

Toni Lääveri

Integrating AI for Turn-Based 4X Strategy

Game

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

29 September 2017

Preface

This postgraduate study was done as part of the Master of Engineering Degree Program

in Information Technology for the Metropolia University of Applied Sciences. The moti-

vation for this thesis originated from personal interest in both the 4X strategy games and

the game artificial intelligence in general, having experienced this genre first time when

playing Sid Meier’s Civilization back in 1993 on the Macintosh LC II computer.

While I have been working in the game industry for over a decade now, the possibilities

for exploring this particular area of interest have been limited, so the possibility of using

it as the topic of my thesis was a rather natural choice. Although the scope of the re-

search was very broad and the results did not reach the practical levels which I hoped

for, working on this project was highly rewarding and will further motivate me for years

to come.

I would like to thank my supervisor Ville Jääskeläinen, my family and friends for their

support and encouragement during the writing of this thesis.

Toni Lääveri

Helsinki, 29.9.2017

 Abstract

Author(s)

Title

Number of Pages

Date

Toni Lääveri

Integrating AI for Turn-Based 4X Strategy Game

100 pages + 6 appendices

29th September 2017

Degree Master in Engineering

Degree Programme Information Technology

Instructor(s) Ville Jääskeläinen

Although computer games have been around for over half a century, the gaming has ma-

tured to become a mainstream phenomenon in the past decade, partly propelled by the

breakthrough of mobile platforms which provide users access to a vast selection of games.

As the complexity and selection of games is constantly increasing, there is growing pressure

to provide meaningful artificial intelligence (AI) opponents in certain gaming genres.

This master’s thesis focused on finding a way to implement an AI player for a turn-based 4X

computer strategy game. As there was no suitable project at work to apply this research on

at the time of the study, the project was created as a personal venture with a theoretical

game used as the source for requirements.

In the research phase, dozens of sources of existing literature and information about the

field were analyzed, which included extraction of the knowledge and technologies appropri-

ate for this project. The selected technologies were documented in the thesis, and their use

cases were identified, and examples were created for most of them.

A high-level technical design for AI integration was created as an outcome of this thesis,

which describes a proposed architecture for the AI opponent and combines the technologies

evaluated in the thesis into a modular framework. These features can also be leveraged in

the player assistance features such as micro-management automation and advisor func-

tions.

The resulting design was supported by actual prototype development done in Unity Editor

of selected key technologies. These prototype implementations included a rule-based sys-

tem inference engine, A* pathfinding on a hexagonal grid map, a spatial database for track-

ing map data such as player influence, and tactical pathfinding leveraging the information in

this database.

Although a complete game was not created during the project, the technical design and

research done can be used as a foundation for building AI opponents in turn-based strategy

games in future. The practical implementations will most likely also provide feedback on the

possible shortcomings of the design and possibilities for improvement, which will be reflected

back on the design.

Keywords Artificial Intelligence, Computer Games, Game Industry, Pro-

totyping, Strategy Games, Technical Design, Unity

Contents
Preface

Abstract

Table of Contents

Glossary

List of Figures

List of Tables

1 Introduction 1

1.1 Scope of Thesis and Research Design 3

2 Background 6

2.1 History of Artificial Intelligence in Games 6

2.2 4X Strategy Games 7

2.3 Prototype of Strategy Game as Foundation 10

2.4 Requirements 12

2.4.1 Common Features 12

2.4.2 Computer Player Specific Features 13

2.4.3 Optional Features 14

3 Technology 16

3.1 Introduction to Traditional Board Game Techniques 17

3.2 Virtual Player 19

3.2.1 Multi-Tier AI Framework 19

3.3 Pathfinding 21

3.3.1 A* Algorithm 22

3.3.2 Optimizations 24

3.4 Decision Making 24

3.4.1 Finite State Machines 25

3.4.2 Decision and Behavior Trees 27

3.4.3 Fuzzy Logic 31

3.4.4 Rule-Based AI 37

3.4.5 Utility Theory 40

3.5 Influence Maps 43

3.6 Goal-Oriented Behaviors 48

3.6.1 Goal-Oriented Action Planning 48

3.6.2 Hierarchical Task Networks 52

3.6.3 Composite Tasks 54

3.6.4 Multi-Unit Planning with Hierarchical Plan-Spaces 55

3.7 Diplomatic Reasoning 60

3.7.1 Opinion Systems 61

3.8 Customizing AI 65

3.8.1 Data-Driven Design 66

3.8.2 Scripting Languages 67

3.9 Cheating 69

3.10 Performance Considerations 69

3.10.1 Execution Management 70

3.10.2 GPU Offloading 72

3.11 Other Evaluated Methods 73

4 Proposed Solution 75

4.1 Architecture Overview 75

4.2 AI Model and Components 76

4.2.1 Strategic Tier 77

4.2.2 Operational Tier 78

4.2.3 Tactical Tier 82

4.2.4 Individual Agents Tier 83

4.2.5 AI Toolbox 85

4.2.6 Execution Management 86

4.3 AI Diagnostic Tools 86

4.3.1 Automated Testing 87

4.4 Scripting Using LUA 87

4.5 Data Model for AI 88

5 Evaluation 89

5.1 High-level Technical Design 89

5.2 Technology Prototyping 90

5.2.1 Pathfinding with Generic A* Engine Prototype 90

5.2.2 Spatial Database and Influence Mapping Prototype 91

5.2.3 Tactical Pathfinding 92

5.2.4 Inference Engine Prototype 93

6 Discussion and Conclusions 94

References 96

Appendices
Appendix 1: Screenshots of A* Pathfinder Prototype

Appendix 2: Screenshots of Spatial Database Prototype Levels of influence

Appendix 3: Screenshots of Tactical Pathfinding Prototype Modes

Appendix 4: Screenshots of Inference Engine (Editor Mode) Prototype

Appendix 5: Source Code of Pathfinder and Spatial Database Prototype

Appendix 6: Source Code of Inference Engine Prototype

Glossary

4X EXplore, EXpand, EXploit and EXterminate, a strategy game sub-

genre.

A* A-star, pathfinding algorithm used often in games.

AI Artificial Intelligence.

BT Behavior Tree, a decision-making method.

CPU Central Processing Unit, the computer processor

DT Decision Tree, a decision-making method.

FSM Finite State Machine, a computational model used to control for exam-

ple game logic, behaviors and animations.

GOAP Goal-Oriented Action Planning, an approach to implementing Goal-Ori-

ented Behavior.

GOB Goal-Oriented Behavior, method of decision making where the needs

of AI are expressed as goals which it wants to fulfill.

GPU Graphics Processing Unit, a specialized computer hardware dedicated

to accelerating 2D and 3D graphics

GPGPU General-Purpose computation on the GPU, term given for using the

Graphics Processing Units to other tasks than rendering

Hex A cell in hexagonal map, with shape of hexagon, i.e. six-sided regular

polygon.

HTN Hierarchical Task Network, a planning method for decision-making.

ID3 Iterative Dichotomiser 3, an algorithm for generating Decision Trees

from sample observation data.

IDA* Iterative Deepening A*, a variation of Iterative Deepening Search (IDS)

algorithm which uses A* heuristic for cost estimation.

IDS Iterative Deepening Search, algorithm which traces a state-space

graph iteratively by increasing search depth on each pass.

NPC Non-Player Character, an entity in game which is controlled by the

computer.

OO Object-Oriented, a programming paradigm in which code is structured

in classes and data is presented as objects which are instances of

these classes.

STRIPS Stanford Research Institute Problem Solver, an approach for imple-

menting Goal-Oriented Behavior from the 1970s.

Unity Popular game engine and development environment, also known as

Unity3D.

QC Quality Control; person and/or department in software development for

testing the quality of created product.

List of Figures

Figure 1. Game industry value chain as defined by Ben Sawyer [2]. 1

Figure 2. Research design of the thesis. 4

Figure 3. The original Sid Meier’s Civilization (Macintosh version pictured). 8

Figure 4. Master of Orion II. 9

Figure 5. Galactic Civilizations Gold for OS/2 [12]. 10

Figure 6. The Unity3D Editor running on macOS platform. 11

Figure 7. An example of AI architecture for turn-based strategy games [17 p. 815]. 16

Figure 8. Minimaxing example in a game tree. 18

Figure 9. Example of multi-tier AI for military strategy game [19]. 20

Figure 10. Examples of node graphs created from maps for pathfinding. 21

Figure 11. A* Pathfinding on hexagonal grid with Manhattan-distance heuristic. 23

Figure 12. Decision making schematic by Ian Millington [17 p. 303]. 25

Figure 13. A possible FSM for controlling scout behavior. 25

Figure 14. Example of hierarchical FSM for worker unit. 26

Figure 15. The decision logic from Figure 14 converted into a decision tree. 27

Figure 16. Decision tree generated by ID3 algorithm. 29

Figure 17. A Decision tree expressed as behavior tree with identical logic [23]. 30

Figure 18. Fuzzy process overview [6 p. 192; 17 pp. 344-354]. 32

Figure 19. Threat assessment example case for Fuzzy Logic. 34

Figure 20. Membership functions for force strength ratio and diplomatic reputation. 35

Figure 21. Overview of Rule-Based System [4 p. 138; 17 p. 404]. 37

Figure 22. Inferring state of tech tree from knowledge of a single technology. 39

Figure 23. Simplified flow of information in a Utility System. 40

Figure 24. Commonly used formulas for calculating utility factors [25]. 41

Figure 25. A possible Utility System for diplomatic decision making. 42

Figure 26. An example of map of unit threat influence on hexagonal grid. 45

Figure 27. A possible grouping of units for analyzing strategic dispositions. 46

Figure 28. Abstract illustration of GOAP planning process. 49

Figure 29. A partial state-space search tree for GOAP. 50

Figure 30. Iterative Deepening A* search example. 51

Figure 31. Overview of HTN planning system [32]. 52

Figure 32. Illustration of a simplified HTN planning example. 54

Figure 33. Structure of Composite Tasks. 55

Figure 34. Comparison of state-space and plan-space planning [34]. 56

Figure 35. Illustration of the plan-space graph (adapted from [34]). 58

Figure 36. An example plan for invasion of enemy colony. 59

Figure 37. Opinion System adapted for 4X strategy games. 61

Figure 38. Opinion transient offset function example by Adam Russell [35 p. 544]. 65

Figure 39. Frequency-based scheduling of tasks [17 p. 696]. 70

Figure 40. Example of a Hierarchical Scheduling System [17 p. 707]. 71

Figure 41. Abstract illustration of AI interaction with the game engine. 75

Figure 42. The core AI model and its components. 77

Figure 43. Overview of the Strategy Manager. 78

Figure 44. Overview of the Research Manager 79

Figure 45. Overview of the Diplomacy Manager. 79

Figure 46. Overview of the Colony Manager. 80

Figure 47. Overview of the Army Manager. 81

Figure 48. Overview of the Expansion Manager. 82

Figure 49. Overview of the Military Coordinator. 83

Figure 50. Overview of the Individual Fleets. 84

Figure 51. Overview of the Individual Colonies. 85

List of Tables

Table 1. Roles of levels in the multi-tiered AI model [19]. 20

Table 2. Comparison of pathfinding algorithms [4 p. 171]. 22

Table 3. Input observations for ID3 algorithm. 28

Table 4. Most common behavior tree node types [23]. 31

Table 5. Comparison between Boolean and Fuzzy Logic operators [6 p. 200]. 33

Table 6. Output membership degrees of the fuzzification. 35

Table 7. Fuzzy rule matrix for combining the force size ratio and reputation. 36

Table 8. List of common influence calculation methods [17 pp. 502-505]. 44

Table 9. Some possible tasks for the plan-space planning (adapted from [34]). 57

Table 10. Some possible planner methods (adapted from [34]). 58

Table 11. Examples of some potential opinion values in diplomacy. 62

Table 12. Some possible deeds and their weights. 63

Table 13. Table of data models. 88

1

1 Introduction

Since the early days of first publicly available video games in 1970s, the business around

gaming has grown to a large and high-revenue business, known as interactive entertain-

ment or video game industry. These are some key facts about the industry mentioned in

Entertainment Software Association’s annual report of 2015 to give perspective about

the business case for this project [1 p. 14]:

• Video game industry generated $23 billion sales in United States alone in 2014

• Gamers spent globally estimated $71 billion on games in 2014

• There are 155 million people in United States that play video games

• A total of 1641 video game companies are in United States alone, spread along

1871 locations

• Education of video game industry is being offered in 496 programs in 406 schools

in United States

The process of game production can be simplified as an illustration of the value chain of

a production, as seen below in Figure 1:

Figure 1. Game industry value chain as defined by Ben Sawyer [2].

The “Product and talent” and “Production and Tools” sections of the value chain are most

relevant to the work done in this thesis.

The	users/players	of	the	games

Computer	or	console-based,	accessed	through	online	media	
or	mobile	devices	such	as	smartphones.

”Publishing"	industry,	 involved	in	generating	and	marketing	
catalogs	of	games	for	retail	and	online	distribution.

Generates	development	middleware,	game	engines,	and	
production	management	and	content	production tools.

Developers,	designers	and	artists

Pays	for	development	of	games	and	seeks	profit	through	
licensing	of	the	titlesCapital	and	publishing

Product	and	talent

Production	and	tools

Distribution

Hardware

End-users

2

Time Constraints in Production

In game industry, the schedule of game production has a crucial role because it directly

affects the development costs of the title. Due to this, there is limited time for doing spe-

cific pioneering research during game development, as there is a lot of pressure to meet

deadlines and to provide value for the producer. Sometimes, there are separate teams

which will do engine and technology development, but even in that case prioritization

needs to be done for optimal developer resource allocation. In the author’s experience,

Artificial Intelligence (AI) development often ends up being one of the fields which will

get less focus [3].

Role of AI Programming

Because of the previously mentioned factors, especially in small and medium-sized

teams there usually is not a dedicated AI programmer, but those features will be rather

added into the game by gameplay and generalist programmers. This allows better flexi-

bility in the team resource management, and usually generalist programmers do have

good basic knowledge on the topic to create usable and functional implementations.

However, when the requirements for the AI features and quality increase, dedicated skills

in AI programming will prove to be invaluable.

Comparison between Academic AI research and Game Industry

When people talk about AI, they are generally referring to the academic AI which is quite

different from the game AI. While academic AI aims to solve problems requiring intelli-

gence, the purpose of game AI is to give illusion of intelligence and entertain the player.

The goal of AI research in academic setting is usually to create publications and do orig-

inal research, while game AI development aims to create a game. Academic AI research

is often funded by grants, academic institutions or sponsorships, while game AI is funded

by the game publishers. It’s said that there is strong division between the two fields, but

in practice both parties have the possibility to benefit from each other; with help of the

results of academic research, game developers can add increasingly advanced AI to the

games, while academic AI research can benefit from game engines which they can use

for their research [3].

3

1.1 Scope of Thesis and Research Design

The goal of this thesis was to produce a technical design for adding AI features into a

turn-based strategy game. This included:

• Figuring out the requirements imposed by the game for the AI.

• Determining which of the existing solutions in the field of AI knowledge were ap-

propriate to satisfy those goals.

• Designing the best methods for integrating them in the game.

• Choosing proper balance between AI programmers’ and game designers’ work-

load by necessary tools.

A full, working game where the technical design would have been implemented was out

of the scope of this thesis, but limited amount of prototyping was set as a secondary goal

during the writing process to provide some practical analysis on the feasibility of theoret-

ical choices made in the thesis. The research design is illustrated in Figure 2.

4

Figure 2. Research design of the thesis.

Publish	Prototype	Source	Code

Extract	Data	from	Prototype

Refactor	Prototype	Where
Needed

If	Feasible	in	Schedule,
Integrate	to	Prototype

Technical	Foundation

Gather	Requirements

Reach	Conclusions	and	Summarize	
ResultsFinish	Thesis

Get	Feedback	from	Prototype
Analyze	Results	and	Finalize

Evaluation

Finalize	Outcome
(Formulate	Top-Level	Overview,

Revise	Technologies)

Evaluate	Technologies	and
Add	to	Proposed	Solution

Background	Research

Identify	the	Scope	of	the	Thesis

Start	Project

Gather	Sources

Literature	Review

Iterate	Technologies

Review

Analyze	Outcome

Thesis Prototype

Technology

Source

Sources

Source Source

Technology Technology

Identify	relevent
technologies

5

The research design (Figure 2) shows the phases of the project and the respective thesis

and prototype work involved in each of them. Most of them match the chapters in this

thesis, in the following order:

1. Introduction chapter outlines the goals and motivations behind the thesis work

and gives introduction to the game business to which this work relates to. The

initial prototype work was also started at this point, and the requirements it im-

poses for project were gathered

2. Background chapter contains brief history of AI in games and the related gaming

genre, and describes the prototype and lists the previously gathered require-

ments. During this phase, the relevant technologies were picked

3. Technology chapter was created through iteration of selected technologies, dur-

ing which the purpose of each one of them was described in the context of this

thesis work. Also, some of them were integrated in this phase to the prototype

4. The Proposed Solution was developed initially during the technology iteration

phase, and finalized in the review phase. This included outlining the high-level

system, during which prototype was also refactored based on the results of earlier

integration

5. In Evaluation chapter, the feasibility of proposed solution is evaluated, and this

evaluation is partially backed by the data that was extracted from the prototype

at this stage

6. The Discussion and Conclusions chapter analyses the results of the thesis, eval-

uates the outcome of the research and contains suggestions for further improve-

ments

In addition, the project also produced a partially working prototype, for which the source

code was included in the appendices of this thesis.

6

2 Background

This section gives a brief overview of the history of game AI and the 4X strategy gaming

genre which the project belongs to. It also describes the technical starting point of the

prototype and outlines its requirements for the AI.

2.1 History of Artificial Intelligence in Games

The concept of artificial intelligence itself is nothing new; even in ancient times, mankind

has been interested in the concept of artificial life and intelligence. This shows in the

various fictional stories and attempts to build automatons even centuries ago. However,

the major breakthroughs in electronics and computer technology in past century have

allowed unprecedented advancement in research of artificial intelligence [4 pp. 4-5].

Early Applications

After the first general purpose programmable computers were invented, it did not take

long time until the first AI programs were developed. One of the first published ones was

Alan Turing’s chess program, although at the time the computers were not advanced

enough to completely run it [4 p. 6].

Although there has been constant academic interest in AI research, breakthrough in

game AI started in the 1970’s, when first video arcade games were developed. They

featured primitive computer opponents such as the aliens in Space Invaders and ghosts

in Pacman. Although the AI in those games operated on simple deterministic algorithms,

they gave the player impression of intelligent behavior. Since the early video games, the

game AI development has slowly advanced, and different gaming genres have their own

specialized requirements, ranging from tactical real-time Non-Player Characters (NPCs)

in first-person shooters to complex strategic planning in strategy games, and even artifi-

cial life simulation [5].

Current State and Future Development

In the past decades, there has been a lot of progress especially in terms of graphics

quality and storytelling aspects of games. With the increased complexity and depth of

7

games turning into interactive entertainment, there is increased desire for creating ad-

vanced artificial intelligence functionality to improve the gameplay experience and im-

mersion for the players. Thanks to the constantly advancing computing capabilities of

modern computers there are now better possibilities to implement advanced AI than ever

before, such as increased focus on self-learning AIs that will adapt and learn from players

[6 pp. 3-5].

2.2 4X Strategy Games

The term “4X” was created by Alan Emrich, who used it in review of “Master of Orion” in

1993 for the first time:

“...it features the essential four X's of any good strategic conquest game:

EXplore, EXpand, EXploit and EXterminate. In other words, players must

rise from humble beginnings, finding their way around the map while build-

ing up the largest, most efficient empire possible. Naturally, the other play-

ers will be trying to do the same, therefore their extermination becomes a

paramount concern.” [7]

Although majority of 4X strategy games are turn-based, there are a few examples of real-

time games which are considered to belong to this genre. However, the classification of

games in 4X genre can be difficult, and sometimes a few additional criteria have been

used to narrow what fits the definition, such as empire economy control and diplomacy

versus combat-focused gameplay in regular strategy games [8].

Unlike many other game genres, strategy games are highly dependent on skilled AI to

provide meaningful gameplay experience for the player. As the opponents’ tactics and

strategy are foundation of the core gameplay challenge for player, a poorly implemented

computer AI would most likely be acceptable by casual gamers, but advanced players

would find it boring and unrewarding [5].

Civilization

Sid Meier’s Civilization series is one of the best-known examples of turn-based 4X strat-

egy games (see Figure 3). The game has taken heavily inspiration from previous board

8

and computer games such as Risk and Empire, but also added novel features such as

technology tree [9].

Figure 3. The original Sid Meier’s Civilization (Macintosh version pictured).

Originally released in 1991, the series has had six major releases and several spin-offs.

In Civilization, the player takes role of leader of a nation which he/she will lead from stone

age to modern day. In the first game in the series there were only three conditions for

ending the game; world domination by eliminating all opponents, building a spaceship to

reach Alpha Centauri, or running out of time in the year 2100. Later versions of game

have gradually added more victory and endgame conditions along with many other fea-

tures in each major release [9].

Master of Orion

In Master of Orion (see Figure 4), the players control number of different races which

compete for control of the galaxy. The game features exploration, discovery of new tech-

nologies, dealing with other players with diplomatic or military means, and endgame con-

ditions which are similar like to the ones in Civilization [10].

9

Figure 4. Master of Orion II.

Besides being space-themed, the game trades off the grid-based movement and explo-

ration with a more restricted and simpler model where movement is only allowed be-

tween solar systems. Other major difference is also how battles are handled; instead of

single-unit attacks, the combat happens on a separate combat screen where multiple

fleets of both participants are fighting at once. Players have control over individual ships

and weapons, which can lead to complex tactical battles [10].

The game has been influenced by some earlier games, such as Reach for the Stars. The

original series had three releases, and the franchise was recently rebooted by Wargam-

ing on Steam [7; 10].

Galactic Civilizations

Galactic Civilizations (see Figure 5) is a series of strategy games, which was initially

released for OS/2 in 1993 by Stardock Corporation. The game combines the turn-based

10

grid map familiar from Civilization with space exploration theme like in Master of Orion

[11].

Figure 5. Galactic Civilizations Gold for OS/2 [12].

Galactic Civilizations was one of the few games released for IBM’s OS/2 operating sys-

tem, and it received recognition even from IBM who licensed the game and included it

rebranded as “Star Emperor” in their FunPak software bundle. However, the OS/2 oper-

ating system had limited user base and later lost its remaining market share to Microsoft

Windows on the PC platform, thus later releases were made for the Windows platform,

most recently on Steam [11; 13].

2.3 Prototype of Strategy Game as Foundation

Due to time constraints, the implementation part of this thesis focuses on working on a

theoretical prototype of the game. This allows the development to focus on areas rele-

vant for artificial intelligence integration.

11

The game itself is be turn-based, with each player performing actions in sequential order.

The game world is represented as a hexagonal grid map, to which players have their

own views depending on exploration and espionage status. The game draws inspiration

from Civilization and Master of Orion series, creating mix of them with resemblance of

the original Galactic Civilizations.

Unity 3D

For rapid prototype development, an off-shelf game engine is used. Unity 3D (see Figure

6) is one of the most popular engines today, which has not only gained popularity as

mobile game development platform, but also has seen use in recent AAA-grade desktop

titles such as the recent remake of Master of Orion and city-planning simulator Cities

Skylines [14].

Figure 6. The Unity3D Editor running on macOS platform.

Originally released for Mac OS X platform in 2005, the engine has had five major re-

leases and is currently available for both Windows and Mac OS X [15]. Unity features

component-based architecture, advanced 3D engine that can target various graphic

APIs on several platforms, NVidia PhysX engine and for physics simulation, and various

other frameworks. Gameplay logic in this project is implemented in C#, which is sup-

ported as default scripting language by Unity (other option being the UnityScript). It is a

12

mature and high-level language originally developed by Microsoft, which is integrated

into Unity through the Mono framework [16].

The choice of Unity for prototyping does not limit the options for selecting different game

engine (or building a custom one) for the final game, but given Unity’s track record of

being the platform of choice in number of high-quality titles, using it for the actual pro-

duction is a viable option.

2.4 Requirements

To evaluate the technical needs for AI integration, a set of requirements was created

based on the game concept, which outline the expected features of the game. These are

high-level non-functional requirements, which also outline the system-level design.

2.4.1 Common Features

There is a set of features which are not specific to AI players, but are also used by human

players in the game. A historical challenge for 4X games has been the amount of micro-

management which increases as the game progresses. The amount of micro-manage-

ment is directly proportional to the size of game world, complexity of game economy,

and length of the game. This has potential to frustrate players and when they have to

spend excess amount of time dealing with lots of repetitive low-level tasks, instead of

focusing in larger scale strategies and planning.

There are various ways to reduce this micromanagement which have been added to

recent 4X games, and there are a few ones that considered when defining the require-

ments. The quality of artificial intelligence to which mundane tasks are delegated to is

important, because if a poor implementation makes players feel that automation makes

worse decisions than they would themselves do, it would discourage them from using

automation altogether and make the attempt to reduce micromanagement void.

Colony management

There are a few aspects in managing colonies which can be delegated to automatic

colony governor AI:

13

• Production management

• Work force distribution

• Tax rates

• Import and export balancing

• Security level

It should be noted that having the support for automatic control of these properties of

colony does not prevent the human player from altering or disabling any of them if he/she

feels like it. Also, depending on how much configuration will be exposed to the player,

any of these could be parametrized with user-specified customization.

Automated units

Another good opportunity to reduce mundane tasks for the human player is the automa-

tion of certain unit actions:

• Worker automation (build new improvements and adjust existing ones)

• Automatic exploration (reveal unexplored space and patrol previously explored

areas)

The above tasks are good fit to be implemented with AI automation, as the scope of

strategic choices made in them are focused on certain isolated parts of the game, and

thus do not depend on the high-level strategic plans player may have. The worker auto-

mation has the possibility to determine best possible improvement actions based on the

economic status of the player’s empire and colonies, and can adapt also previously made

improvements to match the most recent situation. Exploration is also by itself an isolated

function, where different input patterns can be fed to the exploration AI to prioritize areas

to explore for example based on evaluation of military threat on influence map.

2.4.2 Computer Player Specific Features

The rest of AI features are specific for the computer player, and they are used to simulate

the actions a human player would be performing in the game.

14

Long-term Planning

The computer player needs to be able to choose and strive for various long-term goals,

most important one being desired victory condition. The AI should be able to reach this

goal by dividing the plan into smaller sub-plans, and adjusting them to match the con-

stantly changing conditions which are affected also by other players during the game.

AI State Persistency

All the data used by the AI should be serializable, so that the game state can be saved

and loaded at any time without disrupting the functionality of the computer player’s deci-

sion making.

Diplomacy

The AI should have ability to make diplomatic decisions, including declaring war and

creating alliances. It should have possibility to do those choices in informed manner, with

knowledge about the other player’s economic and military power, past trustworthiness,

and any other game parameters (i.e. common ideologies, personalities, etc.) that might

make the other player more or less favorable.

2.4.3 Optional Features

There is a set of features which should also be evaluated, though they are not required

by the core gameplay, and thus can be considered optional. If implemented, they do

though have possibility to enhance playability value for more hard-core players.

Tactical combat

When battles are initiated between fleets, they are by default be resolved using simplified

simulation which considers only the ship statistics, numbers, combat bonuses and other

predetermined factors affecting the battle. This can be enhanced by introducing tactical

combat, in which entire battle is fought as turn-based mini-game, and moves of computer

players are handled by tactical AI. Human player can either choose himself/herself all

moves against the opponent, or activate an automatic battle mode in which the same AI

features will fight the battle also for him/her.

15

Ground combat

The fight over control of colonies on planets is handled through ground combat. By de-

fault, the results of these battles will be determined by the ground troop technology level,

number of troops, and other possible combat bonuses. There is possibility to further ex-

pand this battle into more fine-grained ground combat simulation similar to the tactical

combat in space, where players would have more opportunities to control individual pla-

toons of troops. Practically this would be similar to the previously detailed tactical mode

and could leverage some of the technologies, but would happen on planet surface in-

stead of space.

16

3 Technology

Since the early applications of AI in computer games, the number and complexity of

technologies involved have gradually grown, partially with help from advancements in

processing performance, but also due to research done in the field of artificial intelligence

research done for academic purposes. The technologies introduced in this section are

chosen by their potential usability in the game being created, allowing the scope of thesis

to focus on the most relevant ones.

General Architecture

When creating AI for strategy game, attention should be given to the design of overall

architecture; technologies involved, how they are bound together, and how they impact

the gameplay. According Ian Millington, turn-based strategy games share many aspects

with real-time strategy games, with most important ones being Pathfinding, Decision

Making, Tactical and Strategic AI, and Group Movement [17 pp. 809-815] as shown be-

low in Figure 7.

Figure 7. An example of AI architecture for turn-based strategy games [17 p. 815].

Figure 7 shows a possible architecture for turn-based strategy games, although exact

model has variations depending on the gameplay elements involved in the design. The

Movement

Tactical/Strategic AI

Decision making

Supporting technology Execution Management

Tactical Analysis

Rule-based system/custom code
(Strategic decisions)

Pathfinding

Difficulty of found paths
may influence decisions

Units can be moved directly without
explicit movement algorithms

17

technologies presented in this thesis use that model as a starting point, with adjustments

done to suit the exact requirements of this project.

3.1 Introduction to Traditional Board Game Techniques

As previously briefly mentioned in Chapter 2.1, one of the earliest applications for com-

puter game AI was the game of chess. Since those early days, a large amount of time

and effort has been spent on research and studying AI for several board games which

have provided both academic and practical challenge for the researchers. During the

past decades, a set of algorithms has gained foothold to become the foundation shared

by many of the board game AIs, and a few key concepts are introduced in this chapter

[17 p. 647].

Game Tree

The most important concept for the majority of board games is the game tree, which

represents the game states as nodes in the tree, and all possible moves as branches

leading from nodes to new possible states. With this data structure, the goal for the AI is

to choose one of the branches as a move it should make, and needs to use various

algorithms to find out which move is the best one it can make [18 pp. 16-29].

Minimax

When evaluating the game tree, the basic idea is to use a heuristic to give each possible

move a score, which indicates how good the move would be for the player; in single-

player games, the heuristic could for example be the number of moves to finish a game.

The score of each move bubbles back up in the search tree, and after scoring all possible

moves the AI just needs to choose the move that has the best score. However, when

two or more players are involved, the evaluation algorithm should not only try to find the

best score for the player, but also acknowledge that the opponent will try to choose a

move that yields the least score for the player. Thus, when bubbling up the scores the

minimum score should be picked for enemy moves, and player should choose move

which give the largest of the minimum scores, hence the name “Minimax” of the algorithm

[18 pp. 30-39]. An example of the basic principle in minimax algorithm can be seen below

in Figure 8.

18

Figure 8. Minimaxing example in a game tree.

In this case, the best move with 2-ply search would be p2, because it would end up with

score of 5 for the player. Other moves end up with lower score, because move p1 would

allow opponent to do move e11 resulting with score of 2, and p3 would allow move e31

with score of 4, both of which are lower than the smallest score of 5 given by move e23.

The challenge with game trees is the balance between ply depth and processing power

requirements; the deeper the tree is, the number of possible moves usually increases

exponentially, and so does the time required to process it. On other hand, if the search

depth is too short, the AI cannot predict the game events far enough in advance, and

might not be able to predict possible “killer” moves which might decide the winner of the

game in long run. There are various methods which have been developed to help and

speed up searching the game trees, including Alpha-Beta Pruning, Killer Heuristic, Al-

pha-Beta Windows, and Transposition Tables [18 pp. 40-60; 17 p. 651]

Applications in turn-based strategy games

Although there are similarities between board games and strategy games, the complexity

and number of possible moves during each turn in strategy games causes the size of

game tree to grow so large, that using traditional board game AI algorithms such as

minimax becomes unfeasible in most situations. There are however certain cases in

which using some of the techniques are beneficial, such as using cost estimation similar

to the game tree scoring approach with task planning which can be used for example in

decision making for research, construction, troop movement and military actions [17 pp.

688-670].

6

3

76 5

59

94 852 4

p1 p3

e11 e12

p2

e13 e21 e22 e23 e31 e32 e33

19

3.2 Virtual Player

Traditionally the AI has been implemented in games through the concept of AI agents,

which are usually divided in two types: Characters and Virtual Players. Characters ap-

pear as visible entities in the game that player can usually interact with; they be as simple

as ghosts in Pacman, more advanced enemies like demons in Doom, or other NPC op-

ponents. They can either be directly involved in the gameplay, or just exist to add to the

ambience and general immersion of the game [4 pp. 11-12].

Virtual Players on other hand do not usually have physical representation in the game

world, but instead replace other human opponents in game and assume the tasks and

responsibilities of that player. The classic example for this kind of AI is used in board

games such as Chess, where the Virtual Player decides which moves it should make in

the same way as a human player would. This model applies to turn-based strategy

games, where the individual units in the game do not usually contain any intelligence,

but all decisions are made by the Virtual Player. Exception to this are real-time strategy

games, where the behavior of individual units has important role in the game, but that

subtype of strategy games is out of the scope of this thesis [4 pp. 16-17].

For this thesis, the design of the Virtual Player is the central outcome of the research

project, as it is an umbrella concept that encapsulate all the supporting technologies

studied in this project.

3.2.1 Multi-Tier AI Framework

Building on the principle of the strategy game AI architecture shown earlier in Figure 7,

the multi-tiered AI framework approach is based on separating responsibilities of the AI

to individual levels. The structure framework resembles the military hierarchy, in which

high-level AI sets the general strategy and goals, which translate to commands that are

given to the next level, which set their own goals to be able to fulfill those orders. This

continues until the individual unit level is reached, where the commands are turned into

actions performed by the units [17 p. 544]. An example of this top-down command hier-

archy is shown below in Figure 9.

20

Figure 9. Example of multi-tier AI for military strategy game [19].

In the example, some possible situational projects are shown on their source level with

destination visualized. The roles of these individual levels used in the model are de-

scribed below in Table 1.

Table 1. Roles of levels in the multi-tiered AI model [19].

Level Role

Strategic Intelligence Knowledge of the entire empire, management of grand

strategy, goals, global resource levels, research and diplo-

macy

Operational Intelligence Divided into activity groups, can track also non-combat ac-

tivities such as economic and diplomatic operations

Tactical Intelligence Information about encountered opponents, geography, re-

sources

Individual Units Pathfinding, unit movement, combat

There are also other possible ways of building the hierarchy in the framework, including

bottom-up approach, where individual units are autonomous and higher levels of the

hierarchy just provide intelligence and general information about the game world. It

should be noted that the framework allows information anyway to pass in both directions

Initialting diplomatic actions

Massing of units
Protection of region

Transfer of resources
Fortification of a location or region

Opponent incursion

Discovery of opponent

Deep strategic penetration
Strong reconnaissance

Flanking Maneuver
Envelopment

Multi-Tier Levels Situational Projects

Individual Units

Tactical Intelligence

Operational Intelligence

Strategic
Intelligence

21

in the model, depending on how the gameplay requirements imposed on the AI [17 p.

544; 19].

3.3 Pathfinding

One of the most important features in nearly any game dealing with a map with entities

that should be able to navigate on it is pathfinding. There are various maps and grids

that can be considered to be node graphs as seen in Figure 10, to which graph search

algorithms can be applied to. Of the examples shown, hexagonal grid is used for pre-

senting the game world in this project.

Figure 10. Examples of node graphs created from maps for pathfinding.

The basic case is the ability to find shortest route from point A to point B. To do this,

there are several graph and tree search algorithms, the most common ones used in

games are summarized in Table 2.

A

B

A

B

A

B

22

Table 2. Comparison of pathfinding algorithms [4 p. 171].

Algorithm Description Benefits Drawbacks

Breadth first

search

Simple algorithm, but does

not consider movement

cost.

Most simple path-

finding algorithm

Not optimized

Does not always

return shortest

path

Dijkstra’s al-

gorithm

Improvement on the

breadth first search which

adds path cost

Guaranteed to find

shortest path

Not optimized

A-star (A*) Combines Dijkstra’s algo-

rithm with a case-specific

heuristic value to the cost

estimation function.

Guaranteed to find

shortest path

Heuristic helps op-

timize the search

No major draw-

backs

There are numerous other algorithms, but due to simplicity this study only considers the

commonly used ones shown in the above table. Because the maps in the game are

mostly generated at runtime, have a large number of cells and are highly dynamic, the

possibility to precompute navigation data is limited.

3.3.1 A* Algorithm

The A-star (A*) algorithm is one of the most used pathfinding algorithms in games, as it

is relatively simple to implement, and has good performance. Because of this, it was

chosen as the default pathfinding algorithm for the game. An example of A* pathfinding

case is shown below in Figure 11.

23

Figure 11. A* Pathfinding on hexagonal grid with Manhattan-distance heuristic.

The pathfinding starts from the hex on left-hand side of figure with black dot, and target

cell is indicated with checkmark on right-hand side of the grid. Red color indicates cells

with higher movement cost of 5, while other cells only cost 1 to move through. The search

begins by putting hex coordinate of starting cell into the priority queue. During each iter-

ation, the first item is removed from the priority queue (one with highest priority), priority

is calculated for each neighbor cell which has not yet been processed, and each of them

are added into the queue. To calculate the priority, the A* algorithm uses priority formula

shown in Equation (1) [20] below:

 ! " = 	% " + ℎ " (1)

In which f(n) is the resulting priority, g(n) is movement cost for this specific cell, and h(n)

is the additional A* heuristic value. In this example, the Manhattan distance to the target

cell is used. After all neighbors have been inserted to the queue, the iteration proceeds

to next step. The search ends, when either the target position has been found as one of

the neighbors, or when the priority queue runs out of items (i.e. when there is no solu-

tion). In the above figure, green cells (outlined) show the resulting optimal path to target

g(n) = 0

h(n) = 4

g(n) =
0+1 = 1
h(n) = 4
f(n) = 5 g(n) =

0+1 = 1
h(n) = 3
f(n) = 4

g(n) =
1+1 = 2
h(n) = 2
f(n) = 4

g(n) =
1+5 = 6
h(n) = 2
f(n) = 8

g(n) =
2+5 = 7
h(n) = 1
f(n) = 8 g(n) =

5+1 = 6

h(n) = 0

g(n) =
0+1 = 1
h(n) = 4
f(n) = 5

g(n) =
0+1 = 1
h(n) = 3
f(n) = 4 g(n) =

1+5 = 6
h(n) = 2
f(n) = 8

g(n) =
4+1 = 5
h(n) = 1
f(n) = 6 g(n) =

4+1 = 5
h(n) = 1
f(n) = 6

g(n) =
1+1 = 2
h(n) = 4
f(n) = 6

g(n) =
1+1 = 2
h(n) = 3
f(n) = 5 g(n) =

2+1 = 3
h(n) = 3
f(n) = 6

g(n) =
3+1 = 4
h(n) = 2
f(n) = 6 g(n) =

4+1 = 5
h(n) = 2
f(n) = 7

24

position. It should be noted, that if the heuristic function h(n) = 0, then the search behaves

equally to Dijkstra’s algorithm, which A* was extended from [20].

3.3.2 Optimizations

In some cases, the number of search nodes from which pathfinding lookup is queried

may end up being too sparse, causing an excessive amount of time being spent on per-

forming the query. In this case optimization is needed, and there are a few approaches

that may be beneficial, depending on the use case.

Hierarchical Pathfinding

To speed up searching paths in large sets of nodes, it may be possible to combine phys-

ically adjacent nodes as groups, so that pathfinding operates initially on the higher-level

group nodes, from which it progresses to lower levels after high-level path is found. De-

pending on the type and size of original node tree (for example, in large open-space

maps), this combining of node clusters can be extended further to higher levels, creating

a hierarchy of search trees, which is base idea in hierarchical pathfinding [17 p. 265].

Zone Mapping

In some cases, there may be search trees which have completely disjoint start and goal

nodes. When this happens, a A* search would end up having to look through all con-

nected nodes in the tree just to find out that there is no solution for the path query. In

zone mapping, a special flood-fill algorithm is used to identify isolated regions in the

search tree, with result of this process stored in a zone map. With this cached data, it is

possible to know in advance whether there is any solution before having to attempt doing

the path query [4 p. 197].

3.4 Decision Making

One of the key requirements for the AI is the ability to make decisions, which translate

to actions executed by the computer player. The relationship between input data and

action request effects is visualized below in Figure 12.

25

Figure 12. Decision making schematic by Ian Millington [17 p. 303].

There are several algorithms and techniques for this purpose, which share the core idea

of having internal or external knowledge sources as input, which are processed to action

requests as output which affect the internal or external state of the game [17 pp. 301-

302]. This section introduces the most common decision-making methods, which have

applications on multiple levels on the Multi-Tier AI model.

3.4.1 Finite State Machines

Finite State Machines (FSMs) are one of the key concepts used in computer games. A

state machine is composed of a set of states, and rules defining transitions between

those states. In a FSM only one state is active at a time, and switching to other states

only happens when one of the transitions out of current state is requested [6 pp. 165-

166]. A simplified FSM for scout unit is shown below Figure 13.

Figure 13. A possible FSM for controlling scout behavior.

External
Knowledge

Decision Maker Action Request

Internal
Knowledge

Internal Changes

External Changes

Idle Explore

Return to Colony

unexplored = true

at colony = true

unexplored = true

unexplored = false

26

There are three states in the FSM to either idle, explore or return to nearest colony, and

four transitions controlled by two external flags which indicate whether there are areas

to explore, and whether the unit is at colony.

In the ideal FSM model, transitions are handled internally using the data provided to the

FSM, and are thus self-contained. However, in some cases using the input data as sole

trigger to state changes might not be enough, for example when UI triggers user input

which needs to immediately alter the state of a unit. In this situation, an external transition

can be triggered procedurally, which is used to set the state of FSM directly without use

of a predefined transition condition [4 pp. 50-52].

Hierarchical State Machines

The Hierarchical State Machines (HFSMs) extend the basic principle of FSMs by adding

the possibility of using sub-FSMs, which are basically state machines nested inside of a

parent FSM. They add flexibility to the state transition options through the ability to con-

tinue parent FSM flow after finishing execution of the sub-FSM. Another benefit is the

possibility to split more complex states into sub-states [17 pp. 327-330]. Figure 14 below

shows a simple example case for Hierarchical FSM.

Figure 14. Example of hierarchical FSM for worker unit.

In this case, a worker unit would by default toggle between idle state and build and repair

tasks, but at the appearance of enemy unit would interrupt any task it was doing, and

seek cover. After the threat of enemy would be cleared, the Hierarchical FSM would

resume the worker automation Sub-FSM, and its active state would automatically be the

one which was interrupted earlier.

Worker Automation

Idle

Build

Repair

Build task available

Task
done

Avoid Enemy

Task
done

Repair task available

Move to cover

Stay at cover

In cover

Enemy
spotted

No enemy
nearby

27

3.4.2 Decision and Behavior Trees

There are a couple of common techniques which have the advantage of both being sim-

ple to implement and to use; Decision Trees and Behavior Trees. They are usually used

to control NPC actions in games, but they have also potential use cases for decision

making in military units in strategy games. They are both tree-like structures, which have

the benefit of being able to be shown as a visual presentation of the decision-making

process to the AI designer [17 pp. 303-309; 21].

Decision Trees

The Decision Trees (DTs) help making choices based on the world state at a specific

time through the use of tree built of decision branches, which lead to actions. Usually the

decision nodes are binary and have only two branches, but it is possible to make selec-

tions with more than two options. The decision-making process starts from the root, and

simply just moves down to the next branch depending on the outcome of each decision

node. This flow is very similar to traditional if-then-else control flow in high-level program-

ming languages, but the nodes as usually expressed explicitly as data structures, which

can be defined either in code or using data model which the AI designer can modify [17

pp. 303-309]. The above Figure 15 below shows how the previously proposed FSM logic

in Figure 14 might be converted into a DT.

Figure 15. The decision logic from Figure 14 converted into a decision tree.

Distance to
Enemy

Move to cover Build Task
Available

Repair Task
AvailableBuild

Repair Idle

≤ 4 > 4

No

No

Yes

Yes

28

At root decision, the presence of enemy nearby would be checked first, in which case

the worker unit would move to cover. If no enemy were nearby, the tree evaluation would

continue to next decisions to check if either type of tasks would be available for it; if not,

the idle action would finally be picked as the last option.

Decision Tree Learning

One interesting aspect of DTs is that they can be generated using machine learning from

input of observation and action sets, which represent the desired outcomes for each

world state observed. There are various possible methods for accomplishing this, but the

commonly used ones are based on the Iterative Dichotomiser 3 (ID3) algorithm. It uses

the measurement of entropy to calculate information gain from available attributes for

selecting the most relevant decision factor as the next node in the decision tree, and

continues this process until all action nodes have been created [17 pp. 593-597]. For

example, the following observations could be used as input for the ID3 algorithm:

Table 3. Input observations for ID3 algorithm.

Build Task Available Repair Task Available Enemy Near Action

Yes Yes Yes Cover

Yes Yes No Build

Yes No Yes Cover

Yes No No Build

No Yes Yes Cover

No Yes No Repair

No No Yes Cover

No No No Idle

In each iteration, the algorithm first uses Equation (2) to calculate the entropy of the

entire set of actions [17 pp. 593-597]:

 (= 	 - *+,-%.*+
+/0..2

 (2)

In first iteration, the formula gives the following entropy values for the entire set and
available subsets:

Es = 1.75

29

Ehavebuildtask = 1 Enobuildtask = 1.5

Ehaverepairtask = 1.5 Enorepairtask = 1.5

Eenemyneary = 0 Eenemynear = 1.5

Those results can now be used in Equation (3) to calculate the information gain from the

subsets [17 pp. 593-597]:

 3 = 	(4- 5+ / 5 ×(89
+/0..2

 (3)

Which results in the following information gain values for the attributes:

Ghavebuildtask = 0.5,

Ghaverepairtask = 0.25,

Genemynear = 1

With the above results, the algorithm chooses the attribute with highest information gain

value as input for decision node, which in this case would be the presence of a nearby

enemy. After this the algorithm repeats the same process for the both subsets of the

observation data, adding new child nodes until all relevant branches have been created.

The DT which was created by ID3 algorithm from the sample observations is shown

below in Figure 16.

Figure 16. Decision tree generated by ID3 algorithm.

The nodes outlined with red circles were the ones where calculation of information gain

was performed. Note that no decision node was added for the “Yes” branch of “Enemy

Enemy
Near

Move to
cover

Build
Task

Available

Repair
Task

Available
Build

Repair Idle

Yes No

No

No

Yes

Yes

Ghavebuildtask = 0.5
Ghaverepairtask = 0.25
Genemynear = 1.0

Ghavebuildtask = 1.0
Ghaverepairtask = 0.5

Ghavebuildtask = 0.0
Ghaverepairtask = 0.0

30

near” check, because neither of the two remaining attributes contributed any information

gain to the decision, and thus were not required at all.

Some software frameworks even include Decision Tree Learning as part of their feature

set, for example Apple offers built-in support generating decision trees using machine

learning in their GameplayKit framework on iOS, macOS and tvos platforms as part of

their basic Decision Tree implementation [22].

Behavior Trees

Another graph-style decision-making method is Behavior Tree (BT), which generalizes

the previously introduced Decision Tree concept. Any DT can be represented as BT, but

the modularity and extensibility combined with their simplicity is what makes them pow-

erful [17 pp. 52-53; 23]. The difference between DT and BT trees is shown below in

Figure 17.

Figure 17. A Decision tree expressed as behavior tree with identical logic [23].

Unlike DTs which are solely composed out of decision and action nodes, BTs have a

multitude of possible node types, which are generally divided into interior nodes (also

known as composite nodes) which have one or more children, and leaf nodes which

have no child nodes. The child nodes in BT are ordered in priority order (usually visual-

ized from left to right), which dictates the evaluation order of the nodes. The processing

starts from root node, and progresses down to child nodes in the tree depending on the

node types in the tree. All nodes have a precondition which can have three possible

return values; success, failure and running. The most commonly used nodes in BTs and

their return values are listed below in Table 4 [23].

Condition

Action #1 Action #2

NoYes

Condition Action #1

Sequence Action #2

Selector

31

Table 4. Most common behavior tree node types [23].

Node Type Precondition return values

Success Failure Running

Action Leaf Node Upon comple-

tion

When cannot

complete

During comple-

tion

Condition Leaf Node If true If false Never

Sequence Interior Node If all children

succeed

If one child fails If one child re-

turns Running

Selector Interior Node If all children

succeed

If all children

fail

If one child re-

turns Running

Parallel Interior Node If ≥ M children

succeed

If > N – M chil-

dren fail

If neither Suc-

cess or Failure

condition is met

Each time the BT is ticked, the tree is traversed down and the node preconditions

checked until the active task node is reached, which performs the action in during this

particular tick. The return value is back-propagated up in the hierarchy to the parent

nodes, which depending on their behavior decides what to do (i.e. possibly evaluate next

child in interior nodes), and return the appropriate value back to their parent node. This

progress continues until the return value reaches the root of tree, which is returned to

the original caller [17 pp. 52-53; 23].

Thanks to the flexible structure any type of nodes can be added to the BT - for example,

Utility-Based Systems can be leveraged to create a utility selector node, which can use

internally utility scoring to choose the appropriate child to execute [24]. Also, reusable

parts of BTs can be shared as sub-trees, reducing amount of work needed to create

duplicate behaviors.

3.4.3 Fuzzy Logic

The traditional computer logic is based on Boolean algebra, which infers absolute values

of either true or false as the only possible conditional states. There are however certain

cases in which a more fine-grained evaluation is required, for example to assess the

threat of an enemy fleet and choose appropriate actions based on the analysis of the

situation. For this one fuzzy logic can be used, in which the absolute true and false states

are replaced by a membership degree, which is expressed as normalized value between

32

0.0 and 1.0 [17 pp. 344-345]. The overview of how fuzzy logic is used is shown below in

Figure 18.

Figure 18. Fuzzy process overview [6 p. 192; 17 pp. 344-354].

The process starts with fuzzification of input data, after which fuzzy rules can be applied

to the fuzzy sets, and results can be obtained through defuzzification which converts the

data back into crisp values [6 p. 192].

Fuzzification

The Fuzzification is done through of membership functions which convert predefined

ranges of values into fuzzy set membership degrees. Commonly used membership func-

tions include grade, reverse grade, triangular and trapezoid functions, but other functions

can also be used if necessary. The number of membership degrees is not bound by the

number of inputs, as same input values can be assigned to multiple membership sets at

the same time [6 pp. 193-198].

Fuzzy Rules

After conversion to Fuzzy Sets, the membership degrees can be combined using Fuzzy

Rules which are built using Fuzzy Axioms, which resemble the operators used in the

traditional Boolean logic [6 pp. 200-201]. The most commonly used operators are listed

below in Table 5. Comparison between Boolean and Fuzzy Logic operators:

Crips data Fuzzy data Crips data

Input Output

Fuzzification Fuzzy Rules Defuzzification

Membership Functions
• Grade
• Trapezoid
• Gaussian
• …

Combining Facts With
Fuzzy Axioms
• And
• Or
• Not
• …

Defuzzification Methods
• Highest Membership
• Membership-based
 blending
• Center of Gravity
• …

33

Table 5. Comparison between Boolean and Fuzzy Logic operators [6 p. 200].

Operator Boolean Fuzzy Equation

AND A � B MIN(mA, mB)

OR A � B MAX(mA, mB)

NOT ¬A 1.0 - mA

Defuzzification

After combining the values using Fuzzy Rules, the membership degrees need to be ex-

tracted from the Fuzzy System to be usable in the game. There are few commonly used

methods for doing this:

• Highest Membership

• Membership-based Blending

• Center of Gravity

The best method to use depends on how the data is used; For a simple Boolean decision,

the Highest Membership method should be enough, but if there is need to aggregate

output strength, other methods are needed. Although the Center of Gravity is often fa-

vored, it comes with increased overhead due to the need to integrate surface areas of

the membership regions. The blending approach usually is good enough and is much

quicker to use [17 pp. 347-351].

Use case: Threat Assessment

One good application of Fuzzy Logic in strategy games is using it for threat assessment

and classification purposes. A simple example case for this is shown below in Figure 19:

34

Figure 19. Threat assessment example case for Fuzzy Logic.

In the above case, the AI wants to evaluate the presence of enemy fleets around its

colony to adjust its defensive stance if needed. As input data, it uses the proportional

ratio between its defensive strength and strength of enemy fleets in Equation (4).

*:;<+= = 	 log.

AB9
|DE|
+/0

A=9 + F=
|DG|
+/0

(4)

Where Ae is the list of enemy fleet attack strengths, Ao is list of own fleet attack strengths,

and do is the defensive strength of the colony. With the use of log2n in formula, the ex-

ponential change in ratio between own and enemy strength can be converted into a linear

value which the threat assessment can more practically be applied to. When considering

all units within 2 hexes distance from the own territory borders, applying the situation in

Figure 19 to the previously introduced Equation (4) results in the following values in

Equation (5).

 *:;<+= = 	 log.
91 + 87 + 	81 + 76
55 + 55 + 102

≈ 0.66	 (5)

To use this input value, two membership functions with three fuzzy sets in each are de-

fined as shown below in Figure 20.

D: 144

A: 36

A: 81

A: 87

A: 76

A: 91

A: 55

A: 49 A: 55

D: 102

B

B

B

A

Legend

A

B B

B

B

A

D: xxx

A: xxx

Own Territory

Enemy Territory

Own Colony

Own Fleet

Territory Border

Threat Assessment
Area Boundary

Colony Defense Rating

Fleet Attack Rating

Enemy Colony

Enemy Fleet

35

Figure 20. Membership functions for force strength ratio and diplomatic reputation.

The three fuzzy sets in the pratio membership function evaluate the threat, which is con-

sidered to be minimal when the enemy fleet strength is less than 50% (pratio = -1) of

defensive strength, and very high when it is over 200% (pratio = 1). At equal strengths

(pratio = 0) the threat is considered to be medium. The three fuzzy sets in the reputation

membership function are defined to represent the diplomatic reputation of enemy, so

their trustworthiness can be included in the evaluation of probability for their aggression.

Performing the fuzzification of values pratio = 0.66 and reputation = -5 with the member-

ship functions in Figure 20 results with the following membership degrees:

Table 6. Output membership degrees of the fuzzification.

Fuzzy Set Degree of Membership

Weaker 0

Equal 0.34

Stronger 0.66

Bad 0.25

Average 0.75

Good 0

The get the threat level from these values, the following fuzzy rule matrix is used to map

the values to Low, Medium and High threat levels:

-1 10-0.5 0.5 1.5-1.5

pratio

0

0.2

0.4

0.6

0.8

1
Weaker Equal Stronger

-20 60200 40 80-40

reputation

0

0.2

0.4

0.6

0.8

1
Bad Average Good

36

Table 7. Fuzzy rule matrix for combining the force size ratio and reputation.

 Weaker Equal Stronger

Bad Medium High High

Average Low Medium High

Good Low Low Medium

These above rules can be written as the following logic expressions:

mLow = (mWeaker � mAverage) � (mWeaker � mGood) � (mEqual � mGood)

mMedium = (mWeaker � mBad) � (mEqual � mAverage) � (mStronger � mGood)

mHigh = (mEqual � mBad) � (mStronger� mBad) � (mStronger � mAverage)

Populating the above expressions with the previously calculated membership degrees

for the fuzzy sets results in the following values for the threat membership:

mLow = max(min(0, 0.75), min(0, 0), min(0.34, 0)) = 0

mMedium = max(min(0, 0.25), min(0.34, 0.75), min(0.66, 0)) = 0.34

mHigh = max(min(0.34, 0.25), min(0.66, 0.25), min(0.66, 0.75)) = 0.66

When the highest membership selection is used to determine the threat level, it can be

concluded that mHigh has the highest membership value of 0.66, meaning that the threat

level is high and decision making can act on strategic and diplomatic level accordingly.

Another option would be using the membership blending method to calculate a numeric

threat level value out of the membership values if needed to for example adjust internal

diplomatic stance level.

Other applications

Besides the threat assessment, other applications for Fuzzy Logic in strategy games

also include Bayesian Network probability reasoning [6 pp. 253-254] and decision mak-

ing in Rule-Based Systems [17 p. 354]. Fuzzy State Machines can use Fuzzy Logic to

do blending between states, allowing smooth transitions based on the Fuzzy transition

conditions [17 pp. 364-369]. This technique is sometimes used for example to do anima-

tion state blending like in Unity’s Mecanim. Other gaming genres, such as racing, can

also benefit from the way Fuzzy Logic can be used to control vehicle steering, but that is

out of the scope of this thesis [6 pp. 205-207].

37

3.4.4 Rule-Based AI

Rule-based Systems, sometimes also known as Expert Systems, have existed in the AI

field since 1970s. They are sometimes considered a double-edged sword, as although

they allow the experts to share their knowledge of the situation and reasoning about how

to handle it, there is the downside that rule sets to define this knowledge must be created

by those experts. Although rule-based systems have many applications outside gaming

industry, such as in financial, medical and industrial software, there is also use for this

approach also in games [4 p. 134]. Their strengths include the ability to use extensive

rule sets to capture high-level knowledge of various complex problems [4 pp. 139-140],

and the capability to make decisions in unexpected situations which cannot be easily

handled with more simple approaches such as decision trees [17 p. 403]. The Figure 21

below shows the basic structure of rule-based system.

Figure 21. Overview of Rule-Based System [4 p. 138; 17 p. 404].

As pictured, this system consists of main components called the Rule Set, Inference

Engine and Working Memory. Each of these parts are described below in more detail.

Rule Set

The actual knowledge of a problem is encoded in various rules, which are kept in the

Rule Set, also known as the Knowledge Base. Each rule has two parts, the condition

which must be satisfied for the rule to be fired, and action which defines what happens

Rule Set

•
•
•

Working Memory

Rule #1: IF condition
THEN action

Rule #2: IF condition
THEN action

Rule #3: IF condition
THEN action

Rule #n: IF condition
THEN action

Fact #1

Fact #2

Fact #3

Fact #n

Inference Engine

Arbiter

38

when the rule is triggered. The condition can evaluate facts in Working Memory in various

ways, and rules can also be enabled and disabled when needed. The action can alter

facts in Working Memory, but can also control which rules are active, and even stop the

processing completely [4 pp. 134-135].

Working Memory

All facts known by the Rule-Based System are kept in the Working Memory, which works

as a database for the Inference Engine. Although the format of facts is not limited, they

are usually stored as Boolean, numeric, string, and enumeration values [4 pp. 134-135].

Inference Engine

The actual processing of rules happens in the Inference Engine, which checks the rule

conditions of the rule set and either selects the first match or uses the arbiter to choose

which action to trigger. The processing takes place in iterations which continue until ei-

ther no more facts are changed in the database, or a stop action is encountered. Usually

forward chaining rule matching is used, but sometimes backward chaining can be used,

which matches the rules based on their outcome (effect of actions on facts) instead of

conditions, trying to find a starting state that can derive the expected result. [17 pp. 407-

408] Rule-Based Systems are however notorious for suffering performance issues when

large rule sets are used, which need considerable processing time. There are some op-

timizations for this process, the Rete Algorithm being one of the best known of them [4

pp. 134-135; 17 pp. 422-423].

Arbiter

Sometimes the system contains a separate arbiter component, which decides which rule

is triggered if multiple rules are matched simultaneously during one iteration. Possible

common approaches include using first applicable rule, least recently used rule, random

rule, most specific conditions and dynamic priority arbitration [17 pp. 418-419].

Use case: Inferring tech tree state through rule-based reasoning

As rule-based systems allow inferring new facts from existing ones through the rules,

one possible use for them in 4X strategy game is the capability for AI to use knowledge

39

about enemy’s possession of a single technology to deduce the state of other technolo-

gies in the tech tree. This use case has been adapted and refined from the example

provided by Bourg and Seemann [6 pp. 214-218]. The Figure 22 below shows a possible

subset of tech tree.

Figure 22. Inferring state of tech tree from knowledge of a single technology.

In the tree, technologies are connected by arrows leading from prerequisite technologies

on higher levels down to the subsequent technologies on the next level. The following

rules can be generated from this tech tree:

IF defense_tech_2 THEN colony_tech_1=Yes AND defense_tech_1=Yes
IF weapon_tech_2 THEN weapon_tech_1=Yes
IF ship_tech_2 THEN weapon_tech_1=Yes AND ship_tech_1=Yes
IF colony_tech_2 THEN defense_tech_2=Yes
IF defense_tech_2 THEN defense_tech_2=Yes
IF weapon_tech_3 THEN defense_tech_2=Yes AND weapon_tech_2=Yes
IF ship_tech_3 THEN weapon_tech_2=Yes AND ship_tech_2=Yes

As the AI has learned that enemy has a ship equipped with Missiles #2 upgrade (shown

green in Figure 22), and thus has researched the Weapon Tech #3 technology, it can

use the above rules to infer which other technologies are consequently possessed by

the player as prerequisites. This starts by putting the fact weapon_tech_3 into the Work-

ing Memory, and running the first iteration in Inference Engine, which finds a match for

the following rule:

IF weapon_tech_3 THEN defense_tech_2=Yes AND weapon_tech_2=Yes

This rule adds the facts defense_tech_2 and weapon_tech_2 into the Working Memory.

The inference engine runs next iteration to evaluate the rules, and continue the process

Colony Tech #1 Defense Tech #1 Weapon Tech #1

Weapon Tech #2Defense Tech #2

Ship Tech #3Weapon Tech #3Colony Tech #2

Ship Tech #1

Ship Tech #2

Building #1 Engine #1Shield #1

Engine #2

Fuel Pods #1Beam #1

Missiles #1

Shield #2

Missiles #2Building #2

Defense Tech #2

Shield #3

40

until no more new facts are added to the Knowledge Base, at which point the processing

has finished. In Figure 22, the technologies set to “Yes” during this process are indicated

in red.

Other potential uses in strategy games could be predefining certain events for scenarios

(triggers) and possibility to control unit and strategic behavior with AI scripts implemented

by AI programmer and/or designer.

3.4.5 Utility Theory

The idea behind the Utility theory has existed for a long time, and has a history predating

even computers in the economics field where it is used to study consumer behavior and

choices. The core concept in Utility Theory is scoring each action or state in the utility

model with a uniform value, which represents the usefulness of each choice in the given

context. To allow scores of multiple sources to be comparable, the utility values are nor-

malized using methods appropriate to the given input data, and the scores can be com-

bined from multiple sources to end up with final utility score which can be used to select

the appropriate action. A simplified overview of the information flow inside a Utility Sys-

tem is shown below in Figure 23 [25].

Figure 23. Simplified flow of information in a Utility System.

This flow of information inside Utility System can be roughly divided into the following

phases:

Game values Calculating the Utility Score Action

Conversion to
Input Factors

Combining the
Factors

Pick the Best
Choice

Calculation Methods
• Simple Cut-off
• Linear
• Quadratic
• Logistic
• …

Combinational Methods
• Average
• Multiply
• Max/Min
• Inversion
• …

Classification Methods
• Highest Utility
• Weighted Random
• Bucketing/Dual Utility
• …

41

Phase 1: Converting Game Values into Utility Factors

There is no hard-defined way of converting data into Utility Factors; the only rule is that

all factors must have the same scale, so that they can be combined together and be

comparable with each other. There are certain generally used methods for converting

arbitrary game values, shown below in Figure 24. Other methods may also be used de-

pending on what is required by the use-cases of the utility factors [25].

Figure 24. Commonly used formulas for calculating utility factors [25].

Phase 2: Combining Utility Factors

Usually there are more than one factor affecting the desirability of actions, and to get

final utility scores for each of them they are combined. Commonly used methods include

calculating average of utility factors, multiplying them together, picking the smaller or

larger of them, or reversing the factor by inverting it. These operations can also be

chained after each other, and exposing them as a visual graph editable by designers can

be a very powerful tool. [25]

Phase 3: Picking the Best Action

After each one of the actions have been given a final utility score the AI selects which of

them it should execute. The most straightforward way is to just pick the one with greatest

utility, but it might in some cases lead to repeatable or predictable AI behavior. This can

be overcome in some cases by using weighed random approach, where a random se-

lection is made from possible actions with the utility score used as weight to give the

actions with higher utility score a better chance of getting picked. This can also be com-

bined with bucketing, also known as Dual Utility AI, in which the actions are categorized

and assigned a bucket based on the effect they have. For example, when choosing pro-

duction goal in a colony, the military units could be assigned in one bucket and colony

20 1006040 800
0

0.2

0.4

0.6

0.8

1

Simple Cut-off

20 1006040 800
0

0.2

0.4

0.6

0.8

1

Linear

20 1006040 800
0

0.2

0.4

0.6

0.8

1

Quadratic

-10 100-5 5-15
0

0.2

0.4

0.6

0.8

1

Logistic

15

! " = 0; "	 ≤ "(
1; "	 > "(

	

! " = "
$

%
	

	

! " = "
$	

	

! " = 1
1 + &'(

	

42

improvements in another one. With this approach, when building army has highest utility,

it guarantees that a military unit is produced, but the type of unit can be randomized [25].

The utility scoring has a strong resemblance to fuzzification in fuzzy logic, and they share

some principles especially in the way game values are converted into the internal repre-

sentation in both approaches. They are also both good for promotion emergent behavior

in AI when used properly by the AI designer [25].

Use Case: Diplomatic Decision Making

In the 4X strategy games, one possible use case for utility reasoning might be choosing

an action during a diplomatic negotiation with another player. A simplified case for this is

outlined below in Figure 25:

Figure 25. A possible Utility System for diplomatic decision making.

This situation assumes that the players have currently signed a peace treaty, which of-

fers three possible actions: proposing alliance, signing a research agreement, or declar-

ing war. There are also certain game values exposed to the Utility System: opponent

reputation, score for scientific benefit of research agreement, and military strengths of

own and opponent armies. Also, the AI personality goals are exposed as diplomatic vic-

tory, science victory and military victory priority values. There values are then converted

Conversion
Operators

Conversion
Operators

Actions and Their Utility
Values

Utility ValuesGame Values

Research Agreement:
0.03

Opponent Military Power:
174

Research Agreement Gain:
62

Own Military Power:
319

Propose Alliance:
0.07

Declare War
0.58

Opponent Reputation:
27

Military Victory Priority:
70

Diplomatic Victory Priority:
26

Science Victory Priority:
4

Research Agreement Utility:
0.78

Military Advantage
0.823

Trustworthiness:
0.27

Custom
Logistic:

1 / (1 + pow(10,
-(2 * a / b - 3)))

Quadratic:
max(1, pow(a /

100, 0.5))

Linear:
a / 100

Multiply:
a * b

Multiply:
a * b

Multiply:
a * b

Science Victory Factor:
0.04

Diplomatic Victory Factor:
0.26

Military Victory Factor:
0.7

Linear:
a / 100

Linear:
a / 100

Linear:
a / 100

a

b

a

a

a

a

a

a

b

b

b

a

a

43

to Utility Factors using operators defined by the designer or AI programmer, which end

up as utility values of the possible output actions as shown in Figure 25. This gives each

of the actions a utility score, and if picking the action based on highest utility, the choice

in this case would be declaring war against the opponent.

It should be noted that in an actual production implementation various other factors

should be considered, such as how much the player likes or dislikes the opponent when

declaring war and what impact it would have on the player’s own reputation, how likely

the opponent is to enter an alliance or research agreement before offering them, and

many others.

Using utility scoring for decision making is especially fit for the type of strategy games

that this project represents, as due to the nearly infinite number of possible moves per

turn there is no way to score individual actions in a purely deterministic way. In this situ-

ation, the reasoning of utility of actions allows the AI to make educated “best-guess”

choices based on the available data of the game state [25]. The utility-based approach

is also highly versatile thanks to its simple concept, which helps it combined with a num-

ber of other techniques such as implementing utility selector in behavior trees [24] and

applying utility-based costs in colony production goal trees [26].

3.5 Influence Maps

To allow strategic analysis of map and game world, various types of influence maps can

be utilized to give the AI environmental awareness. Some examples of use cases for this

data are listed below [27]:

• Pathfinding can include influence as part of heuristic to avoid or favor certain

areas

• Weak spots in enemy influence can be used to target attacks in planning of

higher-level military operations, or to prioritize reinforcing own territory.

The basic structure and function of influence maps has similarities to cellular automata,

in which uniform grids of values are modified by certain rules as a function of time, usually

based on the values of surrounding tiles. One classic example is Conway’s “Game of

Life” which uses a very simple set of rules, although cellular automata has many other

44

higher-level uses such as city simulation in SimCity [17 pp. 536-537]. The data in influ-

ence maps can be composed of multiple layers of data, including for example [17 pp.

499-512]:

• Tactical Analysis

o Friendly and enemy unit and point-of-interest threat generation

• Terrain Analysis

o Defensive and/or movement bonuses from terrain

o Map visibility, which can be used to either increase the “threat of un-

known” or to prioritize exploration

• Learning

o Past events recorded on map, such as unit kills, i.e. “frag map”

Some of the data, such as terrain analysis, is by default spread on the influence map

layer uniformly, and can be used as input as such. Some other data though, like tactical

positions such as unit threat, are localized to single spots in the map, and their influence

needs to be distributed on the layer to be usable. To do this, there are a couple of com-

mon options available shown in Table 8:

Table 8. List of common influence calculation methods [17 pp. 502-505].

Method Description

Limited Radius of Effect Influence is applied on map as a function of distance to

the unit, with fixed falloff.

Convolution Filters The unit influence is applied on map using two- or three-

dimensional filter matrix, for example using Gaussian blur.

Map Flooding The unit influence is propagated on map using Dijkstra or

A* algorithm.

It is also possible to use variations of the above methods, depending on the source data

and how the influence map is used in the game. This involves usually fine-tuning by the

AI programmers and designers to find a good balance for the influence which benefits

the AI in decision making. For example, if certain areas of map are not visible to the

player, it is good idea to take the factor of unknown into account when calculating influ-

ence; this however means that each AI player needs to run its own analysis of the influ-

ence map, in contrast to a game state where all players have the same knowledge of

45

unit positions and strengths, in which case the data could be shared [17 pp. 505-507].

An example of a simple influence map is visualized in Figure 26.

Figure 26. An example of map of unit threat influence on hexagonal grid.

This example shows a hexagonal grid with three units belonging to each player A and B

of equal influence value. In this case, the unit influence values were propagated on the

map using normalized Gaussian blur convolution filter applied through a rank 3 tensor

on cubic hex projection plane (q + r + s = 0).

Spatial Database

One possible way to represent the different sources of data affecting influence is the use

of spatial database, as suggested by Paul Tozour. In his approach, the data is applied

to distinct layers in a generalized way, with some possible examples of data layers listed

below [28]:

• Openness layer

• Cover layer

• Area searching layer

A: 2%

A: 13%

A: 14%

A: 34%

A: 12%

B: 1%

A: 10% A: 31%

A: 26%

A: 10%

A: 2%

B: 10% B: 10%

A: 2%

A: 1%

A: 11%

A: 4%

A: 1%

B: 1%

A: 23%

A: 12%

A: 2%

B: 2%

A: 26%

A: 10%

B: 1%

A: 21%

B: 2%

A: 1%

B: 1%

A: 2%

B: 10%

B: 10%

B: 10%

B: 10%

B: 2%

B: 10%

B: 1%

B: 2%

B: 1%

B: 2%

B: 14%

B: 14%

B: 24% B: 2%

B: 10%

B: 2%

B: 10%

B: 24%

B: 21%

B: 14% B: 1%

B: 10%

A A

A

B

B

B

46

• Line-of-fire layer

• Light level layer

The layers can be combined using various algorithms at runtime, for example using a

formula like the one in Equation (6) to calculate dynamic desirability layer from other

source layers [28]:

 FQRSTAUS,SVW = -*Q""QRR	×	-XXY*A"XW	×	RVAVSX_X-[QT (6)

One of the possible benefits of using this layering of data is the increased tendency of

emergent behavior in AI unit coordination through the use of shared data structures [28].

Strategic Dispositions

When units are being categorized in order to identify strategic dispositions, the infor-

mation in spatial database can be used to aid this purpose. The knowledge can be used

in tactical analysis and decision making, for example to identify weak spots which can

be engaged in enemy territory, or areas in own defences that need to be reinforced [29].

An example of evaluation of strategic dispositions is shown below in Figure 27.

Figure 27. A possible grouping of units for analyzing strategic dispositions.

4 4

4

4 4

-4

-4

-8

-4

-8

-4

-4

-10

-8

-4

-4 -8

-10

-4

-4

-10

-4

-2

10

0

-4

-2 10

6

4

8 8

6

4

4

6

10

6

8

10

6

6

10

4

8

4

-4

-4

-8

-4

-4 -6

-4

-8 -8

-4

-6

-4

-8

-8

-8

-4

-8

-4

-4 2

4

-10

-8

-6

-8 2

-6

8

6

4

0

2

4

4

12 6

-4

-4

-4

-6

-6 -10

-4 4

-4

-4

4

8

4

10

8

8 4

8

4

4

8

4

8

4

10

4

4

8

8

10

4

6 6

6

Legend

Area Under Own Influence

Area Under Enemy Influence

Own Colony

Own Fleet

Group

Influence Level

Enemy Colony

Enemy Fleet

47

34

6

12

42

31

9

26

52

27

8

8

4

7

910

XXX

XX Combat Rating of Fleet
or Defense Rating of Colony

9

5

12

5

5

Group 1A Group 1B Group 1CGroup 2A

Group 2C Group 1DGroup 2B

47

Figure 27 shows a case where a simplified map of fleet and colony influences has been

propagated on the map using limited radius with fixed fall-off, and clusters of unit have

been grouped using a simple algorithm which selects the strongest units and units in

their immediate vicinity to be part of their group. The total strengths of each group of

units is known, and thus their threat level can be estimated using fuzzy logic methods

similar to the ones demonstrated earlier in Chapter 3.4.3. This data can be combined

with the influence map, for example by calculating the gradient of influence level between

nearby grouped units. In this case, a higher gradient would indicate higher tension be-

tween units, which can be used as input data to the tactical analysis algorithm which

directs the units in groups to either engage enemy unit groups, or to reinforce the de-

fenses on local territory.

The actual implementation of selection of actions depends on the iterative experimenta-

tion by designers and the AI programmer, but could for example use utility-based scoring

based on the input factors gained from the analysis.

Tactical Pathfinding

The influence maps can also be used in pathfinding to allow the units to consider possible

threats when planning the route to the target position. The tactical pathfinding can be

implemented easily by adjusting the heuristic function of the A* pathfinding algorithm for

example by adding penalty based on enemy threat level on the influence map, which

makes the units evade dangerous areas of the map, giving the AI movement choices are

stronger impression of intelligence. One challenge in this approach however is the care

needed when applying changes to the scoring heuristic function to avoid increasing the

cost of pathfinding processing time too much [30].

A possible use case for this approach in a 4X strategy game might be for example the

need to plan route for worker unit across unclaimed space with recently observed enemy

movement. In this case, the pathfinding should avoid areas which would most likely to

lead to encounter with enemy.

48

3.6 Goal-Oriented Behaviors

With the previously described methods, it is possible to build an AI that can evaluate the

current game state and choose appropriate actions which appears sufficiently intelligent

in casual gameplay. However, it is especially important in strategy games for the AI to

be have long-term strategy and goals which makes AI’s actions and decisions more

meaningful, and thus giving more challenging and meaningful gameplay experience for

the players. To accomplish this, various forms of Goal-Oriented Behaviors (GOBs) can

be implemented which can give the AI not only immediate internal needs which it aims

to fulfill, but also the capability of chaining multiple actions together in order to reach

more complex goals [17 pp. 376-377].

This section introduces a few key technologies that can be used to implement this kind

of behavior which is useful in the higher layers of the multi-tier AI mode, including pro-

duction and research planning, which involves also coordination between different

higher-level agents.

3.6.1 Goal-Oriented Action Planning

The idea behind Goal-Oriented Action Planning (GOAP) has long history, having roots

in the Stanford Research Institute Problem Solver (STRIPS) which was created already

as early as in the 1970s [21]. GOAP planning uses backward-chaining search, which

means that it uses the desired goal state as starting point, and traces the action se-

quence which leads to the starting state. There are a few basic building blocks in this

approach [31]:

Goal

A goal represents the desired final state which the planner should attempt to reach. Each

goal has a set of conditions which must be satisfied for the goal to be reachable.

Action

There is a predefined set of actions, each of which represent what the AI can do. Each

action has set of preconditions and effects; the preconditions define what the world state

49

should be for the action be doable, and the effects define how the world state is changed

by this action.

Plan

The final plan is a sequence of actions leading from the current world state to the desired

goal state.

World State

The GOAP planner uses symbolic representation of world to perform search in state-

space. This abstraction allows both preconditions to be matched against the world state,

and effects can also be used to apply changes to the simulated states.

Planning process: The simplistic approach

When running plan formulation, the GOAP planner is given the desired goal state, a list

of possible actions, and the current world state which is abstracted from the concrete

game world into the symbolic presentation. The Figure 28 below shows a simplified over-

view of the planning process in state-space during the plan formulation.

Figure 28. Abstract illustration of GOAP planning process.

The planner starts from the desired goal state, adding its conditions into the list of unsat-

isfied world properties. During each iteration, the planner searches for actions which

have effects that match the unsatisfied world properties. Each of the possible actions is

picked as a possible node in the search graph, and evaluated recursively by applying

Action Set

Goal State Initial StateAction Action

ActionAction

Action Action Action

Action

Action

50

the effects to world state and adding the preconditions of the action to the list of unsatis-

fied world properties. When the planner reaches a state where all the world properties

are satisfied, it has reached the initial state and thus has found a valid plan, or if no more

actions can be matched in which case there is no solution. After a valid plan has been

found, it is made active and the AI attempts to follow it. However, if any alterations are

made to the world state during the plan execution, replanning is required and thus the

planning process is run again [31].

Adding action costs to the plan formulation

Sometimes just knowing a possible sequence of actions for reaching the goal does not

suffice, as there might be other lower-cost paths leading to it. The types of cost factors

depend on the use case, for example time, money or health.

When cost is added to the actions, the search space can be considered as a weighed

graph which can be evaluated using A* algorithm with the expected cost used as heuris-

tic for the search formula. Figure 29 below shows part of a possible search tree which

might be formed during GOAP planning.

Figure 29. A partial state-space search tree for GOAP.

A benefit of the state-space presentation is that as it is practically a game tree structure,

certain traditional board game AI techniques can be applied to it. For example, to prevent

unnecessary time spent on evaluating duplicate subtrees, the evaluated states can be

stored in a transposition table, with the hash of symbolic world state used as cache key.

Other benefits include the possibility of using Alpha-Beta Pruning and the Killer Heuristic.

Goal State

Initial State

Action
Cost: 6

Action
Cost: 4

Intermediate
State

Intermediate
State

Action
Cost: 8

Action
Cost: 10 . . .

Intermediate
State

Intermediate
State

.

Action
Cost: 12

Intermediate
State

. . .Action
Cost: 2

Action
Cost: 9

Intermediate
State

.

51

Iterative Deepening A* (IDA*)

When A* is used for pathfinding, each graph node is only evaluated once and there is

limited number of nodes to explore. However, with GOAP planning there is no limit on

how many times a single action may be performed, leading to infinitely long action se-

quences. To avoid this, Iterative Deepening A* (IDA*), which is a variant of Iterative

Deepening Search (IDS) algorithm can be used for traversing the state graph [17 pp.

376-401]. The progress of IDA* search is shown below in Figure 30.

Figure 30. Iterative Deepening A* search example.

The IDA* search works by defining a cut-off value, which is the maximum cost until which

the search iteration terminates. On each iteration, the regular depth-first search is run

until the current cut-off limit is reached. If the target node was not found, the cut-off value

is increased and search is run again, thus iteratively progressing further in the search

tree each time [17 pp. 376-401]. The above Figure 30 shows roughly how this iterative

progress works.

START

C
Cost: 6

D
Cost: 9

F
Cost: 3

H
Cost: 4

END
Cost: 2

J
Cost: 6

G
Cost: 4

START

C
Cost: 6

D
Cost: 9

F
Cost: 3

H
Cost: 4

END
Cost: 2

J
Cost: 6

G
Cost: 4

START

C
Cost: 6

D
Cost: 9

F
Cost: 3

H
Cost: 4

END
Cost: 2

J
Cost: 6

G
Cost: 4

START

C
Cost: 6

D
Cost: 9

F
Cost: 3

H
Cost: 4

END
Cost: 2

J
Cost: 6

G
Cost: 4

Cut-off: 0 Cut-off: 6 Cut-off: 9

Cut-off: 10

START

C
Cost: 6

D
Cost: 9

F
Cost: 3

H
Cost: 4

END
Cost: 2

J
Cost: 6

G
Cost: 4

Cut-off: 12

Node not visited

Node visited but
not evaluated

Node visited and cost
chosen as new cut-off

Node visited and
evaluated

Node evaluated and
target state found

Optimal path to goal

52

3.6.2 Hierarchical Task Networks

Although sharing some concepts with STRIPS planning, the Hierarchical Task Network

(HTN) approach assigns the current world state as starting point, and uses available

tasks to construct the plan through forward-chaining task decomposition. This is opposite

to previously introduced GOAP, which uses backward-chaining search in the state-space

graph to find plan leading from goal state to the initial world state [32]. The Figure 31

below shows an overview of a simple HTN planning system adapted for games.

Figure 31. Overview of HTN planning system [32].

This HTN planning system is divided into the following components:

HTN Domain

The essential part of HTN planning system is the HTN domain, which contains all tasks

available for solving the particular problem. There are two main types of tasks:

Planner

Plan

Task

Task

Task

Task

Task

Task

Plan Runner

World State Sensors

Plan

Task Task TaskTask

SensorSensorSensor
PropertyPropertyProperty

HTN Domain

Compound Task

Method Task Task

Method Task Task

Compound Task

Method Task Task

Method Task Task

Current

Task

53

• Primitive Tasks, which are the basic building blocks of the plan. They contain

an operator which defines the actual low-level task for the game, condition which

uses the world state properties to evaluate whether the task can be executed,

and effects which alter the planner world state.

• Compound Tasks, which contain multiple methods of executing a particular

task. Each of these methods have set of preconditions that dictate which of the

methods (if any) gets chosen to be decomposed into the plan based of the current

world state.

The tasks available in the domain form a hierarchy, hence giving the name for this plan-

ning approach.

World State and Sensors

Like in the GOAP approach, the planner uses an internal world state to simulate effects

of tasks in the game, using the resulting state in primitive task conditions and compound

task preconditions to control the planning process. Sensors work as adapters providing

the simulated world state from actual game state.

Planner

The planner does the actual planning work, which starts from the root task in the HTN

domain, which gets inserted into the list of tasks to process in beginning of this process,

after which the iterative planning process is started. On each iteration, the first item in

the list of tasks to progress is dequeued and processed. If the item in list is a primitive

task, its condition gets run, and if satisfied, the task gets appended to the final plan. If

the task is a compound task, the preconditions of the methods get run to select the ap-

propriate method to decompose. This decomposition enqueues the tasks in the method

in front of the list of tasks to progress. The iterations continue until the list of tasks to

progress is empty. An example planning case is shown below in Figure 32.

54

Figure 32. Illustration of a simplified HTN planning example.

After the planning process is completed, the planner has the final plan which can be

passed to the plan runner. Depending on the structure of the HTN domain, it is possible

that the planning may in some cases fail to provide any valid plan at all.

Plan Runner

After the planner has created a plan, the plan runner starts executing the plan during

gameplay, keeping track of currently active task in the plan and checking the task condi-

tions during this process. If the world state gets changed unexpectedly during plan exe-

cution, i.e. when the state does not match the conditions of task executed next in the

plan, the HTN is forced to do a replan to run the planning process again.

3.6.3 Composite Tasks

One approach to handling goal-oriented behavior is the use of the Composite Task ar-

chitecture. Originally implemented in 1995 for a real-time strategy game, it has since

Colony Production HTN Domain

Root Task

Method 0 BuildShips

Planning Process

Pl
an

ne
r I

te
ra

tio
ns

HaveSpacedock

Method 0 BuildSpacedockCheckProduction

BuildShips

Method 0 BuildScout

Method 1 CheckMaterials BuildColonyShip

CheckMaterials

Method 1 BuildImprovements

HaveSpacedock

BuildImprovements

Method 0 BuildFarms

Method 1 CheckProduction BuildDefenses

CheckProduction

CheckProduction

Method 0 BuildFactory

Method 1 UpgradeFactory

AssignWorkers

Plan Tasks to process Root Task

Plan Tasks to process HaveSpacedock BuildShips

Plan Tasks to process CheckProduction BuildSpacedock

Plan Tasks to process AssignWorkers BuildFactory

BuildShips

Plan Tasks to processAssignWorkers BuildFactory

BuildSpacedock BuildShips

BuildSpacedock BuildShips

Plan Tasks to processAssignWorkers BuildFactory BuildSpacedock BuildShips

Plan Tasks to processAssignWorkers BuildFactory BuildSpacedock BuildShips

Plan Tasks to processAssignWorkers BuildFactory BuildSpacedock CheckMaterials

CheckMaterials

Method 0 MineAsteroid

BuildScout

Plan Tasks to processAssignWorkers BuildFactory BuildSpacedock MineAsteroid BuildScout

Plan Tasks to processAssignWorkers BuildFactory BuildSpacedock MineAsteroid BuildScout

Final
Plan AssignWorkers BuildFactory BuildSpacedock MineAsteroid BuildScout Tasks to process

55

found use in CSXII Tactical Combat Simulator used by the U.S. Army [33]. The Figure

33 below shows the basic structure of Composite Tasks.

Figure 33. Structure of Composite Tasks.

The main concept in Composite Task model is the ability to split a high-level main goal

into smaller subgoals, creating a hierarchy of tasks. This flexibility allows expressing

even very complex goals and how to satisfy them using combination of low-level actions.

The Composite Tasks consist of the following components:

• Composite Tasks, which can contain either other Composite Tasks or Simple

Tasks

• Simple Tasks, which contain one or more Actions

• Actions, which are individual atomic operations that the AI can perform

The execution of tasks starts from the root task, which evaluates its child components in

priority (usually left-to-right) order, until the entire hierarchy has been walked through.

The benefits of Composite Tasks include design simplicity, data-driven content and gen-

eralized evaluation process [33].

3.6.4 Multi-Unit Planning with Hierarchical Plan-Spaces

The traditional planning methods are well suited for planning actions for a single actor,

when the number of possible actions stays in reasonable amount. However, when plan-

ning actions for multiple units at once, for example for military incursions, the state-space

searching suffers from combinatory explosion. This means that the number of possible

Behavior

Composite Task

Simple Task

Action

Composite TaskComposite Task

ActionSimple Task

Action Action

Simple Task

Action Action

Simple Task

Action Action

Composite Task

Simple Task

Action Action

Simple Task

Action Action

56

combinations of actions grows exponentially exceeding the available processing power

and thus becoming unusable. To solve this problem, the planning can be done in plan-

space instead of state-space [34]. The Figure 34 below shows abstract illustration of the

difference between state-space and plan-space planning.

Figure 34. Comparison of state-space and plan-space planning [34].

With this approach, the planning is started from high-level task, which is further refined

into lower-level tasks, and eventually individual unit actions [34].

The planner

Instead of keeping track of possible states, the planner uses list of possible plans and

scores them based on their expected cost, using the same A* algorithm like in other

graph-based planners. On each iteration, planner dequeues the most promising plan (i.e.

the one with lowest estimated cost), select the appropriate planner methods and their

alternative approaches to get a list of new possible plans to branch off from this plan.

Each of these new plans get refined by the planner method, after which their estimated

cost is calculated by the task cost estimation function, and they are queued into the list

of possible open plans. This iterative process runs until either a planner succeeds by

finding a complete plan in the queue, or fails by running out of plans to refine [34].

Searching in Plan-Space

Unit 1

Unit 2

Searching in State-Space

State 1Initial
State

Unit 1 Action

Unit 2 Action

State 2

Action

Action

State N

…

…

Goal Task

Sub-Task Sub-Task Sub-Task

Task Task

Action

Action

Action Action

…

Sub-Task

…

Action

Action

Goal
State

…

…

…

…

…

57

The tasks

The plan is composed of a hierarchy of tasks that can either be compound tasks which

can be further refined to other tasks, or primitive tasks, which represent individual unit

actions. The planning domain is defined by list of possible tasks, which belong to specific

scope in the domain based on their position in the task hierarchy. Some possible tasks

are listed below in Table 9.

Table 9. Some possible tasks for the plan-space planning (adapted from [34]).

Scope Task examples

Mission High-level mission task

Objective Capture Colony, Defend Colony

Group Form Up, Eliminate Colony Defenses, Attack Invaders

Tactic Bombing Run

Units Attack Fleet

Individual Unit Move, Attack, Wait, Bomb, Defend, Deploy Troops

The individual tasks set of inputs and outputs, which are used to link unit states between

sequential tasks, usually providing the output state of previous task as input of the next

task. When tasks are chained sequentially, the preceding tasks are required to be com-

pleted before the next task in sequence can be activated. This allows the planner meth-

ods to control which tasks can be executed in parallel and sequential order.

Planner methods

The actual refining of tasks is done by planner methods, which take the current plan and

task to be refined as input, and provide a refined plan for the planner. The planner meth-

ods only apply to specific tasks, and their complexity ranges from simple single task

output to complex combination of tasks. They work by creating a number of subtasks for

the task being refined, thus expanding the current plan to lower level. The planner meth-

ods matching the tasks in Table 9 are listed below in Table 10.

58

Table 10. Some possible planner methods (adapted from [34]).

Scope Planner method examples and responsibilities

Mission Allocate units

Objective Define activities, assign units to groups

Group Execute tasks as groups

Tactic Synchronize tactical activity

Units Arrange cooperation between units

Individual Unit Define the actions

The plan-space graph

As mentioned earlier, the planner maintains a list of all possible complete and non-com-

plete plans as it searches through the plan-space. A part of this plan-space graph is

illustrated below in Figure 35:

Figure 35. Illustration of the plan-space graph (adapted from [34]).

In the illustration, each plan is shown as a branch in the plan-space graph with their

associated cost estimate. The green plans are in the closed-list of plans that have been

refined, and red plans are in the queue of open plans. The tasks inside each plan show

how deep the particular plan has been refined; green indicates tasks that has been re-

fined, white shows the task being refined now, and red tasks are unrefined tasks.

Plan 1.1.3Plan 1.1.2Plan 1.1.3

Plan 1.1

Plan 1

Objective

Mission
Mission

Capture Colony

Objective

Group

Mission
Mission

Capture Colony

Form Up Eliminate
Defenders Invade

Plan 1.2

Objective

Group

Mission
Mission

Capture Colony

Form Up Invade

Objective

Group

Tactic

Mission
Mission

Capture Colony

Form Up

Attack
Defending Fleet

Eliminate
Defenders Invade

Objective

Group

Tactic

Mission
Mission

Capture Colony

Form Up

Bomb Planetary
Defenses

Eliminate
Defenders Invade

Objective

Group

Tactic

Mission
Mission

Capture Colony

Form Up

Attack
Defending Fleet

Bomb Planetary
Defenses

Eliminate
Defenders Invade

Cost: 170

Cost: 295 Cost: 210

Cost: 415Cost: 355Cost: 310

Alternatives

Plan
Refinement

59

Use case: Planning attack on enemy colony

The hierarchical plan-space planning has various uses in a 4X strategy game, and this

example focuses on a simple case of attack on enemy colony. The player has four fleets

available to be allocated for this mission: a battleship fleet, a destroyer fleet, a bomber

fleet and group of troop transports. The resulting plan that can be generated using the

example tasks listed previously in Table 9 is shown below in Figure 36:

Figure 36. An example plan for invasion of enemy colony.

The planning starts by creating the capture colony task on objective layer, which contains

information about the target colony, its defenses, and the AI player’s available fleets for

the mission. After this, the objective gets further refined into set of group-level tasks:

Forming up the fleets, eliminating defenders, and invading the colony.

The form up task can take advantage of influence map and tactical pathfinding to pick

the best positions for the fleets, and use this data to create the tasks for fleet movement

to those positions. It can also consider the vulnerability of certain unit types, such as

troop transports, when it assigns these positions.

Objective

Group

Tactic

Units

Mission

Battleship
Fleet

Bomber
Fleet

Destroyer
Fleet

In
di

vid
ua

l U
ni

ts

Troop
Transports

Mission

Capture Colony

Form Up

Attack
Defending Fleet

Bomb Planetary
Defenses

Eliminate
Defenders Invade

Move

Move

Move

Move

Attack

Defend

Defend

Defend

Bombing
Run

Deploy Troops

Defend

Defend

60

The task for eliminating defenders can have various alternatives depending on the type

and number of defenders in the colony; presence of enemy fleet creates the need for

attacking enemy fleet, and existence of any planetary defenses requires using bombers

to eliminate them when other fleets are protecting the bombing run. These tasks are

further refined down into actions for the appropriate fleet types available.

The last task in capturing the colony is planetary invasion, which in straightforward way

creates the troop deployment actions for troop transports and assigns the other fleets to

defend the transports.

3.7 Diplomatic Reasoning

A game featuring players with the ability to engage in diplomatic relationships with each

other imposes a certain set of requirements for the AI:

Forming the opinion of other players

The most important part of diplomatic interaction is the ability to evaluate opinions about

other players; how they have behaved in the past, what they are expected to do, what

things the players agree and disagree about, how the military, scientific, economic and

social status are evaluated, etc. This includes the mechanism how the actions of players

affect these opinions, and how these opinions end up shaping diplomatic relationships

into friendships, alliances, enmity or animosity. A method for handling opinions is pre-

sented later in Chapter 3.7.1.

The ability to estimate percussions of actions

When it comes to making diplomatic decisions, the AI player needs to be able to under-

stand effects of its actions. With the opinion system in place, the AI can use the expected

opinion changes in goal tree search with combination of utility scoring to evaluate its

actions, and choose the one which yields the highest score. With this approach, the AI

can utilize knowledge of army sizes, the players’ opinions about each other, and other

factors such as personality weights in making educated guess for results of the actions.

61

Illusions of a character with personality behind the AI player

If all AI players would make decisions based on the same goals and using the same

scoring methods, there would be little variation between the different types of players in

the game, rendering the AI behavior more predictable and boring, and removing any

differences in behavior among the opponents. With certain preset weights given to each

of the AI players, their decisions can be influenced to be focused on unique goals, giving

each of them a more distinct personality. This also allows a human player who wants to

play the game with a certain strategy to seek alliances with AI players which have goals

and priorities matching his/her own goals.

Long-term goals and persistence

The AI needs to have logical goals and the ability to make long-term decisions to help

forming alliances and other agreements with other players. The combination of player-

specific weights and opinion system create a natural foundation for this process.

3.7.1 Opinion Systems

The original approach to Opinion Systems as used by Adam Russell is focused on al-

lowing individual NPC agents in game world to shape their opinion about other players

based on their actions, but the core mechanism he proposed can be adapted for control-

ling the opinions of virtual players in AI about other players [35]. The Figure 37 below

shows adaption of Russell’s Opinion System for a 4X strategy game diplomacy.

Figure 37. Opinion System adapted for 4X strategy games.

Deed Log

Direct or Indirect
Action

Deed

Deed

Select Audience

Fi
lte

rin
g

Lo
gg

in
g

DeedDeedPast Deeds

Players

Player #n

Opinion StateDeed EffectDeed EffectDeed EffectsDeedDeedActive Deeds

Visibility and
Weights

62

The main differences from his model are the replacement of NPC characters with virtual

players, and replacement of global opinion with visibility and weights used to select au-

dience of the deeds, and other minor adjustments to handle local opinion transfor-

mations.

Opinion State

The central piece of data in the Opinion System is an opinion state, which contains the

opinion in either discrete or numeric format. This could for example be one player’s trust-

worthiness opinion about another player, ranging from -1.0 to 1.0. These opinion states

can be either simple single-track values, or multidimensional opinions which are com-

posed of more than one value affecting the opinion state [35].

There are both positive and negative aspects of the multidimensional approach; the pos-

itive features include orthogonality, greater variety of effects, better match to natural lan-

guage and having more information. The downsides however include being more brittle

at design changes, increased confusion, difficulty in visualization and challenges in quan-

tization [35]. Table 11 lists a subset of the possible opinion values that can be used in

4X strategy game diplomacy, with multidimensional approach involving four different

opinion values.

Table 11. Examples of some potential opinion values in diplomacy.

Opinion Value Meaning of -1.0 Meaning of +1.0

Scariness Unthreatening Terrifying

Trustworthiness Deceitful Honest

Sentiment Loathed Admirable

Aggression Pacifist Warmonger

This approach has the benefit of giving diplomacy more depth, for example if a player

has strong army and thus high scariness score, but low sentiment score for past of-

fenses, another player might be unwilling to enter into a trade pact even if they would

fear the opponent’s army [35].

63

Actions and Deeds

The deeds originate from either direct or indirect actions made by the player. Direct ac-

tions might include declaration of war or using spy to perform a sabotage mission, while

massing troops could be induced as indirect action measured using threat analysis and

influence maps. It is possible that one action causes multiple deeds, such as declaring

war during peace treaty would also raise the break treaty deed. Some examples of pos-

sible deeds are listed in Table 12 below, with their associated audiences and weights.

Table 12. Some possible deeds and their weights.

Deed Affected Opin-
ion

Audience Weights

Target Allies All

Declare War Aggression Public +0.5 +0.5 +0.1

Break Treaty Trustworthiness Public -0.5 -0.4 -0.2

Demand Tribute Sentiment Public -0.2 -0.2 -0.2

Sabotage Sentiment Allies -0.2 -0.1

Mass Troops Scariness Private +0.1

Trespass Territory Scariness Visibility +0.1

Mass Genocide Sentiment Public -0.5 -0.5 -0.5

There are four different audience types in this model:

• Private: Only target player receives the deed notification

• Allies: Target player and its allies receive the deed notification

• Public: All players receive the deed notification

• Visibility: Players who have currently visibility of the affected map square get

notified

The deed audience type is specific to each deed type, and posting a deed requires either

a target player or target location depending on the type.

64

Deed Log

The deeds are posted into Deed Log through filtering and logging pipeline, which is used

to allow for example to temporarily suspend delivery of certain deeds, and to track sta-

tistics about the deed posts. The Deed Log not forwards the deeds to the subscribers of

deed events, but also keeps track of past deeds, and has a list of persistent deeds (for

example, trespassing enemy territory could be handled as a persistent deed, which posts

the deed notification every turn until it gets deactivated when the units leave enemy ter-

ritory) [35].

Audience Selection

The original audience type and the target passed with deed are used to pick the desti-

nation of the deed, and each of the recipients get notified.

Local Transformation

Before the deed is used to affect a player’s opinion, it goes through local transformation

which is specific to each deed type. In this modified 4X strategy game model, this trans-

formation process is used to apply in certain cases multiplier to the deed weight based

on the notification recipient’s existing opinion about the target player. For example, let’s

assume that player A demands tribute from player B, incurring sentiment penalty for

player B’s opinion about player A. If there exists player C, which has negative opinion

about player B, then player C would use negative multiplier for local transformation about

the deed weight, leading to positive sentiment offset for player C’s opinion about player

A [35].

Deed Effects

When the deed notification eventually receives the player, it has to have effect on the

receiving player’s opinion. This change in opinion is invoked as transient offset through

various possible offset functions, one of which is specific to each deed type. Example of

a transient offset function is shown below in Figure 38.

65

Figure 38. Opinion transient offset function example by Adam Russell [35 p. 544].

The function has a run-in time during which the deed offset increases until it reaches the

peak offset and highest effect on the opinion. After this it decreases during the run-out

time, and when the transient offset function ends the final offset is left as the permanent

change in opinion. This allows for example a genocide deed to have strong permanent

impact on opinion, but a trespassing of territory yields only a temporary change which

dissipates gradually [35].

To prevent excess accumulation of transient offset effects on opinion by repeated deeds,

the effect frequencies can be regulated by adding a minimum time between repeated

deed effects for a single player [35].

3.8 Customizing AI

Although it is possible to implement AI completely by hard-coding it within the game

code, there are motivations for making AI customizable which are twofold. For the first,

the development of AI is collaboration between programmers and designers, and to sup-

port this process the designers should be able to project their visions in the game with

as little friction and delay as possible. And for the second, by providing flexible methods

of modifying and creating additional content to the game, user community and players

can create custom mods and other expansions which can provide additional gameplay

value for other players of the game [4 pp. 99-107]. In this section, some common ap-

proaches for providing AI customizability are considered from this project’s point of view.

Time

Offset

Pe
ak

 O
ffs

et

Pe
rs

ist
en

t
O
ffs

et

Run-in Time Run-out Time

66

Black Box and White Box Approaches

The AI system implementation philosophies can be generally characterized into two

groups: White Box and Black Box systems. The White Box systems offer more flexibility,

are good for team of multiple people collaborating and they allow designers to work more

independently. Black box systems on other hand are good for single-person implemen-

tation, but force designers to have greater dependency on programmers for providing

implementations for the black-boxed behaviors. Neural Networks are one example of

Black Box systems, which take discrete input and provide output through trained pro-

cessing in the hidden layer [4 pp. 100-107].

Sometimes mixing the two is possible, for example reusable components in White Box

systems requiring less customization are usually better suited as black box components,

such as Pathfinding logic. The choice of better approach often depends on the project

needs, for example implementing AI components as Black Box systems might be good

for a team with many programmers, but in a team with many designers a White Box

System would be more preferable [4 pp. 100-107].

3.8.1 Data-Driven Design

The key idea in Data-Driven Design is detaching the AI behavior and logic from the game

code into a separate data model, which can be independently modified by the designer

without need for programmer intervention. There are various ways of accomplishing this,

for example with FSM state masks, custom parameter configurations for individual AI

agents, external definition of rules for Rule-Based Systems and Scripting Languages [4

pp. 109-111].

Custom Tools

One way to increase the designers’ power in AI development is through the development

of custom tools for creation, debugging and visualization of AI in the Data-Driven Design

model. The benefits of this are the increased flexibility, easier maintenance and balanc-

ing, and increased usability through UIs tailored specifically for the designers’ needs.

Drawbacks however include the upkeep required from the tool programmers and extra

care needed for version control handling [36].

67

These tools can either be completely specific to the data required for a single use-case,

or they can be more general, such as tools for visualizing and editing Decision Trees,

Behavior Trees, or rules in Rule-Based Systems. The tools can either be external appli-

cations, or they can be built into the game, allowing adjusting of the AI data in real-time

without need of exporting data and restarting the game [4 pp. 104-111].

3.8.2 Scripting Languages

One powerful way to provide access to implementation of AI is through a scripting sys-

tem. They come with many benefits including [37]:

1. The programmers and designers can work in parallel, when designers are able

to independently add behavior to game AI with scripting.

2. The simple syntax provided by scripting should be easy to use by the usually

non-technically oriented designers.

3. Scripting is based on Data-Driven Design, in which the AI logic is separated from

actual game code.

4. Increased AI development iteration speed through simpler AI implementation and

reduced number of possible errors.

5. Safety offered by scripts running sandboxed or interpreted, reducing the possi-

bility of causing game crashing through buggy scripts or maliciously crafted con-

tent.

6. Scripting offers great way to add extensibility and modding support to the game.

The drawbacks of scripting however include the need for script development tools for

designers, and the possible performance overhead due to script interpretation at runtime.

Both of these problems can be alleviated by using existing scripting tools which have

already good tools for scripting, and are already optimized to be embedded as part of

game [37].

Choosing a Scripting Language

Although there is no limit in which language can be used for scripting, there are a few

most commonly used options in game development. Some game engines come with a

built-in scripting system, such as UnrealScript in the Unreal Engine, and Torgue Script

in the Torque Engine. The use of open-source scripting engines, such as Lua or Python,

68

is also very popular among game developers. Visual Scripting, in which the logic is vis-

ualized graphically to the designer instead of a text-based presentation, is also one pos-

sibility, and commercial libraries such as PlayMaker Visual Scripting for Unity3D exist to

support this approach. And if none of these options is suitable for a particular game,

developers can opt to create a completely custom scripting language and engine tailored

for the particular needs of their use case [4 pp. 112-130; 38].

For this project, the choice of customization was narrowed to a combination of case-

specific custom data models and behavior scripting using an open-source scripting en-

gine. A custom script engine was out of the scope of this thesis, so the choice of scripting

language was further narrowed down to selection between Lua and Python, with moti-

vations explained in more detail below.

The Open Source Options: Lua and Python

Both Lua and Python are scripting engines with a good reputation of being well suited

for embedding into games due to their free license, easy integration, and stable language

specifications which are backed by strong existing developer communities [4 pp. 114-

130]. As this project uses Unity3D and C# for implementation of the prototype, there are

two popular frameworks which provide support for adding scripting languages on top of

it; IronPython for Python scripting [39], and Moonsharp for Lua scripting [40].

In Lua, the language itself has been designed to be flexible and extensible, so although

by default there is no support for Object-Oriented (OO) paradigm such as classes, inher-

itance and encapsulation, they can be added through the use of meta-tables. The inter-

preter itself does not support multithreading, so care has to be taken by either running

the interpreter only in a single thread, using mutual exclusion for access control, or hav-

ing multiple interpreters on separate threads. The language syntax itself is very similar

to C-like languages with shallow learning curve, and the standard library is very small

and easy to learn [17 pp. 449-450].

Python has native support for OO programming and it excels when it comes to mixing

the script language with native languages. The language syntax depends heavily on in-

dentation, but is generally considered one of the easiest languages to read and learn.

There is a very large number of libraries available for Python, but in runtime the language

suffers from size and speed issues. [17 pp. 451-452]

69

Based on the above considerations, Lua integration using MoonSharp was chosen for

this project, main reasons being the easy integration and lightweight runtime which were

key for the nature and scope of the prototype.

3.9 Cheating

As the majority of how the AI works is hidden from the player, there is often temptation

to cut corners short either to artificially increase the level of difficulty provided by the AI,

or perhaps just to save time in development. Some games are notorious for having

cheating AI, and it may be a big spoiler for the gameplay experience and source of frus-

tration, if the player feels that his opponent is exploiting an advantage he/she cannot

match [6 pp. 3-4].

Some examples of cheating might be the ability of AI to ignore visibility status of map,

thus having always full knowledge of the location and arrangement of all enemy units -

or adding a certain resource production multiplier to the computer player’s production,

which would be tied to the AI difficulty level chosen by the player [41].

For this project, the use of features giving the AI player unfair advantage over human

player is prohibited, and instead the difficulty variation is done through combination of

regulating AI aggression on easier levels, adding randomness to the decision scoring,

and otherwise tweaking the way AI makes choices based on the same information that

is available to the player.

3.10 Performance Considerations

Unlike many other real-time game genres with strict performance requirements, the 4X

strategy games have the benefit of being more relaxed when giving the AI processing

time thanks to their turn-based gameplay model. However, care needs to be taken to

balance between how much computing time is given to the AI to not cause too big slow-

down in the gameplay, especially in late-game situations in larger game worlds when

many AI agents owned by multiple AI players might be operating. This section introduces

certain techniques to optimize and balance the processing time given to the AI features.

70

3.10.1 Execution Management

A key feature in managing the time consumed by AI is division of the AI logic into man-

ageable tasks, and using some method to control the execution of them. In a single-

threaded execution model there is a fixed maximum amount of time that can be spent

for performing other tasks, as rendering of the game usually happens on the same

thread. A general-purpose execution management system can be used to not only run

the AI code, but to also control the time given to many other background tasks in the

game such as asset downloading, audio and physics processing [17 pp. 693-725].

Scheduling

A basic scheduling approach is to assign tasks to be executed on certain frames, using

a simple algorithm such as execution frequency. Figure 39 below shows how tasks A, B

and C might be executed when scheduled on relatively prime frequencies.

Figure 39. Frequency-based scheduling of tasks [17 p. 696].

The downside of this simplistic approach is the difficulty of estimating good frequency to

prevent spikes caused by task clumping, although there are ways to alleviate that such

as Wright’s Method and Analytic Method. The frequency-based scheduling can be im-

proved further by Priority-Based Scheduling, Load Balancing, or other means [17 pp.

693-725].

Hierarchical Scheduling

In Hierarchical Scheduling, the scheduler is able to not only run individual tasks, but also

complete child scheduling systems inside itself. A possible organization of this type of

scheduler is shown below in Figure 40.

A B A A A

C

BC B

B C B B C

A A

1 2 3 4 5 6 7 8 9 10 11

A

12

A A A

13 14 15 16 17 18 19 20

Tasks Executed:

Frame:

71

Figure 40. Example of a Hierarchical Scheduling System [17 p. 707].

The benefit of this approach is that the scheduling of certain behaviors can be isolated,

which allows not only choosing the appropriate scheduling method for the child scheduler

but also more modular design, in which parts of the AI can be replaced without causing

major impact to the overall scheduling performance [17 pp. 693-725].

Load-Balancing

In a load-balancing system, the scheduler keeps track of time spent for each task, en-

suring that processing time on each tick does not exceed the maximum limit. In addition,

the expected running time of tasks can be estimated, which can be used to predict how

long the task takes and thus help scheduling it for execution. Scheduling Groups can

also be used to divide tasks into groups which share a certain scheduling algorithm, such

as:

1. Spread Groups, in which tasks in a specified set are given an equal share of

specified time to run after each other sequentially.

2. Count Groups, in which a specified number tasks are run per frame, regardless

of their execution time.

3. Maximum Time Groups, in which the estimated time of tasks is used to schedule

a set of tasks for the maximum duration specified.

Another benefit of load-balancing scheduler is that the profiling data of execution time is

automatically available for debugging purposes [42].

Time-sliced pathfinding

One way to control the time consumed by pathfinding, and to prevent CPU spikes caused

by excessively large pathfinding queries, is to divide a single path query operation to

Task A

Scheduler 1

Scheduler 2 Scheduler 3 Scheduler 4

Task ETask C Task D Task HTask F Task G Task KTask I Task J

Task B

72

multiple steps, a technique known as time-sliced pathfinding. With this approach, the

pathfinder is given fixed amount of time to process during each tick, and when the time

is exhausted the state of pathfinder is saved in such way that the query can be resumed

when the pathfinder is again given processing time. One challenge with this approach is

that if state of map affecting the result changes during the query, the results may not be

guaranteed to be valid. How much this shortcoming affects the feasibility of the approach

is however dependent on the use case of the pathfinding [43].

 Multithreading

In the simple manual scheduling scenario, all tasks are run on a single thread in cooper-

ative fashion. This requires both the AI tasks to behave well in terms of how long they

take to execute on a single frame, and the scheduler has responsibility on how to divide

the workflow during each tick. Another approach for allocating CPU time not only for AI

tasks, but potentially to other components in the game engine too, is the use of multi-

threading. Traditionally, this approach has had the downsides of requiring synchroniza-

tion of data structures and performance penalty caused by context switching, but in the

past decade the advent of multicore CPUs even in the lowest-end mobile devices has

created a situation, where the use of multithreading to leverage the new hardware fea-

tures gives performance gains that outweigh the disadvantages [17 pp. 693-725].

3.10.2 GPU Offloading

Although the performance of Central Processing Units (CPUs) has increased constantly

during the history of computers, the power of graphics processing units (GPUs) has ex-

ploded in the past decades to be a very viable option for performing large-scale compu-

tation. With the introduction of General-Purpose computation on the GPU (GPGPU) APIs

such as OpenCL and DirectCompute, this power has become easily accessible to devel-

opers, including AI programmers. This allows great chance to speed up the AI by offload-

ing applicable parts of it to the GPGPU processing [44].

As pathfinding is one of the core methods used in grid-based strategy games, seeking

to optimize it through GPU offloading is one of the most promising applications for this

technology. Recent research on has demonstrated that A*-type pathfinding can be im-

plemented with GPGPU with a much higher performance compared to traditional CPU-

based search [45]. The GPU offloading in Unity projects can be achieved with the use of

73

Compute shaders, which provides an API for running GPGPU programs within Unity

applications. The downside of Compute shaders is they require using the latest versions

of graphics programming APIs and graphics hardware supporting them [46].

3.11 Other Evaluated Methods

There are also a couple of methods which could be useful in the development of AI for

strategy games, but they were considered not to fit in the scope of this project due to a

combination of practical and schedule challenges. They do, however, have potential to

be explored in future research, and are listed here to explain why they were rejected at

this point.

Bayesian Networks

The Bayesian networks and Bayesian inference are focused on how the AI can deal with

uncertainties, and make decisions based on probabilities of the unknown facts based on

other known facts in the game state. These methods include [6 pp. 244-268]:

1. Diagnostic reasoning, which attempts to estimate the presence of a single source

fact based on other existing facts in the world state which are known to be results

of this source state.

2. Predictive reasoning, which attempts to estimate the presence of possible result

fact from the known existence of a source fact.

3. Explaining away, in which a known result fact is used to reason the probability of

presence of source facts leading to it, including characteristics of independence

and conditional dependence.

The challenge in Bayesian networks is that for them to be useful, the probabilities used

for inferring states need to be acquired by either gathering the information during simu-

lated gameplay or through training of the network. This means that the problems they

are used to solve need to be fairly uniform, as alteration of gameplay and rules affecting

the probabilities causes the network to produce invalid decisions. One solution for this

could be allowing the network to adapt to the user’s gameplay by training it during actual

gameplay, but this might make the AI show too much emergent behavior, and thus lead

74

to undesirable decisions which might not be expected by the AI programmer or program-

mer, causing other parts of the AI to behave unexpectedly and appear broken to the

player.

Neural Networks

The concept of Neural Networks is one of the machine learning techniques which has

gained a lot of popularity in the AI research in the recent years, and there are even some

commercial games which have utilized this approach. The Neural Networks try to simu-

late the function of neurons in actual human brain with a simulated mathematical model.

In this model, the Neural Network is divided into three layers: Input layer, Hidden layer

and the Output layer, with each of those layers containing sets of neurons. The number

on each layer dependent on the use case of the network. The source data is fed into the

input layer, from which a feed-forward process passes the information through the hidden

layer, all the way until it reaches the output layer. During training, the output data is

evaluated and back-propagated to the weights in the hidden layer, and repeated until the

Neural Network outputs the expected values. After this the trained network can either be

used in the final AI implementation, or the training process can be infinitely continued to

allow the AI to be able to adapt to player behavior during the gameplay [6 pp. 269-315].

The major challenge in the Neural Networks is, like previously outlined in the evaluation

of Bayesian Networks, the need for training and high risk of unexpected emergent be-

havior, and these features make especially debugging, testing and balancing gameplay

difficult [6 p. 271]. It should be noted that it is possible to leverage these techniques in

games successfully, but due to the time and effort required for these approaches com-

pared to the potential gain, they were not included in the scope of this thesis.

75

4 Proposed Solution

In this section, the produced high level technical design is presented in addition to out-

lining the best practices for implementing it. Due to the highly iterative process in game

development, this solution should be considered as a starting point for prototyping, and

most likely goes through various alterations and fine tuning as the development pro-

ceeds. It should however provide an understanding of what kind of options are being

considered as realistic goals for the project.

4.1 Architecture Overview

On high level, the entire AI is encapsulated as the virtual player, which interfaces with

the game by taking the world state as input, and providing set of actions as output. Figure

41 below shows an abstract overview of this information flow.

Figure 41. Abstract illustration of AI interaction with the game engine.

To give a better understanding of this process, below is a brief explanation of the purpose

of each step in this illustration:

• The World State contains all information available to the AI player the explored

map of the game world which contains all known colonies and fleets with their

latest updated states, diplomatic relationships, research and other generally any

other data available to each of the players during the gameplay.

Map State

Research

Players
Diplomacy

Fleets

Colonies

Influnce
Maps

Threat
Analysis

Opinions

Memory Enemy
Activity

Goals

Colony
Production

Military
Incursions

High-Level
Goals

Fleets Research Colonies Combat Espionage

Fleet Orders
Utility

Scoring

World State AI State

Actions

Interpretation

76

• Interpretation step takes any data from the world state as input, and analyzes it

to provide value for the AI player. This includes tactical analysis including influ-

ence mapping and threat analysis, and algorithms providing utility factors derived

from the game state for various decision-making processes.

• The AI State encompasses any active goals and plans that AI has and any data

required for them. Any other persistent information is also managed here, includ-

ing memory of spotted units and opinions about other players.

• The AI interacts with the game by providing Actions, which include movement

commands for fleets, choices made for colony production, and picking research

goals and priorities. They are either initiated directly by the AI during the AI

player’s movement turn, or in response to certain game events occurring, such

as battles and diplomatic meetings.

This abstraction of the AI’s understanding of the game state and its operations allows

better modularity, and helps preventing cheating by allowing the AI to use only the same

information and actions which a human player would be able to utilize in the game.

Furthermore, with this architecture it is possible to use certain parts of AI features for

human players to allow worker automation, colony governors and other features that

might be automated to reduce the dreaded micromanagement which might be present

in large-scale games.

4.2 AI Model and Components

When implementing the AI, a good approach for controlling the complexity is the division

of the AI to dedicated components. The central part of the virtual player is the multi-tier

AI model, which follows the principles set earlier in Chapter 3.2.1. The responsibilities of

each tier level are capsulated to managers, each of which has a dedicated role in the

decision-making hierarchy. These managers (and individual agents in lower tiers of the

model) utilize various AI tools which are available for them throughout the tier levels as

a separate toolbox. This division to components is illustrated below in Figure 42.

77

Figure 42. The core AI model and its components.

The roles of each component and their relationships are described briefly in the following

chapters.

4.2.1 Strategic Tier

The highest level of the multi-tier model, and source of the decision making, is the stra-

tegic tier. All lower-level goals originate from this layer and affect all decision-making

processes down in the hierarchy.

Strategy Manager

The root of AI decision making is built into the Strategy Manager, which uses a HTN

planner to perform the high-level planning of the AI goals. The Figure 43 below shows

the relationship between the Strategy Manager and other managers which it has author-

ity over.

Virtual Player

AI Toolbox

Execution Management

HPS Engine

Inference Engine

Base FSM

Fuzzification and Utility
Tools

Multi-tier Model

Strategic

Operational

Tactical

Individual

Military Coordinator

Units

Strategy Manager

Research Manager

Colonies

Diplomacy Manager

GOB Engine

Pathfinding Engine

Tactical Analysis Server
Spatial Database

Threat Analysis Engine

Colony Manager

Army Manager

Expansion Manager

A* Engine

78

Figure 43. Overview of the Strategy Manager.

The HTN planner in this component utilizes a highly abstract, high-level strategic deci-

sion-making domain, which composes to various abstract tasks which are assigned to

the other managers. The Diplomacy and Expansion Managers also provide data for the

planner to help in the decision making.

4.2.2 Operational Tier

The next level of the multi-tier model is the Operational Tier, which contains manager

components which are direct subordinates of the Strategy Manager. Each of them has

the responsibility of both managing a dedicated subset of the AI behavior, and providing

information necessary for the necessary higher-level decision manager.

Research Manager

The purpose of the Research Manager is to both choose which technologies the AI

player should research, and to maintain knowledge of the enemy research state. The

overview of Research Manager is shown below in Figure 44.

Colony Manager

Strategy Manager

Research Manager Army ManagerDiplomacy Manager Expansion Manager

Uses Tactical
Analysis ServerHigh-level Goal Planner (HTN) Domain

HTN planner composite goals:
• Eliminate all opponents
• Build alliance with all opponents
• …

Player-specific personality
• Military victory priority
• Science victory priority
• Diplomatic victory priority
• …

HTN planner primitive goals:
• Attack enemy
• Diplomatic approach
• Build army

• Improve military tech
• Expand empire
• …

Uses Utility
Scoring

Uses HTN Planner

Tasks:
• Update research priorities
based on goal tasks

Tasks:
• Opinion management
• Diplomatic actions
• Espionage
Feedback:
• Provide opinions and other
data to HTN planner

High-level actions
• Set empire tax rate
• …

Tasks:
• Handle overall colony
priorities
• Fulfil specific goals set by
HTN planner

Tasks:
• Transform the high-level
attack enemy task into
incursion plans and when
necessary handle fleet
reinforcements

Tasks:
• Identify expansion
possibilities and provide data
to HTN planner
• Manage worker and colony
ship fleets

Provide data for
planning

Feed goals to
dedicated
managers

79

Figure 44. Overview of the Research Manager

The research goal selection uses in straightforward way the active goal given by the

Strategy Manager to choose which field of research should be given the research priority.

For tracking the state of enemy research, the Research Manager uses functionality of

Rule-Based System’s inference engine, allowing it to use knowledge of enemy fleet

types, colony improvements, and existing knowledge of research state to further deduce

what technologies that particular player is currently in possession of.

Diplomacy Manager

The Diplomacy Manager is responsible for handling any diplomatic actions requested by

the Strategy Manager, and it also provides necessary data for the high-level HTN plan-

ner, such as the opponent reputation based on opinion values. The overview of the Di-

plomacy Manager is shown below in Figure 45.

Figure 45. Overview of the Diplomacy Manager.

Research Manager
Uses Rule-Based

SystemTracking Enemy Technologies
Technology inference:
• Use Rule-Based System to infer
research state of enemy players

Strategy Manager
Provides:
• Global goal priorities
• Task-specific goals

Research Prioritization
Choose the research goals:
• Use goal given by Strategy
Manager to prioritize research

Diplomacy Manager Uses Opinion
SystemsOpinions

Opinions:
• Keep track of opinion of enemy
• Feedback: provide opponent
trustworthiness and other statistics
to high-level planner

Uses Utility
Scoring

Diplomatic Actions
Diplomatic actions:
• Declare war/peace
• Formulate trade proposals
• Act on enemy proposals

Espionage
Espionage:
• Spy assignments
• Handle espionage missions
• Counter-intelligence

Strategy Manager
Provides:
• Global goal priorities
• Task-specific goals

80

This manager itself has a threefold function:

• Managing opinions: Use of an opinion system to keep track of player’s opinion

about other players.

• Perform diplomatic actions: Includes declaring war and offering peace treaties,

using utility scoring to compose any trade proposals, acting on enemy proposals,

etc.

• Handle espionage: This includes assigning spies based on utility scoring, initi-

ating espionage missions, and handling counter-intelligence resourcing in colo-

nies

Colony Manager

The Colony Manager is responsible of controlling the production and other aspects of all

colonies currently owned by the AI player. The overview of the Colony Manager is shown

below in Figure 46.

Figure 46. Overview of the Colony Manager.

One central component of the Colony Manager is the goal pool; it contains all possible

goals, and at any given time each colony is assigned one of these goals which it needs

to fulfill. As the Colony Manager gets the high-level goals from the Strategy Manager, it

makes sure that the currently assigned goals have the highest utility for reaching this

high-level goal. As the Colony Manager is also responsible of tracking global resource

Colony Manager

Manage colonies
For each colony:
• Pick and assign best-fit goal from
goal pool
• Leverage information about
colony type and specialization
• Use utility scoring to estimate
future state of colony, and offload
colony-specific develoment into
long-term goals handled by
individual colony decision making

Uses Utility
Scoring

Goal Pool
Global priority-based goals:
• Build colony ships, army, workers,
defenses
• Improve production, Boost
science output
• …
Priorities adjusted to match the
higher-level goals

Strategy Manager
Provides:
• Global goal priorities
• Task-specific goals

General
Track global food, science and
production levels
• Activate subgoals when needed
to boost certain areas of economy

Individual Colonies
Tasks:
• Fulfil requested goals
• Provide colony-specific data for colony
manager’s

81

production and allocation, this allows it to not only directly respond to specific production

goals, but also to balance the resources between individual colonies to avoid potential

production or growth bottlenecks.

Army Manager

The Army Manager is responsible for both high-level planning of military missions, and

providing military data for the Strategy Manager. The overview of the Army Manager is

shown below in Figure 47.

Figure 47. Overview of the Army Manager.

The mission planning relies strongly on the Tactical Analysis Server to find both weak

and strong areas in the friendly or enemy territories, which allows it to create missions

not only for incursions to enemy space, but also for reinforcing own defenses. This plan-

ning process also includes allocation of available military units to specific missions. When

a potential mission is formulated, the allocated units and the mission goal is forwarded

to the military coordinator, which handles planning of the actual mission and decompo-

sition to individual unit actions.

Expansion Manager

The Expansion Manager is responsible for handling both the expansion of player’s em-

pire with colony ships, and using worker fleets to improve the existing structures owned

by it. The overview of the Expansion Manager is shown below in Figure 48.

Army Manager

Mission Planning
Military operations:
• Use Tactical Analysis to find weak
and strong spots in enemy and
friendly territory
• Allocate fleets for incursions

Uses Utility
ScoringOperational Intelligence

Intelligence and spatial awareness
• Identify strategic dispositions
• Keep track of both visible and
previously spotted enemy fleet
• Estimate enemy strength for
decision-making purposes

Strategy Manager
Provides:
• Global goal priorities
• Task-specific goals

Military Coordinator
Tasks:
• Plan and execute military operations

Uses Tactical
Analysis Server

Spatial Database

Influece Maps

82

Figure 48. Overview of the Expansion Manager.

There are two responsibilities which the Expansion Manager handles:

• Colonization: List of all habitable planets is used in combination with evaluation

of the utility of inhabiting of each world. This allows not only keeping a pool of

colonization goals, from which the most potential ones can be assigned to exist-

ing colony ships, but also to identify need of new colony ships to be produced,

which can be signaled to the higher-level Strategy Manager.

• Workers: Alike with colonization goals for colony ships, the complete list of po-

tential structure construction and improvement actions is kept in order to provide

worker units job goals, and also to evaluate the need for new worker unit produc-

tion.

The goals given to colony ships and worker units are directly assigned to the individual

units, which use their own decision-making model to fulfill them.

4.2.3 Tactical Tier

The role of the Tactical Tier in the multi-tier model is to manage tactical planning, which

in the case of this 4X strategy game AI model is solely for coordination and planning of

combined military maneuvers.

Expansion Manager

Manage colony ships and
workers

For each colony ship:
• Pick and assign colonization goal
from goal pool if any available and
suitable for execution
For each worker:
• Pick and assign worker job goal
from goal pool with highest
combined priority and utility

Uses Utility
Scoring

Goal pool
Colonization goals:
• Keep track of all habitable planets
• Prioritize colonization based on
utility scoring
Worker goals:
• Have list of all worker jobs
available
• Prioritize worker jobs based on
utility scoring

Strategy Manager
Provides:
• Global goal priorities
• Task-specific goals

General
Provide decision-making data to
Strategy Manager:
• Need for colony and worker ship
production

Individual Fleets
Tasks for colony ship and worker ship:
• Build colonies
• Worker actions

83

Military Coordinator

The purpose of the Military Coordinator is to take the mission goal and allocated units

from the Army Manager, and to translate them into tasks for each of the individual units.

Structure of this manager is shown below in Figure 49.

Figure 49. Overview of the Military Coordinator.

The core of Military Coordinator is the Hierarchical Plan-Space (HPS) Planner, which

uses the planner methods and tasks provided by the coordinator’s data model. Function-

ality of this HPS planning process was detailed earlier in Chapter 3.6.4. If the planning

succeeds, the resulting plan containing tasks for each individual fleet is executed by the

coordinator, which provides goals for the individual units during the plan execution until

mission is either finished or failed.

4.2.4 Individual Agents Tier

The lowest level on the multi-tier model contains the behavior of individual AI agents,

which in this game are units and colonies which the player owns.

Military Coordinator

Incursion planning
Use Hierarchical Plan-Space
Planner for composing incursion
missions:
• Fleet resources and mission goal
provided by Army Manager
• Create goals for each individual
unit allocated for the mission

Uses HPS
Planning

Army Manager
Provides:
• Incursion mission goals

Individual Fleets
Tasks:
• Execute goals set by the mission
planner

Planning domain
Data used for HPS planning:
• Planner Methods
• Planner Tasks

84

Individual Fleets

Each unit in the game has an active goal, which is assigned to them either by the Military

Coordinator, or the Expansion Manager, depending on the type of fleet in question. Over-

view of the Individual Fleets module is shown below in Figure 50.

Figure 50. Overview of the Individual Fleets.

The fleet behaviors can utilize for example Finite State Machines (FSMs), Behavior

Trees (BTs) or Decision Trees (DT), a combination of them, or custom code. There can

be different behavior profiles depending on the unit type, allowing for example civilian

units (workers, colony ships) and other weaker units to prefer avoiding the enemy. This

module also leverages the Pathfinding component, which allows the units to perform

movement on the game map.

The decisions made at this level are mapped directly to the commands given to fleets

during the AI player’s unit movement turn during the gameplay. The worker automation

can be also used by the human player to toggle partial Expansion Manager and AI fleet

behavior on and off when needed.

Individual Colonies

Each colony owned by the AI player is managed by the Individual Colonies AI module,

which takes the goals given by the Colony Manager, and translates them into actions

that can be performed by the AI for that particular colony. Overview of the Individual

Colonies module is shown below in Figure 51.

Individual Fleets

Behavior Logic
Perform actions to fulfill active goal:
• Movement with help of pathfinding
• Specialized unit-type-specific behavior, such
as enemy avoidance of civilian units
• Implementation through FSM, BT, DT or
custom code

Uses FSM

Military Coordinator
Provides:
• Goals from HPS planning

Expansion Manager
Provides:
• Goals for colony ships and
workers

Uses BT/DT

Uses Pathfinding A*

85

Figure 51. Overview of the Individual Colonies.

There are two main ways the AI can control the colony:

• Setting active production

• Changing colony resource allocations

Both of these can be changed through goals available for the colony decision-making,

which utilizes a Goal-Oriented Behavior (GOB) implemented as a forward-chaining Goal-

Oriented Action Planner (GOAP). Contrary to regular GOAP, which traverses back from

the goal state to initial state, the colony production planning should use the forward-

chaining method because certain actions, such as building factories, affect the scoring

of actions performed later in chronological order.

Another role that the Individual Colonies model has is evaluating the threat level of each

particular colony, and also any colony-specific specializations and other data needed for

the higher-level Colony Manager decision-making process.

4.2.5 AI Toolbox

The AI toolbox contains various generic AI algorithms and tools, introduced earlier in the

chapter 3, which are utilized by the various other modules throughout the multi-tier levels

of the AI decision-making model. The most important principle of the toolbox is that each

of the technologies used by the AI is encapsulated into a reusable component, which

allows integration with other AI code through predefined interfaces. This not only allows

keeping the component-specific code separate from other AI logic, but also allows better

possibility for scripting language integration, explained later in Chapter 4.4.

Individual Colonies

Production Planning
Use GOB for production planning:
• Use forward-chaining GOAP planner
• Fulfill goals set by the Colony Manager

Uses GOB

Colony Manager
Provides:
• Goals for colony production
and resources

Uses Utility
Scoring

Colony Data
Provide information for high-level
planning:
• Threat analysis
• Environment type and specialization

86

4.2.6 Execution Management

Unlike in real-time strategy games, which have strict limits on the CPU budget for AI

execution time per frame, the nature of turn-based games allows certain level of flexibility

in the implementation of AI processing model. Although not optimal, in the proposed

prototype, all AI actions can be isolated to the AI players’ turn, thus reducing the pressure

to interleaving AI processing with other players’ turns. However, even when executing

all AI code of a particular player in one batch, certain steps must be taken to avoid un-

desirable behavior of the game, such as stalling the game interface during the AI pro-

cessing.

In Unity, the default method of implementing asynchronous behavior is through the use

of “Coroutines” which resemble cooperative multitasking. Each Coroutine gets executed

on the Unity’s main thread, and they are responsible for handing over the execution vol-

untarily by yielding. Although this approach is easy to implement, it has the drawback of

needing careful planning of when to yield the execution to avoid either clogging too much

CPU time on a single Coroutine pass, or wasting CPU time by yielding excessively often.

Other challenge of this approach is the care needed when designing the AI model to

allow Coroutine yielding throughout different components.

Another way of implementing the asynchronous execution is through the use of C#

threads. Although the use of threading allows independent execution from the main

thread, and possibility of benefiting from multi-core CPUs, they have the drawback of

needing synchronization between any shared data structures, and as Unity’s API is not

thread-safe, would be limited to executing only the parts of C# code which are not using

Unity features.

In this prototype, the Coroutine method was chosen to be used.

4.3 AI Diagnostic Tools

The Unity Editor can be extended easily by custom tools, a feature which can be lever-

aged to create tools that allow rich and verbose view to the state and working of the AI

while it is executing in the game running in the play mode.

87

4.3.1 Automated Testing

When balancing the AI behavior and features, it would be unnecessarily time consuming

to have QC play multiple games against an AI after each modification done to it by the

programmers or designers. To alleviate this problem, automated testing can speed up a

lot of this process by allowing simulation of entire games played by variable number of

AI players. A set of parameters can be configured for this process:

• Skill level of the AI player as the human player would select it

• “Personality” parameters such as AI temperament, diplomatic behavior, and

overall goals

• Any basic game settings such as the galaxy size, number of players, victory con-

ditions

Also, different variations of AI using their own versions of data models could be poten-

tially matched against each other, to directly evaluate the effect of modifications of the

model data on AI performance with minimal iteration time.

Each automated game produces a transcript of all actions performed during the game,

and the resulting outcome of the game. This recorded journal of the game can be re-

played in either high- or low-level detail, which allows designers to pinpoint which actions

by the AI were undesired, and give them ideas which features would need to be im-

proved.

4.4 Scripting Using LUA

In the proposed AI model, the individual manager modules in the multi-tier have the po-

tential to benefit from being abstracted from the other AI code through use of LUA script-

ing engine. The AI toolbox, which have very little need (if any) for specialization, can be

easily utilized by scripts as standalone components exposed to the scripting environ-

ment, removing the need to write any low-level AI code in the scripting language.

As explained in Chapter 3.8.2, the MoonSharp library was chosen to be used in the pro-

totype, but due to schedule challenges the experimentation of scripting integration was

not finalized in time for this thesis, and remains on theoretical level.

88

4.5 Data Model for AI

Following the principles of the Data Driven Design introduced in Chapter 3.8.1, many

parts of the AI model are isolated into data models, which can be customized either by

custom tools or direct manipulation of the data in question. These datamodels are listed

below in Table 13.

Table 13. Table of data models.

Model type Individual model use cases

HTN Domain • Strategy Manager HTN planner

Opinion System Model • Diplomatic decision making

Rule-Based System Rules • Research Manager technology inference

Utility Model • High-level Strategy Manager decisions

• Part of Strategy Manager HTN planning

• Diplomatic decision-making

• Espionage decision-making

• Colony Manager global resource allocation

• Colony Manager goal prioritization

• Colony resource allocation

• Army Manager operational intelligence

• Expansion Manager production desirability

Spatial Database • Rules for combining influence data into spatial data-

base by the Tactical Analysis Server

HPS Domain • Military Coordinator Hierarchical Plan-Space planner

Decision Tree • Potential use for individual fleet decision-making

Behavior Tree • Potential use for individual fleet decision-making

Goal pool • Colony Manager colony goals

• Expansion Manager fleet goals

GOAP Goal Hierarchy • Colony production GOAP planning

All of the above data models can be stored in either JSON or XML presentation, which

can be further exposed to the designers with an UI through custom tools where needed.

This allows building a foundation for the AI behavior before devoting time to building the

custom tools. It should be noted that some data, such as the rules used for technology

inference, can be derived from other game data.

89

5 Evaluation

This chapter explains what was developed during the project, and evaluates how well

the project output matched the initial goals. The biggest challenge for the implementation

of the complete AI player was the lack of a 4X game engine, and creating one single-

handedly for the purpose of this thesis would have exceeded the feasible time limits

available to finish the project, and risked generating excessive workload beyond the

scope of the project. The outcome of this thesis can be categorized in two distinct parts:

• High-level technical design

• Code implementation

Both areas of output contribute to the results of this thesis, as explained further in the

next chapters.

5.1 High-level Technical Design

The most important outcome of the project was the high-level design of the AI player,

which should be used as a starting point and guideline for the implementation of the

actual AI code in the actual game as presented earlier in Chapter 4 as the proposed

solution. This technical design contributed to the selection of parts suitable for independ-

ent prototyping, which are detailed later in Chapter 5.2.

It should be noted that the greatest value of the high-level design comes from this pro-

found research of AI field done for the theory part of this thesis, as the time spent on this

process will be saved in any possible future implementation of actual games.

As the evaluation of this technical design was limited to general assessment of its use-

fulness in the scope of this thesis due to lack of a complete game prototype, the results

of the prototyping were used to reinforce and assess the feasibility of this high-level de-

sign.

Although the technical design represents the virtual player feature of the strategy game,

all necessary parts of the design can be applied for player-assisting “governor” features

by considering the human player as a complete AI player with certain decision-making

modules disabled. This allows the full influence mapping, threat evaluation and other

90

features to provide necessary data for the assisted features, such as production plan-

ning, advisor recommendations, scientific research goal suggestion, etc.

5.2 Technology Prototyping

As the full-scale implementation was ruled out, the prototyping phase focused on elevat-

ing of certain key technologies which were part of the high-level design. All prototyping

was done using Unity 5.6 game engine on macOS, which also was the target platform

for the proposed solution. As part of the process, source code was produced which is

available as an appendix in this thesis:

• Appendix 5 contains the latest version of the prototype of map testing application,

which combines pathfinding and spatial database experiments in one program.

• Appendix 6 contains source code for the inference engine prototype.

These appendices only contain the C# source code, and do not include actual Unity

scenes and asset files which were used in the prototyping.

5.2.1 Pathfinding with Generic A* Engine Prototype

As per the original game design, the map prototype was based on the hexagonal grid.

This grid type provides better movement and distance handling by eliminating the differ-

ent between diagonal and axial distances, but in contrast requires more complicated

handling of hexagonal coordinates. A hex coordinate utility was developed during the

project to help managing this challenge.

Appendix 1 shows screenshots of the first pathfinder prototype. In the pictures, there are

the following features:

• Yellow hex indicates start node of pathfinder.

• Black is the goal node for pathfinder.

• Yellow dots represent the final path of the query.

• Hexes with black borders indicate which nodes were evaluated during each query

• The hex cell color indicates traversal cost of each node, light blue being the high-

est-cost path, and purple the lowest-cost.

91

• Additionally, the white openings in the map indicate blocked nodes which cannot

be passed, as demonstrated in the bottom-left screenshot which shows result of

a query in which a path could not be found.

This first version provided a good foundation for the map and pathfinder code, although

some bugs were found and fixed in the later version.

5.2.2 Spatial Database and Influence Mapping Prototype

Building upon the map prototype used for the pathfinding testing previously, the function-

ality was extended to include support for multi-level spatial database to map player influ-

ence and the combined effects for visualization on the map. Additionally, the pathfinding

engine was adapted to leverage the spatial database information to allow experimenting

with tactical pathfinding.

Appendix 2 shows screenshots of the various spatial database layers being visualized.

This version of prototype was equipped with a primitive representation of military units,

which appear as circles on the map. Each of the units has the following properties:

• Strength: used in influence calculation to determine power and distance of the

effect, shown as number on the unit.

• Friendly flag: used to distinguish player’s own units from enemy units; green

circles represent friendly units, red are enemy units.

The screenshots show the following layers in the spatial database:

• Movement cost: This layer contains the movement cost of each map cell. In the

screenshot, green cells have the lowest cost, while red ones have the highest

cost.

• Own influence: In this layer, all friendly units are used as influence sources,

which propagate their influence based on their strength. The influence is spread

linearly, with each increase in strength causing the influence to spread one hex

further away from the source unit. This effect is additive, so nearby units enforce

each other’s influence. In the screenshot, green area shows strong own influ-

ence.

92

• Enemy influence: Working like the own influence layer, the enemy influence

layer shows the propagated influence of units, but for enemies. In the screenshot,

red area shows strong enemy influence.

• Combined influence: This layer combines the two previous layers, own influ-

ence and enemy influence, so that areas with own influence have positive values,

and ones under enemy influence have negative values. In the screenshot, green

areas have strong own influence, while red areas are under enemy influence.

• Tension: This layer combines the own influence and enemy influence by sum-

ming them instead of subtraction, thus creating higher values in areas with lot of

military activity. In the screenshot, green areas have no tension, while red areas

have high tension value.

• Vulnerability: The vulnerability layer is calculated by subtracting the absolute

value of combined influence from the tension layer. This allows identifying units

on either side, which are exposed to strong opponent force, and thus making

themselves vulnerable. In the screenshot

The aforementioned spatial database layers were used just for testing purposes, and

actual game could use any number and any combination of layers in whichever way the

game designers might feel useful.

5.2.3 Tactical Pathfinding

Tactical pathfinding was created as a simple extension to the original pathfinder, using

the influence data in the spatial database to show benefits of this approach. The screen-

shots in Appendix 3 show three different pathfinding modes with equal start and goal

locations:

• Simple: Each node is considered to have fixed cost of 1, which makes the path-

finder attempt finding the route with lowest number of map cells from start to the

goal node. The screenshot also shows, that this approach makes the pathfinder

visit very low number of map cells thanks to the A* algorithm which prioritizes

cells closer to the target.

• Terrain movement cost: The pathfinder now considers movement cost of terrain

when doing the path query, showing a different resulting route. Also, a much

higher number of map nodes was visited during this query.

93

• Enemy threat avoidance: Again, the same start and goal nodes are queried, but

this time the scoring of path is done using data from the enemy influence layer

(although boosted 10 times to allow including terrain movement cost as a sec-

ondary scoring method), which creates a completely different path, which nicely

skirts around the areas around enemy influence.

The actual formulas for combining influence data from spatial database for map cells are

highly customizable, and may need a lot fine-tuning depending on the use case for the

game. For example, it may need careful consideration on how much effort the AI should

put into avoiding enemy if resulting path leads to excessively long detour. However, for

the prototype purpose, the combinations used seem to work quite well.

5.2.4 Inference Engine Prototype

A simple inference engine was created to demonstrate the basic concepts of rule-

based system functionality. This implementation uses heavily Unity features, such as

storing rulesets in ScriptableObjects, and editor extensibility to allow running the infer-

ence engine in either edit or runtime mode.

Screenshots of the inference engine test are shown in Appendix 4, which were taken

from the Unity Editor mode. The first screenshot shows the ruleset asset, and the asso-

ciated test rules used in the prototype. The other screenshots show state of the inference

engine after each user action, starting from resetting the inference engine followed by

single-stepping it one step at a time until the inference process was finished. The debug

output of the Unity console is also included in the screenshots, which shows the effects

of inference process during each step.

Although the basic inference process works, and demonstrates the functionality of asso-

ciated algorithms, a more generic implementation supporting dynamic rule generation

would probably be most useful for the actual production-quality game, especially if used

for technology inference like proposed in the high-level design.

94

6 Discussion and Conclusions

The motivation for this thesis originated from the interest in game artificial intelligence

and the 4X strategy gaming genre. This, combined with the ongoing trend of constantly

increasing mainstream popularity of gaming, gave further incentive for this research as

a way to create a design which could benefit future development projects requiring this

type of knowledge.

As possibilities for exploring this field of technology were not available at the workplace

for the timeframe of this thesis, the project was implemented as a personal undertaking

focusing strongly on theoretical research.

The main goal of this thesis was to research various AI technologies in order to create a

plan for integrating AI for a turn-based 4X strategy game, and a secondary goal was to

do prototype implementation of it. The theoretical part of the study was finished, but the

implementation was limited to prototyping only certain areas of the researched technol-

ogies.

The technology research phase proved highly informative, and a lot of knowledge was

gained for creating a feasible high-level design for the AI implementation. During the

prototyping phase, the technologies that were experimented with also showed a lot of

their potential also in practical setting, thus reinforcing the credibility of the parts of design

which they were associated with.

Although there were certain shortcomings in the practical output of the thesis, the theo-

retical knowledge gathered has high value for not only the author personally as game

developer, but hopefully also for other people facing similar challenges who might be

reading this.

One major improvement in future would be the full implementation of AI in the actual

game. As the AI design is theoretical and high-level, there are most likely many chal-

lenges in the practical implementation which will be reflected back on the design of the

AI model. This includes for example considering the actual gameplay design of the game

and the processing performance of the target platform.

95

Also, the further work should not be limited by the research done in this thesis, but should

also be open to exploring possibilities of both future technologies, and re-evaluating the

existing technologies, such as Bayesian and Neural Networks which were ruled out of

the scope for this thesis.

96

References

1. Entertainment Software Association. ESA Annual Report 2015. [Online] 2016.

[Cited: March 31, 2017.] http://www.theesa.com/wp-content/uploads/2016/04/ESA-

Annual-Report-2015-1.pdf.

2. Flew, Terry and Humphreys, Sal. Games: Technology, Industry, Culture. [book

auth.] Terry Flew. New Media: An Introduction. 2nd Edition. South Melbourne : Oxford

University Press, 2005, p. 106.

3. Baekkelund, Christian. Academic AI Research and Relations with the Game

Industry. [ed.] Steve Rabin. AI Game Programming Wisdom. Boston : Thomson Delmar

Learning, 2006, Vol. 3, pp. 77-86.

4. Ahlquist, John and Novak, Jeannie. Game Development Essentials: Game

Artificial Intelligence. s.l. : Thomson Delmar Learning, 2008. ISBN-10: 1-4180-3857-1.

5. Tozour, Paul. The Evolution of Game AI. [ed.] Steve Rabin. AI Game Programming

Wisdom. Hingham : Charles River Media, 2002, Vol. 1, pp. 3-14.

6. Bourg, David M. and Seemann, Glenn. AI for Game Developers. Sebastopol :

O'Reilly Media, 2004. ISBN: 978-0-596-00555-9.

7. Emrich, Alan. MicroProse's Strategic Space Opera is Rated XXXX! Computer

Gaming World. 1993, 110, pp. 92-93.

8. Wikipedia contributors. 4X. Wikipedia. [Online] February 23, 2017. [Cited:

February 27, 2017.] https://en.wikipedia.org/wiki/4X.

9. —. Civilization (series). Wikipedia. [Online] February 4, 2017. [Cited: February 27,

2017.] https://en.wikipedia.org/wiki/Civilization_(series).

10. —. Master of Orion. Wikipedia. [Online] December 5, 2016. [Cited: February 27,

2017.] https://en.wikipedia.org/wiki/Master_of_Orion.

97

11. —. Galactic Civilizations. Wikipedia. [Online] February 28, 2017. [Cited: March 1,

2017.] https://en.wikipedia.org/wiki/Galactic_Civilizations.

12. Stardock. Galactic Civilizations Gold. Stardock Corporation. [Online] 1998. [Cited:

March 10, 2017.] http://www.stardock.com/products/gcgold/.

13. Wardell, Brad. Stardock’s OS/2 history. Stardock Corporation. [Online] [Cited:

March 28, 2017.] http://www.stardock.com/stardock/articles/article_sdos2.html.

14. Unity Technologies. Games | Made With Unity. Unity - Game Engine. [Online]

[Cited: April 7, 2017.] https://madewith.unity.com/en/games.

15. —. Editor Version Release Dates. Internet Archive. [Online] October 15, 2014.

[Cited: April 7, 2017.]

http://web.archive.org/web/20141015144227/http://docs.unity3d.com/Manual/ReleaseD

ates.html.

16. —. Unity - Editor. Unity - Game Engine. [Online] 2017. [Cited: March 21, 2017.]

https://unity3d.com/unity/editor.

17. Millington, Ian. Artificial Intelligence for Games. San Francisco : Morgan

Kaufmann, 2006. ISBN: 978-0-12-497782-2.

18. Levy, David N. L. Computer Gamesmanship. New York : Ishi Press International,

1980. ISBN: 4-87187-805-8.

19. Ramsey, Michael. Designing a Multi-Tiered AI Framework. [ed.] Steve Rabin. AI

Game Programming Wisdom. Hingham : Charles River Media, 2004, Vol. 2, pp. 457-

466.

20. Matthews, James. Basic A* Pathfinding Made Simple. [ed.] Steve Rabin. AI Game

Programming Wisdom. Hingham : Charles River Media, 2002, Vol. 1, pp. 105-113.

21. Dawe, Michael, et al. Behavior Selection Algorithms: An Overview. [ed.] Steve

Rabin. Game AI Pro. Boca Raton : CRC Press, 2014, pp. 47-60.

98

22. Apple Inc. GKDecisionTree Class Reference. Apple Developer Documentation.

[Online] 2017. [Cited: June 11, 2017.]

https://developer.apple.com/documentation/gameplaykit/gkdecisiontree.

23. How Behavior Trees Modularize Hybrid Control Systems and Generalize

Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees.

Colledanchise, Michele and Ögren, Petter. 2, April 2017, IEEE Transactions on

Robotics, Vol. 33, pp. 372-389.

24. Merrill, Bill. Building Utility Decisions into Your Existing Behavior Tree. [ed.] Steve

Rabin. Game AI Pro. Boca Raton : CRC Press, 2014, pp. 127-136.

25. Graham, David "Rez". An Introduction to Utility Theory. [ed.] Steve Rabin. AI

Game Pro. Boca Raton : CRC Press, 2014, pp. 113-126.

26. Harmon, Vernon. An Economic Approach to Goal-Directed Reasoning in an RTS.

[ed.] Steve Rabin. AI Game Programming Wisdom. Hingham : Charles River Media,

2002, Vol. 1, pp. 402-410.

27. Sweetser, Penny. Environmental Awareness in Game Agents. [ed.] Steve Rabin.

AI Game Programming Wisdom. Boston : Charles River Media, 2006, Vol. 3, pp. 457-

648.

28. Tozour, Paul. Using a Spatial Database for Runtime Spatial Analysis. [ed.] Steve

Rabin. AI Game Programming Wisdom. Hingham : Charles River Media, 2004, Vol. 2,

pp. 381-403.

29. Woodcock, Steven. Recognizing Strategic Dispositions: Engaging the Enemy.

[ed.] Steve Rabin. AI Game Programming Wisdom. Hingham : Charles River Media,

2002, Vol. 1, pp. 221-232.

30. Straatman, Remco, Beij, Arjen and van der Sterren, William. Dynamic Tactical

Position Evaluation. [ed.] Steve Rabin. AI Game Programming Wisdom. Boston :

Charles River Media, 2006, Vol. 3, pp. 389-403.

99

31. Orkin, Jeff. Applying Goal-Oriented Action Planning to Games. [ed.] Steve Rabin.

AI Game Programming Wisdom. Hingham : Charles River Media, 2004, Vol. 2, pp.

217-227.

32. Humphreys, Troy. Exploring HTN Planners through Example. [ed.] Steve Rabin.

Game AI Pro. Boca Raton : CRC Press, 2014, pp. 149-167.

33. Dybsand, Eric. Goal-Directed Behavior Using Composite Tasks. [ed.] Steve Rabin.

AI Game Programming Wisdom. Hingham : Charles River Media, 2004, Vol. 2, pp.

237-245.

34. van der Sterren, William. Hierarchical Plan-Space Planning for Multi-unit Combat

Maneuvers. [ed.] Steve Rabin. Game AI Pro. Boca Raton : CRC Press, 2014, pp. 169-

183.

35. Russell, Adam. Opinion Systems. [ed.] Steve Rabin. AI Game Programming

Wisdom. Boston : Charles River Media, 2006, Vol. 3, pp. 531-554.

36. Snavely, P. J. Custom Tool Design for Game AI. [ed.] Steve Rabin. AI Game

Programming Wisdom. Boston : Charles River Media, 2006, Vol. 3, pp. 3-12.

37. Tozour, Paul. The Perils of AI Scripting. [ed.] Steve Rabin. AI Game Programming

Wisdom. Hingham : Charles River Media, 2002, Vol. 1, pp. 541-547.

38. Hutong Games. PlayMaker Visual Scripting for Unity3D. Hutong Games. [Online]

2017. [Cited: June 17, 2017.] http://hutonggames.com/index.html.

39. IronPython Community. IronPython. IronPython. [Online] 2017. [Cited: June 17,

2017.] http://ironpython.net/.

40. Mastropaolo, Marco. MoonSharp. MoonSharp. [Online] 2017. [Cited: June 17,

2017.] http://www.moonsharp.org/.

41. Johnson, Soren. The Unique Challenges of Turn-Based AI. [ed.] Steve Rabin. AI

Game Programming Wisdom. Hingham : Charles River Media, 2004, Vol. 2, pp. 399-

403.

100

42. Bob, Alexander. An Architecture Based on Load Balancing. [ed.] Steve Rabin. AI

Game Programming Wisdom. Hingham : Charles River Media, 2002, Vol. 1, pp. 298-

304.

43. Higgins, Dan. Pathfinding Design Architecture. [ed.] Steve Rabin. AI Game

Programming Wisdom. Hingham : Charles River Media, 2002, Vol. 1, pp. 122-132.

44. Bourke, Conan and Bednarz, Tomasz. Introduction to GPGPU for AI. [ed.] Steve

Rabin. AI Game Pro. Boca Raton : CRC Press, 2014, pp. 539-547.

45. GPU accelerated pathfinding. Bleiweiss, Avi and NVIDIA Corporation. Sarajevo :

Eurographics Association, 2008. GH '08 Proceedings of the 23rd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. pp. 65-74. ISBN:

978-3-905674-09-5.

46. Unity Technologies;. Compute Shaders. Unity Documentation. [Online] June 2,

2017. [Cited: June 13, 2017.] https://docs.unity3d.com/Manual/ComputeShaders.html.

Appendix 1

1 (1)

Appendix 1: Screenshots of A* Pathfinder Prototype

Various screenshots from the first version of pathfinder prototype

Appendix 2

1 (6)

Appendix 2: Screenshots of Spatial Database Prototype Levels of influence

Level 1. Movement cost layer

Colors represent movement cost of terrain, ranging from lowest (green) to highest (red) cost.

Appendix 2

2 (6)

Level 2. Own influence layer

Colors represent player’s own influence, ranging from lowest (gray) to highest (light green) influence.

Appendix 2

3 (6)

Level 3. Enemy influence layer

Colors represent enemy influence, ranging from lowest (gray) to highest (light red) influence.

Appendix 2

4 (6)

Level 4. Combined influence layer

Combined influence, with green representing own influence and red enemy influence. The data on this layer
is calculated using formula:

ƒ(combined) = ƒ(own) – ƒ(enemy)

Appendix 2

5 (6)

Level 5. Tension layer

Tension layer, representing areas where most military activity is strongest. The data on this layer is calcu-
lated using formula:

ƒ(tension) = ƒ(own) + ƒ(enemy)

Appendix 2

6 (6)

Level 6. Vulnerability layer

Vulnerability layer, showing areas where either player units facing superior forces they cannot match. The
data on this layer is calculated using formula:

ƒ(vulnerability) = ƒ(tension) - |ƒ(combined)|

Appendix 3

1 (3)

Appendix 3: Screenshots of Tactical Pathfinding Prototype Modes

Pathfinder mode 1. Shortest path selection

With shortest-path movement, the pathfinder will ignore both terrain type and enemy presence and instead
choose the path with lowest number of hex cells. Note that the number of visited nodes (with black borders)
is very low thanks to the simple A* heuristic used.

Appendix 3

2 (3)

Pathfinder mode 2. Priority based on terrain movement cost

The pathfinder uses the route with lowest movement cost, regardless of enemy presence. Note that the
spatial database visualization is set to show terrain movement cost layer.

Appendix 3

3 (3)

Pathfinder mode 3. Enemy avoidance priority

The pathfinder attempts to avoid red areas under enemy influence, favoring the gray nodes with no (or minor)
enemy threat. Note that the spatial database visualization is set to show enemy influence.

Appendix 4

1 (2)

Appendix 4: Screenshots of Inference Engine (Editor Mode) Prototype

The ruleset asset

Initial state

Popup menu with reset and run options

State after first iteration

Appendix 4

2 (2)

State after second iteration

State after third iteration

State after fourth iteration
Fifth iteration changes no facts, inference

process is finished

Appendix 5

1 (28)

Appendix 5: Source Code of Pathfinder and Spatial Database Prototype

PathFinder.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Utilities.Hex;
using System.Linq;

/// <summary>
/// A generic reusable A* pathfinding engine. Uses four interfaces:
/// - IPathFinderSource to provide data about the source graph
/// - IPathFinderNodeSource to provide data for individual nodes
/// - ICostFilter to calculate node traversal costs
/// - IHeuristic for the A* H-cost estimation
///
/// Usage:
///
/// var pathFinder = new PathFinder<MyNodeType>(
/// graphSource, herustic, costFilter);
///
/// pathFinder.Update();
///
/// The HasPath property will indicate if any path was found,
/// and the path data is accessible through the Path property.
/// </summary>
public class PathFinder<CellType,GraphPosition>
 where CellType : IPathFinderNodeSource<CellType,GraphPosition>
 where GraphPosition : System.IEquatable<GraphPosition>
{
 /// <summary>
 /// Result node container for the path query. Used to
 /// track open and closed nodes, and provide the result path.
 /// </summary>
 public class PathFinderNode<CellType2,GraphPosition2>
 where CellType2 : IPathFinderNodeSource<CellType2,GraphPosition2>
 where GraphPosition2 : System.IEquatable<GraphPosition2>
 {
 /// <summary>
 /// Pathfinder which owns this node
 /// </summary>
 PathFinder<CellType2,GraphPosition2> finder;

 /// <summary>
 /// Parent node, from which the search was expanded to this
 /// node. Used to track the path back to start node.
 /// </summary>
 public PathFinderNode<CellType2,GraphPosition2> Parent
 { get; private set; }

 /// <summary>
 /// Original graph node which this internal node maps to
 /// </summary>
 public CellType2 Source { get; private set; }

 /// <summary>
 /// Actual cost of query up to this point. Sum of previous
 /// nodes' and this node's costs.
 /// </summary>
 public float G { get; private set; }

Appendix 5

2 (28)

 /// <summary>
 /// Estimated remaining cost of this node; estimated
 /// distance to goal node.
 /// </summary>
 public float H { get; private set; }

 /// <summary>
 /// Heuristic function F = G + H result, estimated
 /// total path cost when using.
 /// this node.
 /// </summary>
 public float F
 {
 get
 {
 return G + H;
 }
 }

 /// <summary>
 /// Initialize the node container
 /// </summary>
 /// <param name="pf">Reference to the pathfinder which
 /// owns the node</param>
 /// <param name="parent">The parent node, which the query
 /// was expanded from</param>
 /// <param name="source">The actual graph node from user code,
 /// implementing IPathFinderNodeSource interface</param>
 /// <param name="cost">Total cost up to and including
 /// this node</param>
 public PathFinderNode(
 PathFinder<CellType2,GraphPosition2> pf,
 PathFinderNode<CellType2,GraphPosition2> parent,
 CellType2 source,
 float cost)
 {
 this.finder = pf;
 this.Source = source;
 this.Parent = parent;
 this.G = cost;
 this.H = finder.HeuristicFunction.GetHeuristic(
 Source, finder.Source.GetGoal());
 }
 }

 /// <summary>
 /// The query graph source data provider.
 /// </summary>
 public IPathFinderSource<CellType,GraphPosition> Source
 { get; private set; }

 /// <summary>
 /// Resulting path of the query
 /// </summary>
 public List<PathFinderNode<CellType,GraphPosition>> Path
 { get; private set; }

 private Dictionary<GraphPosition,
 PathFinderNode<CellType,GraphPosition>> closedNodes =
 new Dictionary<GraphPosition,
 PathFinderNode<CellType,GraphPosition>>();

 private PriorityQueue<PathFinderNode<CellType,GraphPosition>> openNodes =

Appendix 5

3 (28)

 new PriorityQueue<PathFinderNode<CellType,GraphPosition>>();

 private bool finished;
 private PathFinderNode<CellType,GraphPosition> goalNode;

 /// <summary>
 /// Reference to the heuristic function currently active
 /// </summary>
 public IHeuristic<CellType,GraphPosition> HeuristicFunction { get; set; }

 /// <summary>
 /// The current pathfinding cost filter
 /// </summary>
 public ICostFilter<CellType,GraphPosition> CostFilter { get; set; }

 public bool HasPath
 {
 get
 {
 return Path != null;
 }
 }

 public PathFinder(
 IPathFinderSource<CellType,GraphPosition> source,
 IHeuristic<CellType,GraphPosition> heuristic,
 ICostFilter<CellType,GraphPosition> costFilter)
 {
 this.Source = source;
 this.HeuristicFunction = heuristic;
 this.CostFilter = costFilter;
 }

 /// <summary>
 /// Run the pathfinder query.
 /// </summary>
 public void Update()
 {
 float startTime = Time.realtimeSinceStartup;

 // Clear existing old data
 closedNodes.Clear();
 openNodes.Clear();
 finished = false;
 Path = null;

 // Add starting node to open list
 AddNode(Source.GetStart(), null);

 // Run until either goal found or no more open nodes are available
 while (!openNodes.Empty && !finished)
 {
 // Get highest-priority node from open list
 var node = openNodes.Dequeue();

 // Skip nodes that have already been processed
 if (closedNodes.ContainsKey(node.Source.GetPosition()))
 continue;

 // Add all neighbor nodes that can be traversed
 // into in the open list
 var children = node.Source.GetNeighbors();
 foreach (var child in children)
 {

Appendix 5

4 (28)

 // Skip empty neighbors, happens usually on map edges.
 if (child == null)
 continue;

 AddNode(child, node);
 }

 // Add this node to closed list
 closedNodes.Add(node.Source.GetPosition(), node);
 }

 // If finished is true, path was found
 if (finished)
 {
 // Trace backwards from goal node to start to build
 // list of result path nodes
 Path = new List<PathFinderNode<CellType,GraphPosition>>();
 var node = goalNode;
 while (node.Parent != null)
 {
 Path.Add(node);
 node = node.Parent;
 }
 Debug.Log("Found path, length: " + Path.Count +
 " cost: " + Path.First().G);
 }
 else
 {
 Debug.Log("No path");
 }

 float endTime = Time.realtimeSinceStartup;

 Debug.Log("Time spent: " + (endTime - startTime).ToString("0.000"));
 }

 private void AddNode(CellType source,
 PathFinderNode<CellType,GraphPosition> parent)
 {
 if (closedNodes.ContainsKey(source.GetPosition()))
 return;

 var parentCost = (parent != null) ? parent.G : 0.0f;

 // Ignore cost for start node
 var thisCost = (parent != null) ? CostFilter.GetCost(source) : 0.0f;

 // Create and insert new node into open list
 var newNode = new PathFinderNode<CellType,GraphPosition>(
 this,
 parent,
 source,
 thisCost + parentCost);
 openNodes.Insert(newNode.F, newNode);

 // Check if goal reached
 if (source.GetPosition().Equals(Source.GetGoal().GetPosition()))
 {
 finished = true;
 goalNode = newNode;
 }

 openNodes.Validate();

Appendix 5

5 (28)

 }
}

IPathFinderSource.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Utilities.Hex;

/// <summary>
/// Main interface of pathfinder for the map.
/// The generic parameter CellType must be set to the
/// type implementing nodes in the map, and
/// GraphPosition must be the type used to store map
/// coordinates.
/// </summary>
public interface IPathFinderSource<CellType,GraphPosition>
 where CellType : IPathFinderNodeSource<CellType,GraphPosition>
{
 /// <summary>
 /// Gets the start node
 /// </summary>
 CellType GetStart ();

 /// <summary>
 /// Gets the goal node
 /// </summary>
 CellType GetGoal ();

 /// <summary>
 /// Gets the node at a given location on the graph.
 /// </summary>
 CellType GetNodeAt (GraphPosition pos);
}

IPathFinderNodeSource.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Utilities.Hex;

/// <summary>
/// Interface of pathfinder graph nodes for the pathfinder.
/// This should be implemented by the map cell nodes. The generic
/// parameter CellType must be set to the type implementing
/// this interface, and GraphPosition must be the type used
/// to store map coordinates.
/// </summary>
public interface IPathFinderNodeSource<CellType,GraphPosition>
 where CellType : IPathFinderNodeSource<CellType,GraphPosition>
{
 /// <summary>
 /// Get the position of node on graph. Used
 /// also as key for tracking visited nodes.
 /// </summary>
 GraphPosition GetPosition();

 /// <summary>
 /// Get list of neighbor nodes of this node

Appendix 5

6 (28)

 /// in the graph.
 /// </summary>
 CellType[] GetNeighbors();
}

ICostFilter.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// Cost filter for the pathfinder. The generic
/// parameter CellType must be set to the type
/// implementing nodes in the map, and GraphPosition
/// must be the type used to store map coordinates.
/// </summary>
public interface ICostFilter<CellType,GraphPosition>
 where CellType : IPathFinderNodeSource<CellType,GraphPosition>
{
 /// <summary>
 /// Get pathfinder cost for the given map node.
 /// </summary>
 float GetCost(CellType source);
}

IHeuristic.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// Interface for the pathfinder heuristic function.
/// The generic parameter CellType must be set to the
/// type implementing nodes in the map, and
/// GraphPosition must be the type used to store map
/// coordinates.
/// </summary>
public interface IHeuristic<CellType,GraphPosition>
 where CellType : IPathFinderNodeSource<CellType,GraphPosition>
{
 /// <summary>
 /// Calculate the heuristic value for given
 /// source and target nodes.
 /// </summary>
 /// <returns>The estimated heuristic value.</returns>
 /// <param name="source">Source node.</param>
 /// <param name="target">Target node.</param>
 float GetHeuristic(CellType source, CellType target);
}

ManhattanDistanceHeuristic.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Utilities.Hex;

Appendix 5

7 (28)

/// <summary>
/// A simle Manhattan distance heurustic on the hexagonal map grid.
/// </summary>
public class ManhattaDistanceHeurustic<CellType> :
 IHeuristic<CellType,Hex>
 where CellType : IPathFinderNodeSource<CellType,Hex>
{
 public float GetHeuristic(CellType source, CellType target)
 {
 // use the cubic hex distance function as heuristic
 return target.GetPosition().Cube.DistanceTo(
 source.GetPosition().Cube);
 }
}

PriorityQueue.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

/// <summary>
/// A very simple priority queue implementation. Uses
/// reversed priority values, where smaller values of
/// priority mean higher priority.
/// </summary>
public class PriorityQueue<T>
{
 /// <summary>
 /// Internal node for priority queue. Basically and single-linked
 /// list with priority(float) and value (V) pair.
 /// </summary>
 private class PQNode<V> where V : T
 {
 public float priority;
 public V value;
 public PQNode<T> next;

 public PQNode(float priority, V value)
 {
 this.priority = priority;
 this.value = value;
 }
 }

 // Root of the linked list
 private PQNode<T> first;

 public bool Empty { get { return first == null; } }

 public void Clear()
 {
 first = null;
 }

 /// <summary>
 /// Insert a value into the priority queue with given priority.
 /// Internally, it iterates the linked list until it finds
 /// the correct nodes between which it should insert it.
 /// </summary>
 /// <param name="priority">Priority of the inserted item

Appendix 5

8 (28)

 /// (smaller values indicate higher priority)</param>
 /// <param name="value">Actual item being inserted</param>
 public void Insert(float priority, T value)
 {
 PQNode<T> node = new PQNode<T>(priority, value);

 // List empty? Add as the only node
 if (Empty)
 {
 first = node;
 return;
 }
 else
 {
 var v = first;

 // First item priority lower (greater value) than
 // this node? Add in front and exit.
 if (v.priority >= priority)
 {
 node.next = first;
 first = node;
 return;
 }

 // Loop until proper priority placement found
 for (;;)
 {
 // If ran out of nodes, add as last node
 if (v.next == null)
 {
 v.next = node;
 return;
 }
 // If next node priority is lower,
 // add before it
 else if (v.next.priority >= priority)
 {
 // Insert after current node
 node.next = v.next;
 v.next = node;
 return;
 }
 v = v.next;
 }
 }
 }

 /// <summary>
 /// Validate integrity of the priority queue, checks
 /// that no items in queue are out-of-order.
 /// </summary>
 public void Validate()
 {
 var node = first;
 var prevPriority = first.priority;
 while (node.next != null)
 {
 if (node.priority < prevPriority)
 throw new System.FormatException(
 "Priority queue out of order");
 prevPriority = node.priority;
 node = node.next;
 }

Appendix 5

9 (28)

 }

 /// <summary>
 /// Removes and returns the highest-priority value from the queue.
 /// If queue is empty, returns the default value.
 /// </summary>
 public T Dequeue()
 {
 if (Empty)
 return default(T);

 var v = first;
 first = v.next;
 return v.value;
 }
}

TestMap.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Utilities.Hex;
using System.Linq;

/// <summary>
/// Map prototype. Used to test pathfinding and influence maps.
/// </summary>
public class TestMap :
 MonoBehaviour,
 IPathFinderSource<TestMapCell,Hex>,
 IInfluenceMap<TestUnit,TestMap.SpatialDataLayer>
{
 /// <summary>
 /// Layers used for spatial database
 /// </summary>
 public enum SpatialDataLayer
 {
 MovementCost,
 OwnInfluence,
 EnemyInfluence,
 CombinedInfluence,
 Tension,
 Vulnerability
 }

 /// <summary>
 /// Different modes for the pathfinder
 /// </summary>
 public enum PathfinderMode
 {
 Simple,
 MovementCost,
 AvoidEnemy
 }

 /// <summary>
 /// Map width
 /// </summary>
 public const int Width = 20;

 /// <summary>

Appendix 5

10 (28)

 /// Map height
 /// </summary>
 public const int Height = 20;

 // MonoBehaviour fields exposed to Unity editor

 public GameObject mapCellPrefab;
 public GameObject mapUnitPrefab;
 public Transform mapRoot;
 public Transform unitsRoot;
 public Camera cameraRef;
 public int numUnits = 6;
 public PathfinderMode pathfinderMode;

 public TestUnit ActiveUnit { get; private set; }
 public SpatialDatabase<TestMap,TestUnit,SpatialDataLayer>
 SpatialDatabase { get; private set; }
 public PathFinder<TestMapCell,Hex> PathFinder { get; private set; }

 private TestMapCell[,] map;
 private Dictionary<int,TestUnit> units = new Dictionary<int, TestUnit>();
 private Hex? currentTarget;
 private Hex? currentStart;

 /// <summary>
 /// Test cost filter, used by pathfinder to query graph
 /// traversal costs for given nodes.
 /// </summary>
 private class TestCostFilter : ICostFilter<TestMapCell,Hex>
 {
 public TestMap map;

 /// <summary>
 /// Just passes the query to TestMap.GetPathfinderCost method
 /// </summary>
 public float GetCost(TestMapCell source)
 {
 return map.GetPathfinderCost(source.GetPosition());
 }
 }

 public void Start()
 {
 // Create the spatial database for this map
 SpatialDatabase =
 new SpatialDatabase<TestMap,TestUnit,SpatialDataLayer>(
 this, Width, Height);

 // Create map
 map = new TestMapCell[Width, Height];
 for (int y = 0; y < Height; y++)
 for (int x = 0; x < Width; x++)
 {
 // Convert offset coordinate to hex position
 var hexPos = new Hex (new OffsetPos (x, y));

 // Instantiate map cell prefab on the map
 var cellGO = Instantiate(mapCellPrefab);
 cellGO.transform.SetParent(mapRoot);
 var cell = cellGO.GetComponent<TestMapCell>();

 // Initialize the map cell with 1/6 (≈16%) chance
 // of being obstacle
 cell.Init(this, hexPos,

Appendix 5

11 (28)

 (Random.Range(1,6) == 1) ? TestMapCell.NodeType.Obstacle :
 TestMapCell.NodeType.Plain);

 // Update spatial database movement cost layer with random
 // cost between 1..8
 SpatialDatabase.SetData(x, y,
 (float)Random.Range(1, 8),
 SpatialDataLayer.MovementCost);

 map[x, y] = cell;
 }

 // Create units
 int id = 0;
 for (int i = 0; i < numUnits; i++)
 {
 // p = 0 for friendly, p = 1 for enemy
 for (int p = 0; p < 2; p++)
 {
 // Pick random position which is not obstacle,
 // and does not contain any unit yet
 var pos = GetRandomPos((n) =>
 n.Type == TestMapCell.NodeType.Plain &&
 GetUnitAt(n.GetPosition()) == null);

 // Instantiate unit prefab on the map
 var unitGO = Instantiate(mapUnitPrefab);
 unitGO.transform.SetParent(unitsRoot);
 var unit = unitGO.GetComponent<TestUnit>();

 // Initialize the unit with random strength in range 2..6
 // and set friendly flag
 unit.Init(this, pos, id, Random.Range(2,6), p == 0);

 units[id++] = unit;
 }
 }

 // Update spatial database
 SpatialDatabase.RecalculateInfluence();

 // Create pathfinder instance
 PathFinder = new PathFinder<TestMapCell,Hex>(
 this,
 new ManhattaDistanceHeurustic<TestMapCell>(),
 new TestCostFilter { map = this });

 FixCamera();

 // Set random unit as active unit, and pick random goal
 SetActiveUnit(GetRandomUnit((u) => u.Friendly));
 SetTarget(GetRandomPos((n) => n.Type == TestMapCell.NodeType.Plain));
 }

 /// <summary>
 /// Get random position which matches the given filter.
 /// </summary>
 /// <returns>The random position.</returns>
 /// <param name="filter">Filter to match map hexes with.</param>
 private Hex GetRandomPos(System.Func<TestMapCell,bool> filter)
 {
 Hex pos;
 // Loop until a location is picked which passes the filter
 do

Appendix 5

12 (28)

 {
 pos = new Hex(new OffsetPos(
 Random.Range(0, Width - 1),
 Random.Range(0, Height - 1)));
 }
 while (!filter(GetNodeAt(pos)));

 return pos;
 }

 /// <summary>
 /// Get random unit which matches the given filter.
 /// </summary>
 /// <returns>The randomly picked unit, null if no
 /// units exist for the given filter.</returns>
 /// <param name="filter">Filter to match units with.</param>
 private TestUnit GetRandomUnit(System.Func<TestUnit,bool> filter)
 {
 // Use LINQ OrderBy with Random to randomize order
 var rnd = new System.Random();
 return units.Values.
 Where(u => filter(u)).
 OrderBy(u => rnd.Next()).
 FirstOrDefault();
 }

 /// <summary>
 /// Set the active unit, updates pathfinder start
 /// position and clears old route
 /// </summary>
 /// <param name="unit">Unit to select.</param>
 private void SetActiveUnit(TestUnit unit)
 {
 ActiveUnit = unit;
 SetStart(unit.Pos);
 ClearRoute();
 }

 /// <summary>
 /// Gets the unit at given location
 /// </summary>
 /// <returns>Reference to the unit at this location,
 /// null if no unit here.</returns>
 /// <param name="pos">Position on map.</param>
 public TestUnit GetUnitAt(Hex pos)
 {
 return units.Values.FirstOrDefault(u => u.Pos == pos);
 }

 /// <summary>
 /// Gets the map node at given location
 /// </summary>
 /// <returns>Reference to the map cell at this location,
 /// null if out of range.</returns>
 /// <param name="pos">Position on map.</param>
 public TestMapCell GetNodeAt (Hex pos)
 {
 var offs = pos.Offset;
 if (!offs.InRange(0, 0, Width - 1, Height - 1))
 return null;
 return map[offs.X, offs.Y];
 }

 /// <summary>

Appendix 5

13 (28)

 /// Used to provide the start node to pathfinder
 /// </summary>
 /// <returns>The start node.</returns>
 public TestMapCell GetStart ()
 {
 return this.GetNodeAt(currentStart.Value);
 }

 /// <summary>
 /// Used to provide the goal node to pathfinder
 /// </summary>
 /// <returns>The goal node.</returns>
 public TestMapCell GetGoal ()
 {
 return this.GetNodeAt(currentTarget.Value);
 }

 /// <summary>
 /// Gets the pathfinder cost for given hex cell.
 /// Uses the selected pathfinder mode to choose
 /// the appropriate source(s) and returns the
 /// resulting cost.
 /// </summary>
 /// <returns>The cost of given hex.</returns>
 /// <param name="pos">Position on map to query.</param>
 public float GetPathfinderCost(Hex pos)
 {
 int x = pos.Offset.X, y = pos.Offset.Y;
 switch (pathfinderMode)
 {
 case PathfinderMode.Simple:
 // For simple cost always return 1 for each node
 return 1;
 case PathfinderMode.MovementCost:
 // Return the terrain movement cost value
 return SpatialDatabase.GetData(x, y,
 SpatialDataLayer.MovementCost);
 case PathfinderMode.AvoidEnemy:
 // When avoiding enemy, use 10x score from enemy influence,
 // but add 1x movement cost to allow units to optimize
 // terrain movement when no enemies nearby
 return 10 *
 SpatialDatabase.GetData(x, y,
 SpatialDataLayer.EnemyInfluence) +
 SpatialDatabase.GetData(x, y,
 SpatialDataLayer.MovementCost);
 }
 return 1;
 }

 /// <summary>
 /// Set pathfinder start position
 /// </summary>
 /// <param name="start">Start location</param>
 public void SetStart(Hex start)
 {
 if (currentStart.HasValue)
 {
 var oldOffs = currentStart.Value.Offset;
 map[oldOffs.X, oldOffs.Y].SetType(TestMapCell.NodeType.Plain);
 }
 var offs = start.Offset;
 map[offs.X, offs.Y].SetType(TestMapCell.NodeType.Start);
 currentStart = start;

Appendix 5

14 (28)

 }

 /// <summary>
 /// Handles user input (mouse click) on the map.
 /// When clicking friendly unit, make it the new
 /// pathfinding source, otherwise set the clicked
 /// hex as pathfinder goal.
 /// </summary>
 /// <param name="pos">Position clicked.</param>
 public void ClickMap(Hex pos)
 {
 var unit = GetUnitAt(pos);
 if (unit != null && unit.Friendly)
 {
 SetActiveUnit(unit);
 }
 else
 {
 SetTarget(pos);
 }
 }

 /// <summary>
 /// Clear the old pathfinder route visualization
 /// and target.
 /// </summary>
 private void ClearRoute()
 {
 for (int y = 0; y < Height; y++)
 for (int x = 0; x < Width; x++)
 {
 map[x, y].Spot = false;
 map[x, y].SetType(map[x, y].Type);
 map[x, y].Visited = false;
 }

 if (currentTarget.HasValue)
 {
 var oldOffs = currentTarget.Value.Offset;
 map[oldOffs.X, oldOffs.Y].SetType(TestMapCell.NodeType.Plain);
 currentTarget = null;
 }
 }

 /// <summary>
 /// Force map refresh, updates the hex cell colors to
 /// match currently active spatial database layer.
 /// </summary>
 public void RefreshMapColors()
 {
 for (int y = 0; y < Height; y++)
 for (int x = 0; x < Width; x++)
 {
 map[x, y].Refresh();
 }
 }

 /// <summary>
 /// Set new pathfinder target. Clears the old path, and
 /// triggers new pathfinder query, updating the map
 /// spots if path was found.
 /// </summary>
 /// <param name="target">Target.</param>
 public void SetTarget(Hex target)

Appendix 5

15 (28)

 {
 ClearRoute();

 var offs = target.Offset;
 var cell = map[offs.X, offs.Y];
 if (cell.Type == TestMapCell.NodeType.Plain)
 {
 cell.SetType(TestMapCell.NodeType.Goal);
 currentTarget = target;
 }

 if (currentTarget.HasValue)
 {
 PathFinder.Update();
 if (PathFinder.HasPath)
 {
 foreach (var pfNode in PathFinder.Path)
 {
 var node = pfNode.Source;
 node.Spot = true;
 }
 }
 }
 }

 /// <summary>
 /// Refresh the pathfinder path. Basically
 /// just sets the target to its current value
 /// to trigger pathfinder update.
 /// </summary>
 private void UpdatePath()
 {
 if (currentTarget.HasValue)
 {
 SetTarget(currentTarget.Value);
 }
 }

 /// <summary>
 /// Resize and position camera to fit map in the
 /// orthogonal viewport
 /// </summary>
 private void FixCamera()
 {
 var bottomLeftHex = new Hex(new OffsetPos(0, 0));
 var topRightHex = new Hex(new OffsetPos(Width, Height));

 var bottomLeft = bottomLeftHex.GetCenter(0.5f);
 var topRight = topRightHex.GetCenter(0.5f);

 var center = (bottomLeft + topRight) / 2.0f;
 center.y -= Hex.Sqrt3 * 0.25f * 0.5f;
 center.x -= Hex.Sqrt3 * 0.25f * 0.5f;

 cameraRef.transform.position =
 new Vector3(center.x, center.y, cameraRef.transform.position.z);
 cameraRef.orthographicSize =
 Mathf.Abs(topRight.x - bottomLeft.x + Hex.Sqrt3) *
 0.5f / cameraRef.aspect;
 }

 /// <summary>
 /// Gets the influence sources. Used by Spatial Database.
 /// </summary>

Appendix 5

16 (28)

 /// <returns>The influence sources which affect the given layer.</returns>
 /// <param name="layer">Layer which source affect</param>
 public IEnumerable<TestUnit> GetInfluenceSources(SpatialDataLayer layer)
 {
 if (layer == SpatialDataLayer.EnemyInfluence)
 {
 // Enemy influence is affected by enemy unit strengths
 return units.Values.Where(u => !u.Friendly);
 }
 else if (layer == SpatialDataLayer.OwnInfluence)
 {
 // Own influence is affected by friendly unit strengths
 return units.Values.Where(u => u.Friendly);
 }
 else
 return null;
 }

 /// <summary>
 /// Propagates the influence of given source to this layer
 /// </summary>
 /// <param name="layer">Layer to output influence on.</param>
 /// <param name="source">The influence source.</param>
 public void PropagateInfluence(SpatialDataLayer layer, TestUnit source)
 {
 int strength = source.Strength;

 // Add unit location influence first
 SpatialDatabase.AddData(
 source.Pos.Offset.X, source.Pos.Offset.Y, strength, layer);

 // Spread influence linearly, reducing effect by one for
 // each step further from the source unit. Each iteration
 // applies the influence as a hexagonal ring around the
 // source.
 for (int i = 1; i <= strength; i++)
 {
 // Apply to each hex direction
 foreach (var dir in Hex.directions)
 {
 // Get one edge of this hexagonal circle to start
 // from. Loop for the number of hexes
 // on this particular side to apply to.
 var rimPos = source.Pos.Cube + dir.Value * i;
 for (int r = 0; r < i; r++)
 {
 // The ring direction is two steps clockwise from
 // the edge direction:
 //
 // P-_ O: unit location
 // | -T P: circle corner (rimPos)
 // | T: next corner (2 steps in clockwise
 // O direction) to iterate towards
 //
 // Each iteration of [r] steps from P towards T
 rimPos += Hex.directions[
 (Hex.Side)(((int)dir.Key + 2) %
 (int)Hex.Side.NumSides)];
 var rimHex = new Hex(rimPos);
 // Check range in case we hit edge of map
 if (rimHex.Offset.InRange(0, 0, Width - 1, Height - 1))
 {
 SpatialDatabase.AddData(
 rimHex.Offset.X, rimHex.Offset.Y,

Appendix 5

17 (28)

 strength - i, layer);
 }
 }
 }
 }
 }

 /// <summary>
 /// Layer influence filter. Used to combine lower layers into
 /// higher-level layers.
 /// </summary>
 /// <returns>The output value of influence for this cell.</returns>
 /// <param name="layer">Layer being filtered.</param>
 /// <param name="x">The x coordinate on map.</param>
 /// <param name="y">The y coordinate on map.</param>
 public float FilterLayerInfluence(SpatialDataLayer layer, int x, int y)
 {
 switch (layer)
 {
 case SpatialDataLayer.CombinedInfluence:
 // combinedInfluence = ownInfluence - enemyInfluence
 {
 return SpatialDatabase.GetData(x, y,
 SpatialDataLayer.OwnInfluence) -
 SpatialDatabase.GetData(x, y,
 SpatialDataLayer.EnemyInfluence);
 }
 case SpatialDataLayer.Tension:
 // tensionLevel = ownInfluence + enemyInfluence
 {
 return SpatialDatabase.GetData(x, y,
 SpatialDataLayer.OwnInfluence) +
 SpatialDatabase.GetData(x, y,
 SpatialDataLayer.EnemyInfluence);
 }
 case SpatialDataLayer.Vulnerability:
 // vulnerabilityLevel = tensionLevel - Abs(combinedInfluence)
 {
 return SpatialDatabase.GetData(x, y,
 SpatialDataLayer.Tension) -
 Mathf.Abs(SpatialDatabase.GetData(x, y,
 SpatialDataLayer.CombinedInfluence));
 }
 }
 return 0.0f;
 }

 /// <summary>
 /// Show the debug buttons on top of the game view
 /// </summary>
 void OnGUI()
 {
 // Button grid for selecting active pathfinder mode
 var newPathfinderMode = (PathfinderMode)GUILayout.SelectionGrid(
 (int)pathfinderMode,
 System.Enum.GetNames(typeof(PathfinderMode)),
 System.Enum.GetValues(typeof(PathfinderMode)).Length);
 if (newPathfinderMode != pathfinderMode)
 {
 pathfinderMode = newPathfinderMode;
 UpdatePath();
 }

 // Button grid for selecting which spatial database layer

Appendix 5

18 (28)

 // is being visualized on map
 var newActiveLayer = (SpatialDataLayer)GUILayout.SelectionGrid(
 (int)SpatialDatabase.ActiveLayer,
 System.Enum.GetNames(typeof(SpatialDataLayer)),
 System.Enum.GetValues(typeof(SpatialDataLayer)).Length);
 if (newActiveLayer != SpatialDatabase.ActiveLayer)
 {
 SpatialDatabase.ActiveLayer = newActiveLayer;
 RefreshMapColors();
 }
 }
}

TestMapCell.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Utilities.Hex;

/// <summary>
/// Cell for the prototype map.
/// </summary>
public class TestMapCell :
 MonoBehaviour,
 IPathFinderNodeSource<TestMapCell,Hex>
{
 /// <summary>
 /// The type of this map cell
 /// </summary>
 public enum NodeType
 {
 Plain,
 Obstacle,
 Start,
 Goal
 }

 private TestMap map;

 /// <summary>
 /// Position of this cell on the map
 /// </summary>
 private Hex pos;

 // MonoBehaviour Fields exposed to Unity Editor
 public SpriteRenderer cellSprite;
 public SpriteRenderer spotSprite;
 public SpriteRenderer borderSprite;

 public NodeType Type { get; private set; }

 private bool _spot = false;
 /// <summary>
 /// Toggle the spot visualization, used to visualize
 /// the pathfinder result on the map.
 /// </summary>
 public bool Spot
 {
 get { return _spot; }
 set { _spot = value; UpdateSpot(); }
 }

Appendix 5

19 (28)

 private bool _visited = false;
 /// <summary>
 /// The visited flag, used to visualize nodes
 /// that were visited during pathfinding.
 /// </summary>
 public bool Visited
 {
 get { return _visited; }
 set { _visited = value; UpdateBorders(); }
 }

 public void Init(TestMap map, Hex pos, NodeType type)
 {
 this.map = map;
 this.pos = pos;

 // Set physical world position of this cell
 // based on the hex location
 Vector2 v2 = pos.GetCenter(0.5f);
 transform.position = new Vector3(v2.x, v2.y, 0.0f);

 SetType(type);
 UpdateSpot();
 }

 /// <summary>
 /// Handle user input when this map cell is clicked.
 /// </summary>
 public void OnMouseDown()
 {
 map.ClickMap(pos);
 }

 /// <summary>
 /// Update the node type. Also updates spatial database
 /// visualization.
 /// </summary>
 /// <param name="type">New type of the node</param>
 public void SetType(NodeType type)
 {
 Type = type;
 switch (type)
 {
 case NodeType.Goal:
 // Goal node, always black
 {
 cellSprite.color = Color.black;
 break;
 }
 case NodeType.Obstacle:
 // Obstacle node, always white
 {
 cellSprite.color = Color.white;
 break;
 }
 case NodeType.Plain:
 // Plain node
 {
 var value = map.SpatialDatabase.GetData(
 pos.Offset.X, pos.Offset.Y);
 switch (map.SpatialDatabase.ActiveLayer)
 {

Appendix 5

20 (28)

 case TestMap.SpatialDataLayer.MovementCost:
 // Movement colors range from
 // green (lowest) to red (highest)
 {
 value /= 8.0f;
 cellSprite.color =
 new Color(value, 1.0f - value, 0.0f);
 break;
 }
 case TestMap.SpatialDataLayer.OwnInfluence:
 // Own influence colors range from
 // gray (lowest) to green (highest)
 {
 value /= 4.0f;
 cellSprite.color = new Color(
 0.5f, 0.5f + value / 2.0f, 0.5f);
 break;
 }
 case TestMap.SpatialDataLayer.EnemyInfluence:
 // Enemy influence colors range from
 // gray (lowest) to red (highest)
 {
 value /= 4.0f;
 cellSprite.color = new Color(
 0.5f + value / 2.0f, 0.5f, 0.5f);
 break;
 }
 case TestMap.SpatialDataLayer.CombinedInfluence:
 // Combined influence colors range from
 // red (enemy) to green (own)
 {
 value /= 4.0f;
 cellSprite.color = new Color(
 0.5f - value * 0.5f,
 0.5f + value * 0.5f,
 0.0f);
 break;
 }
 case TestMap.SpatialDataLayer.Tension:
 // Tension colors range from
 // green (low) to red (high)
 {
 value /= 4.0f;
 cellSprite.color = new Color(
 value * 0.5f, 1.0f - value * 0.5f, 0.0f);
 break;
 }
 case TestMap.SpatialDataLayer.Vulnerability:
 // Vulnerability colors range from
 // green (low) to red (high)
 {
 value /= 4.0f;
 cellSprite.color = new Color(
 value * 0.5f, 1.0f - value * 0.5f, 0.0f);
 break;
 }
 }
 break;
 }
 case NodeType.Start:
 // Start node, always yellow
 {
 cellSprite.color = Color.yellow;
 break;

Appendix 5

21 (28)

 }
 }
 }

 /// <summary>
 /// Refresh the visualization of this node
 /// </summary>
 public void Refresh()
 {
 SetType(Type);
 }

 private void UpdateSpot()
 {
 spotSprite.gameObject.SetActive(_spot);
 }

 private void UpdateBorders()
 {
 borderSprite.color = _visited ? Color.black : Color.white;
 }

 /// <summary>
 /// Returns this node's position to the pathfinder
 /// </summary>
 public Hex GetPosition()
 {
 return pos;
 }

 /// <summary>
 /// Get list of neighbor nodes of this for the pathfinder
 /// </summary>
 public TestMapCell[] GetNeighbors()
 {
 Visited = true;

 int i = 0;
 var result = new TestMapCell[(int)Hex.Side.NumSides];
 foreach (var side in Hex.directions.Keys)
 {
 var dirPos = Hex.directions[side];
 var newPos = pos + new Hex(dirPos);
 var node = map.GetNodeAt(newPos);
 if (node != null && node.Type != NodeType.Obstacle)
 {
 result[i++] = node;
 }
 }
 return result;
 }
}

Hex.cs

using System;
using System.Collections.Generic;
using UnityEngine;

namespace Utilities.Hex
{

Appendix 5

22 (28)

 /// <summary>
 /// Functionality for handling hex grid coordinates
 ///
 /// This struct represents a single coordinate in
 /// hexagonal grid space, with three
 /// possible presentations of its state:
 ///
 /// Cube:
 ///
 /// XYZ -> 0,1,-1
 /// XYZ XYZ -> -1,1,0 1,0,-1
 /// XYZ -> 0,0,0
 /// XYZ XYZ -> -1,0,1 1,-1,0
 /// XYZ -> 0,-1,1
 ///
 /// Axial:
 ///
 /// XY -> 0,0
 /// XY -> 1,0
 /// XY XY -> 0,1 2,0
 /// XY XY -> 1,1 3,0
 /// XY XY -> 0,2 2,1
 ///
 /// Offset:
 ///
 /// XY XY -> 0,0 2,0
 /// XY XY -> 1,0 3,0
 /// XY XY -> 0,1 2,1
 /// XY XY -> 1,1 3,1
 ///
 /// The canical coordinate is kept in memory as axial
 /// coordinate to save memory, calculations are
 /// performed in cube space, and offset coordinates can be used
 /// to optimize storage of map data which usually is presented
 /// as interleaved hex grid.
 /// </summary>
 public struct Hex
 {
 public enum Side
 {
 TopLeft = 0,
 Top = 1,
 TopRight = 2,
 BottomRight = 3,
 Bottom = 4,
 BottomLeft = 5,
 NumSides = 6
 }

 /// <summary>
 /// Shortcuts for the six neighbors of hex coordinates
 /// </summary>
 static public readonly Dictionary<Side,CubicPos> directions =
 new Dictionary<Side,CubicPos>()
 {
 {
 Side.TopLeft,
 new CubicPos(-1, 1, 0)
 },
 {
 Side.Top,
 new CubicPos(0, 1, -1)
 },
 {

Appendix 5

23 (28)

 Side.TopRight,
 new CubicPos(1, 0, -1)
 },
 {
 Side.BottomRight,
 new CubicPos(1, -1, 0)
 },
 {
 Side.Bottom,
 new CubicPos(0, -1, 1)
 },
 {
 Side.BottomLeft,
 new CubicPos(-1, 0, 1)
 }
 };

 public const float Sqrt3 = 1.7320508076f;

 private AxialPos canonical;

 public CubicPos Cube
 {
 get
 {
 return new CubicPos(
 canonical.X,
 -canonical.X - canonical.Y,
 canonical.Y
);
 }
 set
 {
 canonical = new AxialPos(value.X, value.Z);
 }
 }

 public AxialPos Axial
 {
 get
 {
 return canonical;
 }
 set
 {
 canonical = value;
 }
 }

 public OffsetPos Offset
 {
 get
 {
 return new OffsetPos(
 canonical.X,
 canonical.Y + (canonical.X / 2)
);
 }
 set
 {
 canonical = new AxialPos(
 value.X,
 value.Y - (value.X / 2)
);

Appendix 5

24 (28)

 }
 }

 public Hex (CubicPos fromCube) : this()
 {
 this.Cube = fromCube;
 }

 public Hex (AxialPos fromAxial) : this()
 {
 this.Axial = fromAxial;
 }

 public Hex (OffsetPos fromOffset) : this()
 {
 this.Offset = fromOffset;
 }

 public bool Equals (Hex obj)
 {
 return this == (Hex)obj;
 }

 public override bool Equals (object obj)
 {
 return obj is Hex && this == (Hex)obj;
 }

 public override int GetHashCode ()
 {
 return canonical.GetHashCode();
 }

 public static bool operator == (Hex lhs, Hex rhs)
 {
 return lhs.canonical == rhs.canonical;
 }

 public static bool operator != (Hex lhs, Hex rhs)
 {
 return !(lhs.canonical == rhs.canonical);
 }

 public static Hex operator + (Hex lhs, Hex rhs)
 {
 return new Hex(lhs.Cube + rhs.Cube);
 }

 public static Hex operator - (Hex lhs, Hex rhs)
 {
 return new Hex(lhs.Cube - rhs.Cube);
 }

 /// <summary>
 /// Returns the clockwise next corner point of specified side in
 /// 2D projected coordinates.
 /// I.e., if Side is Side.TopRight, the returned corner will be on
 /// the right-hand side of the flat-top hexagon.
 /// </summary>
 /// <returns>The corner position, in grid scaled with radius</returns>
 /// <param name="side">The side for which to get corner point</param>
 /// <param name="radius">Radius of hex cells in grid</param>
 public Vector2 GetCorner (Side side, float radius)
 {

Appendix 5

25 (28)

 float yDelta = (radius * Sqrt3) * 0.5f;
 Vector2 center = GetCenter(radius);

 switch (side)
 {
 case Side.TopLeft:
 return new Vector2(
 center.x - radius * 0.5f,
 center.y - yDelta);
 case Side.Top:
 return new Vector2(
 center.x + radius * 0.5f,
 center.y - yDelta);
 case Side.TopRight:
 return new Vector2(center.x + radius, center.y);
 case Side.BottomRight:
 return new Vector2(
 center.x + radius * 0.5f,
 center.y + yDelta);
 case Side.Bottom:
 return new Vector2(
 center.x - radius * 0.5f,
 center.y + yDelta);
 case Side.BottomLeft:
 return new Vector2(center.x - radius, center.y);
 }
 return center;
 }

 /// <summary>
 /// Returns the centerpoint of cell in 2D projected
 /// coordinates, scaled with the radius value.
 /// </summary>
 /// <returns>The center point scaled with radius</returns>
 /// <param name="radius">Radius of cells to scale
 /// the point with</param>
 public Vector2 GetCenter (float radius)
 {
 float yDelta = (radius * Sqrt3) * 0.5f;
 return new Vector2(
 Axial.X * radius * 1.5f,
 (2 * Axial.Y + Axial.X) * yDelta);
 }

 public void SetFromScreenCoordinate (int x, int y, int size)
 {
 float q = x * (2 / 3.0f) / (float)size;
 float r = (-x / 3 + Sqrt3 / 3.0f * y) / (float)size;

 float lx = q;
 float ly = -q - r;
 float lz = r;

 int rx = Mathf.RoundToInt(lx);
 int ry = Mathf.RoundToInt(ly);
 int rz = Mathf.RoundToInt(lz);

 float x_diff = Mathf.Abs(rx - lx);
 float y_diff = Mathf.Abs(ry - ly);
 float z_diff = Mathf.Abs(rz - lz);

 if (x_diff > y_diff && x_diff > z_diff)
 rx = -ry - rz;
 else if (y_diff > z_diff)

Appendix 5

26 (28)

 ry = -rx - rz;
 else
 rz = -rx - ry;

 this.Cube = new CubicPos(rx, ry, rz);
 }

 public override string ToString ()
 {
 return string.Format (
 "[Hex: Cube={0}, Axial={1}, Offset={2}]",
 Cube, Axial, Offset);
 }
 }
}

AxialPos.cs

namespace Utilities.Hex
{
 /// <summary>
 /// Axial position container for hex coordinates
 /// </summary>
 public struct AxialPos
 {
 public int X { get; private set; }

 public int Y { get; private set; }

 public AxialPos (int x, int y)
 {
 this.X = x;
 this.Y = y;
 }

 public override bool Equals (object obj)
 {
 return obj is AxialPos && this == (AxialPos)obj;
 }

 public override int GetHashCode ()
 {
 return (X.GetHashCode () << 8) ^ (Y.GetHashCode ());
 }

 public static bool operator == (AxialPos lhs, AxialPos rhs)
 {
 return lhs.X == rhs.X && lhs.Y == rhs.Y;
 }

 public static bool operator != (AxialPos lhs, AxialPos rhs)
 {
 return !(lhs == rhs);
 }

 public override string ToString ()
 {
 return string.Format ("[AxialPos: X={0}, Y={1}]", X, Y);
 }
 }
}

Appendix 5

27 (28)

CubicPos.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

namespace Utilities.Hex
{
 /// <summary>
 /// Cubic position container for hex coordinates
 /// </summary>
 public struct CubicPos
 {
 public int X { get; private set; }

 public int Y { get; private set; }

 public int Z { get; private set; }

 public CubicPos (int x, int y, int z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }

 public static CubicPos operator + (CubicPos lhs, CubicPos rhs)
 {
 return new CubicPos (lhs.X + rhs.X, lhs.Y + rhs.Y, lhs.Z + rhs.Z);
 }

 public static CubicPos operator - (CubicPos lhs, CubicPos rhs)
 {
 return new CubicPos (lhs.X - rhs.X, lhs.Y - rhs.Y, lhs.Z - rhs.Z);
 }

 public static CubicPos operator * (CubicPos lhs, int rhs)
 {
 return new CubicPos (lhs.X * rhs, lhs.Y * rhs, lhs.Z * rhs);
 }

 public override string ToString ()
 {
 return string.Format ("[CubicPos: X={0}, Y={1}, Z={2}]", X, Y, Z);
 }

 public float DistanceTo(CubicPos other)
 {
 return (Mathf.Abs(X - other.X) +
 Mathf.Abs(Y - other.Y) +
 Mathf.Abs(Z - other.Z)) / 2;
 }
 }
}

Appendix 5

28 (28)

OffsetPos.cs

namespace Utilities.Hex
{
 /// <summary>
 /// Offset position container for hex coordinates
 /// </summary>
 public struct OffsetPos
 {
 public int X { get; private set; }

 public int Y { get; private set; }

 public OffsetPos (int x, int y)
 {
 this.X = x;
 this.Y = y;
 }

 public override bool Equals (object obj)
 {
 return obj is OffsetPos && this == (OffsetPos)obj;
 }

 public override int GetHashCode ()
 {
 return (X.GetHashCode () << 8) ^ (Y.GetHashCode ());
 }

 public static bool operator == (OffsetPos lhs, OffsetPos rhs)
 {
 return lhs.X == rhs.X && lhs.Y == rhs.Y;
 }

 public static bool operator != (OffsetPos lhs, OffsetPos rhs)
 {
 return !(lhs == rhs);
 }

 public override string ToString ()
 {
 return string.Format ("[OffsetPos: X={0}, Y={1}]", X, Y);
 }

 public bool InRange(float x1, float y1, float x2, float y2)
 {
 return (X >= x1) && (Y >= y1) && (X <= x2) && (Y <= y2);
 }
 }
}

Appendix 6

1 (9)

Appendix 6: Source Code of Inference Engine Prototype

Note: The rule condition parsing uses a modified version of the B83 Parser (available at

http://wiki.unity3d.com/index.php/ExpressionParser), which is not included in the listing.

The modifications add support for equality, inequality, and the basic AND and OR oper-

ators of Boolean algebra to the formulas. Those modifications assume values of 0.0 for

false and 1.0 for true in this context (Rule.Matches method uses threshold value of 0.5

to dictate whether the condition matches or not).

InferenceEngine.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Linq;
using System;

/// <summary>
/// A simple inference engine prototype implemented in Unity.
/// Uses a Ruleset asset to define rules, and has editor
/// mode execution support.
/// </summary>
public class InferenceEngine : MonoBehaviour
{
 /// <summary>
 /// A single fact in the database implemented
 /// as key (identifier)-value pair.
 /// </summary>
 [Serializable]
 public class Fact
 {
 public string identifier;
 public string value;
 }

 /// <summary>
 /// The working memory implementation for inference engine
 /// </summary>
 [Serializable]
 public class WorkingMemory
 {
 /// <summary>
 /// List of all active facts in the working memory
 /// </summary>
 public List<Fact> facts;

 /// <summary>
 /// Reference to the expression parser instance
 /// </summary>
 public B83.ExpressionParser.ExpressionParser parser;

 /// <summary>
 /// Clear this working memory
 /// </summary>
 public void Clear()

Appendix 6

2 (9)

 {
 facts.Clear();
 parser = new B83.ExpressionParser.ExpressionParser();
 }

 /// <summary>
 /// Apply one rule effect to the working memory.
 /// </summary>
 /// <param name="effect">Rule effect to apply.</param>
 /// <returns><c>true</c>, if working memory was changed,
 /// <c>false</c> if no changes were made.</returns>
 public bool Apply(Ruleset.RuleEffect effect)
 {
 switch (effect.type)
 {
 case Ruleset.RuleEffectType.SetIdentifier:
 if (TestSetFact(effect.identifier, effect.value))
 return true;
 break;
 case Ruleset.RuleEffectType.RemoveIdentifier:
 if (TestSetFact(effect.identifier, null))
 return true;
 break;
 }
 return false;
 }

 /// <summary>
 /// Internal method to apply fact to working memory.
 /// </summary>
 /// <param name="identifier">Fact identifier.</param>
 /// <param name="value">Value to apply. If this is null,
 /// the fact will be removed from working memory</param>
 /// <returns><c>true</c>, if working memory was changed,
 /// <c>false</c> if no changes were made.</returns>
 private bool TestSetFact(string identifier, string value)
 {
 // Update expression parser
 if (value != null)
 {
 parser.AddConst(identifier, () => Double.Parse(value));
 }
 else
 {
 parser.RemoveConst(identifier);
 }

 // Update working memory
 var oldFact = facts.FirstOrDefault(f =>
 f.identifier == identifier);
 if (oldFact != null)
 {
 if (oldFact.value == value)
 {
 // The fact already exists with given value, no change
 return false;
 }
 else
 {
 // The fact exists but has different value, change it
 oldFact.value = value;
 return true;
 }
 }

Appendix 6

3 (9)

 else
 {
 // Add new fact
 facts.Add(new Fact {
 identifier = identifier,
 value = value });
 }
 return true;
 }
 }

 public Arbiter arbiter;
 public Ruleset activeRules;
 public WorkingMemory workingMemory = new WorkingMemory();
 public bool finished;

 /// <summary>
 /// List of rules that were matched during the most recent iteration
 /// </summary>
 private List<Ruleset.Rule> matchedRules = new List<Ruleset.Rule>();

 public void Awake()
 {
 Reset();
 }

 /// <summary>
 /// Reset the inference engine. Clears the working memory.
 /// </summary>
 [ContextMenu ("Reset inference engine")]
 public void Reset()
 {
 workingMemory.Clear();
 finished = false;
 Debug.Log("Inference engine has been reset");
 }

 /// <summary>
 /// Runs one iteration of the inference engine.
 /// </summary>
 [ContextMenu ("Run one inference engine iteration")]
 public void RunIteration()
 {
 if (finished)
 {
 Debug.LogError("Inference engine finished, reset to run again");
 return;
 }

 // Clear list of previously matched rules
 matchedRules.Clear();

 // Check which rules match the current working memory
 foreach (var rule in activeRules.rules)
 {
 if (rule.Matches(workingMemory))
 matchedRules.Add(rule);
 }

 if (matchedRules.Count > 0)
 {
 // Use arbiter to pick which of the matched rules will be fired
 Ruleset.Rule rule = arbiter.PickAndApplyRule(

Appendix 6

4 (9)

 matchedRules, workingMemory);

 // If rule was returned, working memory was changed
 if (rule != null)
 {
 Debug.Log("Applied rule " + rule + " to working memory");
 }
 else
 {
 Debug.Log("No changes in working memory, finishing");
 finished = true;
 }
 }
 else
 {
 // No more matching rules, finish
 Debug.Log("No rules matched, finishing");
 finished = true;
 }
 }
}

Arbiter.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Linq;

/// <summary>
/// A simple arbiter component of the inference engine
/// </summary>
public class Arbiter : MonoBehaviour
{
 /// <summary>
 /// Arbiter type used for rule matching
 /// </summary>
 public enum ArbiterType
 {
 FirstMatch,
 Random
 }

 public ArbiterType type;

 /// <summary>
 /// Superclass of the rule matching methods. Should be
 /// overridden to provide different rule-matching types.
 /// </summary>
 abstract class ArbiterMethod
 {
 protected InferenceEngine.WorkingMemory workingMemory;

 public ArbiterMethod(InferenceEngine.WorkingMemory workingMemory)
 {
 this.workingMemory = workingMemory;
 }

 public abstract Ruleset.Rule PickAndApplyRule(
 ICollection<Ruleset.Rule> rules);
 }

Appendix 6

5 (9)

 /// <summary>
 /// First-match rule arbiter matching method. Iterates though
 /// the given rules until one of them has effect on working memory.
 /// </summary>
 class ArbiterMethodFirstMatch : ArbiterMethod
 {
 public ArbiterMethodFirstMatch(
 InferenceEngine.WorkingMemory workingMemory) :
 base(workingMemory) {}

 public override Ruleset.Rule PickAndApplyRule(
 ICollection<Ruleset.Rule> rules)
 {
 foreach (var rule in rules)
 {
 if (rule.ApplyTo(workingMemory))
 return rule;
 }
 return null;
 }
 }

 /// <summary>
 /// Random-match rule arbiter mathod. Iterates the given rules in
 /// random order until one of them has effect on working memory.
 /// </summary>
 class ArbiterMethodRandom : ArbiterMethod
 {
 public ArbiterMethodRandom(
 InferenceEngine.WorkingMemory workingMemory) :
 base(workingMemory) {}

 public override Ruleset.Rule PickAndApplyRule(
 ICollection<Ruleset.Rule> rules)
 {
 // Randomize the rule collection using LINQ OrderBy and Random
 var rnd = new System.Random();
 var randomizedList = rules.ToList().OrderBy(i => rnd.Next());
 foreach (var rule in randomizedList)
 {
 if (rule.ApplyTo(workingMemory))
 return rule;
 }
 return null;
 }
 }

 /// <summary>
 /// Creates an instance of the currently active arbiter
 /// matching method type, and uses that to pick and fire
 /// a rule from the rule list.
 /// </summary>
 /// <returns>The rule that was applied. May be null if
 /// no changes were made to the working memory.</returns>
 /// <param name="rules">List of available rules to apply.</param>
 /// <param name="workingMemory">The working memory instance.</param>
 public Ruleset.Rule PickAndApplyRule(ICollection<Ruleset.Rule> rules,
 InferenceEngine.WorkingMemory workingMemory)
 {
 if (rules.Count == 0)
 return null;

 switch (type)
 {

Appendix 6

6 (9)

 case ArbiterType.FirstMatch:
 return new ArbiterMethodFirstMatch(workingMemory).
 PickAndApplyRule(rules);
 case ArbiterType.Random:
 return new ArbiterMethodRandom(workingMemory).
 PickAndApplyRule(rules);
 }
 return null;
 }
}

Ruleset.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;
using System.Linq;

/// <summary>
/// The Ruleset ScriptableObject defines an unity asset, which is
/// used to configure rule sets for the inference engine.
/// </summary>
[CreateAssetMenu(fileName = "New Ruleset",
 menuName = "RuleSystem/Ruleset", order = 1)]
public class Ruleset : ScriptableObject
{
 /// <summary>
 /// Rule effect type, each effect can set or clear
 /// a given fact in the working memory.
 /// </summary>
 [Serializable]
 public enum RuleEffectType
 {
 SetIdentifier,
 RemoveIdentifier
 }

 /// <summary>
 /// Rule effect. Contains type, fact identifier and fact value.
 /// </summary>
 [Serializable]
 public class RuleEffect
 {
 public RuleEffectType type;
 public string identifier;
 public string value;

 public override string ToString ()
 {
 return "[" + type + "]" + identifier + "=" + value;
 }
 }

 /// <summary>
 /// One individual rule in the rule set. Contains list of
 /// conditions which must be satisfied for the rule to fire,
 /// and list of rule effects which will be applied to the
 /// working memory if the conditions were met.
 /// </summary>
 [Serializable]

Appendix 6

7 (9)

 public class Rule
 {
 /// <summary>
 /// Conditions of the rule. Each condition is an expression
 /// that can be resolved into boolean value of either
 /// 0 or 1. For example:
 ///
 /// a==1
 /// b!=0
 ///
 /// Any previously set identifiers in working memory can
 /// be used in the expressions.
 /// </summary>
 public string[] conditions;

 /// <summary>
 /// Effects of the rule
 /// </summary>
 public RuleEffect[] effects;

 /// <summary>
 /// Matches the rule conditions against the working memory.
 /// </summary>
 /// <param name="memory">The working memory instance.</param>
 /// <returns><c>true</c>, if all conditions match the
 /// working memory, <c>false</c> otherwise.</returns>
 public bool Matches(InferenceEngine.WorkingMemory memory)
 {
 foreach (var condition in conditions)
 {
 if (memory.parser.Evaluate(condition) < 0.5f)
 return false;
 }
 return true;
 }

 /// <summary>
 /// Apply effects to the working memory
 /// </summary>
 /// <returns><c>true</c>, if the working memory was changed,
 /// <c>false</c> otherwise.</returns>
 /// <param name="memory">The working memory instance.</param>
 public bool ApplyTo(InferenceEngine.WorkingMemory memory)
 {
 bool changed = false;
 foreach (var effect in effects)
 {
 changed |= memory.Apply(effect);
 }
 return changed;
 }

 public override string ToString ()
 {
 return "[Rule: Conditions:(" +
 String.Join(",", conditions) + "), Effects:(" +
 String.Join(",", effects.Select(c => c.ToString()).
 ToArray()) + ")]";
 }
 }

 /// <summary>
 /// Root rule container of the ruleset
 /// </summary>

Appendix 6

8 (9)

 public Rule[] rules;
}

InferenceEngineEditor.cs

using UnityEngine;
using UnityEditor;
using System.Collections;
using System.Collections.Generic;

/// <summary>
/// Custom editor for the inference engine. Reformats
/// the working memory to a more readable format.
/// </summary>
[CustomEditor(typeof(InferenceEngine))]
public class InferenceEngineEditor : Editor
{
 public override void OnInspectorGUI()
 {
 InferenceEngine myTarget = (InferenceEngine)target;
 EditorGUI.BeginChangeCheck ();

 // Basic Unity editor fields for arbiter and ruleset
 myTarget.arbiter = EditorGUILayout.ObjectField("Arbiter",
 myTarget.arbiter, typeof(Arbiter), true) as Arbiter;
 myTarget.activeRules = EditorGUILayout.ObjectField("Ruleset",
 myTarget.activeRules, typeof(Ruleset), true) as Ruleset;

 // Show finished flag as a label
 EditorGUILayout.LabelField("Finished",
 myTarget.finished ? "Yes" : "No");

 // Display the working memory.
 EditorGUILayout.LabelField("Working memory", EditorStyles.boldLabel);
 EditorGUI.indentLevel++;
 var facts = myTarget.workingMemory.facts;
 if (facts.Count == 0)
 {
 // Working memory empty
 EditorGUILayout.LabelField("(empty)");
 }
 else
 {
 // Show each fact as an indented label with identifier-value
 // pair as the label field label and value.
 foreach (var fact in facts)
 {
 EditorGUILayout.LabelField(fact.identifier, fact.value);
 }
 }
 EditorGUI.indentLevel--;

 // Save changes if needed
 if (EditorGUI.EndChangeCheck ())
 {
 serializedObject.ApplyModifiedProperties();
 }
 }
}

Appendix 6

9 (9)

RuleEffectDrawer.cs

using UnityEditor;
using UnityEngine;

/// <summary>
/// Custom editor drawer for the rule effects.
/// Formats the effect field to a bit more
/// readable format.
/// </summary>
[CustomPropertyDrawer(typeof(Ruleset.RuleEffect))]
public class RuleEffectDrawer : PropertyDrawer
{
 public override void OnGUI(Rect position,
 SerializedProperty property, GUIContent label)
 {
 EditorGUI.BeginProperty(position, label, property);
 position = EditorGUI.PrefixLabel(position,
 GUIUtility.GetControlID(FocusType.Passive), label);

 var indent = EditorGUI.indentLevel;
 EditorGUI.indentLevel = 0;

 // Position the three properties horizontally
 var typeRect = new Rect(position.x, position.y, 100, position.height);
 var identifierRect = new Rect(
 position.x + 105, position.y, 50, position.height);
 var valueRect = new Rect(
 position.x + 160,
 position.y,
 position.width - 160,
 position.height);

 // Show editor fields for all three properties.
 var typeProperty = property.FindPropertyRelative("type");
 EditorGUI.PropertyField(typeRect, typeProperty, GUIContent.none);
 EditorGUI.PropertyField(
 identifierRect,
 property.FindPropertyRelative("identifier"),
 GUIContent.none);

 // If effect type is RemoveIdentifier, the "value" field is not needed
 // and can be hidden
 if (typeProperty.enumValueIndex !=
 (int)Ruleset.RuleEffectType.RemoveIdentifier)
 {
 EditorGUI.PropertyField(
 valueRect,
 property.FindPropertyRelative("value"),
 GUIContent.none);
 }

 EditorGUI.indentLevel = indent;
 EditorGUI.EndProperty();
 }
}

