
	

	

Bachelor’s thesis

Degree Programme in Information Technology

Internet Technology

2017

	
	
	
	

Tam Nguyen Truong Thanh

MONITORING
ENVIRONMENTAL VARIABLES
USING SENSORTAG

	 	

	

	

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

 Information Technology

 2017 | 42

 Tero Virtanen

Tam Nguyen Truong Thanh

MONITORING ENVIRONMENTAL VARIABLES
USING SENSORTAG
The	purpose	of	this	thesis	was	to	create	a	system	consisting	of	a	multi-functional	sensor	and	a	web-
based	application	in	order	to	monitor	environmental	variables,	such	as	temperature,	humidity,	light,	
density	and	so	on.	With	an	intention	of	using	the	sensor	to	track	object	movements,	a	gyroscope	sensor	
was	additionally	created.	The	application,	called	sensorApp,	can	be	seen	as	a	full-stack	web	developing	
example	which	takes	advantage	of	such	technologies	as	NodeJS,	MongoDB,	jQuery	and	Socket.io.	

The	back-end	part	of	this	project	is	a	NodeJS	web	server	communicating	with	the	sensor	device	in	order	
to	retrieve	information	then	forward	to	to	a	MongoDB	database	server	for	storing.	On	the	other	hand,	
for	the	front-end	part,	the	data	received	from	the	sensor	is	also	transferred	to	a	web-interface	to	
present	and	monitor	in	real-time	with	the	help	of	WebSocket’s	library	named	Socket.io.	In	addition,	the	
HighCharts	library	is	used	to	create		graphs	to	visualize	all	the	data	from	the	sensor	or	from	the	database	
server.	

The	result	of	the	thesis	was	the	”sensorApp”	app.	The	app	is	capable	of	presenting	data	from	the	
sensors	and,	especially,	is	packed	with	database	extraction	feature	which	is	not	supported	by	other	
services.	There	were	few	obstacles	in	this	project,	such	as	hardware	faulty,	overloaded	data	
transmission	and	security	methods.	In	addition,	limitations	in	technology	were	also	addressed,	for	
instance	power	consumption	and	gyroscope	accuracy.	

	

	
KEYWORDS:	

Node.js,	MongoDB,	JavaScript,	jQuery,	Sensor,	Web,	Server.	
	 	

	

	

CONTENTS	

LIST OF ABBREVIATIONS (OR) SYMBOLS 6	

1 INTRODUCTION 6	

2 TECHNOLOGIES 8	
2.1 SensorTag 8	

2.2 Bluetooth Low Energy 8	

2.3 NodeJS 9	
2.4 NodeJS Modules 9	

3 PROCESS 12	

4 IMPLEMENTATION 14	
4.1 NodeJS and modules 14	
4.2 JavaScript Libraries 15	
4.3 Wire up 16	

4.4 Setting up connection 17	
4.5 Data Flow 20	
4.6 User interface 23	
4.7 Database 25	

5 PERFORMANCE 27	

6 ASSESSMENT 29	
6.1 Obstacles 29	

6.2 Potential Future Improvement 29	

6.3 Limitations 30	

7 CONCLUSION 34	

REFERENCES 35	

APPENDICES	

Appendix 1. Application Tree
Appendix 2. Sensortag module code

	

	

EQUATIONS	

Equation 1. Differences when sensor changing position. 32	
	

FIGURES	

Figure 1. Data transfer from UI to server via “custom” socket. 21	
Figure 2. Socket “valuesOut” structure. 21	
Figure 3. Socket “signal”. 22	
Figure 4. Records are sent to database. 22	

PICTURES	

Picture 1. Concept of a monitoring system. 6	
Picture 2. SensorTag CC2650. 8	
Picture 3. The implementation structure. 12	
Picture 4. Discovery mode. 17	
Picture 5. Broadcasting connectivity signal. 18	
Picture 6. Sensor information recognized by node server. 18	
Picture 7. Sensor panel in dashboard. 19	
Picture 8. Responses from server when connected to SensorTag. 20	
Picture 9. Dashboard interface. 23	
Picture 10. Show records panel. 24	
Picture 11. Visualized graph of data. 24	
Picture 12. Exporting feature of HighCharts. 25	
Picture 13. Structure of a key in MongoDB database. 26	
Picture 14. A point transferred from server to graphs. 27	
Picture 15. How data is handled upon requests. 28	
Picture 16. Light density presentation. 30	
Picture 17. Gyroscope presentation. 32	

TABLES	

Table 1. JSON format. 11	
Table 2. NPM installing syntax. 14	
Table 3. Create project with Express Generator. 14	
Table 4. Sensortag module install command. 15	
Table 5. Link to “socket.io” library in HTML. 15	
Table 6. Get “socket.io” functions in JavaScript. 15	
Table 7. Link to your mLab database. 16	
Table 8. Link to HighCharts Library in HTML. 16	
Table 9. Start NodeJS server command. 17	
Table 10. Power consumption. 31	

	

	

Table 11. Sensor states decided by Delta. 33	
	

	

	

LIST	OF	ABBREVIATIONS	(OR)	SYMBOLS	

API Application Program Interface

BLE Bluetooth Low Energy

DOM Document Object Model

HTML Hyper Text Markup Language

IoT Internet of Things

JSON JavaScript Object Notation

MVC Model View Controller

RDBMS Relational Database Management System

UI User Interface

XML Extensible Markup Language

6	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

1 INTRODUCTION	

Monitoring	a	server	plays	an	essential	role	in	an	administrator’s	routine.	As	the	
network	grows,	keeping	track	of	all	the	activities	is	becoming	more	and	more	
complicated.	Moreover,	the	performance	of	servers	does	not	only	depend	on	the	
hardware	or	software	alone	but	also	on	other	factors	such	as	temperature	or	humidity	
of	surrounding	environment.	Especially,	overheating	is	one	of	the	main	reasons	to	
cause	increasing	latency	in	networks.	Therefore,	the	need	of	a	surrounding	monitor	
system	which	can	be	supervised	remotely	seems	to	be	necessary.		

	
Picture	1.	Concept	of	a	monitoring	system.	

As	presented	in	Picture	1	above,	the	centralized	system	is	in	charge	of	retrieving	data	
from	any	sensor	built-in	devices.	Sensor	data	consists	of	temperature,	humidity,	light	
density,	magnetic	level,	etc.	The	raw	data	is	transferred	to	the	system	where	it	will	be	
converted	into	human	readable	values.	While	being	processed,	the	data	is	also	
captured	by	the	database	server	then	saved	in	form	of	records.	The	advantage	of	the	
database	server	here	is	to	keep	track	of	all		measurements	during	the	whole	operation.	
The	database	records	are	also	used	as	a	future	reference	or	to	analyze	trending	of	
sensor	values.	There	are	many	forms	of	presenting	data	for	administrator.	Since	the	
requirement	is	to	monitor	remotely	with	any	devices	available,	a	website	is	considered	
as	the	best	choice.	
	 	

7	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

This	thesis	demonstrates	the	process	of	establishing	the	monitoring	system.	With	the	
web-based	application	being	a	core	of	the	system,	the	application	does	not	provide	
only	a	graphical	interface	that	suits	every	device	from	computer	to	mobile	phone	but	
also	a	real-time	reporting	functionality.		
The	thesis	starts	with	introducing	all	the	technologies	used	in	the	project.	Chapter	
Process	explains	why	the	selected	technologies	are	suitable	for	the	project.	Chapter		
Implementation	describes	how	the	project	was	implemented.	Chapter	Performance		
reports	on	how	the	performance	was	validated.	The	final	chapter	discusses	obstacles	
and	limitations	in	this	project.		
	

8	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

2 TECHNOLOGIES	

2.1 SensorTag	

SimpleLink™	Bluetooth	Smart®/Multi-Standard	SensorTag	from	Texas	Instrument	is	an	
expandable	sensor-based	Bluetooth	device.	There	are	many	versions	but	the	one	we	
use	in	this	project	particularly	is	CC2650	SensorTag.	Basically,	this	version	has	10	
sensors	built-in	such	as		support	for	light,	digital	microphone,	magnetic	sensor,	humidity,	
pressure,	accelerometer,	gyroscope,	magnetometer,	object	temperature,	and	ambient	
temperature[1]	on	the	same	circuit	and	operates	at	a	low	energy	level.	In	terms	of	
expandability,	more	sensors	could	be	added	with	DevPack	in	order	to	fit	every	need.	
Regarding	power	consumption,	according	to	Texas	Instrument,	with	an	interval	of	1	
second,	it	can	runs	for	at	least	1	year	straight.	Moreover,	it	also	provides	an	option	to	
transfer	measurements	to	the	Cloud	via	an	app	for	both	iOS	and	Android	platforms.	In	
addition,	iBeacon,	ZigBee®/6LoWPAN	technology	are	also	supported	by	the	sensor.		

	
Picture	2.	SensorTag	CC2650.	

Development	kit	(DevPack)	[2]	is	an	optional	circuit	which	provides	USB	interface	for	
SensorTag	to	enable	the	physical	connection	to	computer.	Updating	firmware	and	
making	modification	to	the	sensor	are	the	main	roles	of	the	kit.	On	the	other	hand,	it	
also	helps	the	sensor	to	use	external	power	supply	when	running	out	of	battery.	

2.2 Bluetooth	Low	Energy	

Bluetooth	Low	Energy	(BLE)	or	Bluetooth	Smart	is	a	latest	version	of	Bluetooth	
Technology	[3].	In	order	to	accommodate	Internet	of	Things	(IoT)	trend,	BLE	now	
consumes	less	power	than	previous	versions	so	it	can	keep	operating	for	long	time	
with	only	a	coin-cell	battery.	Regarding	security,	BLE	can	enhance	security	ability	such	
as	fully	compatible	with	128-bit	AES	encryption.	Moreover,	with	a	wide	availability	
along	with	mentioned	features	above,	BLE	is	gradually	making	its	way	to	more	and	
more	IoT	projects.	

9	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

2.3 NodeJS	

To	accomplish	a	huge	stream	of	data	constantly	transferring	to	the	server,	one	of	the	
best	implementation	in	the	market	at	the	moment	is	NodeJS	server.	 		
Node.js	/	NodeJS	is	an	event-driven	environment.	It	is	a	library	was	invented	by	Ryan	
Dahl	in	2009.	After	45-minute	talk	at	JSConf,	Ryan	introduced	NodeJS	which	changed	
JavaScript	forever[4].	With	an	intention	of	expanding	JavaScript	beyond	just	a	web	
browser		language,	NodeJS	now	becomes	one	of	the	most	powerful	servers	in	the	
market.	A	NodeJS	server	is	capable	of	handling	a	vast	amount	of	connections	at	once.	
Despite	the	fact	that	it	is	a	single-thread	server,	it	provides	a	decent	performance	as	
opposed	to	other	multi-thread	servers.	Concurrent	operations	is	smoothly	executed	
with	the	help	of	V8	engine	which	is	an	engine	from	Google	built	to	improve	the	
performance	of	JavaScript.	There	are	a	excessive	number	of	APIs	and	modules	
available	for	NodeJS	out	of	the	box.	Thousands	and	thousands	of	modules	are	
developed	and	contributed	by	community	up	to	now	makes	NodeJS	adapt	itself	to	
many	projects	or	is	widely	used	by	large	companies.	

2.4 NodeJS	Modules	

NodeJS	has	a	modular-oriented	structure.	Modules	are	blocks	of	code	in	certain	
language	which	are	built	to	accomplish	certain	tasks.	Their	functionalities	could	be	
standalone	or	combined	with	each	other	in	order	to	achieve	much	sophisticated	
operations.	

Sensortag	

Sensortag	module	for	NodeJS	was	created	by	Sandeep	Mistry	in	2013	[5].	It	is	an	API	
made	specifically	for	Texas	Instruments	SensorTags,	namely	TI	CC26xx	series.	This	
module	is	one	of	the	most	important	pieces	of	this	app.	It	provides	functions	to	
establish	a	connection	between	the	sensor	and	the	server	as	well	as	allows	developers	
display	extracted	detail	information	of	the	device	for	example	serial	numbers,	type,	
name	or	even	firmware	revisions.	Apart	from	connectivity,	the	API	also	enables	us	to	
take	control	over	built-in	sensors	in	just	a	few	lines	of	code.	In	other	words,	from	
enabling	a	customized	sensor	to	exporting	data	in	order	to	process	in	further	stages,	all	
of	those	tasks	can	be	done	easily	without	any	knowledge	of	low	level	programing	
language.	The	comprehensive	list	of	provided	categorized	functions	as	follows:		
	 	

10	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

• Discovery	
• Connect	/	Disconnect	device	
• Device	Information	
• Sensors	

o Accelerometer	
o IR	Temperature	
o Humidity	
o Magnetometer	
o Barometric	Pressure	
o Gyroscope	
o Luxometer	(CC2650	only)	
o IO	

• Simple	Key	

Socket.io	

Since	web	application	is	essentially	mainstream,	data	which	traverses	across	networks	
demands	a	high	response	rate	in	order	to	maintain	user	experience.	In	modern	web	
applications,	user	inputs	are	frequently	processed	in	real-time,	then	exchanged	back	
and	forth	between	back-end	and	front-end	sections.	That	is	when	a	definition	of	
WebSocket	comes	along.	Basically,	WebSocket	[6]	is	intentionally	a	protocol	which	
enables	us	to	set	up	a	communication	channel	for	message	exchanging	from	a	server	
to	clients	or	vice	versa.		
	
Regarding	compatibility	issues	between	modern	browsers	and	older	ones,	socket.io	
was	invented	to	maintain	a	consistency	for	using	WebSocket	on	any	browsers	without	
adjustments.	As	a	matter	of	fact,	socket.io	grows	incredibly	fast	and	is	implemented	in	
the	majority	of	web	applications	along	side	with	NodeJS.		

jQuery	

jQuery	was	created	as	a	JavaScript	library.	Technically,	everything	can	be	done	with	
JavaScript,	which	now	is	even	faster	and	simpler	with	jQuery.	Moreover,	user	
interaction	is	now	handled	in	a	more	straight-forward	way.	There	are	various	types	of	
activity	happening	on-site,	for	example,	DOM	manipulation,	event	schedule	which	now	
can	accomplish	even	more	rapidly	with	jQuery	[7].	In	addition,	pre-created	snippets	for	
animations	are	available	right	out	of	the	box	for	developers	as	well.	All	in	all,	jQuery	is	
widely	used	in	vast	numbers	of	projects	in	any	scale	and	become	one	of	the	most	
popular	JavaScript	libraries	without	a	doubt.	

11	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

MongoDB	

A	database	essentially	is	a	must-have	in	a	web	application.	Since	the	beginning,	RDMS	
has	taken	a	lead	in	the	web	development	industry.	As	a	result	of	the	dominance	of	
large-scale	web	applications,	the	NoSQL	database	has		becoming	strong.	Because	of	it	
numerous	features	such	as	scalable,	adaptive	to	changes,	supporting	JSON-like	format,	
NoSQL	has	received	significant	attention	from	start-ups	to	large	scale	enterprises.	
One	of	the	most	popular	databases	in	this	category	is	MongoDB	[8].	Apart	from	
characteristic	inheritance	of	non-relational	databases,	MongoDB’s	most	highlighting	
feature	is	a	JSON-like	database.	JSON	format	has	been	widely	used	to	transfer	data	
between	clients	and	servers.	
	
	Table	1.	JSON	format.	

{	
	 'key'		:	value	,	
	 'Name'	:	"John",	
	 'ID'			:	1	
}	
The	example	above	is	a	simple	declaration	of	a	JSON-format	variable.	As	presented	in	a	
pair	of	key	and	value,	JSON	has	a	more	flexible	structure	than	its	former,	XML.	In	
addition,	a	value	can	be	stored	in	form	of	a	JSON	as	well.		
With	the	use	of	JSON	scheme,	data	from	server	now	can	be	directly	stored	in	
MongoDB	without	making	any	conversions.In	addition,	complicated	table	constraints	
of	traditional	database	are	completely	eliminated.	In	terms	of	application	scaling,	it	is	
extremely	unsophisticated	to	append	more	records	or	attributes	as	the	app	grows.	The	
mentioned	factors	make	MongoDB	suitable	for	any	criteria	of	this	project	especially	in	
mobile	generation	where	JSON	can	be	seen	as	a	new	standard	for	data	type.	
	 	

12	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

3 PROCESS	

After	carrying	out	some	research	to	decide	which	technology	is	suitable	for	this	
project,	a	list	of	recent	ones	were	selected	as	follows:	NodeJS,	MongoDB,	jQuery,	
HighCharts,	Socket.io.	
The	main	reason	for	choosing	NodeJS	in	the	first	place	is	its	high	performance	which	is	
ideal	for	real-time	web	applications.	Apart	from	that,	thousands	of	plugins	are	
developed	and	available	to	accommodate	any	requirements.		Especially,	sensortag	is	
the	one	library	that	can	enable	developers	to	open	up	the	potential	of	Texas	
Instrument	sensors.	With	that	foundation,		the	system	already	has	a	web	server	with	
built-in	functionality	to	connect	and	communicate	with	the	sensor	device.		
In	terms	of	databases,	MongoDB	was	chosen	since	it	is	easy	to	corporate	with	NodeJS	
and	recommended	the	most	in	web	development	community.	Measurements	from	the	
sensor	are	stored	in	MongoDB	while	they	are	presented	on	the	website	
simultaneously.	The	database	comes	in	handy	when	it	comes	to	review	the	trending	
analysis	of	values	from	the	sensor	in	the	future.	Moreover,	the	ability	to	interact	with	
JSON	format	also	is	taken	into	account.		

	
Picture	3.	The	implementation	structure.	

	
With	the	convenience	of	JSON	structure,	HighCharts	[9],	a	jQuery	library		can	process	
data	from	database	transparently	then	display	it	in	an	appealing	way.	The	advantage	of	
HighCharts	lies	in	building	charts	or	graphs	with	simplistic	visual	regardless	of	device	
resolution	as	well	as	in	providing	a	fallback	compatibility	for	all	current	web-browsers.	

13	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

Last	but	not	least,	socket.io,	on	the	other	hand	is	an	upgraded	version	of	WebSocket	
which	provides	compatibility	across	devices.	With	high	performance	and	stability,	it	is	
obviously	a	flawless	choice	for	real-time	web	application.	Other	than	that,	socket.io	
was	also	built	on	JavaScript	foundation	which	makes	a	seamless	combination	with	the	
other	technologies	used	for	this	concept.	

6	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

4 IMPLEMENTATION	

In	order	to	get	the	system	operated,	all	the	puzzle	pieces	have	to	be	put	together	in	a	
logical	way,	starting	with	installations	of	the	infrastructure	core.	The	following	section	
will	cover	the	initial	steps	to	setup	a	basic	skeleton	for	the	app.	

4.1 NodeJS	and	modules	

NodeJS	is	available	to	almost	every	platform	available	including	Windows,	MacOS,	
Linux.	The	walk-through	instruction	is	clearly	available	on	NodeJS.org.	However,	for	
demonstration	purposes,	all	the	steps	below	this	point	will	be	taken	part	on	MacOS.	
The	visual	instruction	from	the	‘.pkg’	file	downloaded	to	install	NodeJS	framework	and	
Node	package	manager	(NPM)	altogether.	
NPM	is	an	essential	part	yet	powerful	of	NodeJS	environment.	It	allows	us	to	customize	
the	server	to	suit	every	needs	from	project	to	project.	The	main	function	of	npm	is	to	
add	or	remove	packages	which	are	exclusively	developed	for	NodeJS.	
Table	2.	NPM	installing	syntax.	
$ npm install <PACKAGE_NAME>

Express.js	framework	

Express.js,	which	introduced	after	Ruby	project	Sinatra,	is	an	essential	framework	for	
everyone	to	become	familiar	with	NodeJS.	According	to	Jim	R.	Wilson,	Express	
provides	most	the	plumbing	code	that	coders	will	otherwise	end	up	writing	themselves	
[10].	With	only	few	lines	of	code,	a	fully	functional	backbone	was	set	up	and	ready	to	
go.	The	concept	behind	Express	is	that	it	is	predefined	following	MVC	(Model	View	
Controller)	architecture	with	the	support		template	engines.		
Express	Generator	was	created	for	beginners	to	jump	into	the	developing	phase	
without	going	through	deeply	configuration	steps	with	Express	by	default.	A	basic	web	
server	will	be	deployed	right	out	of	the	box	after	with	just	one	line	of	code.		
Table	3.	Create	project	with	Express	Generator.	

$ express sensorApp
We	just	created	a	sensorApp	in	the	current	directory	with	a	simple	web	server	with	an	
index	page.	

Sensortag	module	

Sensortag	module	is	provided	through	NPM	and	is	installed	by	the	command	below:	
	

15	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

Table	4.	Sensortag	module	install	command.

$ npm install sensortag
An	example	code	comes	in	the	package	enable	the	server	receives	temperature	and	
humidity	from	the	sensor	right	out	of	the	box.	By	making	modifications	in	order	to	
adapt	to	this	project,	specific	functions	regarding	light	sensor	and	gyroscope	are	also	
added.	There	are	not	only	value	receiving	functions	are	implemented	but	a	number	of	
calculations	are	also	placed	in	the	code	to	calculate	the	output	on	the	fly	before	it	
leaves	for	presenting.		

Socket.io		

The	mechanism	of	socket.io	consists	of	two	parts:	the	server	and	client	side.	The	server	
side	is	distributed	from	NPM.	On	the	other	side,	the	client	one	is	slightly	different.	
First,	the	library	has	to	be	embedded	into	the	webpage.	
	
Table	5.	Link	to	“socket.io”	library	in	HTML.	

<script src="https://cdn.socket.io/socket.io-
1.4.5.js"></script>	
Then	functionalities	are	implemented	within	the	JavaScript	section.	
Table	6.	Get	“socket.io”	functions	in	JavaScript.	

var socket= io.connect('http://yourdomain.address');

Additional	modules	

In	addition	to	the	mentioned	packages	above,	there	are	some	other	dependencies	
needed	to	help	the	application	operating	such	as:	serve-icon,	morgan,	body-parser,	
cookies-MongoDB,	assert.	

4.2 JavaScript	Libraries	

mLab		

mLab	was	renamed	from	MongoLab	in	February	2016	[11].	mLab	is	an	online	database	
service	using	MongoDB.	It	provides	an	convenient	way	to	interact	with	MongoDB	
which	is	also	compatible	with	many	existing	technologies.	Easy	to	setup	and	reliable	
are	advantages	when	using	mLab.	A	registered	account	is	needed	to	start	using	mLab.	

16	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

Cloud-based	databases	are	very	popular	right	now	due	to	their	portability	and	
convenience.	mLab	is	a	great	example.	For	education	or	testing	purposes,	setting	a	
standalone	database-server	could	be	time-consuming.	mLab	is	considered	as	a	better	
choice	because	of	its	simplicity	in	installation	and	reliability.	
To	set	up,	mLab	created	an	URL	to	allow	developers	to	access	the	database	remotely.	
Mongoclient	is	an	object	providing	connecting	functions	to	MongoDB	database.	By	
using	it,	manipulating	the	databases	can	be	done	with	only	few	steps.	
Table	7.	Link	to	your	mLab	database.	

url = ”MongoDB://<adminuser>:<password>@<link to your
database:<port>/<database name>”;
var MongoClient = require('mongodb').MongoClient;
MongoClient.connect(url,function(err,database)
{...};

HighCharts	/	HighStocks		

There	are	plenty	of	JavaScript	libraries	for	designing	charts	from	our	database.	
HighCharts	is	one	among	the	best	so	far	when	it	comes	to	reliability	and	compatibility.		
Table	8.	Link	to	HighCharts	Library	in	HTML.	

<script src="https://code.highcharts.com"></script>

4.3 Wire	up	

With	a	foundation	of	the	Express	predefined	server,	the	next	stage	is	connecting	all	the	
components	together.	
By	default,	Express	has	its	starting	point	set	to	‘www’	file.	Any	activity	followed	by	will	
derive	from	there.	‘www’	file’s	job	is	to	configure	a	port	for	the	server	and	handle	
related	errors	or	exception.	
App.js	will	act	as	a	station	where	data	flow	will	be	processed	and	transferred	to	every	
part	of	the	system.	The	purpose	of	app.js	is	to:	

• Create	and	configure	web	server.	
• Import	libraries	/	plugins.	
• Handle	views.	
• Connect	with	database.	
• Process	and	manipulate	data.	

17	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

4.4 Setting	up	connection	

In	order	to	start	the	app,	we	issue	this	command	in	the	app	directory:	
	
Table	9.	Start	NodeJS	server	command.

$ node app.js	
Since	the	beginning,	whenever	the	app	is	opened,	a	socket	is	set	up	to	receive	signals	
from	the	sensor	every	second	which	is	called	discovery	mode.	From	the	dashboard,	the	
sensor	status	is	presented	as	‘Discovering..’	which	means	the	connection	between	the	
sensor	and	server	is	not	established	yet.		
	

	
Picture	4.	Discovery	mode.	

The	sensor	will	be	turned	on	by	pressing	power	button	3	for	seconds.	A	blinking	led	
light	on	the	sensor	indicates	that	it	is	in	discovery	mode.	While	in		discovery	mode,	it	
starts	broadcasting	its	address	(UUID)	to	nearby	devices.		

18	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	
Picture	5.	Broadcasting	connectivity	signal.	

With	the	help	of	sensortag	library,	the	sensor	was	detected	with	the	discovery	
function.	From	the	console	window,	the	sensor’s	type	and	device’s	ID	were	printed	out	
to	indicate	that	they	found	each	other.	

	
Picture	6.	Sensor	information	recognized	by	node	server.	

In	addition,	another	step	was	added	to	verify	whether	or	not	we	are	choosing	the	right	
sensor	to	connect	to.	After	getting	discovered,	every	time	we	press	any	button	on	the	
sensor,	the	server	will	show	its	recognition.	
There	are	two	methods	to	become	established	with	the	server.	We	can	take	a	physical	
action	directly	on	sensor	by	holding	both	buttons	at	the	same	time	or,	on	the	other	
hand,	by	clicking	on	connect	button	from	the	dashboard.	The	indication	will	be	
reflected	on	the	server	console.	The	user	interface	(UI)	offers	options	to	enable	from	
only	one	to	all	the	built-in	sensors	in	order	to	adapt	every	need.		

19	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	
Picture	7.	Sensor	panel	in	dashboard.	

	
Once	the	connection	is	up,	temperature,	humidity	and	light	density	sensors	are	
activated	accordingly.	Measurements	start	to	flood	into	node-server	with	an	interval	of	
1	second.	At	the	same	time,	MongoDB	is	also	receiving	those	values	then	storing	them	
within	the	collection	named	after	the	current	date.	

20	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	
Picture	8.	Responses	from	server	when	connected	to	SensorTag.	

	
All	of	those	flows	of	data	are	handled	by	socket.io.	By	setting	up	the	bridges	between	
the	node	server,	the	sensortag	module	and	the	UI,	the	numbers	were	transferred	back	
and	forth	seamlessly	between	those	ends	which	creates	a	data	flow	throughout	the	
entire	app.	

4.5 Data	Flow	

Between	UI	and	server	

After	users	have	made	their	choices	of	which	type	of	data	they	want	to	retrieve	from	
the	sensor,	a	socket	named	“custom”	was	created	in	order	to	send	that	command	
straight	to	sensortag	module.	The	module	then	enables	the	following	sensors	
correspondingly.		

21	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	

Figure	1.	Data	transfer	from	UI	to	server	via	“custom”	socket.	

	
In	addition,	another	socket	was	initialized	by	the	name	of	“valuesOut”.	This	socket	is	in	
charge	of	forwarding	values	which	are	received	from	sensortag	module	to	the	UI	for	
presentation.	The	values	are	presented	in	gauges	(meters)	and	in	graphs.		

	
Figure	2.	Socket	“valuesOut”	structure.	

Lastly,	in	order	to	keep	track	of	how	many	sensors	are	operating,	the	“signal”	socket	is	
created.	The	role	of	this	socket	is	to	synchronize	all	the	states	of	sensor	to	all	the	
connected	clients.		

22	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	

Figure	3.	Socket	“signal”.	

Between	database	server	and	node	server	

MongoDB,	on	the	other	hand,	captures	values	right	after	they	have	arrived	at	the	
node-server.	Along	with	the	timestamp,	each	entry	was	input	to	the	database	server	
every	second	in	a	designated	structure	which	is	explained	in	later	section.		

	

	

Figure	4.	Records	are	sent	to	database.	

	

23	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

4.6 User	interface	

Dashboard	

In	terms	of	visualization	of	the	current	status,	from	the	dashboard,	all	the	values	are	
updated	every	second	in	real-time.	The	chart	in	the	section	below	is	plotted	in	order	to	
visualize	every	change	since	the	sensor	is	connected.	
	

	
Picture	9.	Dashboard	interface.		

Report	

This	page	was	intended	to	present	the	data	which	is	stored	in	the	database	server	
during	the	time	being.	We	will	have	two	fields	to	select:	date	and	type	of	data.	Since	
the	structure	of	database	in	this	project	was	categorized	by	date,	users	can	choose	
which	type	of	data	they	want	to	query	on	that	specific	day	from	the	form	above	the	
graph.	
	

24	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	
Picture	10.	Show	records	panel.	

	
After	the	”SHOW”	button	was	pressed,	requests	are	then	forwarded	to	the	MongoDB	
containing	the	type	of	data	along	with	the	date	by	user’s	choice	to	extract	the	records.	
After	that,	all	the	data	will	be	converted	into	graph-friendly	data	format	then	is	
visualized	by	a	graph	as	below.	
	

	
Picture	11.	Visualized	graph	of	data.	

25	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	
One	more	integrated	feature	of	HighCharts	library	is	that	we	can	export	any	graph	to	
variety	of	image	formats	such	as	PNG,	JPEG	and	PDF.	These	exported		images	can	be	
used	for	storing	or	sending	by	email.	
	

	
Picture	12.	Exporting	feature	of	HighCharts.	

4.7 Database		

When	it	comes	to	the	application,	the	database	plays	an	essential	role.	For	this	
particular	project,	the	database	server	is	not	only	in	charge	of	storing	measurements	
from	the	sensor	but	also	handling	requests	from	user.	Compared	with	the	relational	
database,	MongoDB	has	a	different	approach	to	build	its	own	structure.	As	mentioned	
earlier,	instead	of	tables,	collections	are	used	to	store	entries	which	are	called	keys.	
Each	key	consists	of	an	object	ID,	time,	measurements	and	each	collection	contains	
records	for	one	day.	
	
Database	Name:	sensorApp	
Collection	names:	name	by	date	
Keys:			

● Hour	-	Integer	
● Minute	-	Integer	
● Second	-	Integer	
● Temp	-	String	

26	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

● Humi	-	String	
● Lux	-	String	
● Gyros	-	String	

An	example	of	a	record	in	database	is	demonstrated	in	Picture	13	below.	
	

	
Picture	13.	Structure	of	a	key	in	MongoDB	database.	

27	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

5 PERFORMANCE	

Performance	plays	an	important	role	in	web	applications	and		sensorApp	is	not	an	
exception.	A	characteristic	of	this	system	is	constantly	retrieving	values	from	the	
sensor	with	a	tiny	interval	so	a	burdensome	load	of	data	will	be	carried	by	the	
database.	Because	of	that,	transferring	such	a	huge	amount	of	data	to	plot	on	the	
graph	becomes	challenging	for	both	the	server	and	client-side.	Since	every	time	users	
request	a	record	for	a	long	period	of	time,	the	database	server	has	to	make	a	query	
with	a	result	can	be	up	to	thousands	of	entries	or	even	more.	Regarding	the	
mechanism	behind	it,	the	database	server	processes	the	request	by	users	from	the	
dashboard,	then	returns	with	an	array	of	objects	accordingly.	Before	the	array	is	sent	
back	to	the	client-side,	NodeJS	converts	the	values	to	chart-compatible	type	so	that	
the	chart	can	present	those	later	on.		
A	point	in	the	graph	was	technically	represented	by	a	time	and	a	requested	value	
which	is	either	temperature,	humidity	or	light	density	(lux).	As	presented	in	an	
example	below,	x	is	the	timestamp	(milliseconds)	and	y	is	the	temperature	(°C).	
	

	
Picture	14.	A	point	transferred	from	server	to	graphs.	

During	the	exporting	data	stage	from	database	to	client,	an	obstacle,	which	is	a	
method	of	traveling	values	across	the	system,	has	been	addressed.	Since	the	amount	
of	data	is	enormous,	the	processing	speed	will	depend	on	many	aspects	namely	
querying,	traversing,	converting	and	plotting	time.	After	trying	different	approaches,	
the	final	solution	has	performed	well..	
	

28	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	
Picture	15.	How	data	is	handled	upon	requests.	

The	idea	is	that	all	the	calculation	as	well	as	converting	jobs	will	be	given	to	the	server	
which	then	transfers	the	result	to	the	graph	without	any	additional	adjustment.	After	
many	attempts	and	modifications,	the	most	efficient	way	to	transfer	data	from	the	
server	to	the	UI	is	by	using	Ajax.	Ajax	call	allows	data	traverse	from	one	end	to	another	
without	refreshing	the	web	page.	Therefore,	user	experience	was	improved	
dramatically.	On	the	other	hand,	querying	and	inserting	entries	are	handled	
simultaneously	on	the	database	server.

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

P

6 ASSESSMENT	

The	project	covers	many	aspects	of	how	to	implement	a	real-time	web	
application	from	scratch.	With	a	combination	of	many	recent	technologies	
on	the	market,	all	the	components	cooperate	smoothly.	Moreover,	with	a	
simple	yet	practical	user	interface,	the	monitoring	task	now	has	become	
more	transparent.	In	fact,	the	requirements	enable	the	author	to	learn	
more	and	have	a	chance	to	apply	programing	skills	as	well	as	achieve	a	
significant	amount	of	knowledge	throughout	the	making.	Moreover,	
troubleshooting	or	problem	solving	skill	was	gained	gradually	while	facing	
obstacles	on	the	way.			
Two	months	including	researching	time	is	the	total	amount	time	to	build	
everything	from	an	idea	to	the	fully	working	app.	It	took	1	week	at	least	
during	the	timeline	to	test	out	all	the	components	as	well	as	combine	them	
together.	The	final	testing	and	tuning	up	phases	took	another	week	in	
order	to	ensure	the	outcome	met	the	expectations.	

6.1 Obstacles	

Although	the	app	has	been	functional	,	there	are	still	problems	that	need	to	
be	addressed.		
First	of	all,	the	measurement	completely	depends	on	the	sensor.	During	
the	debugging	stage,	the	provided	sensor	has	displayed	a	strange	behavior.	
For	example,	the	humidity	sensor	randomly	sends	its	peak	values	which	are	
-40	degree	Celsius	and	100%	humidity	to	be	precise	to	the	server	instead	of	
its	current	values.	Despite	the	newest	firmware	installed	or	fresh	battery	
installation,	no	improvement	has	been	seen.	Overall,	it	most	likely	could	be	
a	hardware	fault.		
Secondly,	the	performance	of	database	has	its	own	downside.	The	problem	
could	be	avoided	by	a	high	speed	connection	between	the	client	and	the	
server	while	querying	history	records	from	database.	Because	of	a	huge	
amount	of	entries	flooding	into	the	same	socket,	it	can	cause	latency	in	
response.	
Lastly,	since	the	server	does	not	have	any	encryption	method	to	bond	with,	
security	matters	should	be	taken	into	account.	No	credential	is	required	to	
access	the	dashboard	remotely	so	it	is	totally	possible	if	outsiders	want	to	
interfere	with	the	operation	of	the	system.		

6.2 Potential	Future	Improvement	

Everything	has	its	positive	and	negative	side	and,	of	course,	this	app	is	not	
an	exception.	A	considered	number	of	tasks	have	been	accomplished	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

30

flawlessly.	However,	there	were	some	improvements	that	could	have	been	
made	to	take	it	to	another	level.	
Firstly,	technically,	an	accuracy	of	light	detection	needs	to	be	increased.	At	
the	moment,	the	concept	of	tracking	opening/closing	door	movements	
intuitively	depends	on	the	fluctuations	of	the	line	chart.	Theoretically,	the	
lighting	level	is	completely	different	at	any	random	point	in	the	medium.	
Because	of	that,	every	time	the	door	was	opened/closed,	the	changes	were	
reflected	by	the	upward	or	downward	trend	on	the	graph.	
	

	
Picture	16.	Light	density	presentation.	

Secondly,	an	administrator	may	need	an	analytical	report	for	a	longer	
period	not	just	a	day.	Because	of	that	demand,	the	exporting	records	
feature	should	be	upgraded	to	a	larger	scale	which	allows	the	
administrator	to	review	a	statistic	for	a	week,	a	month	or	even	a	year.	
Implementation	does	not	seem	to	be	sophisticated	after	all.	However,	the	
transmitting	speed	of	records	across	the	network	should	be	taken	into	
account.	For	a	full	day,	we	have	86	400	records	with	1s	interval	to	be	exact.	
On	the	other	hand,	roughly,	2.592e+6	records	are	registered	in	a	month	or	
even	a	excessive	numbers	of	records	in	a	year.	In	addition,	the	struggle	is	
not	only	with	the	bandwidth	of	network	but	the	numbers	of	connections	
accessing	the	app	in	order	to	export	at	the	same	time	is	also	a	challenginng	
problem.	The	performance	could		be	improved	by	using	efficient	tweaking	
methods.	

6.3 Limitations	

Power	consumption		

The	sensor	is	required	to	function	constantly	to	keep	track	of	every	event	
in	real	time.	As	mentioned,	the	limit	in	battery	capacity	is	a	serious	
concern.	Throughout	the	testing	phrase,	with	1s	interval	for	transmission	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

31

and	the	use	of	one	coin-size	battery,	the	sensor	lasts	only	a	few	days	
before	the	battery	runs	out.	That	result	was	conducted	when	all	the	
sensors	were	enabled,	namely	temperature,	humidity,	luxometer	and	
gyroscope.	The	more	sensors	are	enabled,	the	more	power	the	app	
consumes.	
According	to	Misha	and	her	analysis	[12],	the	power	consumption	of	the	
sensor	throughout	operation	stages	was	reflected	by	the	table	below.	
Table	10.	Power	consumption.	

	 Current	in	milliamp	(mA)	

Powering	on	 12	

Standby	 0.24	

Temperature	sensor	ON	 0.84	

Temperature	+	Humidity	sensors	ON	 0.92	

Light	sensor	(Luxometer)	 0.56	

Motion	sensor	 4.16	

Barometric	sensor	 0.5	

All	sensors	on	(100ms	sample	rate)	 ~5.5	

	
Following	the	analysis,	the	240mAh	battery	can	only	power	the	sensor	for	
less	than	48	hours	with	maximum	transfer	rate	or	roughly	240	hours	with	
just	only	temperature	and	humidity	sensors	on.	This	result	is	far	from	what	
Texas	Instruments	promotes	on	their	website	which	it	can	last	for	a	year.	
Therefore,	in	order	to	accomplish	that	rate	of	maintenance,	we	can	use	an	
external	power	supply.	Because	of	lack	of	physical	interface,	the	sensor	
needs	support	from	the	development	kit	to	connect	to	external	battery	
(power	bank)	via	USB	port.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

32

Gyroscope	accuracy	

Because	of	the	sensitivity	of	light	sensor	(luxometer),	every	minor	
movement	of	the	door	will	be	registered.	Therefore,	depending	on	light	
density	value	alone	to	determine	door	movement	is	not	practical	in	a	real	
life	scenario.	However,	combining	that	data	with	values	from	gyroscope	
makes	the	determination	much	more	accurate.	For	example,	when	the	
door	starts	to	move,	the	gyroscope	reflects	3	values	from	3-axis	and,	
simultaneously,	luxometer	provides	fluctuations	from	light	density.				
SensorTag	comes	with	different	sensors	dedicated	to	motion	detection	
such	as	accelerometer	and	gyroscope.	In	order	to	track	the	object's	
movements,	in	this	case	is	the	door,	the	gyroscope	sensor	was	enabled.	
This	sensor	has	3	axis	variables	similar	to	accelerometer	which	are	x,	y	and	
z.	Depending	on	the	position	the	SensorTag	was	placed	on	to	the	door,	one	
of	the	3	variables	would	change	accordingly	to	the	door	movements.	By	
calculating	the	difference	between	2	values	when	the	door	at	2	positions,	
we	can	determine	whether	or	not	the	door	is	being	opened.	

	
Picture	17.	Gyroscope	presentation.	

Regarding	the	calculation	method,	the	values	of	3	axis	(X0,	Y0,	Z0)	when	the	
door	at	rest	were	initially	measured	then	subtracted	with	values	(X,	Y,	Z)	
when	the	door	started	to	move.	The	differences	between	the	initial	values	
and	current	values	of	3	axis	are	called	Delta1,	Delta2,	Delta3.	

Delta1	=	|	X0-X	|	
Delta2	=	|	Y0-Y	|	
Delta3	=	|	Z0-Z	|	

Equation	1.	Differences	when	sensor	changing	position.	

Since	the	sensor	is	extremely	sensitive,	even	a	small	movement	can	make	a	
difference.	Therefore,	a	so-called	Offset	Constant	(C)	is	also	created	to	
exclude	those	tiny	chances	from	algorithm.	In	this	case	0.8	is	the	offset	
constant.	With	that,	we	can	decide	whether	the	door	is	opened	or	closed	
by	comparing	Deltas	to	Offset	Constant	(C).	
	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

33

Table	11.	Sensor	states	decided	by	Delta.	

	 Delta1	 Delta2	 Delta3	

	>	C	 Moving	 Moving	 Moving	

<=	C		 At	rest	 At	rest	 At	rest	

	
	 	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

34

7 CONCLUSION	

As	the	result,	a	fully	functional	monitoring	server	meets	the	initial	
objectives:	

• Measures	environmental	variables	namely	temperature,	humidity,	
light	density,	gyroscope	values	from	the	SensorTag.	

• Has	a	real-time	visualized	graphical	interface.	
• High-capacity	database	provides	analytical	data	in	form	of	graphs	

with	exporting	features	built-in.		
• Provides	a	managing	interface	can	be	remotely	accessed	widely	

from	anytime,	anywhere.	
• Is	fully	compatible	with	most	of	browsers	and	devices.	

At	the	time	this	thesis	was	written,	this	approach	to	SensorTag	devices	is	
not	popular.	Most	of	recent	projects	use	mobile	device	as	a	relay	device	to	
forward	information	from	sensor	to	the	“cloud”.	Users	then	have	to	use	
web	service	from	the	provider	in	which	it	is	implemented	to	review	the	
received	data.	Most	services	do	not	provide	the	database	extraction	
feature.	
With	the	help	of	a	combination	of	NodeJS	server,	MongoDB,	socket.io	and	
Front-end	frameworks,	we	can	almost	establish	all	the	web	application	
infrastructure	not	only	in	a	commercial	but	also	in	an	industrial	
environment.	This	app	is	a	definite	example	of	the	Internet	of	Things	in	
practice	which	is	a	trend	in	embedded	programing	nowadays.		
In	conclusion,	the	application	is	using	all	the	modern	technologies	so	it	is	
practical	in	production.	It	runs	properly	and	meets	all	the	requirements	as	
expected	even	though	there	are	still	limits	in	technology	as	well	as	the	
experience	of	the	author.	In	order	to	complete	the	stack,	many	skills	have	
been	required	including	fluency	in	programming	languages,	manipulating	
and	handling	big	data	in	a	network.	Moreover,	communication	between	
physical	device	and	the	API	is	also	a	challenge.		
All	in	all,	there	is	spacious	room	for	improvements	in	the	future.	Despite	
the	size	of	this	project,	the	versatility	and	possibility	are	endless	if	we	can	
keep	the	foundation	and	implement	specific	infrastructure	on	top	to	suit	
every	need.	

	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

35

REFERENCES	

	[1]	Texas	Instruments	Sensortag.	Consulted	30.3.2016.	Available	at	
http://www.ti.com/tool/cc2650stk#1.		
[2]	SimpleLink	SensorTag	Debugger	DevPack.	Consulted	30.3.2016.	
Available	at	http://www.ti.com/tool/cc-devpack-debug.		
[3]	Bluetooth	BLE.	Consulted	30.3.2016.	Available	at		
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works.	
[4]	Mithun	Satheesh,	Bruno	Joseph	D’mello,	Jason	Krol.	2015.	Web	
Development	with	MongoDB	and	NodeJS.	2nd	Edition.	Packt	Publishing.	E-
book.	Consulted	5.4.2016.	
[5]	Sandeep	Mistry.	2015.	Node-sensortag.	Consulted	15.4.2016.	Available	
at	https://github.com/sandeepmistry/node-sensortag.	 	
[6]	Fionn	Kelleher.	11.8.2014.	Consulted	20.4.2016.	Available	at	
https://nodesource.com/blog/understanding-socketio/.	
[7]	Ryan	Benedetti,	Ronan	Cranley.	2011.	Head	First	jQuery.	1st	Edition.	
O’Reilly	Media,	Inc.	Consulted	20.4.2016	
[8]	MongoDB.	https://docs.MongoDB.com/manual/.	Consulted	25.4.2016	
[9]	Joe	Kuan.	2015.	Learning		HighCharts	4.	Packt	Publishing.	E-book.	
Consulted	5.5.2016.	
[10]	Jim	R.	Wilson.	2013.	Node.js	the	Right	Way.	The	Pragmatic	
Programmers.	Consulted	10.5.2016.	
[11]	mLab.	Consulted	11.5.2016.	Available	at		
https://en.wikipedia.org/wiki/MLab.	
[12]	Misha,	9/6/2015.	TI	SensorTag	2	Power	consumption	analysis.	
Consulted	30.5.2016.	Available	at	http://mobilemodding.info/2015/06/ti-
sensortag-2-power-consumption-analysys/.	
	

Appendix	1	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

Appendix	1	-	Application	tree	
.	
app.js	
package.json	
bin	
└──	 www	
public	
├──	 images	
├──	 javascripts	
	 ├──	 dashboard.js	
	 ├──	 socket.io.js	
	 ├──	 sensortag.js	
	 └──	 report.js	
└──	 stylesheets	
				 ├──	 style.css	
				 └──	 report.css	
routes	
views	
├──	 error.pug	
├──		 dashboard.pug	
├──	 report.pug	
└──		 layout.pug	
	
	

Appendix	2	(1)	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

Appendix	2	–	Sensortag	module	code	
var	async	=	require('async');	
var	SensorTag	=	require('sensortag');//	sensortag	library	
var	status=0;	
var	tOn,hOn,lOn,gOn;	
SensorTag.discover(function(tag)	{	
	 //	when	you	disconnect	from	a	tag,	exit	the	program.	
	 function	disconnectTag()	
	 {	
	 	 tag.on('disconnect',	function()	{	
	 	 console.log('disconnected!');	
	 	 module.exports.dis	=	1;	
	 	 process.exit(0);	
	 });	
	 }	
	 function	connectAndSetUpMe()	{	 	 	 	

//	attempt	to	connect	to	the	tag	
				console.log('connectAndSetUp');	

						 tag.connectAndSetUp(enableIrTempMe);	 	 	
//	when	you	connect,	call	enableIrTempMe	

			}	
	
	
			function	enableIrTempMe(tempON,humiON,luxON,gyroON)		
{	 	 	

if(tempON)	
{	
	 console.log("Temperature	sensor	is	enabled!");	
	 tag.enableIrTemperature();	
}	
if(humiON)	
{	

console.log("Humidity	sensor	is	enabled!");	
	 tag.enableHumidity();	
}	
if(luxON)	
{	 	
	 console.log("Luxometer	sensor	is	enabled!");	
	 tag.enableLuxometer();	
}	
if(gyroON)	
{	
	 console.log("Gyroscope	sensor	is	enabled!");	
	 tag.enableGyroscope();	
}	

Appendix	2	(2)	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

}	
	function	disableSensors()		
{	 	 	

//	disable	all	sensors	
tag.disableHumidity(tag.disableLuxometer(tag.disableIrTemperature(tag.disabl
eGyroscope())));	
console.log("Disable	all	sensors!!!");	
disconnectTag();	

}	
function	notifyMe(tempON,humiON,luxON,gyroON)	{	
	 console.log('Sensor	'+tag.type+'	is	connected!');	
	 console.log('Device\'s	ID	detected:	'+tag.id);	
	 console.log('--------------------------------');	
	 console.log('');	
	 tag.unnotifySimpleKey();	
	 if(tempON)	
	 {	 	 	 	 	
	 	 	 	
	 tag.notifyIrTemperature(tag.setIrTemperaturePeriod(1000,listenForTemp
Reading));	
	 }	
	 if(humiON)	
	 {	 	
	 tag.notifyHumidity(tag.setHumidityPeriod(1000,listenForHumidity));	
	 }	
	 if(luxON)	
	 {	 	
	 	
	 tag.notifyLuxometer(tag.setLuxometerPeriod(1000,listenForLuxometer));	
	 }	
	 if(gyroON)	
	 {	
	 tag.notifyGyroscope(tag.setGyroscopePeriod(1000,listenForGyroscope));	
	 }	
function	listenForLuxometer(){	
	 //	Listen	for	Luxometer	
	 tag.on('luxometerChange',	function(lux)	

{	
	 	 //	console.log('lux	value	=	',lux);	

	 module.exports.lux	=	lux.toFixed(1);	
				 });	
			}	
function	listenForGyroscope(){	
			 //	Listen	for	Luxometer	
	 var	tempX,tempY,tempZ,state;	

Appendix	2	(3)	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	 tag.on('gyroscopeChange',	function(x,y,z){	
	 	 //	console.log('Gyroscope:');	
	 	 //	console.log('x:	',x.toFixed(1));	
	 	 //	console.log('y:	',y.toFixed(1));	
	 	 //	console.log('z:	',z.toFixed(1));	
	
	 module.exports.gyro	=	x.toFixed(1)	+"	|	"+	y.toFixed(1)+	"	|	"	+	
z.toFixed(1);	
	 if(x.toFixed(1)-tempX>0.8)	
	 {	 state	=	1;		 }	
	 else		
	 {	 state	=	0;	 }	
	 module.exports.state	=	state;	
	 tempX	=	x.toFixed(1);	
	 tempY	=	y.toFixed(1);	
	 tempZ	=	z.toFixed(1);	
	 });	
			}	
			//	When	you	get	an	accelermeter	change,	print	it	out:	
function	listenForTempReading()	{	

tag.on('irTemperatureChange',	function(objectTemp,	ambientTemp)	{	
	 				//	console.log('\tObject	Temp	=	%d	deg.	C',	objectTemp.toFixed(1));	
	 				//	console.log('\tAmbient	Temp	=	%d	deg.	C',	
ambientTemp.toFixed(1));	
	 				var	intemp	=	ambientTemp.toFixed(1);	
	 				module.exports.temp=	ambientTemp.toFixed(1);	
	 });	
}	
	
	
//	Get	data	from	Humidity	Sensor	(+	Temperature)	
function	listenForHumidity()	{	

tag.on('humidityChange',	function(temperature,	humidity)	{	
					//	console.log('\tTemperature	=	%d	deg.	C',	temperature.toFixed(1));	
					//	console.log('\tHumidity	=	%d	%H',	humidity.toFixed(1));	
					module.exports.humi=	humidity.toFixed(1);	
					var	intemp	=	temperature.toFixed(1);	
					var	inhumid	=	humidity.toFixed(1);	
			});	
}	
//	when	buttons	pressed	
function	listenForButton()	{	
	 tag.on('simpleKeyChange',	function(left,	right)	{	

	 console.log("Device:	"+tag.type);	
	 	 console.log("Device	ID:	"+tag.id);	

Appendix	2	(4)	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

	 	 if	(left)	{	
	 	 	 console.log('left	button	PRESSED!');	
	 	 }	
	 	 if	(right)	{	
	 	 	 console.log('right	button	PRESSED!');	
	 	 }	
	 	 //	if	both	buttons	are	pressed,	disconnect:	
	 	 if	(left	&&	right)	{	
	 	 	 console.log("Device:	"+tag.type+"	with	id	of:	
"+tag.id+"	connected	!");	
	 	 	 enableIrTempMe();	
	 	 	 //	tag.disconnect();	
	 	 }	
	 				 });	
	 }	
//	Now	that	you've	defined	all	the	functions,	start	the	process:	
tag.connectAndSetUp(
	 function(){	
	 	 var	intervalID=setInterval(function()	
	 	 {	
	 	 	 //	console.log("Check	status:	",status);	
	 	 	 if(status==1)	
	 	 	 {	
	 	 	 	 notifyMe(tOn,hOn,lOn,gOn);	
	 	 	 	
	 enableIrTempMe(tOn,hOn,lOn,gOn);	

//	connected	signal	
	 	 	 	 clearInterval(intervalID);	
	 	 	 	 var	secondIntervalID	=	
setInterval(function(){	
	 	 	 	 	 if(status	==	2)	
	 	 	 	 	 {	
	 	 	 	 	 disableSensors();	
	 	 	 	
	 clearInterval(secondIntervalID);	
	 	 	 	 	 }	
	 	 	 	 },1000);	
	 	 	 }	 	 	
	 	
	 	 },1000);	
									 console.log("Sensor	Type:	",tag.type);	
									 console.log("Sensor	ID:	",tag.id);	
	 module.exports.sta	=	status;	
									 module.exports.type=	tag.type;	
	 tag.notifySimpleKey(listenForButton);	//	start	the	button	listener);	

Appendix	2	(5)	

TURKU	UNIVERSITY	OF	APPLIED	SCIENCES	THESIS	|	Tam	Nguyen	Truong	Thanh	

								});	
});	
module.exports=	function(s,tempOn,humiOn,luxOn,gyroOn)	
{	
	 status=s;	
	 tOn	=	tempOn;	
	 hOn	=	humiOn;	
	 lOn	=	luxOn;	
	 gOn	=	gyroOn;	
}	
	

