
 

 

 

 

 

TEST AUTOMATION SOLUTION 

FOR WEB APPLICATIONS IN WIN-

DOWS ENVIRONMENT 

 

 

Rami Lehtelä 

 

 

 

 

 

 

 

 

 

 

 

 

 

Master’s thesis 

December 2017 

Degree Programme in 

Information Technology  

 



 

 

ABSTRACT 

Tampereen ammattikorkeakoulu 

Tampere University of Applied Sciences 

Degree Programme in Information Technology 

 

 

LEHTELÄ, RAMI:  

Test Automation Solution for Web Applications in Windows Environment 

 

 

Master's thesis 47 pages, appendices 11 pages 

December 2017 

There has been a need to verify functionality of web application in an end-user like envi-

ronment. Until now all automated tests are run against web applications in Linux envi-

ronment on Mozilla Firefox web browser. This setup doesn’t match the majority of end-

user environments in the field. 

 

The purpose of this project was to create solution into continuous integration pipe where 

web applications can be tested automatically in web browsers running on Windows op-

erating system. Requirement was to create solution which can be easily taken into use 

from one web application testing to another. Focus was defining Windows environment 

and applications needed to enable test execution in Windows environment. Also, connec-

tivity and file transfer issues needed to be solved between Windows and Linux systems.  

 

First Windows environment was specified so that it would have possibility to run Robot 

Framework test automation cases and allow remote connection from Jenkins running on 

Linux. Image of the specified Windows was then introduced to vCenter where it could be 

cloned to virtual machines by request and accommodate parallel test execution. The test 

execution orchestration was implemented into Jenkins, which was responsible of request-

ing clone of the Windows environment, communication and transferring test files to and 

from Windows environment, and visualization of test results. 

 

As a result, the test automation solution was introduced into continuous integration pipe 

as a separate entity. Test automation possibility for web browsers running on Windows 

environment have already caught some faults specific to Windows web browsers, which 

could not have been detected in Linux environment. Test results were visualized in Jen-

kins, where developers and verification engineers can monitor the quality of the product.  

 

It is crucial to automate as much as feasible when testing software. This project will act 

as an enabler when moving from continuous integration towards continuous delivery, 

where web applications must be verified in end-user like environment. It was noted that 

automating test execution and maintaining Windows environment is really complicated 

and time consuming. Although the maintenance load of this solution seems big, it was a 

must to develop. In the future, there might be alternative solutions to automate web ap-

plication testing in Windows environment using containers. Containers have become 

more and more popular in software development and should be considered as a candidate 

also in Windows environment. 

Key words: web application, test automation, window environment, continuous integra-

tion, continuous delivery 



3 

 

CONTENTS 

1 INTRODUCTION ............................................................................................. 7 

2 TEST PIPE COMPONENT REQUIREMENTS .............................................. 9 

2.1 High-level requirement description ........................................................... 9 

2.2 Used technologies .................................................................................... 10 

2.2.1 Revision control system ................................................................ 10 

2.2.2 Computing platform ...................................................................... 10 

2.2.3 Test automation framework .......................................................... 11 

2.2.4 Automation server ......................................................................... 11 

2.3 Windows test environment ...................................................................... 11 

2.3.1 Technical details of Windows test execution environment 

requirements ................................................................................. 12 

2.4 Jenkins configuration and test result visualization .................................. 12 

2.4.1 Jenkins job step configuration ....................................................... 13 

2.4.2 Test result visualization................................................................. 13 

2.5 Scripting requirements ............................................................................. 14 

2.6 Test suite directory requirements ............................................................. 15 

3 TEST PIPE IMPLEMENTATION ................................................................. 17 

3.1 Windows environment setup ................................................................... 17 

3.1.1 Windows Server 2008 R2 installation........................................... 17 

3.1.2 Windows configuration ................................................................. 18 

3.1.3 Setup for cloning purposes ............................................................ 23 

3.2 Jenkins job definition and implementation .............................................. 23 

3.2.1 Jenkins job configuration .............................................................. 23 

3.2.2 Implementation and functions of the mpp.properties file ............. 27 

3.3 Test suite directory implementation......................................................... 27 

3.3.1 Suite structure................................................................................ 27 

3.3.2 Files ............................................................................................... 28 

3.4 Test run launch possibilities .................................................................... 29 

4 TEST EXECUTION AGAINST EXAMPLE APPLICATION ...................... 30 

4.1 Description of example application ......................................................... 30 

4.2 Content of the example test suite directory ............................................. 31 

4.2.1 Starting example test run on Windows environment .................... 32 

4.3 Test result and visualization .................................................................... 32 

4.3.1 Test result view on Jenkins job page ............................................ 32 

4.3.2 Test report and log html-files ........................................................ 33 



4 

 

5 FEEDBACK AND ANALYTICAL COMPARISON WITH PREVIUOUS 

TEST SETUP .................................................................................................. 36 

5.1 Benefits of new solution .......................................................................... 36 

5.1.1 Test execution environment .......................................................... 36 

5.1.2 Test execution orchestration ......................................................... 37 

5.1.3 Test suite directory ........................................................................ 37 

5.2 Challenges in the new solution ................................................................ 38 

5.2.1 Test execution environment .......................................................... 38 

5.2.2 Test execution orchestration ......................................................... 39 

5.3 End user feedback about test pipe ............................................................ 40 

5.3.1 Feedback from SW architect ......................................................... 40 

5.3.2 Feedback from SW engineer ......................................................... 40 

5.4 Project outcome compared to high-level requirement description .......... 41 

5.5 Reasoning ................................................................................................. 42 

6 FUTURE USE CASES ................................................................................... 43 

6.1 Next steps to get full potential out of the Windows environment ........... 43 

6.2 Windows environment test automation on different verification steps ... 43 

6.2.1 Daily regression testing step ......................................................... 44 

6.2.2 QL4 testing step ............................................................................ 44 

6.3 Front end development possibilities ........................................................ 45 

6.4 Other applications outside of current development area .......................... 45 

6.5 Macintosh operating system .................................................................... 46 

6.6 Windows web browser testing and docker containers ............................. 46 

REFERENCES ...................................................................................................... 47 

APPENDICES ...................................................................................................... 48 

Appendix 1. TestRunnenr.java ........................................................................ 48 

Appendix 2. pom.xml ...................................................................................... 49 

Appendix 3. mpp.properties ............................................................................ 51 

Appendix 4. tc_ifa_supercell_legacy.tsv test case file .................................... 54 

Appendix 5. download_copy_webdrivers.sh .................................................. 55 

Appendix 6. robot_run.bat ............................................................................... 56 

Appendix 7. Feedback from SW architect ...................................................... 57 

Appendix 8. Feedback from SW engineer ...................................................... 58 

 



5 

 

ABBREVIATIONS AND TERMS 

 

API Application Programming Interface 

clone In the context of this thesis clone is copy of a virtual machine 

configuration. 

Cygwin Tool that provides Linux like functionalities on Windows 

ISO Refers to ISO image, binary image of an optical media file 

system (usually ISO 9660 and its extensions of UDF) 

HW Hardware 

Java Computer programming language 

Jenkins Open source automation server which can be used to compile 

and test SW source code 

JRE Java Runtime Environment 

Linux Unix-like computer operating system 

LTE Long Term Evolution, is a standard for high-speed wireless 

communication for mobile devices and data terminals. 

macOS Macintosh operating system developed by Apple Inc. 

MPP Merlin Production Pipe, Nokia internal project for collection 

of integration tools 

OpenSSH Is the premier connectivity tool for remote login with the SSH 

protocol. 

OS Operating System, for example Linux, Windows and macOS 

PC Personal Computer 

Pip package management system used to install and manage soft-

ware packages written in Python 

Python Computer programming language 

QL4 Quality Level 4, Internal quality level which indicates the 

quality of system component. Is also used as a quality gate for 

system component promotion. 

RAM Random Access Memory 

Robot Framework Keyword driven generic test automation framework for ac-

ceptance testing 

SCP Is a network protocol which supports file transfer between 

hosts on a network. 



6 

 

SSH Secure Shell, cryptographic network protocol for operating 

network services securely over an unsecured network 

SUT System Under Test, system that is being tested for correct op-

eration. In this case application under test 

SVN Apache Subversion, software versioning and revision control 

system 

SW Software 

tar is a computer software utility for collecting files into a one 

archive file usually .tgz 

tarball  

TSV, .tsv, tsv Tab-separated values file is a simple text format used for test 

suites run in Robot Framework 

UDF Universal Disk Format 

UI User Interface 

Unix Multi-tasking multiuser computer operating system 

WebDriverManager Open source program used to update and download latest web 

browser drivers 

 



7 

 

1 INTRODUCTION 

 

 

The purpose of this project was to create a solution how to automate test execution of 

web applications running on web browsers in Window operating system. By taking Win-

dows environment test automation in use, the testing is done in an operating system clos-

est to end-user like environment. This solution will serve as a quality assurance step when 

moving to continuous delivery mode of software development. 

 

The project will go through the steps from configuration of test execution environment to 

test result visualization. This report will introduce the used technologies which will de-

termine the way, how the development this test automation solution will be implemented. 

One of the main objectives in this work is to create end-user like Windows environment 

on which the web application could be tested. Other main topics are solving the commu-

nication issues between Linux and Windows environments and how to run tests on Win-

dows environment remotely. The test automation solution is proven by using Google 

Chrome as a web browser in which web application is used by test automation framework. 

The report contains parts that are applicable for Firefox and Internet Explorer, but are not 

documented to avoid duplicity. The result is test automation solution that can be launched 

from Jenkins and is easily modifiable to accommodate web application testing require-

ments. 

 

Thesis is written in consideration of software professionals having knowledge about con-

tinuous integration and test automation. This report will give guideline what to take into 

consideration when implementing a test automaton solution for Windows environment. 

This thesis can be used as a step by step guide to recreate similar solution or software 

professional can take parts of the thesis, which can be used in some other solution. Report 

contains some example code and scripts which could be modified and taken into use for 

example when automating Google Chrome update procedure. 

 

The thesis has a chapter where the test automation solution is proved by testing already 

existing web application and test results are shown. Challenges and benefits of this solu-

tion were analyzed and it was found that there is reasoning for using this solution even 



8 

 

though maintenance load using Windows is relatively big. This project considers the fu-

ture aspects containing front-end development usage, test automation solution usage in 

regression testing phase, and implementation of web browser testing using containers. 



9 

 

2 TEST PIPE COMPONENT REQUIREMENTS 

 

This chapter will go through requirements and used technology solutions for test automa-

tion and continuous integration pipe components. The components will contain revision 

control system, automation server, test execution environment, test result visualization, 

SUT (System Under Test), and interaction between all entities. 

 

 

2.1 High-level requirement description 

 

High-level requirement description is made to give a clear image what are the implemen-

tation steps to create test automation solution for web widgets in Windows environment. 

In the picture 1, the illustration of a complete test automation solution is shown. Require-

ment contains main building blocks of the solution like: used revision control system, 

automation server and needed functions, Windows environment and needed applications, 

and communication and file transfer needs on each step. 

 

 

PICTURE 1. High-level illustration of test automation solution requirement 

 

Requirements for the entities shown in picture 1 are explained in more detail in the fol-

lowing subheadings in this chapter.  

 



10 

 

2.2 Used technologies 

 

In a large company, there are many technologies, tools and solutions that have been se-

lected as main components to be used in production. Usually freeware solutions are most 

desired as they are free of charge and can be easily configured to serve specific use cases 

needed.  

 

 

2.2.1 Revision control system 

 

Apache Subversion (SVN) is selected for the revision control system for our production 

and is used also for this project. SVN is an open-source, centralized version control sys-

tem provided by Apache software foundation. For this project SVN is easy to take into a 

use since all used technologies and tools have SVN plugin in our system and test cases 

and resources can be checked out with already used commands. (Apache Subversion, 

2017) 

 

 

2.2.2 Computing platform 

 

VMware vSphere provides virtualization which is an abstraction layer that breaks the 

hard connection between physical HW (Hardware) and OS (Operating System). Virtual 

machine is a SW (Software) computer that is like a normal physical computer running 

OS but has virtual HW allocated from the vCenter server. Huge number of virtual ma-

chines can easily be deployed and cloned depending on the need. (VMware vSphere, 

2017) 

 

Windows OS will be installed on virtual machine in cloud computing virtualized platform 

vSphere provided by VMware. vSphere client is already used in our production to host 

our product running on distributed virtual machines. vSphere client is also used to clone 

and take snapshots from Nokia network management system product 

 

 

 



11 

 

2.2.3 Test automation framework 

 

Robot Framework is a generic test automation framework for acceptance testing and can 

be used web application end-to-end testing. Robot Framework is keyword driven frame-

work which can be extended with external libraries containing keywords for specific 

types of testing (Robot Framework, 2017) 

 

 

2.2.4 Automation server 

 

Jenkins is the leading open source automation server, which can be used for building and 

to automate any project (Jenkins, 2017). Jenkins is selected to orchestrate all SW related 

functions from compiling the source code to run end-to-end test automation against SUT. 

Test result visualization will follow the basic principles that Robot Framework will pro-

vide.  

 

 

2.3 Windows test environment 

 

Since Windows is the most commonly used OS for PC-clients, there is a need to select 

the OS versions that are in use now when planning test execution environment. Windows 

server clients are easier to setup and configure for a company having huge amount of 

already existing Windows server licenses than the more traditional PC Windows OS’s. 

For each PC Windows client, there is an equivalent Windows server OS release that is 

more feasible to be used. Windows 7 is the most commonly used Windows OS in our 

customer base currently, but latest Windows OS releases must be taken into considera-

tion. Windows client PC releases and corresponding Windows server releases are mapped 

in Table 1. 

 

TABLE 1. Corresponding Windows client and server releases 

Windows PC client release Windows server release 

Windows 7 Windows Server 2008 R2 

Windows 8 Windows Server 2012 

Windows 10 Windows Server 2016 

 



12 

 

The approach chosen is to start setting up Windows Server 2008 R2 release to be able to 

verify product in a Windows 7 like environment. All other Windows environment con-

figurations can be configured using VMware vSphere client when functionality is proven 

with Windows Server 2008 R2 release. 

 

 

2.3.1 Technical details of Windows test execution environment requirements 

 

The Windows test execution environment – later in the text “Windows environment” – 

must be reachable from the networks where SVN and Jenkins are located. Windows par-

ent configuration environments will be configured using the VMware vSphere client. 

VMware tooling enables Windows environment parent to be easily cloned when Jenkins 

is requesting a Windows environment. This will support high number of parallel test ex-

ecutions, since vSphere can host many Windows environment simultaneously. Windows 

environments must to have a way to connect with Jenkins using SSH, since Jenkins is 

running on Linux. From the resources point of view Windows environment should have 

enough memory assigned for the graphic card to support minimum resolution of 

1280x1024 pixels. Other resource requirements like processor and RAM (Random Ac-

cess Memory) amount must meet typical Windows 7 PC configuration to ensure as close 

as possible end-user like environment for the test case execution. 

 

Windows environment should have Python, Robot Framework including latest browser 

drivers and needed keyword libraries, latest versions of main web browsers (Google 

Chrome, Internet Explorer and Firefox), and Java JRE (Java Runtime Environment). 

These requirements will provide an end-user like system on which tests can be run using 

Robot framework against main web browsers. Web browsers should also be updated fre-

quently so that the test automation cases can identify bugs if they arise after browser 

update.  

 

 

2.4 Jenkins configuration and test result visualization 

 

To orchestrate the test execution and test result visualization Jenkins will be used. Jenkins 

should be configured so that there is a job dedicated to run tests against SUT. In this case 

web widget or web application.  



13 

 

2.4.1 Jenkins job step configuration 

 

There will be certain steps that must be implemented into Jenkins job. First Jenkins job 

must be set up with SVN locations from where all the needed data can be checked out 

into Jenkins workspace. From SVN test suite directory containing test cases, test data, 

resources, and scripts will to be checked out. Test suite directory is later pushed to the 

Windows environment. The other entity that is needed from SVN will contain test tool 

scripts which will enable communication and file transfer between Jenkins and Windows 

test execution environment over the SSH protocol. Another SVN location will store 

mpp.properties file which will be used as a main script to perform the test execution or-

chestration between Jenkins and Windows test execution environment. 

 

Communication and file transfer will be defined by mpp.properties file which will allow 

easy way to configure the Jenkins job without touching Jenkins job configuration at all. 

Last configuration step is to add Robot Framework plugin to the build main page to enable 

result visualization and linkage for the test report files. 

 

 

2.4.2 Test result visualization 

 

Jenkins job must have Robot Framework plugin configured to enable the test result visu-

alization. Robot Framework plugin provides nice legend of test cases run pass-fail-ratio 

trend and provides links to results of the test run. Robot Framework test trend from the 

Jenkins job main page can be seen in picture 2. 

 



14 

 

 

PICTURE 2. Robot Framework Tests Trend. 

 

In addition of the Robot Framework test trend, the result reports and logs must be saved 

into Jenkins workspace to provide the means to backtrack possible failed test cases. Robot 

Framework plugin should provide the view that can be found from picture 3.  

 

 

PICTURE 3. Latest Robot Results. 

 

 

2.5 Scripting requirements 

 

Scripting will be needed to automate certain functions in the Jenkins. The mpp.properties 

file contains set of functions which will be used to communicate with Windows environ-

ment. These functions will contain file transfer, remote execution, Windows environment 

clone request and release scripts. Some of these scripts are ready made internally and will 



15 

 

be used in addition of newly created scripts. This collection of scripts in mpp.properties 

will be run on every time Jenkins job is started. Jenkins offers many different build steps, 

but was decided to use shell scripting. Because all scripting files and libraries are in revi-

sion control and can be easily modified without changing Jenkins job configuration. 

 

Scripts will be used in the Windows environment to execute certain functions and to pre-

pare the web browser. Web browser in Windows environment require web driver that 

enables test execution with Robot Framework. Web browser and web driver are loosely 

tied together, but if either one of those gets out of compatibility between each other tests 

can’t be executed. To overcome this issue web driver and web browser must be updated 

before test execution. This is done by creating a script that downloads the web driver and 

starts browser specific update executable. Web driver executables must be added into 

path. When Robot Framework is started and Selenium2Library is used to start web 

browser, Robot Framework will look path if the needed web driver is present. To over-

come this issue a copy step should be implemented into script run in Windows environ-

ment. Last step in the script run in Windows environment will be the start of Robot Frame-

work test execution. 

 

 

2.6 Test suite directory requirements 

 

In addition of test suites containing test cases the directory should contain all needed 

resources, test data and scripts which are necessary for test case execution. Test suites 

contain testcases which are collection of keywords. These keywords are defined in key-

word libraries or can be resource files which consists of combined keywords for specific 

tasks. All the resource files containing keywords used in test cases must be in the same 

directory. Keywords from the libraries that can be downloaded using pip into Robot 

Framework don’t need to be in the test suite directory, but can be imported into test suite 

using only the library name. Downloaded libraries will be added into Python27 folder 

which is usually defined in environmental variable “Path”. 

 

Every test suite directory must have test data if the functionality of the target web appli-

cation is tested. Test data should be in own directory in the same directory structure. To 

enable test with different amount of data, it reasonable to have different test data sets in 



16 

 

the directory. Test data should be imported into SUT with readymade keywords that can 

be found from resource files. 

 

Test suite directory will also need the scripts to run tests, download web drivers and up-

dating the web browsers. These scripts must be compatible in the Cygwin and in Win-

dows environment itself. This might give challenges to find most reasonable way to exe-

cute all the needed steps to run tests in Windows environment. Scripts should contain 

shell and batch scripts. All the scripts must have execute-rights. Without execute rights 

there won’t be possibility to launch test execution remotely from Jenkins. 



17 

 

3 TEST PIPE IMPLEMENTATION 

 

This chapter goes through all implementation steps from scratch to ready-made end-to-

end test pipe solution. Implementation was divided into individual entities and will be 

taken into a closer look. The main issue of the project was enabling and configuring the 

ways to communicate efficiently between Linux and Windows based systems. Test result 

visualization and possibility to introduce this test automation solution using Windows 

environment to other teams outside our own organization was one of the principles.  

 

 

3.1 Windows environment setup 

 

This chapter will dive into the Windows environment setup taking closer look at SW and 

applications that needed to be installed on top of Windows environment. Installed SW 

was a collection of end user programs used for web browsing and test automation tools. 

Windows Server 2008 R2 installation on VMware virtual machine will be gone through 

first in brief. 

 

 

3.1.1 Windows Server 2008 R2 installation 

 

vSphere Client was used to create a new virtual machine in which the parent Windows 

environment can be installed. First vSphere client was connected to the vCenter server 

where virtual machine can be created.  The connected vCenter server address can be seen 

on title bar of the vSphere Client in picture 4. After the virtual machine was created and 

can be seen in the picture 4. with name “win004node1” Windows Server 2008 R2 can be 

installed on it. An ISO image of parent Windows environment was needed so it can be 

mounted into a virtual machines CD/DVD device to start the installation. ISO image can 

be mounted by clicking icon pointed by number 1 in the picture 4.  

 

After successful installation of the parent Windows Server 2008 R2 OS the virtual ma-

chine was ready to be configured. Install/Upgrade VMware Tools needed to be run from 

Inventory -> Virtual Machine -> Guest in vSphere Client to enable desktop view in the 



18 

 

Console Tab. When desktop can be accessed in the Console tab Windows Remote Desk-

top connection can be enabled in the installed Windows environment. This eased the con-

figuration of the Windows test environment remotely from users own client PC.  

 

PICTURE 4. vSphere client 

 

 

3.1.2 Windows configuration 

 

To be able to execute tests in Windows environment there were certain amount of appli-

cations that provided the means to run automated test cases – in this case Robot Frame-

work. Installation and configuration of each application and configuration is explained in 

detail below. 

 

Java JRE 

Latest version of JRE was installed to be able to run WebDriverManager to download 

latest web drivers for each web browser. Java JRE was downloaded from Oracle’s Java 

JRE 8 download page (Java SE Runtime Environment 8 Downloads). JRE installation 

was executed using Windows installer with default settings. Java JRE installation was 

verified by running “java -version” command in Windows Command Prompt. Outcome 

of the command can be found from picture 5. 

 



19 

 

 

PICTURE 5. Java JRE installation verification. 

 

Robot Framework and Python 

Python 2.7.12 release was installed to enable execution of Robot Framework tests. Python 

Windows installer was downloaded from (Downloads Python | Python.org). Since Python 

2.7.12 contains pip it was used to download and install Robot Framework and all needed 

libraries in Windows command prompt. Following commands in Table 2 were used to 

install Robot Framework 3.0, Selenium2Library, SSHLibrary, and SeleniumLibrary: 

 

TABLE 2. Pip installation commands. 

Command Action 

pip install robotframework Installs the latest Robot Framework. 

pip install  

robotframework-selenium2library 

Installs the latest Selenium2Library. 

pip install  

robotframework-seleniumlibrary 

Installs the latest SeleniumLibrary. 

pip install  

robotframework-sshlibrary 

Installs the latest SSHLibrary. 

 

After installation of Python and Robot Framework including libraries the installation was 

verified by typing “python --version” and “robot -- version”. All installed libraries were 

listed using command “pip list”. Installed Python, Robot Framework and libraries can be 

seen in the picture 6.  

 



20 

 

 

PICTURE 6. Verification of installed Python, Robot Framework and libraries. 

 

WebDriverManager 

WebDriverManager is an open source program that provides the means to download and 

update web browser drivers in the beginning of each test run. To take WebDriverManager 

into use it was introduced as a new dependency into Maven project in specific pom.xml 

file. After defining the WebDriverManager dependency, TestRunner.java class needed to 

be added into pom.xml as well. TestRunner.java uses functions from WebDriverManager 

package and contains functions that enable which browser drivers will be downloaded. 

After all dependencies and build information were present in the maven project defined 

in pom.xml, “mvn package” command was run and “webdrivermanager-1.0-SNAP-

SHOT.jar” file can be found from target folder. This .jar-file is then used to download 

and update web drivers by running command “java -jar webdrivermanager-1.0-SNAP-

SHOT.jar <browser>”. The executable “webdrivermanager-1.0-SNAPSHOT.jar” file 

was committed into test suite directory SVN location so it can be used in Windows envi-

ronment during test execution. TestRunner.java class can be found in appendix 1. and 

maven project pom.xml in appendix 2. 

 

Cygwin 

Cygwin was chosen to be installed on Windows test execution environment to enable 

connectivity between Windows and Jenkins running on top of Linux using SSH. Cygwin 

contains many GNU and open source tools by default. Some additional tools were chosen 



21 

 

to be installed to facilitate for example archiving the files and remote connection by con-

figuring openSSH suite into Cygwin. Installing the OpenSSH and OpenSSL was done by 

starting the Cygwin’s setup.exe file. In the setup phase OpenSSH and OpenSSL were 

selected from the package selector. When packages were installed the Cygwin was started 

from desktop as Administrator. After Cygwin has started the OpenSSH was configured 

using step-by-step instructions from (How To Get SSH Command-Line Access to Win-

dows 7 Using Cygwin). These instructions contain: enabling the sshd run as a service, 

user and password creation, and starting the sshd service. Configuration was verified after 

the setup by running “ssh -v localhost” command. In the picture 7 the successful SSH-

connection to localhost can be seen with debug messages. 

 

 

PICTURE 7. SSH-connection verification to localhost. 



22 

 

Network configuration 

After verification of the SSH-connection to localhost, network configurations in Win-

dows were changed so that the connection to and from outside networks is also working. 

Internal proxy server was configured into Local Area Network (LAN) Settings. There 

was also a need to add some networks into proxy settings so that proxy is not used for 

those. Example proxy settings can be seen in picture 8 containing HTTP proxy and ex-

ception networks in which proxy is not needed.  

 

 

PICTURE 8.  Example proxy settings with networks without proxy. 

 

Web browser installations 

Google Chrome, Mozilla Firefox and Microsoft Internet Explorer were installed into 

Windows environment to facilitate testing the functionality of the product in different 

web browsers. Browsers were configured so that the automatic updates were on – if pos-

sible – to keep them up to date. Some of the browsers were unable to update themselves 

since the test cases execution started too fast after the Windows environment clone was 

started. To overcome this issue a few more lines of code were needed into test execution 

start script. The lines of code included starting of the browser and polling the update 

executable from windows task list. The test case execution was only started after the up-

date process was stopped for the browser. 

 



23 

 

3.1.3 Setup for cloning purposes 

 

After the Windows environment was configured so that it contained all needed applica-

tions and tools it’s good to make a copy of that. After copying the ready Windows envi-

ronment template, snapshot was taken from the Windows environment. Windows envi-

ronment that the snapshot was taken needed to be shut down when cloning was taken into 

use. When snapshot was available the clone could be created based on that snapshot.  

 

The idea of having another Windows template alongside the other from which clones 

were made, was to be able to modify to configuration if needed and install new updates. 

Whenever there was a need to change something in the test execution environment this 

combination could be swapped and new snapshot be taken. After swapping the snapshots 

the new clones have updates on them and were ready to be cloned.  

 

 

3.2 Jenkins job definition and implementation 

 

To start automated end-to-end testing in Jenkins, new Jenkins job needed to be created 

and configured. For Jenkins job creation and configuration Jenkins Tutorial was used as 

a reference (Jenkins Tutorial, 2017). Following sections will go through Jenkins job con-

figuration and logic used in scripts run by Jenkins. 

 

 

3.2.1 Jenkins job configuration 

 

After new Jenkins job was created it needed to be configured to execute series of tasks 

which contain: requesting a Windows environment clone, downloading test data and test 

cases from SVN, downloading scripts used for communication and file transfer between 

Jenkins and Windows environment from SVN, starting the test execution, and visualiza-

tion of test results. This Jenkins testing job won’t have any dependencies to other build 

and testing jobs. Tests run in this job can be scheduled to run when ever needed or trig-

gered by a user. 

 



24 

 

When new job was created, name was assigned for the project and some description. In 

addition, two users were assigned with configure rights for this job. These settings can be 

seen in picture 9 with other configuration options. 

 

 

PICTURE 9. Jenkins job configuration for name, description and users. 

 

Next SVN repositories were defined to the job. For the job, there is three different SVN 

locations where data, scripts and test cases will be checked out. Checkout operations were 

run using common credentials created just for the use of Jenkins. This is a common pro-

cedure to checkout files from SVN in an automation server.  

 

First SVN repository contains mpp.properties file that has all the functions that are used 

to run all the steps required from this Jenkins job. Mpp.properties file is stored into root 

of the workspace of this job. Second SVN repository contains testing toolkit scripts which 



25 

 

are used in mpp.properties file to enable connectivity and file transfer between Jenkins 

and Windows clone test environment. Testing toolkit scripts were checked out into libs 

folder of this job workspace. Third SVN repository contains Robot Framework test cases, 

test data, and scripts to start test execution locally in Windows environment. These test 

cases, test data and scripts are stored in tests folder of the jobs workspace.  Definitions of 

the SVN repositories can be seen in picture 10. The implementation of this third SVN 

location content is described in more detail in chapter 3.3.1 Suite structure.  

 

 

PICTURE 10. SVN repositories and checkout folders. 

 

When project name, user credentials, SVN repositories, and checkout folders were de-

fined the build section needed to be added to run the functions in mpp.properties file. For 

this Execute shell is used to run following commands: “export MPP_DEBUG=1” and 



26 

 

“.mpp/build”. These commands will start the execution of the steps defined in mpp.prop-

erties file. The functionalities in mpp.properties file will be gone through in the chapter 

3.2.2.  

 

Last step in the Jenkins job is post-build action to archive and publish Robot Framework 

test results. Directory is defined from where Robot Framework plugin gets the test results 

containing log and report files. After tests are run in the Windows environment the result 

files containing output.xml, log.html, report.html and screenshots are transferred into re-

ports folder to be archived. Thresholds were defined for the tests so that yellow status is 

if 90% of critical tests are passed and green if 100% are passed. Execute shell and Robot 

Framework plugin configurations can be seen in picture 11.  

 

 

PICTURE 11. Execute shell commands and Robot Framework plugin configurations. 

 



27 

 

3.2.2 Implementation and functions of the mpp.properties file 

 

Mpp.properties file contains all the functions which are needed to run tests remotely on 

cloned Windows environment excluding SVN checkouts and test result visualization. 

Functions in this file contain higher level functionalities provided by different sources of 

MPP integration tools and low-level Linux commands.  

 

The steps that were defined in the build() function in mpp.properties contains: removing 

reports folder, creation of local variable “return_value”, reserving Windows environment 

clone, resolving Windows environment clone’s network address, packing and copying 

test files into Windows environment clone, unpacking the test files and granting execute 

rights to test execution scripts, starting test execution on remote Windows environment 

clone, creation of reports folder and downloading test results from Windows environment 

clone to reports folder, release of the Windows environment clone. The mpp.properties 

file and build() function can be seen in the appendix 3. 

 

 

3.3 Test suite directory implementation 

 

To be able to run end-to-end type of test cases against the application there are certain 

requirements from test suite directory. Test suite directory has resource files containing 

common keywords used to test web applications. To have some content in application 

there must be some test data also present to allow application function as required. Test 

suite directory also contains some scripts to start test run, and build jar-file that contains 

the functionality of WeDriverManager mentioned in chapter 3.1.2.  

 

 

3.3.1 Suite structure 

 

All needed test cases, resource files, test scripts, and test data were implemented based 

on per widget or application. The directory structure consists of robot folder where all 

above-mentioned files are. Usually the resource files containing combined keywords for 

specific use cases are stored in one centralized folder but this implementation was done 

this way to visualize all needed files in same folder and to perform as an example without 



28 

 

too much of complexity. Test suite specific test data was stored into same directory with-

out parent directories indicating test data size like small, medium or large to keep direc-

tory structure simple for example application. Test data is XML or CSV formatted net-

work element configuration data. The directory structure can be seen on picture 12.  

 

 

PICTURE 12. Directory structure for widget test suite. 

 

 

3.3.2 Files 

 

tc_ifa_supercell.tsv and tc_ifa_supercell_legacy.tsv 

These two files contain the test cases that are run against the widget or application. The 

test cases in these files are defined in very high-level keywords. Tests to be run are defined 

in these test case files based on tags in the beginning of the file. These files can be run in 

either Linux based system on top of Firefox web browser or in Windows environment on 

top of Google Chrome web browser. 

 

 



29 

 

cm_resources.tsv etc. 

All tsv and python-files having resource in its name are used in the test case files. These 

files contain essential combinations of low-level keywords that can be used in the test 

case files to keep them simple. For example, resource files are used to import test data 

into SUT and preparation of test environment. 

 

robot_run.bat and download_copy_webdrivers.sh 

These two scripts were implemented to start test run and prepare the test environment. 

Download_copy_webdrivers.sh contains the command to download web drivers for each 

browser and copying those into Python27 folder. Last command in the down-

load_copy_webdrivers.sh is to start test run by starting the robot_run.bat file. Ro-

bot_run.bat contains browser update functionality and python command to start the actual 

robot framework test execution. After the Robot Framework is finished all unnecessary 

tasks are killed in Windows test environment.  

 

Test data 

All test data is configuration data from actual network elements and are used in the testing 

of the widget or application. Test data is in the one folder in XML or in CSV format.  

 

 

3.4 Test run launch possibilities 

 

At this moment, the decision was made that the test run can be started by user any given 

time. Jenkins provides already an option to schedule test run when ever needed.  

 

 



30 

 

4 TEST EXECUTION AGAINST EXAMPLE APPLICATION 

 

To verify the functionality of the test execution there should be some application running 

on top of web browser. The application chosen for this is web application which has been 

implemented about one year ago and has tests running against it in Linux test environ-

ment. In this chapter, the application is described and test execution results are demon-

strated. On this step, the functionality was verified using Google Chrome web browser. 

 

 

4.1 Description of example application  

 

Application under example test run was an application running on top of Web browser 

called Supercell Tool. Application is used to configure a LTE Supercell which is a com-

bination of maximum six sub-cells. The Supercell is a feature in LTE network that im-

proves downlink performance in the sub-cells edge, improves uplink performance by dy-

namic selection of the best received sub-cell, and minimizes the need of handovers for 

example in high-speed trains. Supercell Tool application was necessary to easily config-

ure the business sensitive Supercell functionality without causing any incorrect configu-

ration which might cause network outage. 

 

Supercell Tool application itself is somewhat simple. Application consists of possibility 

to select working set which contains – in this case – LTE network elements, Supercell 

creation mode, Managed Object table containing LTE network elements from working 

set, parameter table containing all needed info about parameter values from specific LTE 

cell, Saving the configuration as a plan into database, and possibility to provision the plan 

into network. All these components can be seen in the picture 13. 

 



31 

 

 

PICTURE 13. Screenshot of Supercell Tool containing configuration data. 

 

 

4.2 Content of the example test suite directory 

 

Test suite directory structure is the same as described in the chapter 3.3 Test suite direc-

tory implementation. Section 3.3 described the basics of the suite content. This chapter 

will focus on the test cases in the .tsv-files. In the test suite directory, there is two different 

.tsv-files containing test cases to verify two different Supercell creation modes: Legacy 

supercell and Combined supercell. All test cases were run from these two .tsv-files using 

same tag when starting robot framework test run. In the appendix 4 the legacy supercell 

test cases can be seen in Robot Framework tab-separated values styled file. The test case 

file in appendix 4 is slightly modified so that there isn’t any specific IP-address nor other 

sensitive information about internal test pipe solution. Test cases in the file are only in 

high-level keywords which are defined in the _ifa_supercell_resources.tsv file. This was 

done to keep actual test case files as simple as possible and the functionality in low-level 

is implemented into resource files.  

 

In the test case file found in appendix 4, the target environment is hard coded by assigning 

specific IP-address. This is done to keep the implementation as simple as possible. The 



32 

 

IP-address also can be defined dynamically if this structure is used in a continuous inte-

gration pipe for some specific application production. This dynamic IP-address allocation 

will be gone through in the future use cases for this test pipe implementation. 

 

 

4.2.1 Starting example test run on Windows environment 

 

To start test case execution in remote Windows environment there must be some scripts 

to do this job. Shell script was run to download all web drivers, assigning execute rights 

to web drivers, and copying those into Python27 directory. At the end of shell script, a 

batch script was run which updated the Google Chrome and started the Robot Framework 

test execution. The content of download_copy_webdrivers.sh shell script can be seen in 

appendix 5. Implementation of update procedure, Robot Framework test execution start 

and termination of java.exe and cmd.exe can be seen in appendix 6. robot_run.bat. 

 

 

4.3 Test result and visualization 

 

After the test cases were run Robot Framework provided a great test report and log con-

taining crucial screenshots of the test run. In this case two test case files contained 10 test 

cases in total. Robot framework produced output.xml file from the test run and based on 

that it generated test case report which is a high-level presentation of passed and failed 

testcases. Generated log-file contains all keywords which are used in test case execution 

in details. From these files Jenkins can show test result trend and other information on the 

Jenkins job page. 

 

 

4.3.1 Test result view on Jenkins job page 

 

High level test results can be seen on the Jenkins job page for the latest build. Build his-

tory and the result of each test run can be seen on the left-hand side of the page. Test 

results are published by Robot Framework plugin configured for this job. On the Jenkins 

job page Robot Framework Tests Trend, Latest Robot Results, and links to latest results 

are shown and can be seen in the picture 14.  

 



33 

 

 

PICTURE 14. Jenkins Job page containing Robot Framework test result visualization. 

 

From the view in the picture 14, end-user can see that latest test run #147 have all test 

cases in failed state. Also, it is visible that new test run has started with build number 

#148. On the Jenkin job page links are provided for the latest test run to allow end-user 

quick access to test results. Access to the latest results straight from Jenkins job page 

helps end-user quickly find possible software bugs and report those via fault management 

tool.  

 

 

4.3.2 Test report and log html-files 

 

After every Robot Framework run these two html-files are generated so individuals can 

inspect the test results. These files are report.html and log.html files. In the picture 15, 

report html can be seen. In the report, the pass / fail ratio can be seen in a high-level. 

Report provides statistics based on tags, by suite and in total. Report page contains links 

that forwards the user into log.html if further investigation of failed test cases is needed. 



34 

 

In Test Details section of report page user can define if he or she wants to list only critical 

or all tests. After defining type of the test more specific separation of failed and passed 

test cases can be seen in a report html-page. Report html-page will have red background 

if even one of the critical test cases fails and correspondingly the background will be 

green when there are no failed critical test cases. 

 

 

PICTURE 15. Report html-page containing passed and failed test cases. 

 

In the log html-page user can go deeper into details to see in which test case step or key-

word the test failed. In the picture 16 the failed test case step / keyword can be identified. 

After the keyword fails the screenshot can be taken and integrated into log html page. 

Screenshot keyword is not integrated into syntax when test case fails, but should be added 

into test cases. This will help the user to pinpoint the exact step in which the test case 

failed. In picture 16, can be seen the situation where the page is completely empty and 

the frame can’t be selected. This will set the keyword as a failed state. 



35 

 

 

PICTURE 16. Failed keyword in log.html file 



36 

 

5 FEEDBACK AND ANALYTICAL COMPARISON WITH PREVIUOUS 

TEST SETUP 

 

In this chapter comparison will be made between new test execution solution for web 

browser based applications and the old way. Focus in this chapter is the comparison be-

tween Windows environment and Linux environment. In addition of comparison the chal-

lenges and benefits of this project will be analyzed. Also, some feedback will be docu-

mented here from SW architect and engineers running tests using the new solution for 

Windows environment test execution. 

 

 

5.1 Benefits of new solution  

 

There were numerous benefits known in advance of this solution which were the key 

factors to start this project. All testing done in Windows environment for Web based ap-

plications have been executed manually before this solution. In the long run, this solution 

will free resources from manual testing to other value-added work. Following chapters 

will go through main benefits of this solution per each technical entity. 

 

 

5.1.1 Test execution environment 

 

Prior to this project all Web based application testing have been executed automatically 

on top of Firefox running in Linux OS. The old solution doesn’t really cover end-user 

like environment fully, when Linux and Windows operating systems are compared by 

division of usage. Windows is the most common OS installed on end-user client PC’s. To 

really test end-to-end functionality of web based applications, it’s crucial to verify the 

functionality of the developed application running on most common web browser pro-

vided for Windows OS. Most of the time web applications work similarly in all common 

web browser, but there are occurrences when browser update or development targeted to 

one browser has broken the functionality in other web browsers. On the short period of 

time this new solution has already caught some major faults in one browser when the 

functionality has been normal in other web browsers. Introducing the end-user-like envi-

ronment for test automation will increase quality of the developed web applications to 

another level. This will also give insights to web developers to get fast feedback loop, 



37 

 

which allows them to learn the typical problem areas of each common web browser used 

in Windows OS. 

 

Linux test execution environments are running on dedicated virtual machines in the same 

network where products are tested. The new Windows environments are cloned by re-

quest from one Windows template image. After the cloning request one virtual machine 

is reserved and Windows environment is ready to be used in seconds. This way of provid-

ing Windows environments allows data center infra to respond to the testing needs in a 

flexible way. This approach will scale easily to the needs of testing if there will be a need 

for multiple simultaneous test executions at the same time. Resource usage is also mini-

mal when there are no tests running, since every virtual machine is released after tests are 

run in Windows environment. 

 

 

5.1.2 Test execution orchestration 

 

Test execution orchestration is configured to be an independent testing job in the Jenkins. 

Configuration is kept relatively simple, which will ease the duplicating the job and use 

the configuration for another web application testing with minor changes. This will ben-

efit the web application testing in the future when new web applications are productized 

and ready to be implemented. When this test automation solution is ready in the beginning 

of web application breakthrough for the product, it will alleviate the tasks to create auto-

mated end-to-end testing solution for other upcoming web applications. 

 

Benefit of the simple Jenkins job is that it can be easily added as a quality step into product 

continuous integration pipe. This type of Jenkins testing job can be added as one of the 

last steps of continuous integration pipe after smoke tests. Introducing this testing job into 

regression purposes will also give value into quality. 

 

 

5.1.3 Test suite directory 

 

The whole test suite directory has accumulated into disorderly structure of libraries, test 

data, resources and test case files. All test related files are in one big directory structure 

containing both web application and Java desktop application files. This is not feasible 



38 

 

since both application types share little common resources and test data. Now when new 

tests are created to be run against browsers running on top of Windows OS, all resources 

and test data that are in the directory structure is not needed. This gave the opportunity to 

specify the structure of test suite directory from scratch and leave out all unnecessary 

files. Benefit to this re-planning of test suite directory is to provide simple and easy to 

understand structure to store testing related files. Now when all web applications have 

their own folder, all specific resources and test data can be added into correct place. This 

solution also provides the structure so that the parent folder can contain shared resources 

for all web applications. 

 

 

5.2 Challenges in the new solution  

 

This solution has added relatively much maintenance load and some of it have been hard 

to automate. Most of the challenges were encountered during Windows environment con-

figuration and automating certain function like updating the web browsers before test 

execution. Some other challenges included communication and session management is-

sues between Linux and Windows systems. During the implementation of this solution, 

it has come clear that Windows environments are not that popular for automated testing 

purposes, because of the lack of possibilities to easily automate majority of test execution 

environment related tasks. Following chapters will go through main challenges of this 

solution per each technical entity. 

 

 

5.2.1 Test execution environment 

 

From the experience of this implementation it seems that Windows as a test execution 

environment is not easy to maintain. When the clone of the Windows environment is 

started on virtual machine, first thing is to check if web browser should be updated. Today 

web browsers update themselves many times per month. Updating web browsers in the 

beginning of each test execution adds more time to the test execution. Browser update 

can be done by starting update executable using scripting and then it must be monitored 

when it’s ready. When all major browsers have different ways how they are updated, it 

produces more complexity to maintaining Windows environment. 

 



39 

 

Apart from browsers Windows OS also requires critical security updates time to time. 

These updates can’t be done in the beginning of the test execution, because Windows OS 

updates might need restarts or take too much time. This issue can be solved by having 

two parent Windows environments where other can be updated accordingly and another 

is used for cloning purposes. This is very time consuming and precise work that need to 

be done manually time to time. The whole network might become under a risk of virus 

attacks if Windows OS updates are neglected. 

 

One major challenge is the forced resolution when connecting into Windows environment 

via SSH provided by Cygwin OpenSSH-service. When the connection is established from 

Jenkins via SSH into Windows the opened session doesn’t have any rights for Windows 

environment graphic card settings to change the resolution. This is called session 0 which 

is isolated session to mitigate security risks in the Windows OS (Application Compatibil-

ity: Session 0 Isolation, 2017). The resolution in this case is forced to be 1024 * 768 

pixels. This won’t prevent the testing in Windows environment, but gives some re-

strictions to test case planning. This resolution issue should be taken into consideration 

on the next steps of enhancing the current solution. 

 

 

5.2.2 Test execution orchestration 

 

Test orchestration using Jenkins is mostly straight forward process, but it includes many 

different own entities. All these entities must be online and reachable every time when 

tests are run. These entities are for example software revision control system, Jenkins 

itself and scripts needed for connectivity related tasks. Connectivity scripts have already 

caused some problems when they needed to be changed to add more security into Linux-

Linux SSH connections. Due to these changes, same scripts couldn’t be used for Linux-

Windows SSH connections, but new scripts needed to be implemented.  

 

Since Jenkins is not main resource to find out test results for whole product component, 

it might be hard to link the test results into already existing solution where end-to-end test 

automation results are gathered. In the future if more and more test jobs are added into 

Jenkins there should be some central place to store all test results from different web 

based applications. 

 



40 

 

5.3 End user feedback about test pipe 

 

In this chapter feedback from SW architect and SW engineer are taken into closer look. 

SW architect has been main contributor demanding new way of testing web based appli-

cations. SW engineer also has given feedback about the solution and what were the posi-

tive changes. 

 

 

5.3.1 Feedback from SW architect 

 

From the SW architect point of view, this solution provides the way how quality assur-

ance must be done in modern DevOps software development mode. It is also emphasized 

that all web browser variants running on different versions of Windows OS can’t be re-

gression tested manually with current resources. It was also noted that Windows is most 

commonly used OS in telecommunications sector, which compels us to concentrate on 

the quality assurance as close as possible with end-user like environment.  

 

SW architect summarizes that this has been a project that will enable our department to 

be ready for the future challenges what continuous deployment and DevOps will require. 

Full email from SW architect can be seen in appendix 7. 

 

 

5.3.2 Feedback from SW engineer 

 

SW engineer also emphasizes the real need for end-user like environment where test au-

tomation can be run. Already before Windows environment test automation SW engineer 

has found faults from the functionality of a web based applications. These faults have 

been found from one browser but web application has been working faultlessly in other 

browsers. Some minor faults have been found from same browser between different brose 

versions. 

 

From SW engineers point of view, this will allow quick and easy way to test the func-

tionality of the developed code. It’s also seen that this solution will keep the quality high 

on the product when the solution is used in regression testing purposes. SW engineer has 



41 

 

also point that there is still much to add into this solution to provide test execution envi-

ronments to all different end-user like environments. Email review and feedback from the 

project can be seen in appendix 8. 

 

 

5.4 Project outcome compared to high-level requirement description 

 

Based on original high-level requirement the implementation of this project did not 

change the original idea notably. Main differences between original high-level require-

ment and actual outcome of this project were: Test execution orchestration on Jenkins 

was done by scripting and using mpp.properties file, and not all web browsers were tested 

to avoid duplicity. In the picture 17, the high-level illustration of completed project can 

be seen. Firefox and Internet Explorer are kept in the picture since they are installed into 

Windows environment and related web drivers can be updated, even though they are not 

tested in the scope of this project. Scripting needs were bigger than though in the begin-

ning of this project. Scripting needs to update Google Chrome and web drivers gave a lot 

of challenges during the project even though those are not visible in the high-level re-

quirements. 

 

 

 

PICTURE 17. Illustration of complete project in a high-level. 

 

 



42 

 

5.5 Reasoning  

 

Even though the maintenance load is relatively high on Windows environment setups, the 

solution is a quality enabler for web based application continuous integration pipe. Auto-

mation of Windows environment testing will become even more important when produc-

tion is moving towards continuous delivery mode. Already before the implementation of 

test automation solution for Windows environments, many issues were found in manual 

testing. These issues would have caught with sufficient test automation on Windows en-

vironment. When this solution is taken into use in wider scope the benefits will multiply 

and manual testing resources can be released to value added work.  

 

Creating test data and running same test cases similarly for example three different web 

browsers is tedious and time consuming. This kind of manual testing should be done 

whenever web browser is updated or minor change is done to verify that nothing gets 

broken. To automate this end-to-end testing, the feedback loop to developer is much 

faster. Today when almost all software businesses are moving towards continuous deliv-

ery it is crucial to automate as much as possible. This allows verification engineers to test 

there where it is really needed. 



43 

 

6 FUTURE USE CASES 

 

After introducing this solution that provides Windows environment where end-to-end test 

automation can be run, there are many different steps in the product development where 

this solution can be included. Most reasonable place to include the Windows environment 

testing is regression testing phase. This solution frame can also be taken into use by any 

other project developing their own web applications. This can be easily promoted within 

the company as an end-to-end automated testing solution. In the near future, there might 

be reasonable to evaluate the introduction of similar kind of Windows environment test 

automation solution using containers. Creating Windows environment for test automation 

brought up discussion about automated testing possibilities on macOS. 

 

 

6.1 Next steps to get full potential out of the Windows environment 

 

This project was implemented so that the whole integration pipe is ready, but the Win-

dows environment and test execution on all major browsers require more implementation. 

Functionality of this solution was verified using Google Chrome. Next steps will be set-

ting up support for Mozilla Firefox and Microsoft Internet Explorer. Both browsers need 

to be able to be updated in automated way in the beginning of test execution like as 

Google Chrome. When all browsers can be updated automatically and test cases run on 

each of them, then quality of the applications will be guaranteed. 

 

Security aspects and Windows updates are something that should be taken under investi-

gation before the usage of this solution spreads further in the company. Usage of Mi-

crosoft Active Directory should be considered as an option to update Windows machines 

within reasonable intervals. If costs are too high for Active Directory, then some other 

way should be implemented to maintain Windows environment security. 

 

 

6.2 Windows environment test automation on different verification steps 

 

In this chapter, some possible verification steps are introduced where this Windows en-

vironment test automation solution can be integrated. Two main places to introduce this 



44 

 

solution are daily regression step and QL4 (Quality Level 4) testing step. These two test-

ing steps are orchestrated by Jenkins, which allows adding the dependency for Windows 

environment test automation step. Both QL4 and daily regression testing steps must have 

an environment where latest system build of the component is upgraded. After either one 

of the mentioned test steps are run, Windows environment test cases can be run against 

that same build to verify the functionality of the applications running on Windows OS 

web browsers. IP-address for the environment where latest system component build is 

upgraded, must be obtained dynamically. There is automation already for getting IP-ad-

dress and can be used into Windows environment test cases via resource file got from 

Jenkins. IP-address can be get from the resource file by using same variable name in the 

Robot Framework test case file. 

 

 

6.2.1 Daily regression testing step 

 

Daily regression step is testing phase where big number of automated test cases are run 

against system component build once a day and usually takes many hours to complete. 

Daily regression is not a quality gate for promoting the system component forward into 

product because of the lengthy execution time, but it gives valuable information to devel-

opers if some minor faults are found. This is the logical first step where this Windows 

environment test automation solution can be integrated. Integration to daily regression 

gives possibility to enhance the stability of the Windows environment test automation 

process. After stability is confirmed in the daily regression step, the Windows environ-

ment test automation can be integrated into QL4 test step. 

 

 

6.2.2 QL4 testing step 

 

QL4 testing refers to a step where the functionality of our system component is verified 

before it is promoted forward into product. If QL4 testing fails the system component 

build won’t be promoted further and system component build is regarded as faulty. Add-

ing the Windows environment testing into QL4 testing step requires that all parts from 

Windows environment to the Jenkins job orchestration functioning properly. Proper func-

tionality is needed because QL4 testing step shouldn’t have any test cases failing because 

of the unstable testing setup. When adding the Windows environment testing into QL4 



45 

 

testing step the test case content must be reviewed so that executed test cases will not add 

too much time into feedback loop.  

 

 

6.3 Front end development possibilities 

 

In addition of test automation execution, the front-end developer could use Windows en-

vironment to quickly verify that his or her application UI (User Interface) works in all 

major Windows web browsers. This would require implementation of simple backend 

simulator with API (Application Programming Interface) which will enable test data 

transfer between web application and backend. Web application itself could be deployed 

in a way that it is running in localhost. When web application is deployed it could be 

tested automatically on major browsers. This would shorten the feedback loop even more 

and prevents front-end developer committing faulty code into version control system.   

 

 

6.4 Other applications outside of current development area 

 

This solution is easy to take into use if some other system components have Jenkins in 

use. Within our product there are many other already existing applications running on 

web browser and the testing can be automated with this solution. To enhance product 

quality the all system component should have Windows environment test automation so-

lution in their continuous integration pipe as a quality step. In this way, the product would 

be much more mature and extensive manual regression testing could be mitigated a lot. 

 

Test automation solution for Windows environment can be introduced into System level 

verification. This is the step where the main functionalities are tested against fully built 

product installed into customer-like environment. There are already some level automated 

testing and web application test automation on top of Windows environment could cut 

time of from manual testing. 

 

 

 

 



46 

 

6.5 Macintosh operating system 

 

Usage of Macintosh operating system – later macOS – usage should be surveyed to de-

termine if web application should be tested on main web browsers supported by macOS. 

If there is a need to verify web applications in macOS environment, this solution could 

be used as a reference to create own test automation solution for macOS environment. 

Since macOS is based on Linux-like system the communication with Jenkins and macOS 

environment would be much simpler. In the other hand, there could be expensive license 

fees if macOS would be used in multiple virtual machines simultaneously.   

 

 

6.6 Windows web browser testing and docker containers 

 

Now containers are coming more and more common in the SW development work. In the 

future, there could be possibility to run each web browser in own container. This would 

enable simultaneous test execution for wanted web browsers. Containers could ease the 

security problems compared to cloning the Windows environment from snapshot. The 

Windows environment could be updated continuously without disturbance of web brows-

ers running in containers. Containers are more light weight than virtual machines and start 

time is even faster. 

 

Containers might have some challenges and there should be some comparison between 

challenges and benefits. The resource usage might be challenge in container usage since 

containers are running on host OS. This would mean that host should have adequate re-

sources to accommodate multiple containers running on the same time. If the infrastruc-

ture regarding Windows OS can’t be scaled to respond the resource needs, there might be 

unused resources outside of the peak hours. Now there is minimal amount of information 

available for container usage in Windows OS, which will add more challenges into con-

tainer introduction to test automation solution for Windows environment. 

 



47 

 

REFERENCES  

Jenkins. Main page 

Read 30.10.2017. https://jenkins.io/ 

 

VMware vSphere. “Learn More about vSphere” – video.  

Watched 22.03.2017. http://www.vmware.com/products/vsphere.html  

 

Apache Subversion.  ”Enterprise-class centralized version control for the masses”. 

Read 22.03.2017. https://subversion.apache.org/  

 

Robot Framework. Introduction. 

Read 22.03.2017 http://robotframework.org/ 

 

Downloads Python | Python.org 

Read 22.03.2017 https://www.python.org/downloads/ 

 

How To Get SSH Command-Line Access to Windows 7 Using Cygwin, 

Read 03.07.2017 https://www.howtogeek.com/howto/41560/how-to-get-ssh-command-

line-access-to-windows-7-using-cygwin/ 

 

Java SE Runtime Environment 8 Downloads, 

Read 03.07.2017 http://www.oracle.com/technetwork/java/javase/downloads/jre8-down-

loads-2133155.html 

 

Jenkins Tutorial, 

Read 20.04.2017 https://www.tutorialspoint.com/jenkins/jenkins_pdf_version.htm 

 

Application Compatibility: Session 0 Isolation, 

Read 24.10.2017 https://msdn.microsoft.com/en-us/library/bb756986.aspx 

 

https://jenkins.io/
http://www.vmware.com/products/vsphere.html
https://subversion.apache.org/
http://robotframework.org/
https://www.python.org/downloads/
https://www.howtogeek.com/howto/41560/how-to-get-ssh-command-line-access-to-windows-7-using-cygwin/
https://www.howtogeek.com/howto/41560/how-to-get-ssh-command-line-access-to-windows-7-using-cygwin/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.tutorialspoint.com/jenkins/jenkins_pdf_version.htm
https://msdn.microsoft.com/en-us/library/bb756986.aspx


48 

 

APPENDICES  

Appendix 1. TestRunnenr.java  

 

// Copyright (C) 2017 Nokia Solutions and Networks. All rights reserved. 

// include webdrivermanager package and import from github project wdm 

package webdrivermanager; 

import io.github.bonigarcia.wdm; 

 

public class TestRunner { 

          // Set PROXY 

          private static final String PROXY = "demuprx-fiesprx.glb.nsn-net.net:8080"; 

          //main function 

          public static void main(String[] args) 

          {   

              // get browser as an argument and give error if empty 

String browser = args.length!=0 ? args[0] : "No argument given!"; 

switch (browser) { 

    //download chrome driver if argument is gc 

    case "gc": 

        setupManager(ChromeDriverManager.getInstance()); 

        break; 

    //download ie driver if argument is ie 

    case "ie": 

        setupManager(InternetExplorerDriverManager.getInstance()); 

        break; 

    // download firefox driver if argument is ff 

    case "ff": 

        setupManager(FirefoxDriverManager.getInstance()); 

        break; 

    // download all browser drivers if argument is all 

    case "all": 

        setupManager(FirefoxDriverManager.getInstance()); 

        setupManager(InternetExplorerDriverManager.getInstance()); 

        setupManager(ChromeDriverManager.getInstance()); 

        break;       

    // give error message if argument is not recognized 

    default:  

        System.out.println("Unsupported browser or unknown argument: " + 

        browser ); 

        break; 

                    } 

          } 

 // Used in switch case to set proxy and setup                       

 private static void setupManager(BrowserManager manager) {                             

     manager.proxy(PROXY); 

     manager.setup(); 

 } 

} 



49 

 

 

Appendix 2. pom.xml 

<?xml version="1.0" encoding="UTF-8"?> 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://ma-

ven.apache.org/xsd/maven-4.0.0.xsd"> 

    <modelVersion>4.0.0</modelVersion> 

    <groupId>com.nokia.oss.configurator.webdrivermanager</groupId> 

    <artifactId>webdrivermanager</artifactId> 

    <version>1.0-SNAPSHOT</version> 

     

    <dependencies> 

     <dependency> 

       <groupId>io.github.bonigarcia</groupId> 

       <artifactId>webdrivermanager</artifactId> 

        <version>1.6.2</version> 

      </dependency> 

    </dependencies> 

   

  <build> 

  <plugins> 

    <plugin> 

      <groupId>org.apache.maven.plugins</groupId> 

      <artifactId>maven-jar-plugin</artifactId> 

      <configuration> 

        <archive> 

          <manifest> 

            <addClasspath>false</addClasspath> 

            <mainClass>webdrivermanager.TestRunner</mainClass> 

            <addDefaultImplementationEntries>true</addDefaultImplementationEntries> 

          </manifest> 

        </archive> 

      </configuration> 

    </plugin> 

 

  <plugin> 

    <groupId>org.apache.maven.plugins</groupId> 

    <artifactId>maven-shade-plugin</artifactId> 

 

      <configuration> 

        <createDependencyReducedPom>true</createDependencyReducedPom> 

        <filters> 

          <filter> 

            <artifact>*:*</artifact> 

            <excludes> 

              <exclude>META-INF/*.SF</exclude> 

              <exclude>META-INF/*.DSA</exclude> 

              <exclude>META-INF/*.RSA</exclude> 

            </excludes> 

          </filter> 



50 

 

        </filters> 

      </configuration> 

  

      <executions> 

        <execution> 

          <phase>package</phase> 

          <goals> 

            <goal>shade</goal> 

          </goals> 

          <configuration> 

            <transformers> 

              <transformer 

                implementation="org.apache.maven.plugins.shade.resource.ServicesRe-

sourceTransformer" /> 

              <transformer 

                implementation="org.apache.maven.plugins.shade.resource.ManifestRe-

sourceTransformer"> 

                <manifestEntries> 

                  <Main-Class>webdrivermanager.TestRunner</Main-Class> 

                </manifestEntries> 

              </transformer> 

            </transformers> 

          </configuration> 

        </execution> 

      </executions> 

  </plugin> 

  </plugins> 

</build> 

</project> 



51 

 

Appendix 3. mpp.properties  

[[ "$(whoami)" == "cmci" ]] && mpp_svn="$mpp_svn --config-dir /home/cmci/.subver-

sion_mpp" 

 

# Used sources 

source .res/mpp_clone_client || fail "Unable to load mpp clone client ($?)" 

source .cpp/build-tools 

 

infrastructural_build_issue_handler=0 

 

# User name used for clone reservation 

res_user="cm" 

 

# Reservation ID resoleved using Job name and build number of the job 

res_id="${JOB_NAME}_$BUILD_NUMBER" 

 

# Reservaton type Windows Server  R2 

res_type="rcm_win_2008_r2" 

 

# Maximum duration of Windows test environment clone reservation in minutes 

res_duration=20 

 

backend_project="cm" 

mpp_ris_id="" 

 

# Windows test environment password for Administrator user 

password=Passw0rd 

 

# Main function that contains Windows test environment clone lab reservation, copying 

files to  

# Windows test environment clone, unpacking the test files and starting test execution in  

# Windows test environment clone, retrieving test results from Windows test evinronment 

clone, 

# and releasing the Windows test environment clone 

function build() 

{ 

 # Remove reports folder from Jenkins job workspace. 

 rm -rf reports robot  

 # Local return calue set to 0 

 local return_value=0; 

 reserve_lab 

 server=${res_clone_id}node01.netact.nsn-rdnet.net 

 copy_files_to_server || { release_reservation; return 1; }  

 unpack_and_run_tests_on_server || return_value=1 

 get_test_report || { release_reservation; return 1; } 

 release_reservation || true 

 return $return_value 

} 

 

# puts function uses puts script with user Administaror and $password and $@ as a argu-

ment. 



52 

 

function puts() 

{ 

 libs/puts Administrator@$server $password $@ 

} 

 

# gets funtion uses gets script with user Administaror and $password and $@ as a argu-

ment. 

function gets_win() 

{ 

 libs/gets_win  Administrator@$server $password $@ 

} 

 

# sssh function uses sssh script with user Administaror and $password and $@ as a argu-

ment. 

function sssh() 

{ 

 libs/sssh Administrator@$server $password $@ 

} 

 

# Clears the home folder of the Administrator in Windows test environment clone,  

# creates tarball of the test files and scripts,  

# and transfers the tests.tgz tarbal to the Windows test environment clone. 

function copy_files_to_server() 

{ 

 sssh rm -f home/Administrator/* 

 tar czf  tests.tgz -C tests --exclude=.svn . 

 puts tests.tgz home/Administrator 

} 

 

# uses sssh() function to extract tests.tgz, 

# granting run rights to test execution scripts and starting the tests 

# in Windows test environment clone. 

function unpack_and_run_tests_on_server() 

{ 

 sssh tar xzf tests.tgz 

 sssh chmod +x download_copy_webdrivers.sh 

 sssh chmod +x robot_run.bat 

 sssh /home/Administrator/download_copy_webdrivers.sh 

} 

 

# uses gets() function to retrieve the test results from 

# Windows tets environment clone containing all .png screenshots. 

function get_test_report() 

{ 

  mkdir reports 

  gets_win home/Administrator/output.xml reports  

  gets_win home/Administrator/log.html reports  

  gets_win home/Administrator/report.html reports  

  gets_win "home/Administrator/*.png" reports || true  

 

} 

 



53 

 

# Reserves the Windows test environment clone 

function reserve_lab() 

{ 

 init_res_build_token 

 init_reservation_parameters 

 init_res_max_queue_time 

 local res_max_queue_time=0 

 local polling_interval=10 

 while true 

 do 

   queue_for_clone_win && return 

   [[ $? -eq 1 ]] && return 1 

   sleep "$polling_interval" 

 done 

} 

 

# uses queing mechanism provided by mpp integration tools. 

function queue_for_clone_win() 

{ 

  res_service="$res_service_clone_pools" 

  queue_for_reservation 

} 

 



54 

 

Appendix 4. tc_ifa_supercell_legacy.tsv test case file 

*Settings* 

Documentation End to end regression tests for IFA (Intelligent Feature Acti-

vation) Supercell feature. 

Suite Setup Setup_Suite 

Suite Teardown Cleanup_Suite 

Force Tags IFA_SUPERCELL CM2 GUI_Web nadcproto 

Library String 

Library BuiltIn 

Resource _ifa_supercell_resources.tsv 

 

*Variable* 

#Added variables 

${SDV_WEBSPHERE_APPSERVER_PRIMARY_IP} 0.0.0.0 

${SDV_DESKTOP_ADMIN_PASSWORD} password 

 

*Test Cases* 

IFA_Supercell_Create_Legacy 

 [Documentation] MRBTS-7407 merge LCELL-8 to LCELL-0 

 IFA_Supercell_Create_Legacy_test 

 

IFA_Supercell_Deactivate_Legacy 

 [Documentation] MRBTS-7407 remove LCELL-5 from LCELL-

12 

 IFA_Supercell_Deactivate_Legacy_test 

 

*Keywords* 

Setup_Suite [Timeout] 3 minutes 

 common_lab_resources.Open Lab ${SDV_WEBSPHERE_APPS-

ERVER_PRIMARY_IP} ${SDV_DESKTOP_ADMIN_PASSWORD} 

 Setup Test Data Into Lab Legacy 

 Open Start Page 

 Start IFA 

 

Cleanup_Suite [Timeout] 5 minuts 

 Selenium2Library.Close All Browsers 

 Cleanup Testdata From Lab 

 SSHLibrary.Close Connection 

 

 

 



55 

 

Appendix 5. download_copy_webdrivers.sh  

#!/bin/sh 

#download web drivers for Internet Explorer, Google Chrome and Firefox 

java -jar webdrivermanager-1.0-SNAPSHOT.jar ie 

java -jar webdrivermanager-1.0-SNAPSHOT.jar ff 

java -jar webdrivermanager-1.0-SNAPSHOT.jar gc 

#grant execute rights to webdrivers 

chmod 755 /cygdrive/c/Users/Administrator/.m2/repository/webdriver/chromedriver/* 

chmod 755 /cygdrive/c/Users/Administrator/.m2/repository/webdriver/geckodriver/* 

chmod 755 /cygdrive/c/Users/Administrator/.m2/repository/webdriver/IEDriverServer/* 

#copy webdrivers into Python27 directory so they are in PATH 

find /cygdrive/c/Users/Administrator/.m2/repository/webdriver/ -perm /a+x -exec cp {} 

/cygdrive/c/Python27 \; 

#start batch script which contains google chrome update and Robot Framework test case 

execution 

./robot_run.bat 

 



56 

 

Appendix 6. robot_run.bat 

Start "" "C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" 

sleep 5  

 

set count=2  

:while 

  tasklist /FI "IMAGENAME eq GoogleUpdate.exe" /FO CSV |grep GoogleUpdate |WC 

-l >result.txt 

  set /p index=<result.txt 

  echo The value of index is %index% 

  sleep 5  

  if %index% geq %count% ( 

    goto :while 

  ) 

del result.txt 

taskkill /IM chrome.exe 

 

python -m robot --include IFA_SUPERCELL tc_ifa_supercell_legacy.tsv tc_ifa_super-

cell.tsv 

taskkill /F /IM java.exe 

taskkill /F /IM cmd.exe 

exit /B 0; 



57 

 

Appendix 7. Feedback from SW architect 

In DevOps software development mode unit testing and test automation are the way how 

quality assurance and verification must be done. This applies even in the customer deliv-

eries in case of the advanced customers hosting they own environment or ones relying 

vendor provided cloud solution. There cannot be constant manual regression test phase 

simply because cycle of the change is so fast that even with vast resources it cannot be 

handled traditional way.  

 

Microsoft Windows is the most popular operating system used for running Web desktop 

applications specially in telecommunication sector. Several variants of the OS as Win-

dows 7 and 10 bring new challenges for the testing because all possible browser variants 

e.g. Chrome, Firefox, IE and Edge should be possible to test. Also constantly updated 

browser versions must be automatically handled by the solution thus it is almost impos-

sible and waste of resources to do such thing manually. 

 

Microsoft Windows Web UI test automation developed by Rami Lehtelä has solved all 

of these complex problems using modern software capabilities.  This work is enabler for 

DevOps and building advanced CI and verification pipe for our department.  

 

- Mikko 

 

 



58 

 

Appendix 8. Feedback from SW engineer 

 

There has been a real need for Windows test automation (TA) solution, and this work has 

been done to fill the needs. Earlier we have had only TA solution using Linux and only 

one browser, while majority of the end users use Windows operating system and browsers 

in it. We have already seen that some faults exist in some browser while other browsers 

work fine. With this Windows TA solution we have a possibility to test using different 

operating systems, different browsers and latest browser versions. This improves the 

quality and reliability of our testing, and because of this end users should face less prob-

lems and improve the user experience. 

 

This Windows test automation solution is also good tool for developers, developers can 

do their coding and after that easily test with different browsers automatically. This is 

even more important in maintenance phase, when some bug fixing / code changes are 

done, that there is easy way to check that existing functionality still works. 

 

There are still work to do for example we maybe need to test with different Windows 

versions and cover even more browsers, but this has been a good starting point and im-

provement. 

 

-Sari 


