstration

of referring to the renamed Hub in client-side JavaScript. (Dykstra &

Fletcher 2014b.)

9

FIGURE 4. Renaming a Hub (Dykstra & Fletcher 2014b).

3.3.1 The OWIN Startup Class

When using SignalR, an OWIN startup class is required. An OWIN startup

class is a class where middleware components are specified to the OWIN

pipeline. A simple example could be adding logging functionality. SignalR

as a whole, and the route that clients use when connecting to the Hub, are

configured in the startup class. The configuration is done in the

Configuration method (line 9) by using the MapSignalR method as seen in

Figure 5, line 12. The OwinStartup attribute on line 4 is used to define

which class is used as the startup class. (Anderson & Thiagarajan 2013;

Dykstra & Fletcher 2014b.)

10

FIGURE 5. The OWIN startup class. (Dykstra & Fletcher 2014b.)

OWIN is an abbreviaton of “Open Web Interface for .NET”, and it defines

an abstraction between .NET servers and web applications. OWIN

decouples the server from web applications and thus makes creating

middleware easier (Wasson 2013).

The configurations that can be altered using the OWIN startup class

include

• A custom SignalR url (the default is “/signalr”)

• Enabling cross-domain calls with CORS or JSONP

• Enabling detailed error messages for troubleshooting

• Disabling automatically generated proxy files. (Dykstra & Fletcher

2014b.)

Establishing cross-domain calls must be enabled when SignalR lies on a

different server than from where clients load pages. In this case, the

clients make requests across domains. CORS and JSONP are used to

enable cross-domain requests. (Dykstra & Fletcher 2015.)

CORS enables cross domain calls with JavaScript on all browsers.

Normally the same-origin policy prevents JavaScript from making requests

across different domains. Enabling CORS is shown in Figure 6. The class

11

named Startup is automatically used as the OWIN startup class (line 7)

(Anderson & Thiagarajan 2013). The Map method branches the pipeline

for all requests that start with “/signalr” (line 11) (Dykstra & Fletcher 2015).

The UseCors method adds a CORS middleware to the application pipeline

(line 13) (Microsoft 2017a). The “jQuery.support.cors” flag should not be

set to true in JavaScript – SignalR handles the use of CORS (Dykstra &

Fletcher 2015). (Hausenblas & Hossain 2015.)

JSONP, on the other hand, creates a <script> element that then “requests

to a remote data service location”. JSONP uses the feature of <script>

tags being able to request data in JSON format across domains. Enabling

JSONP is shown in Figure 7. The class names Startup is again

automatically used as the OWIN startup class (line 7). The pipeline is

again branched for all requests starting with “/signalr” (line 11). JSONP is

enabled in the HubConfiguration object (line 15), which is then passed as

an argument to the RunSignalR method (line 17). (Getify Solutions &

Simpson 2014.)

FIGURE 6. Enabling CORS (Dykstra & Fletcher 2015)

12

FIGURE 7. Enabling JSONP (Dykstra & Fletcher 2015).

3.3.2 Methods That Clients Can Call

Methods that clients can call are declared public. A return type and

parameters can be specified, just as in any C# method. An example is

seen in Figure 8. The method is defined on line 3 – it’s referenced by

name client-side. On line 5 is an example of method functionality: a chat

message with a user name and content is added to all clients’ pages.

Methods can also be called asynchronously, of what there is an example

in Figure 9. The method is declared asynchronous (line 1). An

IEnumerable containing Stock objects is created from the data read from a

HttpClient. This involves the usage of asynchronous methods (lines 7 and

8). The Task object returned contains the IEnumerable. Asynchronous

13

methods can be used when the method will be long-running or does work

that will involve waiting. When using the WebSocket transport,

asynchronous methods will not block the connection, in contrast to

synchronous methods that will.

Progress reporting can be done with an IProgress<T> parameter as

shown in Figure 10. A long-running task is simulated in a for loop (line 3)

by waiting for 200 milliseconds in each loop cycle. Progress is reported by

using the Report method of the IProgress parameter (line 6).

Overloads must be defined according to the number of parameters in a

method. Complex types and arrays can be used as the return type – the

data between the client and the server is in JSON format, and SignalR

handles the binding of (arrays of) complex objects automatically. The

methods can be renamed in a way resembling the renaming of a Hub – an

example of this is shown in Figure 11. The new name is specified in the

HubMethodName attribute (line 2). The method can then be referenced

client-side using this name (line 6). (Dykstra & Fletcher 2014b.)

FIGURE 8. An example of a server method that a client can call (Dykstra &

Fletcher 2014b).

14

FIGURE 9. An asynchronous server method that a client can call (Dykstra

& Fletcher 2014b).

FIGURE 10. Reporting method progress with the IProgress<int>

parameter (Dykstra & Fletcher 2014b).

FIGURE 11. Specifying a custom name for a method callable in JavaScript

(Dykstra & Fletcher 2014b).

15

3.3.3 Calling Client Methods From the Hub

Client methods can be called by using the Clients property of the Hub

class. Ways of selecting receiving clients are described in Table 1. An

example of calling a client method is shown in Figure 12. There, the server

application adds a chat message to all clients (line 5). The corresponding

JavaScript client method is shown in Figure 13. It is defined in the client

property of the Hub proxy (line 1, see chapter 3.4). The example method

contains simple jQuery code for adding the message to the page (lines 3-

4).

Client methods execute asynchronously, and Figure 14 shows how they

can be made to execute sequentially by using the “await” keyword (line 3).

The keyword “async” is then needed in the method header (line 1). By

using the “await” keyword, the calling client is notified after the method

adding the message has been called (line 4). Using the keyword does not

mean that the method actually has executed – it only means that SignalR

has done everything necessary to attempt to execute the method. Client

methods are also unable to return values. The specified method name is

interpreted as a dynamic object, so there is no compile-time validation for

it. If no matching method exists on the client, no error is raised. (Dykstra &

Fletcher 2014b.)

FIGURE 12. Calling a client method from the server (Dykstra & Fletcher

2014b).

16

FIGURE 13. A JavaScript client method callable by server (Dykstra &

Fletcher 2014b).

FIGURE 14. Sequential execution of client methods (Dykstra & Fletcher

2014b).

TABLE 1. Selecting clients that receive the Remote Procedure Call

(Dykstra & Fletcher 2014b).

Syntax Clients

Clients.All.clientMethod(); All clients

Clients.Caller.clientMethod(); The calling client

Clients.Others.clientMethod(); All except the calling client

Clients.Client(connectionId)

.clientMethod();

A client specified by the

connection ID

Clients.AllExcept(connId1,

connId2).clientMethod();

All clients except the specified

ones

Clients.Group(groupName)

.clientMethod()

The clients in the specified group

Clients.User(userId).clientMethod(); A specific user

Clients.Clients(List<string>

connIds).clientMethod();

All clients in the list

Clients.Groups(List<string>

groupIds).clientMethod();

All groups in the list

Clients.Client(username)

.clientMethod();

A user by name

Clients.Users(new string[] {”user1”,

”user2”}).clientMethod();

All users in the array (from SignalR

version 2.1 on)

17

3.3.4 Managing Group Membership

Connections can be grouped in SignalR. Group membership can be

managed from both the Hub on the server and from the client. Groups do

not have to be explicitly created – a group is automatically created the first

time it is referred to. There is no API to get a list of groups or a list of

clients in groups. If a user must be in a group, all the user’s connections

have to be separately added to that group. The server side functionality of

groups is shown in Figure 15. The current connection id is added into and

removed from a group with a specific name in the respective methods

(lines 5 and 10). The Add and Remove methods execute asynchronously.

Client-side code is shown in Figure 16. The methods are called using the

Hub proxy. (Dykstra & Fletcher 2014b.)

FIGURE 15. Managing groups in the Hub (Dykstra & Fletcher 2014b).

18

FIGURE 16. Managing groups on the JavaScript client (Dykstra & Fletcher

2014b).

3.3.5 Connection Lifetime Events

SignalR has three Hub methods for handling connection lifetime events:

OnConnected, OnDisconnected and OnReconnected. The methods can

be overridden in the Hub class. A new connection is established every

time a browser navigates to a new page. This means that OnDisconnected

is executed first, and OnConnected after that. In some cases,

OnDisconnected does not get called at all – if a server goes down or if the

App Domain gets recycled. (Dykstra & Fletcher 2014b.)

3.3.6 The Context Property and the State Object

Information about the client can be got from the Context property of the

Hub. Types of this information are described in Table 2. The connection ID

is a GUID. The same ID is used by all Hubs in the application. Query string

data can be created in the JavaScript client.

The state object is provided by the client Hub proxy, and it can be used to

pass data to the server with each method call. This is demonstrated in

Figures 17, 18 and 19. The state data is created by the client. In the Hub,

the state data is accessed from either the Clients.Caller (Figure 18) or the

Clients.CallerState (Figure 19) property. The CallerState property is used

when the Hub is strongly-typed or when the server code is written in Visual

Basic. In Figures 18 and 19, a chat message with state data is added to all

clients excluding the calling client. (Dykstra & Fletcher 2014b.)

19

TABLE 2. Information from the Context property (Dykstra & Fletcher

2014b).

Property Type Information

Context.ConnectionId string The connection ID of

the calling client

Context.Request.Headers NameValueCollection HTTP header data

Context.Request

.QueryString

NameValueCollection Query string data

Context.Request.Cookies IDictionary<string,

Cookie>

Cookies

Context.User IPrincipal User information

Context.Request

.GetHttpContext();

HttpContextBase The HttpContext

object of the request

FIGURE 17. Usage of the state object in the JavaScript client (Dykstra &

Fletcher 2014b).

FIGURE 18. Accessing the state object data in the Hub on the server

(Dykstra & Fletcher 2014b).

FIGURE 19. Using the CallerState property (Dykstra & Fletcher 2014b).

20

3.3.7 Error Handling

Instead of using try-catch blocks, errors can be handled by creating a

Hubs pipeline module that handles the OnIncomingError method. The

module must then be injected to the Hubs pipeline in the OWIN startup

class. This way of handling errors is demonstrated in Figures 20 and 21.

Figure 20 shows how the module can be created. The method

OnIncomingError is overridden (line 3). Exception data is printed to debug

output (lines 6 and 9). Last, the method of the parent class is called (line

11). Figure 21 demonstrates how the module is injected to the startup

class (line 4).

Another way of handling errors is using the HubException class. Usage of

HubException is demonstrated in Figures 22 and 23. Figure 22 shows how

users in a chat application are prevented from sending <script> tags in

their messages by throwing a HubException (line 7). Data for the

exception can be created by passing an object as an argument to the

HubException (line 8).

Figure 23 shows how the HubException can be handled on the client.

First, the example “Send” function is called with a parameter that causes it

to throw the HubException (line 1). The exception is handled in the “fail”

function (line 2). In the fail callback, the type of the exception is checked to

be HubException (line 3). Finally, message data is logged – user data is

read from data passed to the exception (line 4). (Dykstra & Fletcher

2014b.)

21

FIGURE 20. Creating an error handling module (Dykstra & Fletcher

2014b).

FIGURE 21. Injecting the module into the Hubs pipeline (Dykstra &

Fletcher 2014b).

FIGURE 22. Throwing a HubException in the Hub class (Dykstra &

Fletcher 2014b).

22

FIGURE 23. Handling a HubException in the JavaScript client (Dykstra &

Fletcher 2014b).

3.3.8 Customizing the Hubs Pipeline

Code can be injected into the Hubs pipeline. Figure 24 demonstrates a

pipeline module that logs every method call both from the server and from

the client. Incoming calls are logged in the overridden method

“OnBeforeIncoming” (line 3), and outgoing calls in the method

“OnBeforeOutgoing” (line 10). Figure 25 shows how the module is

registered into the pipeline in the OWIN startup class (line 3). This is

similar to the code shown in Figure 18. (Dykstra & Fletcher 2014b.)

FIGURE 24. A pipeline module logging method calls (Dykstra & Fletcher

2014b).

23

FIGURE 25. The logging module is registered in the startup class (Dykstra

& Fletcher 2014b).

3.4 The JavaScript Client

3.4.1 The Proxy Generated by SignalR

SignalR generates a proxy that simplifies code, writes methods that the

server calls, and calls methods on the server. The usage of the proxy,

however, is optional. In Figures 26 and 27 it is demonstrated how the

client and server (Hub) can communicate both with the proxy and without

it.

Figure 26 shows how to use the generated hub proxy. The proxy is first

accessed through the SignalR connection (line 1). A client method callable

by the server-side Hub is defined on lines 2-4. In the example, it logs chat

message data to the browser console. After the SignalR connection has

been started (line 5), a Hub server method call is wired to an element on

the page (lines 6-10). In the example method, a user name and a chat

message are sent to the server. After the example method has been

called, focus is shifted to the message input field.

Figure 27 presents client-side code without the generated proxy. The

connection is accessed through the “$.hubConnection()” method (line 1).

The proxy is created with a method in which the Hub name is specified

(line 2). An event handler is added to provide a method the server can call

24

(lines 3-5). A server method is called on a click event by using the

“invoke()” method (lines 8-9).

The proxy cannot be used, if the developer wants to register multiple event

handlers for a single client method that the server calls. Otherwise, using

the proxy can be chosen according to preference. The proxy file can be

referenced through the “/signalr/hubs” URL. (Dykstra & Fletcher 2015.)

FIGURE 26. A client using the generated proxy (Dykstra & Fletcher 2015).

FIGURE 27. A client not using the generated proxy (Dykstra & Fletcher

2015).

25

3.4.2 Establishing a connection

Before establishing a connection, a connection object and a proxy must be

created. Also, event handlers for methods to be called from the server

must be registered. If the hub lies on a different server, its URL must be

specified before starting the connection. When everything is ready, the

start method can be called. The start method is asynchronous, and it

returns a jQuery Deferred object. Figures 28 and 29 demonstrate this both

with and without the proxy. The “$.connection.hub” object is the same as

the one created by the “$.hubConnection()” method. (Dykstra & Fletcher

2015.)

In Figure 28, the generated proxy is accessed through the “connection”

object (line 1). A method callable by the server is defined with the proxy

(lines 2-4). The connection is started (line 5), and two callbacks are

queued (lines 6-7). In the success callback, the connection id is printed to

the browser console (line 6). In the failure callback, an error message is

logged to the console (line 7).

In Figure 29, the connection is first accessed through the

“$.hubConnection()” method (line 1). The Hub proxy is created by calling a

method and specifying the Hub name (line 2). A method callable by the

server is defined by creating an event handler (lines 3-5). The connection

is started (line 6). Callbacks are queued as in the previous code example

(lines 7-8).

A jQuery Deferred object is a chainable object. With it, callbacks can be

registered into callback queues, invoke them, and relay the success or

failure state of any function, whether synchronous or asynchronous. Some

methods of the Deferred object are “state()”, “pipe()”, “fail()”, “done()”, etc.

(The jQuery Foundation 2016.)

26

FIGURE 28. Establishing a connection with the proxy (Dykstra & Fletcher

2015)

FIGURE 29. Establishing a connection without the proxy (Dykstra &

Fletcher 2015).

3.4.3 Connection Lifetime Events on the Client

The client can handle several connection lifetime events. These events are

described in Table 3. The events can be handled to display warning

messages etc. (Dykstra & Fletcher 2015.)

27

TABLE 3. Connection lifetime events on the client (Dykstra & Fletcher

2015).

Event When raised

starting Before any data is sent over the connection

received When any data is received on the connection,

provides this data

connectionSlow When the client detects a slow or frequently

dropping connection

reconnecting When the underlying transport starts to reconnect

reconnected When the underlying transport has reconnected

stateChanged When the connection state changes; provides the

old and the new state

disconnected When the connection has disconnected

3.4.4 Configuring the connection

There are two ways to configure the connection before calling the start

method: specifying a query string to be sent to the server, and specifying

the transport method. The transport method is normally determined by the

SignalR client negotiating with the server, but this can be bypassed. The

usage of a query string is shown in Figure 30. Specifying the transport

method is demonstrated in Figure 31. (Dykstra & Fletcher 2015.)

In Figure 30, usage of a query string is demonstrated both client-side and

server-side. Client-side, query string data can be passed to the server both

with (line 2) and without the generated proxy. Without the generated proxy,

the connection must be accessed through the “$.hubConnection()” method

(line 5). Then, query string data can be sent through this connection (line

6). Server-side, query string data can be accessed in the “OnConnected()”

event handler (line 11). It is accessed through the “QueryString” property

of the “Context” object (line 13).

In Figure 31, specifying the transport method is demonstrated both with

and without the generated proxy. The transport method is specified in an

object that is passed as a parameter to the “start()” method of the

connection – a name “transport” is used (lines 2, 6, 10 and 15). If a single

28

transport method is specified, it is passed as a string in the object (lines 2

and 10). If multiple fallback transport methods are specified, they are

placed in an array of strings (lines 6 and 15). These transport methods are

attempted to be used from left to right (web sockets first, then long polling

in the example). If the hub proxy is used, the “start()” method is called on

the “$.connection.hub” object (lines 2 and 6). If not, it is called on the

object returned by “$.hubConnection()” (lines 9 and 14).

FIGURE 30. Using a query string (Dykstra & Fletcher 2015).

29

FIGURE 31. Specifying the transport method (Dykstra & Fletcher 2015).

3.4.5 Error Handling and Client-Side Logging

An error event is provided by the SignalR JavaScript client for which a

handler can be added. The “fail()” method can also be used to handle

errors that result from a server method invocation. If detailed errors are not

enabled on the server, the error message contains only minimal

information about the error. Examples of error handling are shown in

Figure 32. Lines 2-10 show how errors are handled both with and without

the generated proxy. Lines 14-24 demonstrate the usage of the “fail()”

method when invoking a server-side method with and without the

generated proxy.

Client-side logging can be enabled by simply setting the logging property

of the connection object to true before calling the start method. Examples

of this are displayed in Figure 33. Line 2 shows how logging is enabled

with the generated proxy, and lines 5-6 without.

30

FIGURE 32. Error handling (Dykstra & Fletcher 2015).

FIGURE 33. Enabling client-side logging (Dykstra & Fletcher 2015).

31

3.5 The .NET Client

3.5.1 Basics

The .NET client is in many ways similar to the JavaScript client. The .NET

Hubs API can be used in, for example, Windows Store (WinRT) apps,

WPF, Silverlight, Windows Phone and console applications (Dykstra &

Fletcher 2014a).

Setting up the client requires that the Microsoft.AspNet.SignalR.Client

NuGet package be installed. Also, if the SignalR version on the client is

earlier than that on the server, SignalR can adapt to the difference, but not

the other way around.

Before establishing a connection, a HubConnection object and a proxy

must be created. Establishing the connection happens by calling the Start

method on the HubConnection object. An example of this is presented in

Figure 34. In the example, the HubConnection object is first obtained (line

1). Next, the Hub proxy is created (line 2). Finally, the Start method is

called (line 3). The Start method executes asynchronously, and to make it

execute synchronously the await keyword or the Wait method must be

used. The HubConnection class is thread-safe. (Dykstra & Fletcher

2014a).

FIGURE 34. Creating the HubConnection object and proxy and starting

the connection (Dykstra & Fletcher 2014a).

32

3.5.2 Configuring the Connection

Before establishing a connection, options can be specified. Examples of

all these are presented in Figure 35:

• Query string parameters (lines 2-8)

• HTTP headers (line 11)

• Client certificates (lines 14-16)

• Concurrent connections limit (in WPF clients) (line 19)

• The transport method (line 22)

FIGURE 35. Connection configuration (Dykstra & Fletcher 2016a).

33

3.5.3 Methods That the Server Can Call

Methods that the server can call are defined by using the proxy’s “On()”

method in order to register an event handler. Examples are provided about

methods without parameters (Figure 36), methods with specified

parameter types (Figure 37), and methods with dynamic objects as

parameters (Figure Z). Examples include code for Windows Runtime,

Windows Presentation Foundation, Silverlight, and console clients

(Microsoft 2017b, Microsoft 2017d). Removing an event handler happens

when its Dispose method is called (Figure A). (Dykstra & Fletcher 2014a).

In Figure 36, an event handler is added in all four client types, with the

function name specified (lines 2, 9, 16 and 24). The main function of the

code examples is the output of text. In the first three event handlers, text

box content is modified (lines 4, 11, and 19). In the console event handler,

text is simply printed to the console (line 24). Each event handler is

defined as a lambda expression with no input parameters. Lambda

expressions are anonymous functions that are used to create e.g.

delegates. They also enable passing functions as method arguments, as

in the example cases. (Microsoft 2017c) On WinRT, WPF and Silverlight

platforms the code is wrapped into a platform-specific function

(“Context.Post()”, “Dispatcher.InvokeAsync()”, lines 3, 14, and 22).

In Figure 37, the code is somewhat similar to the previous example. The

parameter type (Stock) is, however, specified when all the event handlers

are created. Then, the parameter is made available as the generic lambda

expression input parameter (lines 2, 13, 21, and 29). Figure 38 is

otherwise similar to Figure 37, but the parameter types are omitted, thus

making the parameters dynamic objects. Removing the event handler by

using a stored reference to it is demonstrated in Figure 39, line 11. Storing

the reference happens on line 2.

34

FIGURE 36. Methods callable by server without parameters (Dykstra &

Fletcher 2014a).

35

FIGURE 37. Methods callable by server with parameters (Dykstra &

Fletcher 2014a).

36

FIGURE 38. Methods callable by server with dynamic objects as

parameters (Dykstra & Fletcher 2014a).

37

FIGURE 39. Disposing of the handler (Dykstra & Fletcher 2014a).

3.5.4 Invoking Methods on the Server

Calling methods on the server happens by using the Invoke method of the

Hub proxy. If the server method has no return value, the non-generic

overload of the Invoke method must be used. On the other hand, if the

method has a return value, it must be specified as the generic type of the

Invoke method. Examples of these cases are presented in Figure 40. On

line 2, a method call with no return value is presented. On line 6, the

method is executed asynchronously with the await keyword. On lines 11

and 12, the same method is made to execute synchronously by calling

Result on the returned object.

38

FIGURE 40. Invoking server methods from the client (Dykstra & Fletcher

2014a).

3.5.5 Error Handling and Client-Side Logging

If detailed errors are not enabled, the exceptions that SignalR returns

contain only minimal information about the errors. Detailed errors should of

course not be used in production, but they can be enabled for

troubleshooting and debugging. Handling errors happens by adding a

handler for the Error event of the connection object. Handling errors from

method invocations can be accomplished by wrapping the invocations in

try-catch blocks.

Client-side logging can be enabled by setting values to the TraceLevel and

TraceWriter properties of the Hub connection object. An example of both

error handling and client-side logging is displayed in Figure 41. On lines 2

and 3, an error event handler is added as a lambda expression. On lines 6

and 7, the logging variables are set so that all trace levels are outputted to

the console. (Dykstra & Fletcher 2016a).

39

FIGURE 41. Error handling and logging in the .NET client (Dykstra &

Fletcher 2014a).

40

4 IMPLEMENTATION: CASE MODULERP

4.1 The OWIN Startup Class

An OWIN startup class was created as an entry point to start and

configure SignalR. There, the default message buffer size (the number of

messages in memory) was set to 500 instead of using the default value of

1000 messages (Fletcher 2014b). Thus, memory usage was reduced.

CORS was also enabled in the startup class. All CORS options were

allowed, which allows all headers, all methods, any origin and any

supports credentials (Microsoft 2016b).

4.2 Settings

There are two types of settings in ModulERP, implementation-specific

settings defined in an XML file, and other settings that can be changed at

run-time.

The /signalr/ URL for the implementation is defined in the XML file – for

development, it was set to “http://localhost:4275/signalr/”. There are also

IDs of timed functions defined in the XML file, and the function that

broadcasts push messages is included there in order for the push service

to be in use. These timed functions are executed at specific intervals. The

XML file also contains the download file path and URL for download-type

notifications – the files are stored in the location determined by the path

and made accessible by using the URL.

The runtime settings contain three fields that can be modified. First, there

is a checkbox that determines whether connection data is stored in the

database or just in memory. Another checkbox determines whether the

notifications are sent individually or in arrays – sending the notifications in

arrays is more efficient, as multiple notifications can be sent at once.

There is also an input field where the maximum array size can be set – if

not set, the default is maximum 50 notifications per array.

41

4.3 The Database

All message (and possibly also connection) data is stored in the JL-Soft

Oy’s Microsoft SQL Server database. There are four tables, one of which

stores message data, two that store receiver data, and one that stores

SignalR connection data. The message table is described in Figure 42.

The receiver data tables are described in Figure 43, and the structure of

the connection data table is shown in Figure 44.

FIGURE 42. The message data table.

42

FIGURE 43. Receiver data tables.

FIGURE 44. SignalR connection data table.

4.4 The Hub Class

The Hub class was created to actually implement SignalR. It manages all

connections, messages etc. Connection information is stored in memory in

a thread-safe ConcurrentDictionary. A ConnData class was created to

store the user name and web page ID of each connection. The dictionary

then maps SignalR connection IDs and ConnData objects together.

4.4.1 Connection Lifetime Events

The Hub handles two SignalR connection lifetime events: OnConnected

and OnDisconnected. If in settings it has been determined that connection

data will be stored in the database, the SignalR connection and user IDs

and the page view name are inserted there when the OnConnected event

is handled. Also, if the code runs for the first time after startup, the

43

connection database table is first cleared from leftover connection data.

The connection information is always stored in the ConcurrentDictionary

as well, for logging purposes. Last, pending messages are broadcasted to

all the clients (browser windows) of the connecting user. When the

OnDisconnected event fires, the respective connection information is

removed from the database if the database mode is on, and from the

ConcurrentDictionary.

The Hub methods callable by the clients are described in Table 3. See

Chapter 3.6 for information about notifications and popups.

TABLE 3. Server methods callable by clients

Method name What the method does

broadcastInstantPushMessages Broadcast all messages labeled instant

in the database

broadcastMultipleDismiss Dismiss multiple notifications of one

user in all the user’s clients

changeArrayMsgStatus Change the status of multiple messages

in the database

changeMsgStatus Change the status of a single message

in the database

cpFileToShared Copy a file to a download folder and

download it

getArrayMaxLength Gets the maximum message array

length from the server

itemClicked Dismisses a notification

4.5 Broadcasting from the Web Service

The messages are broadcasted from the ASMX web service of ModulErp.

First, if connection data is stored in the database, all of the data is fetched.

If array mode (see chapter Settings) is on, the maximum message array

size is read from settings. If the maximum size is not defined there, the

default is 50.

44

Next, a whitelist is created of users that have the push service enabled.

The hub context of the Hub class is fetched in order to access Hub

functionality.

There are several options regarding which messages are fetched from the

database (see chapter 3.6):

• messages with the ‘instant’ flag to only speficic clients

• messages with the ‘instant’ flag to all clients

• notifications

• popups

• alerts

• messages only to a specific user

• all messages

The fetched messages are then broadcasted either in arrays or

individually. The status and datetime when sent are updated after

broadcasting.

4.6 SignalR on the Client

SignalR is initialized client-side every time a ModulErp web page is ready.

First, the /signalr/ URL is read from the hidden field that holds it as its

value. Then, the connection is started with web sockets specified as the

primary transport.

4.6.1 Notifications and Popups

There are two implementations push messages in the ModulErp system:

notifications and popups. For notifications, a task bar and a drop-down

menu were created in the upper side of the web page. There are four

types of notifications:

• info (default)

• critical

45

• download

• warning

The respective icons for all the notifications are shown in Figure 45. The

task bar and a sample notification is presented in Figure 46. The bar

contains the amount of each type of notifications, and the actual

notifications can be accessed from the drop down menu. The notifications

can be dismissed by clicking on them. Files can be downloaded by clicking

on the download button of the notification.

Popups were created by using Telerik’s RadNotification control. There are

also four types of these popups. A sample popup is presented in Figure

47.

FIGURE 45. The icons for push messages.

FIGURE 46. The task bar with the notification popup menu open.

46

FIGURE 47. A notification popup.

4.6.2 Client-side methods callable by the server

Client-side methods that are callable by the server are described in Table

4. These were written in JavaScript.

TABLE 4. Client-side methods callable by the server

Method name Description

appendNotif Append a new notification to the drop-down

menu

appendNotifsFromArray Append possibly multiple notifications from

an array

createPopup Display a popup

dismissItem Dismiss an item in the drop-down menu

dismissMultipleItems Dismiss multiple items in the drop-down

menu

downloadFile Download a file

setArrayMaxLength Set the maximum size of an array sent to

the server

4.7 Implementations

There are two implementations of the push service in ModulERP. In the

first one, notifications are sent while checking the size of attachment files

in the system. These attachments always belong to a specific project. A

notification is sent to the key user of the respective project every time an

47

attachment exceeds the maximum file size limit. The key user can then

handle the file as needed.

In the other implementation, notifications are sent while zipping PDF files

into archives of certain maximum size. If this size is exceeded, multiple

ZIP files are created. The PDF files are end reports of work orders. The

files are generated by the ModulERP system, and users can input data

into them. After the compression is done, the ZIP archives are made

accessible to the requesting user via download type notifications.

48

5 CONCLUSION

The goal of this thesis was to create a prototype of a push service with the

SignalR library in the ModulERP solution, specifically its ASP.NET web

interface. The goal was reached – SignalR turned out to be a versatile,

easy to use library that greatly aids the creation of push services.

The prototype is ready, and there are implementations in addition to the

push service itself, such as informing users of zipped files available for

download. The prototype could be further developed to enhance

performance and reliability. Reliability would be an issue e.g. in cases of

one user having multiple clients (browser windows) open at the same time.

Most user experiences were the result of development and debugging.

After the prototype was showcased to actual users, small usability-related

fixes were made to the task bar and dropdown menu.

The push service can be further developed – a chat, for example, could be

added to the browser interface by using the service. A chat is just an

example, as the possibilities are endless. If a new version would be

developed, issues such as speed and performance could be addressed.

Multiple Hub classes could also be created in contrast to the one single

class in the prototype of the service.

49

SOURCES

Dykstra, T. & Fletcher, P. 2015. ASP.NET SignalR Hubs API Guide –

JavaScript Client. The ASP.NET Site [cited 2nd June 2017]. Available:

http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-

javascript-client

Dykstra, T. & Fletcher, P. 2014 a. ASP.NET SignalR Hubs API Guide –

.NET Client (C#). The ASP.NET Site [cited 19th September 2016].

Available: http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-

guide-net-client

Dykstra, T. & Fletcher, P. 2014 b. ASP.NET SignalR Hubs API Guide –

Server. The ASP.NET Site [cited 18th December 2015]. Available:

http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-server

Fielding. R., et al. 1999. Hypertext Transfer Protocol – HTTP/1.1:

Introduction [cited 27th April 2017]. Available:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec1.html

Fletcher, P. 2014 a. Introduction to SignalR. The ASP.NET Site [cited 12th

May 2017]. Available: http://www.asp.net/signalr/overview/getting-

started/introduction-to-signalr

Fletcher, P. 2014 b. SignalR Performance. The ASP.NET Site [cited 29th

January 2016]. Available:

http://www.asp.net/signalr/overview/performance/signalr-performance

Getify Solutions & Simpson, P. 2014. Defining Safer JSON-P [cited 11th

January 2016]. Available: http://json-p.org/

Hausenblas, M. & Hossain, M. 2015. Enable Cross-Origin Resource

Sharing [cited 18th December 2015]. Available: http://enable-cors.org/

JL-Soft Oy. 2017. JL-Soft [cited 14th March 2017]. Available:

http://www.jlsoft.fi/fi/home_fi/

http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-net-client
http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-net-client
http://www.asp.net/signalr/overview/guide-to-the-api/hubs-api-guide-server
https://www.w3.org/Protocols/rfc2616/rfc2616-sec1.html
http://www.asp.net/signalr/overview/getting-started/introduction-to-signalr
http://www.asp.net/signalr/overview/getting-started/introduction-to-signalr
http://www.asp.net/signalr/overview/performance/signalr-performance
http://json-p.org/
http://enable-cors.org/
http://www.jlsoft.fi/fi/home_fi/

50

The jQuery Foundation. 2016. Deferred Object. jQuery API Documentation

[cited 18th January 2016]. Available:

https://api.jquery.com/category/deferred-object/

Microsoft. 2016 a. ASP.NET SignalR Reference [cited 16th February

2016]. Available: https://msdn.microsoft.com/en-

us/library/dn440565(v=vs.118).aspx

Microsoft. 2016 b. CorsOptions Class. Microsoft Developer Network [cited

29th January 2016]. Available: https://msdn.microsoft.com/en-

us/library/microsoft.owin.cors.corsoptions(v=vs.113).aspx

Microsoft. 2017 a. CorsExtensions.UseCors Method (IAppBuilder,

CorsOptions). Microsoft Developer Network [cited 2nd June 2017].

Available: https://msdn.microsoft.com/en-

us/library/owin.corsextensions.usecors(v=vs.113).aspx

Microsoft. 2017 b. Introduction to WPF in Visual Studio 2015. Microsoft

Docs [cited 3rd July 2017]. Available: https://docs.microsoft.com/en-

us/dotnet/framework/wpf/getting-started/introduction-to-wpf-in-vs

Microsoft. 2017 c. Lambda Expressions (C# Programming Guide).

Microsoft Docs [cited 3rd July 2017]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/statements-expressions-operators/lambda-expressions

Microsoft. 2015. Learn About ASP.NET SignalR. The ASP.NET Site [cited

15th December 2015]. Available: http://www.asp.net/signalr/overview

Microsoft. 2003. What Is RPC? TechNet [cited 18th December 2015].

Available: https://technet.microsoft.com/en-

us/library/cc787851(v=ws.10).aspx

Microsoft. 2017 d. Windows UWP Namespaces. Windows Dev Center

[cited 3rd July 2017]. Available: https://docs.microsoft.com/en-us/uwp/api/

https://api.jquery.com/category/deferred-object/
https://msdn.microsoft.com/en-us/library/dn440565(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/dn440565(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/microsoft.owin.cors.corsoptions(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/microsoft.owin.cors.corsoptions(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/owin.corsextensions.usecors(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/owin.corsextensions.usecors(v=vs.113).aspx
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/introduction-to-wpf-in-vs
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/introduction-to-wpf-in-vs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
http://www.asp.net/signalr/overview
https://technet.microsoft.com/en-us/library/cc787851(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc787851(v=ws.10).aspx
https://docs.microsoft.com/en-us/uwp/api/

51

Mozilla Developer Network. 2015 a. EventSource – Web APIs [cited 11th

January 2016]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/EventSource

Mozilla Developer Network. 2015 b. Using server-sent events [cited 3rd

October 2017]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/Server-sent_events/Using_server-sent_events

Rouse, M. 2017. ERP (enterprise resource planning). TechTarget [cited

16th May 2017]. Available: http://searchsap.techtarget.com/definition/ERP

Rouse, M. & Steele, C. 2014. Push Notification Definition. TechTarget

[cited 15th December 2015]. Available:

http://searchmobilecomputing.techtarget.com/definition/push-notification

Anderson, R. & Thiagarajan, P. 2013. OWIN Startup Class Detection.

Microsoft Docs [cited 1st June 2017]. Available:

https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-

katana/owin-startup-class-detection

Wasson, M. 2013. Getting Started with OWIN and Katana. The ASP.NET

Site [cited 18th December 2015]. Available:

http://www.asp.net/aspnet/overview/owin-and-katana/getting-started-with-

owin-and-katana

https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
http://searchsap.techtarget.com/definition/ERP
http://searchmobilecomputing.techtarget.com/definition/push-notification
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-startup-class-detection
https://docs.microsoft.com/en-us/aspnet/aspnet/overview/owin-and-katana/owin-startup-class-detection
http://www.asp.net/aspnet/overview/owin-and-katana/getting-started-with-owin-and-katana
http://www.asp.net/aspnet/overview/owin-and-katana/getting-started-with-owin-and-katana

APPENDIXES

